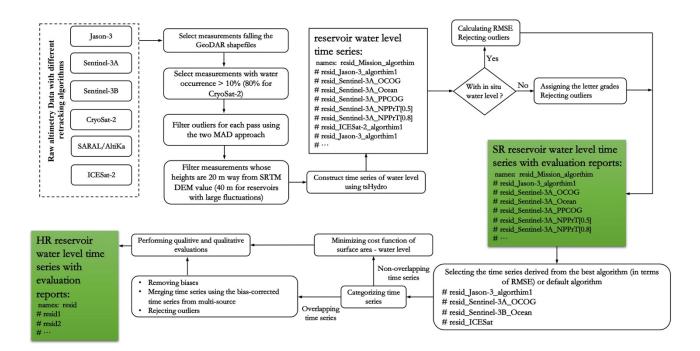


Supplement of

Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs

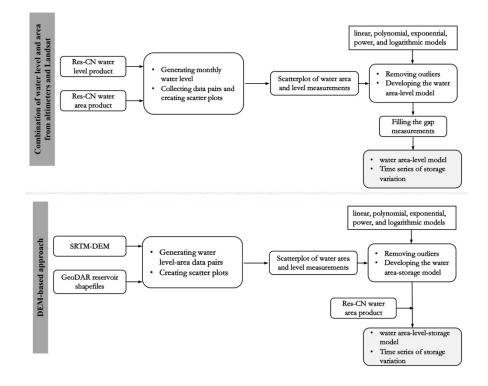
Youjiang Shen et al.


Correspondence to: Youjiang Shen (yjshen2022@rainbow.iis.u-tokyo.ac.jp)

The copyright of individual parts of the supplement might differ from the article licence.

1	Conte	nts of this file
2	•	Figs. S1-3 shows the methodologies of generate reservoir water level, storage anomaly and evaporation,
3		respectively.
4	•	Fig. S4 describes the distribution of reservoir water surface area values and Top 20 reservoirs based on
5		area size in our data product.
6	•	Figure S5 shows the cross validation of the areas of delineated catchments in this study.
7	•	Figure S6 represents the performances of altimetry-derived water level from each satellite altimeters with
8		different retracking algorithms.
9	•	Fig. S7 illustrates the comparison between our water level time series and other existing similar databases.
10	•	Fig. S8 shows the uncertainties for each value in the time series of reservoir water level at some selected
11		reservoirs.
12	•	Figure S9 shows the performance of the Standard-rate (SR) and High-rate (HR) products in terms of the
13		RMSE and the relative RMSE values of the validated reservoirs. For detailed validation metrics, please refer
14		to our data.
15	•	Figure S10 draws the comparison of reservoir water surface area time series against in situ, altimetric
16		water levels, and GRSAD and ReaLSAT area time series for a sample of reservoirs of varying areas.
17	•	Figure S11 shows an example that illustrates how the uncertainties in satellite datasets propagate to
18		storage anomalies.
19	•	Figure S12 reports the validation the evaporation values.
20	•	Figure S13 shows the long-term mean meteorological variables that were used to calculate the evaporation
21		rates.
22	•	Figure S14 describes the spatial distribution of the ratios of reservoir water surface area and storage to
23		catchment area.
24	•	Table S1 describes the providers of water level, water surface area, storage anomaly, and evaporation time
25		series for Chinese reservoirs.
26	•	Tables S2-8 describes the source datasets for generating reservoir water level, water surface area, storage
27		anomaly, upstream catchment, catchment-level characteristics products as well as the buffer distance for
28		calculating reservoir area series in this study.
29	•	Tables S9-16 describes the attributes provided in our datasets.

- 30 o Text S1 details the procedures of correcting the errors of delineated catchments and removed unrealistic
 31 or incorrectly catchments.
- 32 All validation reports and datasets, please find them at Zenodo link: https://doi.org/10.5281/zenodo.7664489


34 Figures

35

36 Figure S1. Flowchart of bias correction for obtaining SR and HR altimetric water level time series over reservoirs (Shen

37 et al., 2022b).

38

Figure S2. Flowchart of obtaining reservoir storage anomaly: 1) using water levels from satellite altimetry and water
 surface areas from satellite imagery (top panel); and 2) using imagery-based water areas and SRTM-DEM (bottom

41 panel). (Shen et al., 2022b).

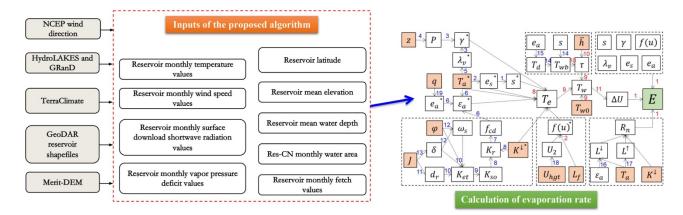
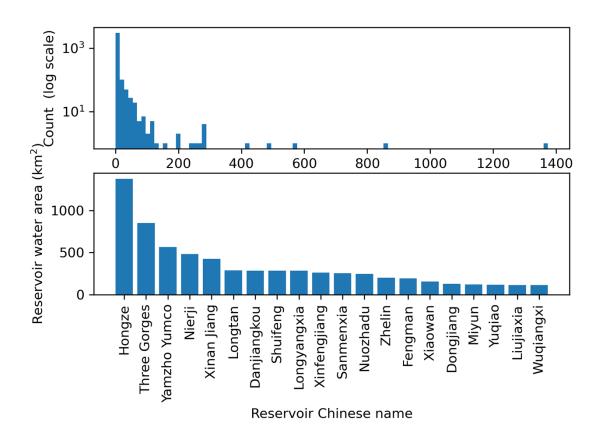
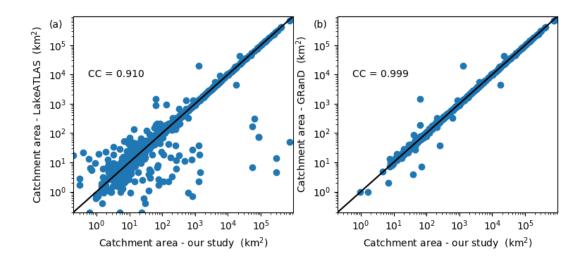



