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Abstract. Radiative sensitivity, i.e., the response of the radiative flux to climate perturbations, is essential to un-
derstanding climate change and variability. The sensitivity kernels computed by radiative transfer models have
been broadly used for assessing the climate forcing and feedbacks for global warming. As these assessments are
largely focused on the top of atmosphere (TOA) radiation budget, less attention has been paid to the surface radi-
ation budget or the associated surface radiative sensitivity kernels. Based on the fifth generation European Center
for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5), we produce a new set of radiative kernels
for both the TOA and surface radiative fluxes, which is made available at https://doi.org/10.17632/vmg3s67568
(Huang and Huang, 2023). By comparing these with other published radiative kernels, we find that the TOA
kernels are generally in agreement in terms of global mean radiative sensitivity and analyzed overall feedback
strength. The unexplained residual in the radiation closure tests is found to be generally within 10 % of the total
feedback, no matter which kernel dataset is used. The uncertainty in the TOA feedbacks caused by inter-kernel
differences, as measured by the standard deviation of the global mean feedback parameter value, is much smaller
than the inter-climate model spread of the feedback values. However, we find relatively larger discrepancies in
the surface kernels. The newly generated ERA5 kernel outperforms many other datasets in closing the surface en-
ergy budget, achieving a radiation closure comparable to the TOA feedback decomposition, which confirms the
validity of the kernel method for the surface radiation budget analysis. In addition, by investigating the ERA5
kernel values computed from the atmospheric states of different years, we notice some apparent interannual
differences, which demonstrates the dependence of radiative sensitivities on the mean climate state and partly
explains the inter-dataset kernel value differences. In this paper, we provide a detailed description of how ERA5
kernels are generated and considerations to ensure proper use of them in feedback quantifications.

1 Introduction

Radiative kernels measure the sensitivity of radiative fluxes
to the perturbation of feedback variables, such as tempera-
ture, water vapor, albedo and cloud (e.g., Soden and Held,
2006; Huang et al., 2007; Shell et al., 2008; Previdi, 2010;
Zelinka et al., 2012; Block and Mauritsen, 2013; Yue et al.,
2016; Huang et al., 2017; Pendergrass et al., 2018; Thorsen
et al., 2018; Kramer et al., 2019b; Smith et al., 2020).
Compared to the partial radiative perturbation method (e.g.,
Wetherald and Manabe, 1988), which is precise but compu-
tationally expensive, the kernel method deploys a set of pre-
calculated radiative kernels with simple arithmetic multipli-

cations in feedback quantification and thus is computation-
ally highly efficient, which has greatly facilitated the analy-
sis of radiative feedbacks in global climate models (GCMs)
(e.g., Soden and Held, 2006; Soden et al., 2008; Jonko et
al., 2012; Vial et al., 2013; Zhang and Huang, 2014; Dong
et al., 2020; Zelinka et al., 2020; Chao and Dessler, 2021)
as well as in observations (e.g., Dessler, 2010; Kolly and
Huang, 2018; Zhang et al., 2019; H. Huang et al., 2021).
These analyses have helped dissect and understand the cli-
mate sensitivity differences among the GCMs, such as those
in Coupled Model Intercomparison Projects CMIP5 (Taylor
et al., 2012) and CMIP6 (Eyring et al., 2016). For example,
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Zelinka et al. (2020) attributed the higher climate sensitiv-
ity in the CMIP6 models to their more positive extratrop-
ical cloud feedback. The kernel-enabled feedback analyses
have also provided insights into the energetics of the cli-
mate variations such as the El Niño and Southern Oscillation
(ENSO, e.g., Dessler et al., 2010; Kolly and Huang, 2018; H.
Huang et al., 2021), the Madden–Julian Oscillation (MJO,
e.g., Zhang et al., 2019), and the Arctic sea ice interannual
variability (e.g., Huang et al., 2019), despite the approximate
nature of the kernel method and the known limits of its accu-
racy (e.g., Colman and Mcavaney, 1997; Huang and Huang,
2021).

Multiple sets of radiative kernels have been developed to
date, using different radiation codes and based on different
atmospheric state datasets ranging from GCMs to global re-
analysis and satellite datasets, for both non-cloud variables
(e.g., Soden and Held, 2006; Shell et al., 2008; Huang et
al., 2017; Thorsen et al., 2018; Bright and O’Halloran, 2019;
Donohoe et al., 2020) and cloud properties (e.g., Zelinka et
al., 2012; Zhou et al., 2013; Yue et al., 2016; Zhang et al.,
2021; Zhou et al., 2022). As the conventional feedback anal-
yses are mostly concerned with the radiation energy budget
change at the top of the atmosphere (TOA), most existing
kernels have been developed and tested to address that need,
i.e., to measure the feedback contributions to the TOA radi-
ation changes. Although the radiative sensitivity depends on
the atmospheric states as well as the radiative transfer codes
used to compute the kernel values (e.g., Collins et al., 2006;
Huang and Wang, 2019; Pincus et al., 2020), it has been
noted that the global mean TOA feedback quantification is
insensitive to which kernel dataset is used, as the diagnosed
feedback values are close to each other when measured by
different kernel datasets (e.g., Soden et al., 2008; Jonko et
al., 2012; Vial et al., 2013; Zelinka et al., 2020). However, as
there is increasing interest in regional climate change and as-
sociated feedback (e.g., Kolly and Huang, 2018; Huang et al.,
2019; Zhang et al., 2019), it becomes important to know how
the kernels (dis)agree at regional scales. The generation of
the global radiative kernels usually requires radiative trans-
fer computation based on a large number of instantaneous
atmospheric profiles. Due to this computational cost, many
kernel datasets are generated based on the atmospheric data
from an arbitrary calendar year. Given the known interannual
climate differences, e.g., between El Niño to La Niña years,
this warrants investigations to ascertain whether the kernels
may differ in important ways for regional feedback assess-
ments.

On the other hand, fewer feedback studies have addressed
the surface radiation budget, although its importance has
been recognized for such problems as the precipitation
change (Previdi, 2010; Pendergrass and Hartmann, 2014;
Myhre et al., 2018) and oceanic energy transport (e.g., Zhang
and Huang, 2014; Huang et al., 2017). The surface budget
analysis requires the use of surface kernels, which are not
always available from the published kernel datasets. Few of

them have been subject to intercomparisons or rigorous val-
idation. As explained below in this paper, the computation
and use of them require different care to the TOA kernels.
Possibly due to the lack of such recognition, there exist con-
siderable discrepancies between the existing surface kernels,
and some surface-budget-centered analyses reported alarm-
ingly large non-closure in their radiation budget analyses
(e.g., Vargas Zeppetello et al., 2019), calling into question
the validity of the kernel method for surface radiation budget
analysis. Hence, we are motivated to examine the radiative
sensitivity quantified by different kernels, especially for the
surface budget.

In this work, we produce a new set of radiative ker-
nels for both the TOA and surface radiation fluxes based
on the fifth generation European Center for Medium-Range
Weather Forecasts atmospheric reanalysis (ERA5, Hersbach
et al., 2020), which demonstrates superior accuracy in the
quantification of various atmospheric states (e.g., Graham et
al., 2019; Wright et al., 2020), and document the key consid-
erations in the kernel computation procedure. We intercom-
pare the kernels computed from ERA5 to the other previously
generated ones and investigate the interannual variation in
the kernel values due to their atmospheric state dependency.
In addition, applying a selected set of kernels to analyzing the
feedback in the CMIP6 models, we intercompare the discrep-
ancies in quantified feedbacks across the GCMs and across
different kernels.

