

Supplement of

The HTAP_v3 emission mosaic: merging regional and global monthly emissions (2000–2018) to support air quality modelling and policies

Monica Crippa et al.

Correspondence to: Marilena Muntean (marilena.muntean@ec.europa.eu) and Monica Crippa (monica.crippa@ext.ec.europa.eu)

The copyright of individual parts of the supplement might differ from the article licence.

S1 - Matching tables between inventory providers and HTAP_v3 sectors and regions

Table S1 – Sector matching table between inventory providers and HTAP_v3 sectors

	REASv3.2.1	CAPSS-KU	JAPAN	US EPA	ECCC	CAMS-REGv6.1
HTAP_1: International					-	
Shipping	-	-	-	-		-
			1.A.3.a.i.(i) Civil		Landing & Takeoff	
HTAP 2.1: Domestic			aviation		1A3ai(i) and	
Aviation			(domestic,		1A3aii(i)	
		SCC Level3 domestic	landing/take-off	1A3aii_Domesti		H_Aviation,
		airport traffic	(LTO))	c-aviation		O_AviCruise
HTAP_2.2: International					-	
Aviation	-	-	-	-		-
	POWER_PLANTS			1A1a_Public-	1A1a_Public-	
HTAD 3: Energy	_POINT	SCC Level1	1.A.1.a Public	Electricity	Electricity	
TTAF_3. Litergy	POWER_PLANTS	Energy Industry (Power	electricity and	1A1a_Industrial-	1A1a_Industrial-	
	_NON-POINT	Generation)	heat production	Electricity	Electricity	A_PublicPower
			1.A.2 All		1A2 All	
			components		components,	
			2.A Mineral		excluding Fugitive	
			products		2 All components	
			2.B Chemical	1A2 All	(excluding 2D &	
HTAP_4.1: Industry			industry	components	excluding	
		SCC Level1 Combustion	2.C Metal	2 All	Fugitive)	
		in manufacturing	production	components		
		industry	2.H Other	(excluding 2D)		
		SCC Level1 Industrial	industry	6A_Other-		
	INDUSTRY	processes	production	commertial		B_Industry

			1.A.1.c		Fugitive	
			Manufacture of		components of	
			solid fuels and		1A2	
			other energy	1B2 All	1B2 All	
			industries	components	components	
HTAP_4.2: Fugitive			1.A.1.b	1A1b_Pet-	2A5	
			Petroleum	refining		
		SCC Level1 Energy	refining	1A1c_Coke-		
		storage and distribution	1.B Fugitive	ovens		
		SCC Level2 charcoal	emissions from	1A1g_Other-		
	EXTRACTION	manufacturing	fuels	energy-transf		D_Fugitive
			2.D Other		Solvent portions	
HTAP_4.3: Solvents		SCC Level1	solvent and	2D All	of 1A2, 1B2, 2D	
	SOLVENT	Solvent use	product use	components	and 2L	E_Solvents
UTAD 5 1. Pood					1A3bi – iv	F_RoadTransport
Transport	ROAD_TRANSPO		1.A.3.b.i, ii, iii, iv,	1A3bii_Road		(excluding
	RT	on-road mobile	v Road transport	(combustion)		resuspension)
UTAD E 2. Broke and		SCC Level2 paved road			1A3bv – vii	F_RoadTransport
Turo woor		SCC Level2 unpaved road	1.A.3.b.vi, vii	1A3b Road-	6A Road Dust	(resuspension
Tyre wear	-	SCC Level2 tire wear	Road transport	noncomb		only)
				1A3dii_Domesti	1A3dii	
				c-navigation		
HTAP_5.3: Domestic		SCC Level2 Inland		(shipping)		C Shinning
shipping		waterways		1A5_Recreation		
		SCC Level3 national sea		al-Equipment-		
	-	traffic within EMEP area	-	Marine		
				1A3c_Rail	1A2gvii Off road	
				1A3eii_Other-	1A3c	
HTAP 5 4. Other ground				unspecified-	1A3ei	
transport				transp	1A4bii	
				1A5_Recreation		
	OTHER_TRANSP	SCC Level2 Railways		al-Equipment-		
	ORT		1.A.3.c Railways	Land		I_Offroad