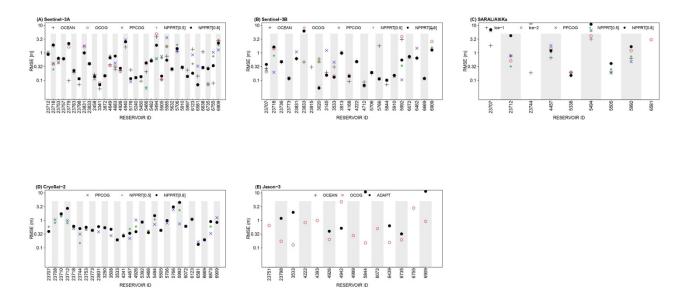
Figure S3. Flowchart of the proposed algorithm for generating time series of reservoir evaporation. For more details
about the algorithm, evaporation calculation example, please find the https://ars.els-cdn.com/content/image/1-s2.0S0034425719301063-mmc1.pdf.



Distribution of reservoir area values and Top 20 reservoirs based on area size

47 Figure S4. Distribution of reservoir water surface area values and Top 20 reservoirs based on area size in our data

48 product. For more information such as area, name, and ID of all reservoirs, please refer to our data product.


Comparison of catchment area

50 Figure S5. Comparison of the areas of delineated catchments in this study with those of LakeATLAS (Lehner et al., 2022),

51 and those of GRanD reported value (Lehner et al., 2011).

52

Figure S6. Performances of altimetry-derived water level from each satellite altimeters with different retracking
 algorithms.

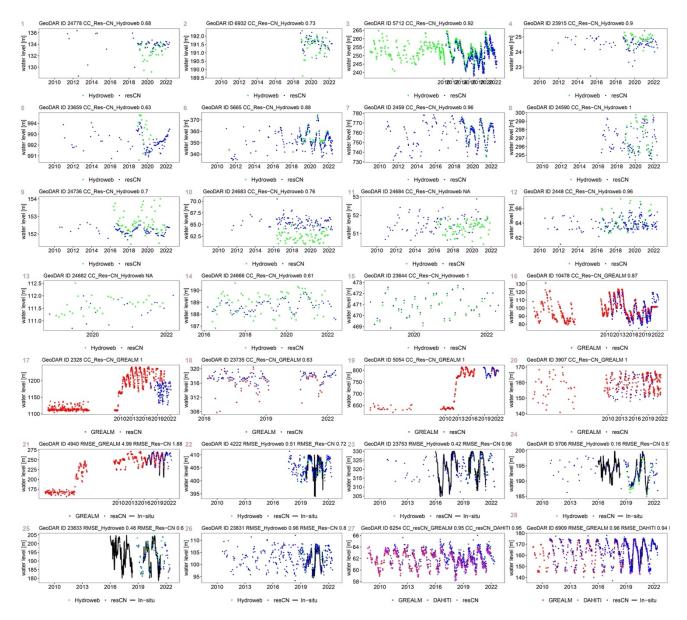
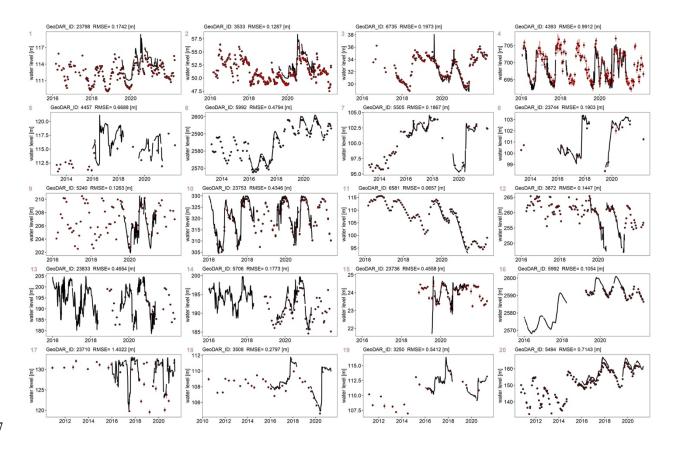
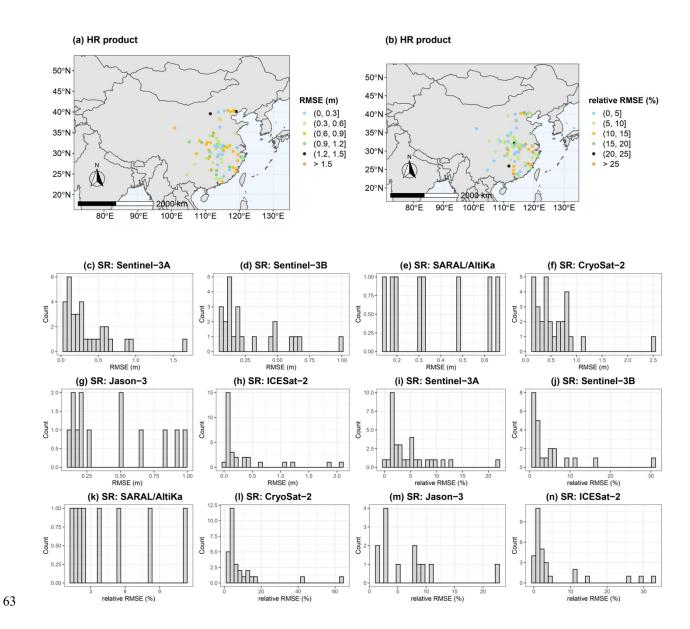
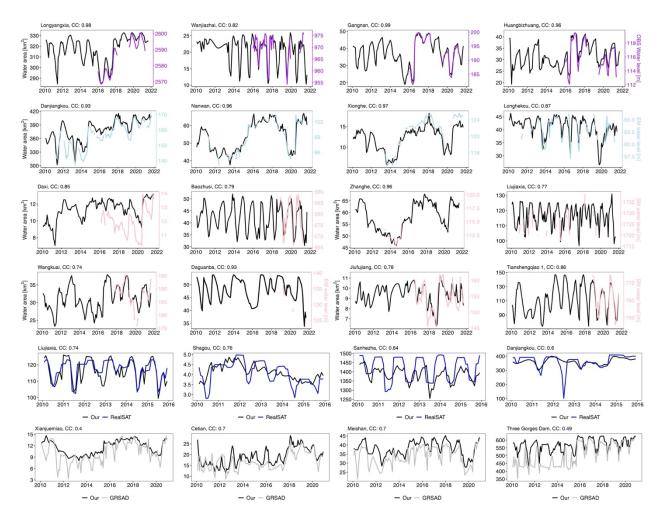