2 Construction of ERA5 radiative kernels

2.1 Radiative transfer model and atmospheric dataset

We use the GCM version of the rapid radiative transfer model
(RRTMG) (Mlawer et al., 1997) to calculate the radiative
kernels. RRTMG conducts radiative transfer calculations in
16 longwave (LW) spectral bands and 14 shortwave (SW)
bands. The accuracy of this model has been extensively vali-
dated against the line-by-line calculations (e.g., Collins et al.,
2006).

Input data required by RRTMG, including surface pres-
sure, skin temperature, air temperature, water vapor, albedo,
ozone concentration, cloud fraction, cloud liquid water con-
tent and cloud ice content, are taken from the instantaneous
(as opposed to monthly mean) data of ERA5, with a hor-
izontal resolution of 2.5◦ by 2.5◦ and 37 vertical pressure
levels between 1 and 1000 hPa. To ensure the accuracy of ra-
diative kernels in the upper atmosphere (Smith et al., 2020),
we patch five layers of the US standard profile above 1 hPa
in the LW calculations. Other required input variables, such
as the effective radii of cloud liquid droplets and ice crys-
tals are taken from the 3-hourly synoptic TOA and surface
fluxes and the cloud product of the Clouds and Earth’s Ra-
diant Energy System (CERES) (Doelling et al., 2013) with a
horizontal resolution of 1◦ and then interpolated to the same
resolution as the ERA5 data (2.5◦). A random cloud over-
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lapping scheme is used in our all-sky calculation. Sensitivity
tests have been conducted to determine the necessary tempo-
ral sampling for a proper representation of the diurnal cycle,
and 6-hourly and 3-hourly instantaneous profiles are adopted
for LW and SW radiative transfer calculations, respectively,
to limit the root-mean-squared error in the computed diurnal
mean flux biases to less than 1 %.

2.2 Radiative kernel computation

Radiative kernels in essence measure the change in radiative
flux to unit perturbation of atmospheric variables, i.e., ∂R

∂X
,

where R is either the upwelling irradiance flux at the TOA
or upwelling and downwelling irradiance flux at the surface,
X represents the aforementioned feedback variables, KX is
the radiative kernel of variable X. Note that for each radia-
tive flux, KX varies with the time and geographic and ver-
tical locations of the perturbed variable and is in general a
four-dimensional (4D) data array. Note also that all radiative
fluxes and kernel values are defined as downward positive.

Following previous studies, we compute non-cloud radia-
tive kernels including the LW kernels of surface temperature
(Ts), air temperature (Ta) and water vapor (WV LW), and the
SW kernels of surface albedo (ALB) and water vapor (WV
SW). To calculate the kernels, we use the partial radiative
perturbation experiments, conducting two radiative transfer
computations, one without perturbation (control run) and the
other with a perturbation of one atmospheric variable; the dif-
ference between these two computations is used to calculate
the radiative kernel value. In both experiments, the upward,
downward and net radiative fluxes at TOA and the surface are
saved at each time instance and location. Then 1R0 can be
obtained by differencing the saved radiative fluxes between
the perturbed and unperturbed experiments. Dividing 1R0
with the perturbation of variable X (1X0), the instantaneous
radiative kernel KX is calculated as

KX =
1R0

1X0
. (1)

Applying such perturbation computations to all the rele-
vant variables (see the Appendix for a detailed discussion
of the procedure), we obtain instantaneous radiative kernels
of these dimensionalities: the surface temperature and albedo
kernels are 3D arrays (time; latitude: 73; longitude: 144), and
the air temperature and water vapor kernels are 4D arrays
(time; level: 37; latitude: 73; longitude: 144).

To account for possible interannual variability in the ra-
diative kernel values, we compute the kernels using atmo-
spheric data of 5 calendar years: from the year 2011 to the
year 2015. Among these years, 2011 is a strong La Niña year,
and 2015 is a strong El Niño year. Monthly or annual mean
kernels are then averaged from the instantaneous computa-
tions. For example, the LW annual mean kernel of 2011 is

obtained as K = 1
365·4

365·4∑
i=1

Ki (365 is the number of days of

a year and 4 is because 6-hourly data are used for LW calcu-

lations) and the SW kernels, K = 1
365·8

365·8∑
i=1

Ki (8 is because

3-hourly data are used for SW calculations), where the index
i represents the time slices included in the averaging. A sim-
ilar averaging procedure is applied to monthly mean kernels.
The analyses in this work are based on multi-year averaged
monthly mean kernels if not otherwise stated.

3 Characterization of ERA5 kernels

In this section, we first present the all-sky TOA and sur-
face radiative sensitivity kernels quantified from the ERA5 in
Figs. 1 to 4 (see the clear-sky kernels in Figs. S1 and S2 in the
Supplement). The atmospheric radiation flux kernels, i.e., the
change in radiation flux convergence in the atmosphere due
to the perturbation of feedback variables and measured by
differencing TOA and surface kernels, are shown in Figs. S3
and S4 for interested readers. Then, we compare ERA5 ker-
nels with the other kernel datasets, and we examine the in-
terannual variability in the ERA5 kernel values, due to the
dependency of radiative sensitivity on the background atmo-
spheric state.

3.1 Distribution of radiative sensitivity

Figure 1 summarizes the spatial distribution of all-sky ERA5
kernels for TOA and the surface, and Fig. 2 illustrates the
vertical cross-sections of zonal mean air temperature, wa-
ter vapor LW and water vapor SW kernels in all sky (see
Figs. S1 and S2 for results in clear sky). For the surface tem-
perature kernels, an increase in surface temperature leads to
more upwelling longwave radiation (i.e., OLR) both at the
surface and TOA; therefore the kernel is negative. The TOA
flux sensitivity in clear sky (Fig. S1a) is stronger than that in
all sky (Fig. 1a) due to the absence of cloud, and the value in-
creases with latitude, due to the decreasing concentration of
water vapor from the tropics to the poles. The all-sky TOA
sensitivity is strongly influenced by clouds, showing, for ex-
ample, the fingerprint of the Intertropical Convergence Zone
(ITCZ) in the tropical oceans (Fig. 1a). The locations with
less atmospheric absorption due to less water vapor or cloud,
e.g., the Tibetan Plateau and Sahara regions, show relatively
stronger sensitivity (Fig. 1a). For the surface flux kernels, the
increase in surface temperature enhances the upward emis-
sion according to the Planck function, and thus the distribu-
tion follows that of surface temperature for both clear sky
and all sky (Fig. 1b).