					1A4 All	
					components	
		SCC Level1 Non-industrial			2D3e Commercial	
UTAD C. Desidential		combustion plants			residential	
HTAP_6: Residential		SCC Level2 Agriculture			2H2 Meat grilling	
		SCC Level2 construction			6A cigarette	
		machinery	1.A.4 All	1A4 All	smoking,	C_OtherStationary
	DOMESTIC	SCC Level2 fireplace	components	components	Structural fires	Comb
		SCC Level1 Waste			5 All components	
HTAD 7. Wasta		treatment and disposal				
HTAP_7: Waste		SCC Level2 waste		5 All		
	-	disposal	5. Waste	components		J_Waste
UTAD 9 1. Agricultural			3.F Field burning		6A Prescribed	L_AgriOther
HIAP_0.1. Agricultural		SCC Level2 agricultural	of agricultural	3F_Ag-res-on-	Burning (forest)	(agricultural waste
waste burning	-	residue burning	residues	field		burning only)
		SCC Level2 Manure			3B All	
HTAP_8.2:		management			components	
Agriculture_livestock	MANURE_MANA	SCC Level2 Stockbreeding	3.B Manure	3B All		
	GEMENT	activity	management	components		K_AgriLivestock
		SCC Level2 Cultures with			3D All	I Agri∩thor
UTAD 9 2.		fertilizers		3Da1_Inorganic-	components	
Agriculture crops		(except animal manure)	3.D Crop	N-fertilizers		agricultural waste
Agriculture_crops		SCC Level2 Agriculture	production and	3Df_Use-of-		burning)
	FERTILIZER	activity	agricultural soils	pesticides		burning)

Table S2- Matching sectors between MEIC and HTAP_v3

While the HTAP_v3 mosaic includes 16 separate sectors, the public MEIC inventory is only distributed with 4 aggregated sectors. HTAP_v3 aims to be a "complete" inventory, covering all known anthropogenic emission sources, while the scope of the MEIC inventory is more limited. Some of the HTAP_v3 sectors have no corresponding counterpart in MEIC, while others are present in MEIC as part of aggregated sectors. To compare the HTAP_v3 emissions with MEIC emissions, the correspondence between sectors must be established.

HTAP_v3 sector number	HTAP_v3 sector name	MEIC sector
1	International Shipping	Not included in MEIC
2.1	Domestic Aviation	Not included in MEIC
2.2	International Aviation	Not included in MEIC
3	Energy	Power
4.1	Industry	Industry
4.2	Fugitive	Industry
4.3	Solvents	Industry
5.1	Road Transport	Transportation
5.2	Brake and Tyre wear	Transportation
5.3	Domestic shipping	Transportation
5.4	Other ground transport	Transportation
6	Residential	Residential
7	Waste	Residential
8.1	Agricultural waste burning	Not included in MEIC
8.2	Agriculture livestock	Agriculture
8.3	Agriculture crops	Agriculture

Data	Country code		
provider	ISO_A3	Country name	IPCC AR6 regional grouping
CAMS-REG-			
v5.1	ALB	Albania	Europe
CAMS-REG-			
v5.1	AUT	Austria	Europe
CAMS-REG-			
v5.1	BEL	Belgium	Europe
CAMS-REG-			
v5.1	BGR	Bulgaria	Europe
CAMS-REG-			
v5.1	BIH	Bosnia and Herzegovina	Europe
CAMS-REG-			
v5.1	BLR	Belarus	Eurasia
CAMS-REG-			
v5.1	CHE	Switzerland	Europe
CAMS-REG-			
v5.1	СҮР	Cyprus	Europe
CAMS-REG-			
v5.1	CZE	Czech Republic	Europe
CAMS-REG-			
v5.1	DEU	Germany	Europe
CAMS-REG-			
v5.1	DNK	Denmark	Europe
CAMS-REG-			
v5.1	ESP	Spain	Europe
CAMS-REG-			
v5.1	EST	Estonia	Europe
CAMS-REG-			_
v5.1	FIN	Finland	Europe
CAMS-REG-	50.4	E	5
	FRA	France	Europe
CAIVIS-REG-	CDD	United Kingdom	Furana
	GBK		Europe
CAIVIS-REG-	CPC	Cranco	Europo
	GRC	Greece	Europe
CAIVIS-REG-		Creatia	Europo
	HUN	Hungary	Furone
	IRI	Ireland	Furone
v5 1	151	Iceland	Furope
CAMS-REG-			
v5 1	ΙΤΔ	Italy	Furope
v		italy	Larope

Table S3 – Country mapping to inventory providers and regional belonging to IPCC AR6 regions.