Figure S7. Comparison between our water level time series and other existing similar databases.


58 Figure S8. Uncertainties for each value in the time series of reservoir water level. In the figure, black line refers to the

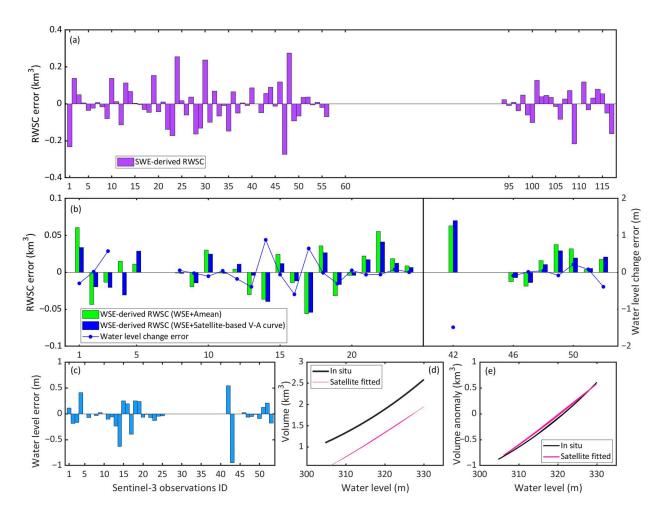
59 observed water level, dot is the altimetric water level, error bar quantifies the uncertainty of each value. Taking our

60 **20** reservoirs in the standard rate product as an example, 1-4 are taken from Jason-3 mission, 5-8 are from

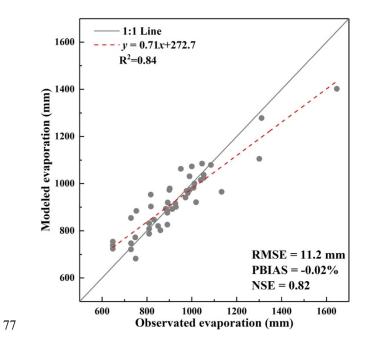

61 SARAL/AltiKa mission, 9-12 are from Sentinel-3A mission, 13-16 are from Sentinel-3B mission, 17-20 are from

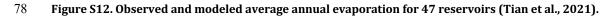
62 **CryoSat-2 mission.** All uncertainties values are available in our product.

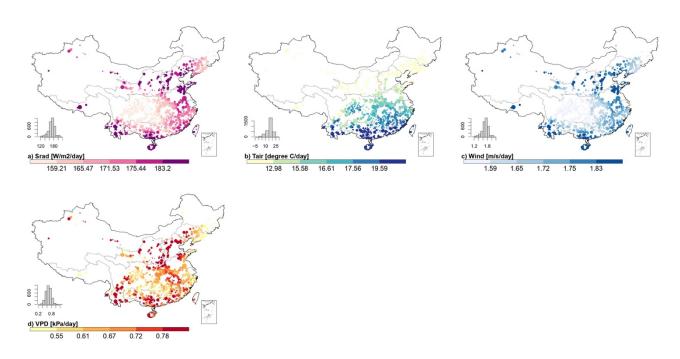
64 Figure S9. Performance of the Standard-rate (SR) and High-rate (HR) products in terms of the RMSE and the relative


65 RMSE values of the validated reservoirs. For detailed validation metrics, please refer to our data.

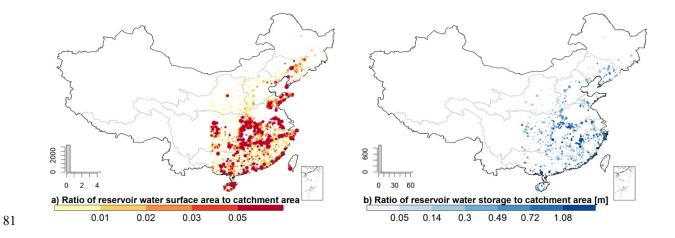
67 Figure S10. Graphs showing reservoir water area time series against in situ water levels, altimetric water levels from


high and standard rates, and GRSAD and ReaLSAT area time series for a sample of reservoirs of varying areas (Shen et


al., 2022b).