For air temperature kernels, the increase in air tempera-
ture increases the OLR at TOA and also the downwelling
flux at the surface, so the TOA and surface kernels take neg-
ative and positive signs, respectively. The TOA kernel has
maximum values in the tropics, due to the higher air temper-
ature (Planck function) and more abundant cloud and water
vapor (higher emissivity) there, and generally decreases in
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Figure 1. All-sky (left) TOA and (right) surface ERA5 kernels of (a, b) surface temperature (Ts), (c, d) air temperature (Ta), (e, f) water
vapor longwave (WV LW), (g, h) water vapor shortwave (WV SW) and (i, j) surface albedo (ALB). Note that for Ta, WV LW and WV SW
kernels, vertically integrated values are shown, which represents the sensitivity of radiative flux to a whole-column atmospheric perturbation.
Note that the color bar ranges differ among panels.
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Figure 2. All-sky (left) TOA and (right) surface ERA5 vertically resolved and zonally averaged kernels of (a, b) air temperature (Ta), (c,
d) water vapor longwave (WV LW) and (e, f) water vapor shortwave (WV SW); units: W m−2 K−1 100 hPa−1. Note that nonlinear color
bars are used for surface air temperature and water vapor LW kernels and that the color bar ranges differ among panels.

magnitude with latitude (Fig. 1c). Unlike the TOA flux ker-
nel, which shows comparable sensitivity to air temperature at
nearly all vertical levels, the surface flux is mainly sensitive
to the bottom layers (Fig. 2b).

For water vapor LW kernels, an increase in water vapor
reduces OLR at TOA and increases downwelling radiation at
the surface, so that the TOA and surface kernels are both pos-
itive in sign. The vertically integrated kernel values (Fig. 1e
and f) generally follow the temperature distribution, for ex-
ample, decreasing in magnitude with latitude. In both cases,
the kernel magnitude is dampened by clouds in all sky. The
vertically resolved kernels show a maximum sensitivity of
TOA flux to the upper troposphere (Fig. 2c) and maximum
sensitivity of surface flux to the bottom layers (Fig. 2d). In
terms of the atmospheric radiation (the convergence of the
TOA and surface radiation fluxes in the atmosphere), the in-
crease in water vapor concentration absorbs more LW in the
upper troposphere than what it emits, but the opposite is true

in the lower troposphere (Fig. S4c). Such features were dis-
cussed in previous works (e.g., Huang et al., 2007).

For water vapor SW kernels, an increase in water vapor
absorbs solar radiation and thus reduces both the upwelling
(reflected) SW flux at TOA and the downwelling SW flux at
the surface. As a result, the two kernels take positive and neg-
ative signs, respectively. Note that the magnitude of the SW
kernels is much weaker than that of the LW kernels because
water vapor absorbs the LW flux more significantly than the
SW flux. One noticeable feature of the TOA kernel in clear
sky (Fig. S1g) is that the magnitude over the land is stronger
than that over the ocean because the relatively higher albedo
over the land reflects more SW radiation and thus enhances
the absorption by the water vapor in the atmosphere. For this
reason, over reflective surfaces such as the Sahara and the
Tibetan Plateau as well as the poles, the sensitivity is maxi-
mized. Unlike the TOA kernel, the distribution of surface ker-
nel follows the distribution of background water vapor con-
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centration, with noticeable dampening by clouds (Figs. 1h
and 2f).

For surface albedo kernels, an increase in surface albedo
leads to more upwelling (reflected) SW flux both at the sur-
face and TOA; therefore, the kernel is of negative sign. In
clear sky, the sensitivity strength follows the pattern of so-
lar insolation, with some local maxima, e.g., in the Sahara
and the Tibetan Plateau (Fig. S1i and j) due to the relatively
lower water vapor concentration. In all sky, the distribution is
again influenced by cloud patterns; for example, in the ITCZ
region, the strength is much reduced as clouds reduce the so-
lar radiation reaching the surface and thus the sensitivity to
surface albedo change (Fig. 1i and j).

3.2 Comparison of ERA5 kernels with other datasets

To examine the discrepancies between different kernel
datasets, we select six previously published ones for compar-
ison. Table 1 summarizes their resolutions and the datasets
based on which they are computed, including the GCMs
(GFDL kernel, Soden et al., 2008; CAM3 kernel, Shell et
al., 2008; CAM5 kernel, Pendergrass et al., 2018; HadGEM3
kernel, Smith et al., 2020), a global reanalysis (ERAi ker-
nel, Huang et al., 2017) and satellite observations of cloud
fields from CloudSat/CALIPSO combined with thermody-
namic fields from reanalyses (Kramer et al., 2019b). This list
is meant to be representative instead of exhaustive.

To facilitate an intercomparison, these kernel datasets are
interpolated to the same horizontal and vertical resolutions
as those of the ERA5 kernel when illustrated in Figs. 3 and
4 (see Figs. S5 and S6 for clear sky) and are uploaded to the
same data repository of ERA5 kernels. Note that the CAM5
and HadGEM3 kernels have two versions, with one defined
at the raw hybrid levels and the other interpolated to pres-
sure levels. To retain the accuracy of them as much as possi-
ble, the hybrid level version is used for the interpolation and
comparison in Figs. 3 and 4, while in Sect. 4, the pressure
level version is used for quantifying the feedbacks of CMIP6
models. The GFDL and CAM3 kernels are only available for
TOA fluxes and are excluded for surface kernel comparisons.

Here we use the standard deviation (SD) and its normal-
ized value (SD∗) to measure the spread of the inter-kernel
dataset differences:

SDX =

√√√√ 1
n− 1

n∑
i=1

(
K i
X −KX

)2
, (2)

SD∗X =
SDX
KX
· 100, (3)

where n is the total number of kernel datasets. K i
X is the

radiative kernel of variable X from the ith dataset. KX is
the multi-dataset mean of radiative kernel KX. Note that KX
does not represent the “truth” value but a reference value
used to measure the spread of multi-kernel values. The verti-

cally integrated and the vertically resolved but zonally aver-
aged distributions of fractional discrepancy (SD∗) are shown
in Figs. 3 and 4, respectively. The zonal mean kernel val-
ues from respective multi-datasets are shown in line plots
in Figs. 3 and 4. Note that some kernels exhibit abnormal
values, such as the surface and air temperature kernel of
the surface flux in the CAM5 and CloudSat kernels (see the
Appendix Fig. A2), indicating inconsistent computation of
their values, and thus are excluded in the corresponding SD∗X
statistics in Figs. 3 and 4. See more discussions in the Ap-
pendix.

The comparisons identify the following relatively larger
differences in kernel values. Among the TOA kernels, the
surface temperature and albedo kernels show relatively large
discrepancies in the Arctic, Southern Ocean and over some
continental regions in the tropics in all sky (Fig. 3a and q),
with the maximum discrepancy exceeding 30 %. The air tem-
perature kernel shows larger discrepancies in the lower tropo-
sphere and tropical tropopause region (Fig. 4a). These kernel
differences are likely due to the differences in cloud fields.
The water vapor LW kernel also shows noticeable fractional
differences, for example, over the Antarctic region (Figs. 3i
and 4e). The water vapor SW kernel shows differences in the
tropical mid-troposphere and over the Antarctic in both clear
sky and all sky (Figs. 4i and S6i), leading to strong varia-
tions in the vertical integration of sensitivity (Figs. 3m and
S5m), with a spread exceeding 30 %. The noticeable peri-
odic equatorial pattern in Fig. S5m is caused by the CAM3
kernel, likely due to a coarser temporal resolution that does
not resolve the diurnal cycle of solar insolation in the kernel
computation well.