_

CAMS-REG-			
v5.1	LTU	Lithuania	Europe
CAMS-REG-			
v5.1	LUX	Luxembourg	Europe
CAMS-REG-			South-East Asia and
v5.1	LVA	Latvia	developing Pacific
CAMS-REG-			
v5.1	MDA	Moldova, Republic of	Eurasia
CAMS-REG-		Macedonia, the former Yugoslav	
v5.1	MKD	Republic of	Eurasia
CAMS-REG-			
v5.1	MLT	Malta	Europe
CAMS-REG-			
v5.1	MNE	Montenegro	Europe
CAMS-REG-			
v5.1	NLD	Netherlands	Europe
CAMS-REG-			
v5.1	NOR	Norway	Europe
CAMS-REG-			
v5.1	POL	Poland	Europe
CAMS-REG-			
v5.1	PRT	Portugal	Europe
CAMS-REG-			
v5.1	ROU	Romania	Europe
CAMS-REG-			
v5.1	SRB	Serbia	Europe
CAMS-REG-			
v5.1	SVK	Slovakia	Europe
CAMS-REG-			
v5.1	SVN	Slovenia	Europe
CAMS-REG-			
v5.1	SWE	Sweden	Europe
CAMS-REG-			
v5.1	TUR	Turkey	Europe
CAMS-REG-			
v5.1	UKR	Ukraine	Europe
CAMS-REG-			
v5.1	ХКХ	Kosovo	Europe
CAPSS-KU	KOR	Korea, Republic of	Eastern Asia
ECCC	CAN	Canada	North America
FDGARv6.1	ABW	Aruba	Latin America and Caribbean
	AG0	Angola	Africa
	A00	Anguilla	Latin Amorica and Caribbaan
EDGARV6.1	AIK		
EDGARv6.1	ANT	Netherlands Antilles	Latin America and Caribbean
EDGARv6.1	ARE	United Arab Emirates	Middle East
EDGARv6.1	ARG	Argentina	Latin America and Caribbean
EDGARv6.1	ARM	Armenia	Eurasia
			South-East Asia and
EDGARv6.1	ASM	American Samoa	developing Pacific

EDGARv6.1	ATG	Antigua and Barbuda	Latin America and Caribbean
EDGARv6.1	AUS	Australia	Asia-Pacific Developed
EDGARv6.1	AZE	Azerbaijan	Eurasia
EDGARv6.1	BDI	Burundi	Africa
EDGARv6.1	BEN	Benin	Africa
EDGARv6.1	BFA	Burkina Faso	Africa
EDGARv6.1	BHR	Bahrain	Middle East
EDGARv6.1	BHS	Bahamas	Latin America and Caribbean
EDGARv6.1	BLZ	Belize	Latin America and Caribbean
EDGARv6.1	BMU	Bermuda	Latin America and Caribbean
EDGARv6.1	BOL	Bolivia	Latin America and Caribbean
EDGARv6.1	BRA	Brazil	Latin America and Caribbean
EDGARv6.1	BRB	Barbados	Latin America and Caribbean
EDGARv6.1	BWA	Botswana	Africa
EDGARv6.1	CAF	Central African Republic	Africa
EDGARv6.1	CHL	Chile	Latin America and Caribbean
EDGARv6.1	CIV	Cote d'Ivoire	Africa
EDGARv6.1	CMR	Cameroon	Africa
		Congo_the Democratic Republic of	
EDGARv6.1	COD	the	Africa
EDGARv6.1	COG	Congo	Africa
	60%		South-East Asia and
EDGARV6.1	COK		developing Pacific
EDGARV6.1	COL	Colombia	Latin America and Caribbean
EDGARv6.1		Comoros	Africa
EDGARV6.1	CPV	Cape Verde	Africa
EDGARV6.1	CRI		Latin America and Caribbean
EDGARv6.1	COB	Cuba	Latin America and Caribbean
EDGARv6.1	CYM	Cayman Islands	Latin America and Caribbean
EDGARv6.1	DJI	Djibouti	Africa
EDGARv6.1	DMA	Dominica	Latin America and Caribbean
EDGARv6.1	DOM	Dominican Republic	Latin America and Caribbean
EDGARv6.1	DZA	Algeria	Africa
EDGARv6.1	ECU	Ecuador	Latin America and Caribbean
EDGARv6.1	EGY	Egypt	Africa
EDGARv6.1	ERI	Eritrea	Africa
EDGARv6.1	ESH	Western Sahara	Africa
EDGARv6.1	ETH	Ethiopia	Africa
		F:::	South-East Asia and
EDGARV6.1	FJI	Fiji	developing Pacific
EDGARV6.1	FLK	Faikland Islands (Iviaivinas)	Latin America and Caribbean
EDGARV6.1	FKU	raroe Islands	Europe
FDGARV6 1	FSM	Micronesia Federated States of	developing Pacific
EDGARV6 1	GAB	Gabon	
	GEO	Gaorgia	Furacia
		Chapa	Africa
EDGAKV6.1	GUA		AITICA