70


Figure S11. Graphs showing an example that illustrates how the uncertainties in satellite datasets propagate to storage anomalies. Error series and relationships of reservoir elevation-storage. Error series of (a) SWE-derived RWSC (i.e., storage anomaly), (b) WSE-derived RWSC and water level change, (c) WSE (i.e., water level). (d) and (e) Relationships of elevation-storage. The numbers on the x-axis (a, b, c) refer to the IDs of SWE, WSE, and WSE change observations, respectively. For more details about the propagation process, please find the reference Shen et al., (2020): https://doi.org/10.3390/rs14040815.

80 Figure S13. Long-term mean meteorological variables that were used to calculate the evaporation rates.

82 Figure S14. Spatial distribution of the ratios of reservoir water surface area and storage to catchment area. Note: not

83 all reservoir water storage data are available from the GeoDAR database (Wang et al., 2022).

84 Tables

85 Table S1. Providers of water level, water surface area, storage anomaly, and evaporation for Chinese reservoirs.

86 Water levels:

Data sources	No. of reservoirs	Time and temporal resolution	Download link
Hydroweb	32	1992–2023, 10–35 day	http://hydroweb.theia-land.fr/
DAHITI	8	2002–2023, 10–35 day	https://dahiti.dgfi.tum.de/en/
G-REALM	~30	1992–2023, 10–35 day	https://ipad.fas.usda.gov/cropexplorer/global_re servoir
Tortini et al. (2020)	<10	1992–2018, sub-monthly	https://doi.org/10.5067/UCLRS-GREV2
Shen et al. (2022b)	338	2010-2021, monthly	https://doi.org/10.5281/zenodo.7251283

87 * Last access: 15 October 2022.

88 Water surface areas:

Data sources	Number of reservoirs	Time and temporal resolution	Download link
Bluedot observatory	Not clear	2016–2021, sub-monthly	https://blue-dot-observatory.com/*
GRASD	923	1984-2018, monthly	https://doi.org/10.18738/T8/DF80WG* (Zhao and Gao, 2018; Gao and Zhao, 2019)
Khandelwal and Kumar (2019)	<10	1992–2018, sub-monthly	https://doi.org/10.5067/UCLRS-AREV2*
ReaLSAT	85522 (lakes and reservoirs)	1984-2015, monthly	https://doi.org/10.5281/zenodo.6468209* (Khandelwal et al., 2022)
Donchyts et al. (2022)	9418	1985-2021, monthly	https://doi.org/10.6084/m9.figshare.20359860.v1*
Yao et al. (2019)	~8	1992–2018, sub-monthly	https://lakewatch.users.earthengine.app/view/glats*
Shen et al. (2022b)	338	2010-2021, monthly	https://doi.o https://doi.org/10.5281/zenodo.7251283*

89

90

91 **Storage anomalies:**

Data sources	Number of reservoirs	Time and temporal resolution	Download link
Vu et al. (2022)	10	2008-2020, monthly	https://doi.org/10.5281/zenodo.6299041*
Tortini et al. (2019)	<10	1992–2018, sub-monthly	https://doi.org/10.5067/UCLRS-STOV2*
Hou et al. (2022)	923	1984-2015, monthly	Not publicly accessible
Shen et al. (2021)	337	2010-2021, monthly	https://doi.org/10.5281/zenodo.7251283*
Zhao et al. 2022	>4,000	1984-2020, monthly	https://doi.org/10.5281/zenodo.4646621*

94 **Evaporation**:

Data sources	Number of reservoirs	Time and temporal resolution	Download link
Zhao et al. 2022	>4,000	1984-2020, monthly	https://doi.org/10.5281/zenodo.4646621*
Tian et al., 2022	908	1984-2016, monthly	https://doi.org/10.5281/zenodo.6042127*

95 *** Last access: 24 Feb 2023.**

96

97

98

99 Table S2. Source datasets for generating reservoir water level product in this study.

Satellite	Data period	Retracking algorithms	Repeat cycle
CryoSat-2	2010-2022.5	PPCOG, NPPTr[0.5], NPPTr[0.8]	369 days
SARAL/AltiKa	2016-2022.5	PPCOG, NPPTr[0.5], NPPTr[0.8], ICE-1, ICE-2	35 days
Sentinel-3A	2016.2-2022.5	PPCOG, NPPTr[0.5], NPPTr[0.8], OCOG, Ocean	27 days
Sentinel-3B	2018.4-2022.5	PPCOG, NPPTr[0.5], NPPTr[0.8], OCOG, Ocean	27 days
Jason-3	2016-2022.5	Adapt, OCOG, Ocean	10 days
ICESat-2	2018.10-2022.5	Official	91 days
In situ	2015-2021.5	- (99 reservoirs with observational water level records)	1 day
Global Surface Water Explorer	1984-2020	- (water occurrence product version 1.3)	-
SRTM-DEM	2000		-

100 Source download links:

101 -	SARAL/Alti	Ka Geophysical Data Re	cords (GDRs) from CNES	S AVISO+ at ftp://avisoftp.cne	es.fr/AVISO/pub/
-------	------------	------------------------	------------------------	--------------------------------	------------------

- CryoSat-2 baseline C level 1b dataset from ESA at https://science-pds.cryosat.esa.int/

Sentinel-3 level 2 "Enhanced measurements" datasets from Copernicus Open Access Hub at
 https://scihub.copernicus.eu/dhus/.