For the surface kernels, the most prominent differences ex-
ist in SW radiative kernels (Figs. 3 and 4), especially in the
polar regions. The discrepancy in the water vapor SW kernel
reaches 30 % for vertically integrated values (Fig. 3o), with
noticeable differences through the troposphere (Fig. 4k). The
surface albedo kernel differences are much larger in all sky
than that in clear sky (Figs. 3 and S5), indicating that the
cause is in cloud fields, and are also noticeable in the Arctic
region due to sea ice variations (Fig. 3s). In the LW, the water
vapor kernels exhibit noticeable differences in the central Pa-
cific, Southern Ocean and Arctic in all sky (Fig. 3k), where
again the difference in cloud field is likely the cause. The
air temperature kernels show noticeable discrepancies in the
bottom layers (Fig. 4d), which may be caused by inconsis-
tency in the kernel computation and vertical resolutions (see
the discussions in the Appendix).

In summary, the differences among radiative kernel
datasets are generally smaller in clear sky than in all sky
and, in most cases, are within 10 % of the radiative kernel
values. However, there are some notable regional discrepan-
cies, for example, in the surface temperature kernel in the
tropics (Fig. 3a), in the surface albedo kernel in the Arctic
(Fig. 3q) and in the water vapor SW kernel in the Antarctic
region (Fig. 3m). As different kernel datasets are calculated
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Table 1. Summary of radiative kernels compared in this work. Datasets with ∗ only have TOA kernels.

Radiative Horizontal resolution Vertical Reference
kernels (lat× long) levels

GFDL∗ 2× 2.5 17 (pressure level) Soden et al. (2008)
CAM3∗ 2.8× 2.8 17 (pressure level) Shell et al. (2008)
ERAi 2.5× 2.5 24 (pressure level) Huang et al. (2017)
CAM5 0.94× 1.25 30 (hybrid level) Pendergrass et al. (2018)

or 17 (pressure level)
CloudSat 2× 2.5 17 (pressure level) Kramer et al. (2019b)
HadGEM3 1.25× 1.9 85 (hybrid level) Smith et al. (2020)

or 19 (pressure level)
ERA5 2.5× 2.5 37 (pressure level) This study

Figure 3. Contour plot: fractional discrepancies as measured by the normalized standard deviation of the kernels by Eq. (3); line plot: zonal
mean distribution of multi-kernels in all sky.
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Figure 4. Contour plot: cross-section of fraction discrepancies of the radiative kernels; line plot: global mean vertically resolved kernels
from multi-datasets in all sky.

using different data sources, the discrepancies detected here
are likely due to the state dependency in the kernels, which
differs between the kernel datasets. To ascertain the state-
dependency-caused kernel uncertainty, we next examine the
ERA5 kernels computed from different years, i.e., from dif-
ferent atmospheric states, to investigate how much difference
in radiative sensitivity can result from the change in atmo-
spheric state.

3.3 Interannual variation in kernel values

The intercomparison above identified several prominent
inter-dataset differences in the kernel values. For example,
there are noticeable differences in the values of surface tem-
perature, albedo and water vapor kernels in the central Pacific
and Arctic regions. One possible reason that may account
for such differences is the atmospheric state dependency of
the kernel values. Besides the inter-model differences in the
different GCM climatology, interannual variations in the at-
mospheric states, such as cloudiness variations in the central
Pacific region during the ENSO cycle, may affect the radia-
tive sensitivity as some radiative kernels are calculated using
1 arbitrary year’s data. To test this hypothesis, we use the
ENSO and sea ice loss cases to demonstrate the changes in
radiative sensitivity with a focus on the central Pacific and
Arctic regions, respectively. In the ENSO case, the variation
is defined as the difference in annual mean kernel values be-
tween 2015 and the 5-year mean (from 2011 to 2015), which
have annual mean sea surface temperature anomalies in the

Niño 3.4 region (5◦ N–5◦ S, 190–240◦ E) over+2.0 K. In the
sea ice loss case, the variation is calculated as the difference
in September between the years 2012 and 2013, as the sea ice
cover in 2012 was reported to be the lowest level in the satel-
lite observation era. In addition, we further show the compar-
ison between ERA5 and ERAi kernels (in Fig. 5), which was
also calculated by RRTMG and averaged from 5-year calcu-
lations (2008–2012), to compare the inter-kernel difference
and interannual difference in kernel values.

To save space, here we only highlight the most prominent
differences. Figure 5a–c show the differences in skin tem-
perature, total-column water vapor and total cloud cover due
to ENSO, and Fig. 5d–f summarize the corresponding dif-
ferences in all-sky TOA kernels. As the skin temperature in
the central Pacific warms over 2 K (Fig. 5a) during ENSO,
the increases in water vapor concentration and cloud fraction
(Fig. 5b and c) reduce the sensitivity of TOA flux to surface
temperature change by about 0.2 W m−2 K−1 (about 33 %)
(Fig. 5d). The moistening in the central Pacific (Fig. 5b) en-
hances the TOA water vapor LW sensitivity in the clear sky
(Fig. S7b), while in all sky the enhanced convection and as-
sociated total cloud cover in this region lead to a weakened
TOA water vapor LW radiative sensitivity (Fig. 5e) despite
the moist anomaly, and the decrease is contributed from al-
most the whole troposphere (Fig. S8c). The water vapor SW
kernel discrepancy is less pronounced (Fig. 5f).

Comparing the 5-year averaged all-sky ERA5 and ERAi
kernels, we find that the atmospheric state differences also
exist between the atmospheric datasets on which the kernels
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Figure 5. Differences in climate states and all-sky kernel values (left) between an arbitrary year (2015) and a 5-year mean of ERA5 and
(right) between the 5-year means of ERA5 and ERAi datasets: (a, g) skin temperature, (b, h) total-column water vapor (TCWV), (c, i) total
cloud cover (TCC), (d, j) TOA skin temperature kernel, (e, k) TOA vertically integrated water vapor LW kernel and (f, l) TOA vertically
integrated water vapor SW kernel. Note that the color bar ranges differ among panels.

are computed. For example, ERA5 shows similar, but less
pronounced, warming anomalies in sea surface temperature
in the central Pacific compared to ERAi, partly due to the
strong El Niño year (2015) included in the ERA5 dataset.
ERA5 data also show more water vapor and cloud cover

(Fig. 5h and i). Although the total-column water vapor and
total cloud cover are higher in ERA5 (Fig. 5h and i), their
differences are complex and vertically non-uniform (Fig. S8d
and e), which leads to a slight strengthening of surface tem-
perature kernels compared with ERAi (Fig. 5j). It is also no-
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ticed that the ERA5 water vapor SW kernel shows lower sen-
sitivity (Fig. 5l), which mainly comes from the contributions
in the mid- to low troposphere (Fig. S8f). The difference no-
ticed in Fig. S8f corresponds to the discrepancy noticed in
Fig. 4i, which are both in the mid- to low troposphere, and the
corresponding clear sky have far fewer differences (Fig. S7),
suggesting that the difference in clouds might be the main
cause of the all-sky kernel differences, which also correspond
to the discrepancies shown in the multi-kernel comparisons
in Fig. 3a, i, and m.

In the sea ice loss case, the reduction in sea ice in the Arc-
tic region (Fig. 6a) leads to a significant decrease in radiative
sensitivity to surface albedo in the areas with noticeable sea
ice retreats (Fig. 6d and f), with the maximum difference ex-
ceeding 30 % of the radiative kernel value, because of the
nonlinear dependency of the reflected solar radiation on the
surface albedo (e.g., see Y. Huang et al., 2021, Figs. 3 and 6).
The cloud cover changes also contribute to changes in sur-
face albedo kernel values due to the coupling effect between
cloud and surface albedo (see Y. Huang et al., 2021), which
for example is seen in Siberia and the western coastline of
Europe. The change in sea ice also leads to a significant de-
crease in the TOA sensitivity and an increase in surface sensi-
tivity to water vapor in the sea ice loss region (Fig. 6c and e),
with the maximum changes exceeding 80 % for the surface.
All these results confirm the state dependency of radiative
kernels (e.g., Riihelä et al., 2021).

In summary, these quantitatively large interannual differ-
ences, as well as their locations, verify that some discrep-
ancies between the radiative kernels are caused by the dif-
ference in atmospheric states and partly explain the inter-
dataset kernel differences seen in Figs. 3 and 4. Neverthe-
less, it ought to be noted that the differences are localized
and because of that do not cause significant differences in the
global mean feedback values (see Sect. 4). The results above
also show that kernel values based on 1 arbitrary year may be
regionally different. If only 1 year’s atmospheric profiles are
used to generate radiative kernels, we recommend selecting
a year without significant anomalies in atmospheric states,
e.g., due to El Niño or severe sea ice loss, so that the com-
puted kernel values better represent the radiative sensitivity
climatology.

4 Feedback quantification

In this section, we apply different kernels to quantifying
the radiative feedbacks in one quadrupling CO2 experiment
(abrupt4xCO2) of CMIP6 models. This experiment is se-
lected because it has been used by a number of studies for
forcing and feedback analyses (e.g., Zelinka et al., 2020),
which we can compare our results to. The CMIP6 mod-
els used in this assessment are listed in Table 2. Note that
the standard outputs at 19 pressure levels from the models
and correspondingly the kernel values, including CAM5 and

Figure 6. September differences between 2012 and 2013 in (a) sea
ice concentration, (b) total cloud cover (TCC), and the differences
in (c, e) water vapor SW kernels for TOA and surface fluxes (units:
W m−2 K−1) and (d, f) surface albedo kernels for TOA and surface
fluxes (units: W m−2 1 %−1). Note that the color bar ranges differ
among panels.

HadGEM3, provided at the pressure levels are used in this
section.

4.1 Analysis procedure

To quantify the radiative feedbacks, data from two experi-
ments as documented by Eyring et al. (2016) and Pincus et
al. (2016) are used: abrupt4xCO2 simulations with an instan-
taneous quadrupling of CO2 concentration of the year 1850
and piClim-4xCO2 simulations with sea surface temperature
(SST) and sea ice concentrations fixed at the climatology of
a pre-industrial control experiment and the CO2 concentra-
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Table 2. Summary of CMIP6 models used in this study.

Models Horizontal resolution Vertical levels Reference
(lat× long)

CESM2 0.9× 1.25 32 levels to 2.26 hPa Danabasoglu et al. (2020)
CNRM-CM6-1 1.4× 1.4 91 levels to 0.01 hPa Voldoire et al. (2019)
EC-Earth3 0.7× 0.7 91 levels to 90 km Döscher et al. (2022)
HadGEM3-GC31-LL 1.25× 1.875 85 levels to 85 km Williams et al. (2018)
IPSL-CM6A-LR 1.3× 2.5 79 levels to 80 km Boucher et al. (2020)
MPI-ESM1-2-LR 1.875× 1.875 47 levels to 0.01 hPa Mauritsen et al. (2019)

tion quadrupled. In each experiment, a 20-year period at the
end of the simulation in each model is used. For example, in
the models where the abrupt4xCO2 simulation is longer than
150 years, the simulations from the last 20 years rather than
those from years 131 to 150 are used for the calculation. To
exclude the effect of rapid adjustments, the radiative feed-
backs in this study are measured using the difference in feed-
back variables between the abrupt4xCO2 and piClim-4xCO2
experiments and vertically integrated from the surface to the
model top. Note that these treatments are different from some
other studies, e.g., Zelinka et al. (2020), which used the pi-
Control (pre-industrial control) simulation as the climatol-
ogy baseline and vertical integration from the surface to the
tropopause, although the quantitative differences in the diag-
nosed global mean feedback values are small.

To detail the analysis procedure, firstly, all variables in-
cluding radiative fluxes and atmospheric variables from
CMIP6 models are interpolated to the horizontal and vertical
resolution of the kernel itself. Note that for CAM3, GFDL,
CloudSat and CAM5 kernels, they only have 17 pressure lev-
els, which is two layers (1 and 5 hPa) fewer than the CMIP6
standard model output. To address this issue, the contribu-
tion of the two missing layers is calculated using other ker-
nels (e.g., ERA5) and found to have a negligible effect on the
global mean feedback value. Hence, when using these three
kernels, the contributions from 10 hPa above are ignored.

Secondly, the non-cloud radiative feedback of variable X
(1RX) is calculated as

1RX =KX ·1X, (4)

with units in W m−2, where KX is the monthly mean
radiative kernel of variable X and 1X is the monthly
mean anomaly of X measured by the difference between
abrupt4xCO2 and piClim-4xCO2 and represents the anoma-
lies of surface temperature (1Ts), air temperature (1Ta), wa-
ter vapor (1WV) and surface albedo (1ALB). For the 2D
radiative kernels (surface temperature and surface albedo),
KX and1X have just single layer values and1RX is simply
the product of these two terms. For the 3D radiative kernels
(air temperature and water vapor), bothKX and1X are vec-
tors of pressure levels and1RX is the dot product ofKX and
1X and is integrated from TOA to 1000 hPa. Note that ifKX

is normalized with unit pressure thickness (e.g., W m−2 K−1

100 hPa−1), the layer thickness must be taken into account
when calculating dRX. See the Appendix for further discus-
sion on the application of thickness-weighted kernels.

Finally, cloud feedbacks are diagnosed using the adjusted
cloud-radiative forcing method (Shell et al., 2008). Here we
compute the residual term in clear sky as

reso =1Ro−
∑

1RoX, (5)

which represents the unexplained part of radiation budget
change, and, assuming the all-sky decomposition has the
same non-closure residual, the cloud feedback is measured
as

1RC =1R−
∑

1RX − reso, (6)

where the superscript o represents clear-sky quantities.∑
1RoX and

∑
1RX are the sum of non-cloud feedbacks in

clear sky and all sky, respectively, diagnosed by multiplying
the radiative kernel with the atmospheric responses measured
as the difference between abrupt4xCO2 and piClim-4xCO2
experiments. 1Ro and 1R are the total radiation change in
clear sky and all sky, respectively, calculated as the difference
in the GCM-simulated radiative fluxes between two experi-
ments. It is worth noting that 1RC measured according to
Eq. (6) is essentially the part of total radiation change not
explained by the non-cloud feedbacks and is equivalent to
the other formulations of the adjusted cloud radiative effect
method (e.g., Soden et al., 2008; Huang, 2013). Interested
readers can refer to, for example, Huang (2013) for a detailed
formulation and explanations of the method.