105 - Jason-3 from ftp://avisoftp.cnes.fr/AVISO/pub/

106 - ICESat-2 ATL13 product from https://icesat-2.gsfc.nasa.gov/science/data-products

107 - In situ water level for 99 reservoirs from the local governments at

108http://113.57.190.228:8001/web/Report/BigMSKReport and National Hydrological Information Centre at109http://xxfb.mwr.cn/index.html

110 - Global Surface Water Explorer from the https://global-surface-water.appspot.com/.

111 - SRTM-DEM from the https://srtm.csi.cgiar.org/srtmdata/.

112 Last access: 15 October 2022

113

- 114
- 115

116

Table S3. Source datasets for generating reservoir water surface area product in this study.

Product	Data period	Remark	Download link
GeoDAR	-	Reservoir shapefiles	https://doi.org/10.5281/zenodo.6163413
JRC-GWSD 1984-2020		Two products are used: monthly history and water occurrence products	https://global-surface- water.appspot.com/

117 Last access: 15 October 2022

118

119 Table S4. Source datasets for generating reservoir storage anomaly product in this study.

Product	Data period	Remark	Download link
Res-CN water surface area	1984- 2021	Generated in in this study	https://doi.org/10.5281/zenodo.7664489
SRTM-DEM	2000	-	https://srtm.csi.cgiar.org/srtmdata/
In situ	2015- 2021.5	139 reservoirs with daily water level and storage data	http://113.57.190.228:8001/web/Report/BigMSKReport http://xxfb.mwr.cn/index.html

120 Last access: 15 October 2022

121

122

1 44

123 Table S5. Source datasets for generating reservoir evaporation product in this study.

Data period	Remark	Download link
-	Reservoir shapefiles	https://doi.org/10.5281/zenodo.6163413
1984- 2020	Four variables: air temperature, wind speed, vapor pressure deficit, and surface downward shortwave radiation	https://climate.northwestknowledge.net/TERRACLIMATE/
1984- 2021	Generated in in this study	https://global-surface-water.appspot.com/
1984- 2020	wind direction data from National Centers for Environmental Prediction	https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
2019	To derive mean elevation	http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
-	To derive mean water depth	https://www.hydrosheds.org/products/hydrolakes
-	To derive mean water depth	https://globaldamwatch.org/grand/
	period - 1984- 2020 1984- 2021 1984- 2020	periodRemark-Reservoir shapefiles1984-Four variables: air temperature, wind speed, vapor pressure deficit, and surface downward shortwave radiation1984- 2021Generated in in this study1984- 2020wind direction data from National Centers for Environmental Prediction2019To derive mean elevation-To derive mean water depth

124 Last access: 15 October 2022

126

127 Table S6. Source datasets for generating reservoir upstream catchment product in this study.

5	Satellite	Data period	Remark	Download link
(GeoDAR	-	Reservoirs and dams shapefiles	https://doi.org/10.5281/zenodo.6163413
Γ	Merit-Hydro	2019	Flow directions	http://hydro.iis.u- tokyo.ac.jp/~yamadai/MERIT_Hydro/

128 Last access: 15 October 2022

¹²⁵

Category	Source data	Remark	Download link
	Merit-dem and Merit-Hydro	Yamazaki et al. (2017, 2019)	http://hydro.iis.u-tokyo.ac.jp/~yamadai/*
Topography	GeoDAR	Reservoir shapefiles	https://doi.org/10.5281/zenodo.6163413*
	Our study	Catchment shapefiles	Provided in the main text.
	National Station-based Climatic Data set V3	800 gauges offering 10 variables	closed
Climate	Global Aridity Index and Global Reference Evapo-Transpiration	Zomer, R. J. (2022)	https://cgiarcsi.community/2019/01/24/global- aridity-index-and-potential- evapotranspiration-climate-database-v3/*
	NPP, GPP, NDVI, LAI, EVI	Myneni et al., 2015; Didan, 2021; Running et al., 202a, b;	Available at GEE (original datasets and references are in the main texts)
Land cover	IGBP, Zeng, X. (2001)	Rooting depth	https://lpdaac.usgs.gov/products/mcd12q1v006/*
	ESA WorldCover 2020, 10m	10 Land cover types	https://worldcover2020.esa.int/*
	SoilGrids250m	Hengl et al. (2017)	https://files.isric.org/soilgrids/former/2017-03-10/data/*
Soil	Dai et al. (2019)	Soil hydraulic and thermal properties	http://globalchange.bnu.edu.cn/research/soil5.jsp*
	Shangguan et al. (2013)	Soil property data	http://globalchange.bnu.edu.cn/research/soil2*
Geology	GLHYMPS (Global HYdrogeology MaPS)	Gleeson et al. (2014)	https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO*
acology	GliM (Global Lithological Map)	Hartmann and Moosdorf, 2012	https://doi.pangaea.de/10.1594/PANGAEA.788537*
	Gridded Population of the World (GPW)	Population amount in 2000, 2005, 2010, 2015, and 2020	https://sedac.ciesin.columbia.edu/*
Anthropogenic activity	Global Roads Inventory Project (GRIP) dataset	Road density	https://www.globio.info/download-grip-dataset*
characteristics	Global Human Footprint v2	Human Footprint	https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint- geographic/data-download*
	DMSP-OLS Nighttime Lights v4 dataset	Doll, 2008	https://eogdata.mines.edu/products/dmsp/*

129 Table S7. Source datasets for generating catchment-level characteristics product in this study.

130 *Last access: 15 October 2022.

132 Та

133 ble S8. Buffering distance for GeoDAR reservoir datasets.