The feedback parameters, λX, in the units of W m−2 K−1,
are then obtained by normalizing the feedback flux changes
1RX by the global mean surface temperature change1TS in
the abrupt4xCO2 experiment:

λX =1RX/1TS. (7)

4.2 TOA feedbacks

The residual term (reso) measures the unexplained radiation
change in the feedback analysis and provides a useful overall

https://doi.org/10.5194/essd-15-3001-2023 Earth Syst. Sci. Data, 15, 3001–3021, 2023



3012 H. Huang and Y. Huang: A new set of radiative kernels based on ERA5

Figure 7. The residuals (reso) in the multi-model mean TOA feedback decomposition when different kernels are used: LW (left column);
SW (middle column); net (right column), the sum of LW and SW. The three line plots in the bottom row are the zonal mean residuals.
Numbers in the right corner in each panel are the spatial root-mean-square values.

Earth Syst. Sci. Data, 15, 3001–3021, 2023 https://doi.org/10.5194/essd-15-3001-2023



H. Huang and Y. Huang: A new set of radiative kernels based on ERA5 3013

Figure 8. Global mean TOA feedback parameters in all sky diag-
nosed by the kernels listed in Table 1 across CMIP6 models. Dot
marks represent multi-model mean values computed from different
kernel datasets. Stars represent the multi-kernel mean results com-
puted from different GCMs.

indication of the soundness of the feedback quantification.
Figure 7 illustrates the residual term for the TOA flux de-
composition when different kernels are used to diagnose the
multi-model mean feedbacks. In terms of the global mean,
all residual terms are of small magnitude, no matter which
kernel dataset is used (Fig. 8 and Table S1). However, there
are some noticeable local residuals, especially for the SW
budget, e.g., in the Arctic region and around the Antarctic
continent where sea ice changes the most (middle column
in Fig. 7). While the non-zero magnitude of the residual is
partly due to nonlinearity in the radiation decomposition,
e.g., possible coupling between surface albedo and water va-
por (Y. Huang et al., 2021), the spread among the kernel re-
sults as evidenced by the line plots of Fig. 7 is attributable
to the discrepancies in the SW radiative kernels as revealed
by the comparisons in Sect. 3. In the LW, the residual is gen-
erally small compared with the total feedback. In summary,
the residual terms for the TOA budget are small in terms of
the global mean feedback strengths, confirming the validity
of the radiative kernels for feedback quantification. Here, we
use the spatial root-mean square (rms) of the residuals to
quantify the regional biases, which are shown by the num-
bers in the right corner of each panel in Fig. 7. For LW, re-
sults from ERA5, ERAi and CAM5 kernels show relatively
smaller regional biases compared to those from HadGM3,
CloudSat and CAM3 kernels. For SW, all kernel datasets
have similar regional non-closures, for example, in the polar
regions (Figs. 7 and 8). This is largely caused by the non-
linearity in albedo feedback and also the coupling effect be-
tween water vapor and surface albedo feedbacks (Y. Huang
et al., 2021; Block and Mauritsen, 2013). In summary, these
results suggest that for the TOA feedback quantification, the

performance of the ERA5 kernel is comparable to the other
datasets.

Figure 8 compares the spreads of feedback values resulting
from the differences in kernels and those from the different
projections of GCMs. In general, feedbacks from different
kernel datasets overlap each other, even for cloud feedbacks,
indicating a good consistency between the results computed
from different kernel datasets. However, the spread across the
GCMs is considerably larger, suggesting the overall feedback
uncertainty is dominated by inter-model spread rather than
the kernel uncertainty. The values of the feedbacks from each
model and kernel datasets are shown in Tables S1 and S2 for
readers who are interested. These results are consistent with
other published results. For example, compared with the re-
sults of Zelinka et al. (2020) based on the ERAi kernel, the
kernel-diagnosed overall feedback parameter in the two re-
sults is−0.87 and−0.85 W m−2 K−1 for the CNRM-CM6-1
model and −0.81 and −0.84 W m−2 K−1 for the HadGEM3-
GC3-LL model.

In summary, in terms of TOA feedback values, the inter-
kernel differences lead to a small uncertainty in the analyzed
non-cloud feedbacks; the kernel-induced uncertainty in cloud
feedback is relatively larger (Table S2), with the inter-kernel
spread in cloud LW feedback coming almost equally from
the spread in surface and air temperature feedback and water
vapor LW feedback (as measured by the

∑
1RoX −

∑
1RX

terms in Eq. 6) and the inter-kernel spread in cloud SW feed-
back coming more from the spread in surface albedo feed-
back than from water vapor SW feedback (not shown). De-
spite this, this uncertainty is considerably less than the inter-
GCM cloud feedback spread.

4.3 Surface feedbacks

Next, we examine how the inter-kernel differences lead to
uncertainty in the analyzed surface feedbacks.

Figure 9 shows the residual distribution. We find that when
the ERA5 and ERAi kernels are used for the feedback anal-
ysis, the non-closure residual in the surface budget is com-
parable in magnitude to the TOA analysis. This suggests that
the surface kernels afford a valid tool for the surface feed-
back analysis. However, some prominent biases are noticed
for other kernel datasets. For example, the HadGEM3 ker-
nels particularly show an underestimation in air tempera-
ture feedback, likely due to a biased sensitivity of the bot-
tom atmospheric layer (see the Appendix for more discus-
sions). The sum of global mean surface and air temperature
feedback parameters measured by the HadGEM3 kernel is
around −3.70 W m−2 K−1 (Table S4, compared to around
−1.0 W m−2 K−1 measured by the other kernels), and the
non-closure residual is as large as 3.0 W m−2 K−1 (Table S3,
compared to −0.1 W m−2 K−1 in the others). For this rea-
son, the result from the HadGEM3 kernel is excluded for
the multi-kernel statistics in Fig. 10, Table S3 and S4 but
listed in a separate row for comparison. From either the spa-
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Figure 9. Similar to Fig. 7 but for the surface feedback analysis.

tial distribution of residual terms or the spatial rms residuals,
the ERA5 kernel and ERAi kernel show a superior perfor-
mance than the other datasets. The use of ERA5 kernels may
be advantageous for diagnosing the surface radiation budget,
considering that ERA5 data are a newer-version reanalysis
dataset from ECMWF compared with ERAi, and their qual-
ity has been widely validated.

Figure 10 compares the inter-model and inter-kernel
spreads for the surface feedbacks. Unlike the results for TOA,
the inter-kernel spread can be as large as the inter-model
spread, for example, in LW surface temperature feedback,

air temperature feedback and water vapor feedback. The sum
of air temperature and surface temperature feedbacks shows
better consistency compared with the respective components
(except for the HadGEM3 kernel), and the respective air tem-
perature and surface temperature feedbacks quantified by the
ERA5 kernel are stronger than the results from the other ker-
nels. These discrepancies are due to the reason discussed in
the Appendix – a possibly wrong quantification of surface
temperature effect. In SW, the multi-kernel results are close
to each other, showing smaller inter-kernel spreads than the
inter-model spreads.
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Figure 10. Similar to Fig. 8 but for the surface feedback parameter.

In summary, we find the surface feedback decomposition
can achieve a similar level of radiation closure to the TOA
analysis when using ERA5 kernels, confirming the validity of
kernels for diagnosing the surface radiative feedback. How-
ever, the results qualitatively vary depending on which kernel
dataset is used, indicating errors in the computation of some
kernels.