Buffered distance (m)	Number of reservoirs	Reservoir water surface area (km ²)
150	650 A<=0.1	
250	1515	0.1<=A<=1
500	795	1<=A<=10
750	273	10<=A<=100
1000	21	100<=A<=1000

Attribute	Unit	Description and values	
id_v11	-	Dam ID of GeoDAR version 1.1	
id_grd_v13	-	GRanD ID of this dam if also included in GRanD v1.3	
lat	degree	Latitude of the dam point	
lon	degree	Longitude of the dam point	
rv_mcm_v11	millions of m ³	Reservoir storage capacity taken from Wada et al. (2017) and GRanD v1.3	
plg_a_km2	km ²	Area of the retrieved reservoir polygon	
length	km	Perimeter of the reservoir	
elev	m	Mean reservoir elevation from Merit-DEM (Yamazaki et al., 2019)	
region	-	Reservoir-based River basins	
reservoir_development_index	-	Ratio: perimeter of the reservoir / perimeter of the circle whose area is that of the reservoir	

135 Table S9. Attributes of reservoirs provided in the Res-CN.

136 Note: missing or inapplicable values are filled by "-999".

138 Table S10. Attributes of topography provided in the Res-CN.

Attribute	Unit	Description	Data source and reference	
length m		The length of the main stream measured from the basin outlet to the remotest point on the basin boundary. The main stream is identified by starting from the basin outlet and moving up the catchment.	Subramanya (2013)	
area	km ²	Calculated catchment area	Merri-Hydro (Yamazaki et al., 2019), GeoDAR (Wang et al., 2022)	
elev	m	Mean catchment elevation	Merit-DEM (Yamazaki et al., 2019)	
elev_max	m	Maximum catchment elevation	See above	
elev_min	m	Minimum catchment elevation	See above	
elev_std	m	Standard deviation of elevation in catchment	See above	
elev_range	m	Range of catchment elevation (maximum minus minimum elevation)	See above	
slope	m km- 1	Mean catchment slope, Horn (1981)	See above	
mvert_dist	km	Horizontal distance from the farthest point of the catchment to the corresponding gauge (length axis)	Merri-Hydro (Yamazaki et al., 2019)	
mvert_ang degree		Angle between the north direction and connection from farthest point of catchment to the corresponding gauge (length axis); e.g., direction from north (farthest catchment point) to south (gauge):180 degree, direction from east to west: 270 degree	See above	
elongation_ratio	Ratio: elongation ratio, i.e., ratio between the		Subramanya, K. (2013)	
strm_dens	kmRatio: stream density, i.e., ratio of lengths of streams and the catchment areaSee above		See above	
resArea	km ²	reservoir area.	Wang et al. (2022)	
form_factor	-	Ratio: catchment area / (length) ²	Subramanya, K. (2013)	
shape_factor	-	Ratio: (catchment length) ² / catchment area	See above	
circulatory_ratio	-	Ratio: perimeter of the catchment / perimeter of the circle whose area is that of the basin See above		
compactness_coefficient	Patio: parimeter of the catchment / parin		See above	
resArearatio	-	Ratio: reservoir area / catchment area	Merri-Hydro (Yamazaki et al., 2019), GeoDAR (Wang et al., 2022)	
relief	-	Ratio: mean catchment elevation / Maximum catchment elevation	See above	

140

Table S11. Meteorological data provided in the Res-CN.

Variable	Unit	Description	Source	
DOY	-	Day of year	-	
pet_mean	mm/d	Mean daily PET (Penman–Monteith equation) Subramanya (2013), Nationstation-based climate data		
ер	mm/d	Mean daily evaporation (observations)	Nation station-based climate data v3, 1980-2020	
ts	۰C	Mean, maximum, and minimum daily ground surface temperature	See above	
prec_nscd	mm/d	Mean daily precipitation	See above	
prs	hpa	Mean, maximum, and minimum daily ground surface pressure	See above	
humid	-	Mean daily relative humidity	See above	
sun	h	Mean daily sunshine duration	See above	
ta	۰C	Mean, maximum, and minimum daily temperature	See above	
wind	m/s	Mean, and maximum daily wind speed	See above	

Table S12. Climate indices provided in the Res-CN.

Attribute	Unit	Description	Data source	
p_mean	mm/d	Mean daily precipitation ^a	Nation station-based climate data v3	
et0_mean	mm/d	Mean daily reference evapotranspiration ET0 ^b	Global Evapo-Transpiration (ET0) Database v3 (Zomer and Trabucco, 2022)	
arid	-	Global Aridity Index Database v3 ^b	Global Aridity Index Database v3 (Zomer and Trabucco, 2022)	
p_season	-	Seasonality and timing of precipitation (estimated using sine curves) to represent the annual precipitation cycles; positive (negative) values indicate that precipitation sums are higher during summer (winter) months; values close to 0 indicate uniform precipitation throughout the year; Eq. (14) in Woods (2009) ^a	Nation station-based climate data v3	
frac_snow	-	Fraction of precipitation falling as snow, i.e., falling on days with mean temperature below 0 °Cª	See above	
hi_prec_fr	d yr-1	Frequency of high-precipitation days (≥ 5 times mean daily precipitation) ^a	See above	
hi_prec_du	d	Mean duration of high-precipitation events (number of consecutive days with ≥ 5 times mean daily precipitation) ^a	See above	
hi_prec_ti	season ^c	Season during which most high-precipitation days (≥ 5 times mean daily precipitation) occur ^a	See above	
lo_prec_fr	d yr-1	Frequency of dry days (< 1 mm/d precipitation) ^a	See above	
lo_prec_du	d	Mean duration of dry precipitation events (number of consecutive days with < 1 mm/d precipitation) ^a	See above	
lo_prec_ti	season ^c	Season during which most dry days (< 1 mm/d precipitation) occur ^a	See above	

143 ^a Period 1 October 1990 to 30 September 2019. ^b Period 1970 to 2000. ^c List of abbreviations for seasons: djf – December-

144 January-February, mam – March–April–May, jja – June–July–August, son – September–October–November.

Table S13. Attributes of land cover provided in the Res-CN.

Attribute	Unit	Description	Data source	
lai_max	-	Maximum monthly mean of one-sided leaf area index (based on 12-monthly means)	MODIS MCD15A3H version 6.1	
lai_min	-	Minimum monthly mean of one-sided leaf area index (based on 12-monthly means)	See above	
lai_diff	-	Difference between maximum and minimum monthly mean of one-sided leaf area index (based on 12-monthly means)	See above	
ndvi_max	-	Maximum monthly mean of NDVI (based on 12-monthly means)	MODIS MOD13Q1 version 6.1	
ndvi_mean	-	Average monthly mean of NDVI (based on 12-monthly means)	See above	
EVI	-	Mean enhanced vegetation index	See above	
GPP	kg c m-2	Mean gross primary production	MODIS MOD17A2H version 6	
NPP	kg c m ⁻²	Mean net primary production	MODIS MOD17A3HGF version 6	
root_depth_50	m	Root depth (percentiles = 50 % extracted from a root depth distribution based on IGBP land cover)	Eq. (2) and Table 2 in Zeng (2001)	
root_depth_99	m	Root depth (percentiles = 99 % extracted from a root depth distribution based on IGBP land cover)	See above	
first_type	-	Dominant Land class	ESA WorldCover 10 m	
first_frac	-	Fraction of dominant class	See above	
Trees	-	Fraction of "trees" (trees)	See above	
Grassland	-	Fraction of "grassland" (grassland)	See above	
Cropland	-	Fraction of "cropland" (cropland)	See above	
Shrubland	-	Fraction of "shrubland" (shrubland)	See above	
BU	-	Fraction of "built-up" (bu)	See above	
BSV	-	Fraction of "barren sparse vegetation" (bsv)	See above	
SI	-	Fraction of "snow and ice" (si) See above		
OC	-	Fraction of "open wate" (oc) See above		
HW	-	Fraction of "herbaceous wetland" (hw)	See above	
Mangroves	-	Fraction of "mangroves" (mangroves)	See above	
ML	-	Fraction of "moss and lichen" (ml) See above		

Attribute	Unit	Description	Data source	
bdod*	kg dm-3	Bulk density of the fine earth fraction	SoilGrids250 m (Hengl et al., 2017)	
cec*	cmol kg-1	Cation exchange capacity of the soil	See above	
soc*	g kg-1	Soil organic carbon content in the fine earth fraction	See above	
phh2o*	10	Soil pH	See above	
pdep	cm	Soil profile depth	Shangguan et al. (2013)	
cl	%	Percentage of clay content of the soil material	See above	
sa	%	Percentage of sand content of the soil material	See above	
por	cm ³ cm ⁻³	Porosity	See above	
si	%	Percentage of silt content of the soil material	See above	
grav	%	Rock fragment content	See above	
som	%	Soil organic carbon content	See above	
log_k_s*	cm d-1	Log-10 transformation of saturated hydraulic conductivity	Soil hydraulic and thermal parameters (Dai et al., 2019)ª	
theta_s*	cm ³ cm ⁻³	Saturated water content	See above	
tksatu*	W m ⁻¹ K ⁻¹	Thermal conductivity of unfrozen saturated soils	See above	
csol*	J/(m ³ K)	Volumetric heat capacity of soil solids in a unit soil volume	See above	
lambda*	-	Pore size distribution index for the Campbell model	See above	
log_vgm_n*	-	Log-10 transformation of a shape parameter for the VG model	See above	
psi_s*	cm	Saturated suction for the Campbell model	See above	
tkdry*	W m ⁻¹ K ⁻¹	Thermal conductivity of dry soils	See above	
tksatf*	W m ⁻¹ K ⁻¹	Thermal conductivity of frozen saturated soils	See above	
vf_clay_s*	cm ³ cm ⁻³	Volumetric fration of clay	See above	
vf_gravels_s*	cm ³ cm ⁻³	Volumetric fration of gravel	See above	
vf_om_s*	cm ³ cm ⁻³	Volumetric fration of SOM	See above	
vf_quartz_mineral_s*	cm ³ cm ⁻³	Volumetric fration of quartz within mineral soils	See above	
vf_sand_s*	cm ³ cm ⁻³	Volumetric fration of sand	See above	
vf_silt_s*	cm ³ cm ⁻³	Volumetric fration of silt	See above	
vgm_alpha*	cm ⁻¹	The inverse of the air-entry value for the VG model	See above	
vgm_theta_r*	cm ³ cm ⁻³	Residual moisture content for the VG model	See above	

Table S14. Attributes of soil provided in the Res-CN.

- * Within the aforementioned 28 soil variables, 21 variables marked with * are represented across 7 levels encompassing six soil layers as well as the entire soil layer. An instance of this is the cation exchange capacity (CEC) of the soil, which has 7 associated 151
- attributes denoted as cec_1, cec_2, ..., cec_6, and cec, indicating the CEC of the first to sixth soil layers and the entire soil layer, i.e., at six layers of 0–0.05, 0.05–0.15, 0.15–0.30, 0.30–0.60, 0.60–1.00, and 1.00–2.00m, as well as the whole soil layer. In this sense,
- we provided 154 soil attributes.