5 Data availability

The datasets containing the multi-year averaged monthly
mean TOA and surface kernels for surface temperature,
air temperature, surface albedo and water vapor (LW and
SW) are available at https://doi.org/10.17632/vmg3s67568
(Huang and Huang, 2023). Other kernel datasets used in this
study, interpolated to the same horizontal and vertical grids
as the ERA5 kernels, are also provided at this link.

6 Conclusions and discussions

In this paper, we present a newly generated set of ERA5-
based radiative kernels of surface and air temperatures, water
vapor, and surface albedo, for both TOA and surface radia-
tion fluxes. We also compare them with other published ker-
nels, including the kernel-diagnosed radiative feedbacks for
both the TOA and surface radiation budgets.

For the TOA kernels, the results here demonstrate general
consistency among the different kernel datasets, and the dis-
crepancies are generally within 10 % in terms of vertically
integrated or globally averaged radiative sensitivity, although
some relatively larger regional differences are noticed, in-
cluding those in the surface temperature kernel in the trop-
ics (Fig. 3a), those in the surface albedo kernel in the Arctic
(Fig. 3q) and those in the water vapor shortwave kernel over

Antarctica (Fig. 3m), which is partly due to the dependence
of radiative sensitivity on background climate states.

For the surface kernels, more prominent inter-kernel dif-
ferences are found. For example, the differences in the wa-
ter vapor shortwave kernel in the Antarctic (Fig. 3o) and in
the surface albedo kernel in the Arctic (Fig. 3s) can reach
30 % of the kernel value itself. Some kernels have consid-
erably biased air temperature sensitivity values in the bottom
atmospheric layers, which is likely due to improper treatment
in the perturbation experiments used for kernel computation
(see the Appendix). The differences in both TOA and surface
kernels discovered here emphasize the importance of vali-
dating the radiative sensitivity as noted by Huang and Wang
(2019) and Pincus et al. (2020).

The investigation of interannual variability in ERA5 ker-
nels validates the dependence of radiative sensitivity on at-
mospheric state and the further comparison between ERAi
and ERA5 kernels (Fig. 5) reveals the effects of clouds on
the kernel values, which might explain the discrepancies be-
tween multi-kernel datasets (Fig. 3).

Applying the different kernels to quantifying the TOA
and surface radiative feedbacks, we find that for TOA feed-
back quantification, the ERA5 kernels are as accurate as
other kernel datasets, while for surface feedback, ERA5 and
ERAi kernels show superior accuracy compared with other
datasets. Considering the strengths of the ERA5 dataset in
representing the atmospheric states, we recommend the use
of ERA5 kernels.

In addition, we compare the feedback differences caused
by using different kernels and also the inter-GCM spread of
the feedback values (when measured by the same kernel). We
find the kernel difference is not a major cause of the inter-
GCM TOA feedback spread (Figs. 7 and 8). This finding is
consistent with the previous assessments (e.g., Soden et al.,
2008; Jonko et al., 2012; Vial et al., 2013).

Radiation closure tests show that the unexplained residuals
are generally within 10 % of the total feedback for both TOA
and surface analyses in terms of the global mean feedback,
confirming the validity of the kernels for feedback quantifica-
tion for both budgets. This suggests that the large non-closure
residuals reported in some previous studies (e.g., Vargas Zep-
petello et al., 2019) are likely due to kernel inaccuracy rather
than the limitation of the kernel method. However, there are
more significant local non-closures, for example, in the short-
wave in the Arctic region and around the Antarctic continent,
which is contributed, but cannot be fully explained, by the
kernel uncertainty. This points to the accuracy limit of the
kernel (linear) method and calls for more advanced methods,
such as the neural network method (Zhu et al., 2019), for lo-
cal feedback analysis.
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Appendix A

The ERA5 kernels are computed following Eq. (1) and the
approach outlined in Sect. 2.2.

A1 Surface variable kernels

To execute the partial radiative perturbation computations,
the perturbations are prescribed as the following: for the
2D feedback variables, the surface temperature is increased
by 1 K and the albedo is increased by 0.01 at each loca-
tion. Hence, the units of the two kernels, KTs and KALB are
W m−2 K−1 and W m−2 %−1, respectively. When applying
them to feedback quantification, their feedbacks are quanti-
fied as

1RTs =KTs ·1TS, (A1)
1RALB =KALB ·1ALB, (A2)

where 1TS should be measured in the units of K and 1ALB
in absolute values divided by 1 %.

A2 Water vapor kernel

For the 3D feedback variables, the perturbations are applied
to each of the 37 pressure layers (from 1 to 1000 hPa) and
one layer at a time. For the water vapor kernel, a 10 % in-
cremental perturbation of the water vapor concentration is
used. To adapt to the convention used in the majority of the
existing kernels, we convert the units of the kernels to rep-
resent the radiative flux change corresponding to an increase
in water vapor concentration that conserves the relative hu-
midity of the layer under a 1 K increase in air temperature,
i.e., converting the units from W (m2 1q+10 %

0 100 hPa)−1 to
W (m21q+1 K

0 100 hPa)−1:

K+10 %
q =

1R0

1q+10 %
0

, (A3)

K+1 K
q =

1R0

1q+1 K
0

=K+10 %
q ·

1q+10 %
0

1q+1 K
0

=K+10 %
q ·

1q+10%
0
q0

·
es (T0)

es (T0+ 1K)− es (T0)
, (A4)

where q0 is the unperturbed water vapor concentration in
units of kg kg−1. 1q+10 %

0 is a 10 % increment in water va-
por concentration. es (T ) is the saturated water vapor pressure
under temperature T and can be measured by empirical for-
mulas; hence, 1q+1 K

0 can be measured as q0[
es(T0+1 K)
es(T0) −1].

Accordingly, when the water vapor kernel is used for water
vapor feedback quantification, the feedback is measured as

1Rq =K
+1 K
q ·1q+1 K

=K+1 K
q ·

1q

1q+1 K
0

= K+1 K
q ·

1q

q0
·

es (T0)
es (T0+ 1K)− es (T0)

, (A5)

where1q = q−q0 measures the change in water vapor con-
centration and is normalized by 1q+1 K

0 to give the factor
that is multipliable with the K+1 K

q kernel value. If using
the Clapeyron–Clausius relation, the above expression can
be further approximated as

1Rq = K
+1 K
q ·

1q

q0
·

es

(des/dT ) · 1K

=K+1 K
q ·

1q

q0
·
Rv

Lv
·
T 2

0
1K

, (A6)

where Rv and Lv are the gas constant and specific latent heat
of water vapor, respectively. Note that when the kernels are
used, T0 and q0 typically take their values from the base cli-
mate appropriate to the application, e.g., the unperturbed cli-
mate of a GCM experiment, not necessarily the dataset used
for kernel computation.

A3 Air temperature kernel

For the air temperature kernel, to be consistent with the “in-
homogeneous path treatment” that accounts for the vertically
non-uniform temperature distribution within each discrete
atmospheric layer (Mlawer et al., 1997), perturbations are
added not only to the layer-mean temperature but also to the
temperature at the exiting boundary of radiative fluxes of in-
terest (i.e., the upper boundary of each layer for the TOA flux
and the lower boundary for the surface flux) to appropriately
represent the physical temperature perturbation in each layer.