Attribute	Unit	Description	Data source	
permeability	m ²	Subsurface porosity	GLHYMPS (Gleeson, 2018)	
porosity	-	Subsurface permeability (log-10)	See above	
first_type	-	Dominant geological class	GLiM (Hartmann and Moosdorf, 2012)	
first_frac	%	Fraction of "first_type"	See above	
ig	%	Fraction of "ice and glacier" (ig)	See above	
mt	%	Fraction of "metamorphic" (mt)	See above	
pa	%	Fraction of "acid plutonic rocks" (pa)	See above	
pb	%	Fraction of "basic plutonic rocks" (pb)	See above	
pi	%	Fraction of "intermediate plutonic rocks" (pi)	See above	
ру	%	Fraction of "pyroclastics" (py)	See above	
5C	%	Fraction of "carbonate sedimentary rocks" (sc)	See above	
sm	%	Fraction of "mixed sedimentary rocks" (sm)	See above	
55	%	Fraction of "siliciclastic sedimentary rocks" (ss)	See above	
Su	%	Fraction of "unconsolidated sediments" (su)	See above	
va	%	Fraction of "acid volcanic rocks" (va)	See above	
vb	%	Fraction of "basic volcanic rocks" (vb)	See above	
vi	%	Fraction of "intermediate volcanic rocks" (vi)	See above	
nd	%	Fraction of "no data" (nd)	See above	
wb	%	Fraction of "water bodies" (wb)	See above	

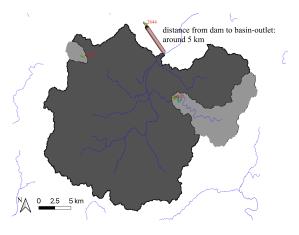
Table S15. Attributes of geology provided in the Res-CN.

157 Table S16. Attributes of anthropogenic activity provided in the Res-CN.

Attribute	Unit	Description	Data source
population*	-	Population for the years 2000, 2005, 2010, 2015, and 2020	Gridded Population of the World (GPW) database v4.11
avg_vis*	-	The average of the visible band digital number values with no further filtering	DMSP-OLS Nighttime Lights v4 dataset (Doll, 2008)
stable_lights*	-	The cleaned up avg_vis contains the lights from cities, towns, and other sites with persistent lighting, including gas flares. Ephemeral events, such as fires, have been discarded. The background noise was identified and replaced with values of zero	See above
cf_cvg*	-	Cloud-free coverages tally the total number of observations that went into each 30-arc second grid cell. This band can be used to identify areas with low numbers of observations where the quality is reduced.	See above
avg_lights_x_pct*	-	The average visible band digital number (DN) of cloud-free light detections multiplied by the percent frequency of light detection. The inclusion of the percent frequency of detection term normalizes the resulting digital values for variations in the persistence of lighting. For instance, the value for a light only detected half the time is discounted by 50%. Note that this product contains detections from fires and a variable amount of background noise	See above
reproject_grip4_total_dens_m_km2	m km ⁻²	Road density	Global Roads Inventory Project (GRIP) dataset (Meijer et al., 2018)
reproject_hfp2009	-	The Human Footprint camp of cumulative pressures on the environment in 2009	Global Human Footprint v2 dataset (Venter et al., 2016)
reproject_hfp1993		The Human Footprint camp of cumulative pressures on the environment in 1993	Global Human Footprint v dataset (Venter et al., 2016)

2016)
* Within the population category, there are five included attributes, i.e., population_2000, population_2005, population_2010,
population_2015, and population_2020. As for the Nighttime light category, which comprises of avg_vis, stable_lights, cf_cvg, and
avg_lights_x_pct, both the mean and sum values for each variable are provided for all available time frames. To illustrate, the
variable mean_cf_cvg_101994 denotes the mean value of cf_cvg for the month of October in 1994. Accordingly, a total of 288
anthropogenic attributes have been provided.

164 Texts


165 **Text S1**

166 The following steps details the procedures for automatically delineating reservoir upstream catchments.

- Using the MERIT Hydro flow directions and GeoDAR dam locations to drive the outlet relocation algorithm,
 resulting the raw full catchment of each reservoir (using the watershed .exe).
- 169 2. Clearing the holes to remove topology errors across full catchments using QGIS 3.24.
- 3. Checking all full catchments and removing/modifying unrealistic or incorrectly catchments. Most of these 170 171 incorrectly catchments are assigned to small reservoirs located near the confluences of rivers of different sizes. See the example below where the reservoir "2844" is assigned to a large catchment of the mainstream 172 173 (dark) rather than a small catchment of the tributary. We remove these small reservoirs that are assigned 174 by a large catchment considering three aspects. Firstly, these reservoirs are relatively small, with a median 175 size of 0.06 km² and 63% of them are smaller than 0.01 km². Secondly, the reservoirs have little regulation 176 impacts and are typically removed from the literature (see CAMELS datasets). Thirdly, no rivers intersect 177 the reservoirs, even the latest small rivers provided by Merit-Hydro, which means that the delineated 178 catchment area is extremely small.
- 4. Generating intermediate catchments by removing the overlapping areas of upstream reservoirs from the
 full catchment of the current reservoir using QGIS 3.24.
- 181 5. Fixing the invalid geometry of intermediate catchments by eliminating geometry errors.

182 Based on the literature, and our discussion – cross validation (See main text Section 3.2), verifying the reliability of

183 our delineated catchments.

184 185

Example.