A meaningful test to validate the validity of the air tem-
perature kernel is a vertical sum test, i.e., a linear additivity
test to verify the vertical integration of the kernel values re-
producing the flux change, either at TOA or the surface, in
response to a whole-column air temperature increase of 1 K.
Figure A1 shows that the ERA5 kernel passes this test well.
However, as shown by Fig. 9, some kernels (e.g., HadGEM3
kernel) show a much weaker radiative response at the sur-
face, possibly due to improper treatment of the air tempera-
ture perturbation in the kernel computation, which may lead
to an underestimated air temperature feedback and large bi-
ases in the surface feedback analysis.

Another challenge in the computation of air temperature
kernels for surface flux is that the surface in radiative trans-
fer models is also the lower boundary of the lowermost atmo-
spheric layer. If the effects of the surface temperature pertur-
bation on the emission of the surface and that of the lower-
most atmospheric layer are not distinguished, this may lead
to improper interpretation and use of the surface tempera-
ture kernel. In our ERA5 kernel, the two effects are consid-
ered separately: according to radiative transfer theory, an in-
crease in surface skin temperature only affects the surface up-
ward emission; an increase in air temperature only affects the
downward radiation. In some other kernels such as CAM5,
these effects are not distinguished, so that the kernel value
represents the net effect, i.e., a change in the sum of both
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Figure A1. Monthly mean TOA and surface radiation flux change in response to a +1 K air temperature perturbation throughout the vertical
column: (a, b) computed by a radiation model, RRTMG; (c, d) difference in the vertical sum of air temperature kernels compared to truth in
(a), (b); (e, f) comparison of the zonal mean.

downward and upward fluxes. As a result, in Fig. 10, we see
stronger air temperature and surface temperature feedbacks
quantified from ERA5 kernels than from other kernels, and
in Table S4, we can only report the sum of surface and air
temperature feedbacks.

Figure A2 shows the comparison of vertically integrated
air temperature kernels and the sum of surface and air tem-
perature kernels between ERA5, CAM5, HadGEM3 and
CloudSat. Although the strength of the vertically integrated
air temperature kernel for CAM5 is much weaker than that
for ERA5 (Fig. A2a and b), the sum of surface and air tem-
perature kernels between these two datasets is in good agree-
ment (Fig. A2c and d), which warns us that the seemingly
right temperature feedback quantified by some kernels might
come from the misattribution of surface temperature con-
tributions. Another noticeable feature in Fig. A2 is that the
HadGEM3 kernel shows an underestimation in the vertical
integration of the air temperature kernel and an overestima-
tion in the sum of surface and air temperature kernels, likely
due to mistreatment of the bottom layer, and this accounts

for the biased surface feedback analysis as shown in Fig. 9.
Similar issues were noticed in Kramer et al. (2019a).

A4 Time averaging

As described in Sect. 2.2, all the kernels provided for feed-
back analysis are averaged from instantaneous kernel values
over each calendar month and, in the ERA5 kernel, over mul-
tiple years. This is to ensure proper sampling of radiative sen-
sitivity values under different atmospheric states, so that the
kernels are representative of mean radiative sensitivity and
thus can be readily multiplied with monthly mean climate
responses (1X) to evaluate climate feedbacks.

If the kernels are computed for fixed pressure levels, and
if the pressure of any of these levels of an instantaneous at-
mospheric profile is higher than the surface pressure (i.e.,
the level is below the surface) at a time instance, this poten-
tially creates inconsistency in the averaging procedure. To
address this concern, we set the kernel value to 0 (as op-
posed to a missing value) before averaging. This is to en-
sure that when multiplied with the monthly mean climate re-
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Figure A2. Comparison of annual mean surface kernels for ERA5, CAM5, CloudSat and HadGEM3 for (a, b) the vertically integrated air
temperature kernel values and (c, d) sum of surface and air temperature kernels.

sponse (1X), the contribution of a pressure layer (e.g., that
centered at 1000 hPa) is effectively counted only for the frac-
tion of time the layer exists (when surface pressure is higher
than 1000 hPa). Otherwise, the feedback quantification needs
to be further weighted with the fraction of time (f ) when
the pressure layer exists. For example, if the surface pressure
is larger than 1000 hPa only for half of the time in a month
(f = 0.5), the radiation flux anomaly contributed by the layer
centered at 1000 hPa is

1RT1000 hPa =K
∗

T1000 hPa
·1T1000 hPa · f. (A7)

Here,K∗T1000 hPa
represents the kernel value averaged from the

time instances when the layer exists. Our averaging scheme
is essentially to provide a kernel KT1000 hPa =K

∗

T1000 hPa
· f , so

that it can be simply multiplied with 1T1000 hPa to obtain the
same result.

Figure A3 illustrates the differences betweenK∗Ta
andKTa ,

in terms of their vertically integrated value. Such a differ-
ence is pronounced over the Southern Oceans (around 60◦ S),
where the surface pressure value varies considerably. This
likely explains why Fig. 3h shows noticeable differences in
the air temperature kernel in this region.

A5 Layer-specified and layer-thickness-normalized
radiative kernels

We generate two versions of vertically resolved air tem-
perature kernels – the water vapor LW and SW kernels
– one with values corresponding to specified vertical lay-
ers, i.e., in the units of W m−2 K−1, and another with unit-
layer thickness (e.g., as shown in Figs. 2 and 4), i.e., in
W m−2 K−1 100 hPa−1. The latter properly portrays the ver-
tical distribution of radiative sensitivity to perturbations in

Figure A3. Zonal mean monthly mean air temperature kernels for
surface flux from ERA5 in clear sky. Black line is the result from
the whole-column perturbation computation by RRTMG, providing
a “truth” for comparison. Red dashed line is the kernel weighted
with fraction of time (KTa ) and blue dotted line represents results
without weights (K∗

Ta
).

the unit thickness layers, while the former may be more con-
venient to use in feedback quantifications. For TOA budget
analyses, these two versions of kernels lead to little differ-
ence in practice due to limited contributions from the bottom
atmospheric layer. However, for surface budget analyses, we
recommend using the layer-specified kernels, as the surface
kernels typically show the strongest sensitivity to the pertur-
bations in the bottom layers, which can be best accounted for
in the non-normalized kernels. Otherwise, the difference in
surface pressure between ERA5 and GCMs needs to be care-
fully treated to avoid errors caused, for example, by miss-
ing the radiative contribution from the bottom layer of the
atmosphere. To illustrate this issue in an example, consider
a location (latitude–longitude grid point) where the surface
pressure is 960 hPa in a GCM and the lowermost level of the
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non-zero value of the ERA5 air temperature kernel is located
at 975 hPa. Had the air temperature change been set to 0 or
an NaN (not a number) value due to the GCM ground level
being above 975 hPa, the contribution to the surface radia-
tion change from the air temperature change in the bottom
layer of the atmosphere would not be included, which might
have led to a biased quantification of the feedback. We rec-
ommend interpolating the air temperature changes from the
GCM vertical coordinate to the kernel vertical coordinate,
using surface values to replace the missing levels (e.g., the
975 hPa level in the above example) before multiplying with
the kernel values when computing the feedbacks of air tem-
perature and water vapor.
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