EDGARv6.1	GIB	Gibraltar	Europe
EDGARv6.1	GIN	Guinea	Africa
EDGARv6.1	GLP	Guadeloupe	Latin America and Caribbean
EDGARv6.1	GMB	Gambia	Africa
EDGARv6.1	GNB	Guinea-Bissau	Africa
EDGARv6.1	GNQ	Equatorial Guinea	Africa
EDGARv6.1	GRD	Grenada	Latin America and Caribbean
EDGARv6.1	GRL	Greenland	Europe
EDGARv6.1	GTM	Guatemala	Latin America and Caribbean
EDGARv6.1	GUF	French Guiana	Latin America and Caribbean
			South-East Asia and
EDGARv6.1	GUM	Guam	developing Pacific
EDGARv6.1	GUY	Guyana	Latin America and Caribbean
EDGARv6.1	НКС	Hong Kong	Eastern Asia
EDGARv6.1	HND	Honduras	Latin America and Caribbean
EDGARv6.1	HTI	Haiti	Latin America and Caribbean
EDGARv6.1	IRN	Iran, Islamic Republic of	Middle East
EDGARv6.1	IRQ	Iraq	Middle East
EDGARv6.1	ISR	Israel	Middle East
EDGARv6.1	JAM	Jamaica	Latin America and Caribbean
EDGARv6.1	JOR	Jordan	Middle East
EDGARv6.1	KAZ	Kazakhstan	Eurasia
EDGARv6.1	KEN	Kenya	Africa
EDGARv6.1	KGZ	Kyrgyzstan	Eurasia
			South-East Asia and
EDGARv6.1	KIR	Kiribati	developing Pacific
EDGARv6.1	KNA	Saint Kitts and Nevis	Latin America and Caribbean
EDGARv6.1	KWT	Kuwait	Middle East
EDGARv6.1	LBN	Lebanon	Middle East
EDGARv6.1	LBR	Liberia	Africa
EDGARv6.1	LBY	Libyan Arab Jamahiriya	Africa
EDGARv6.1	LCA	Saint Lucia	Latin America and Caribbean
EDGARv6.1	LSO	Lesotho	Africa
EDGARv6.1	MAC	Масао	Eastern Asia
EDGARv6.1	MAR	Morocco	Africa
EDGARv6.1	MDG	Madagascar	Africa
EDGARv6.1	MEX	Mexico	Latin America and Caribbean
EDGARv6.1	MLI	Mali	Africa
EDGARv6.1	MOZ	Mozambique	Africa
EDGARv6.1	MRT	Mauritania	Africa
EDGARv6.1	MSR	Montserrat	Latin America and Caribbean
EDGARv6.1	MTQ	Martinique	Latin America and Caribbean
EDGARv6.1	MUS	Mauritius	Africa
EDGARv6.1	MWI	Malawi	Africa
EDGARv6.1	MYT	Mayotte	Africa
EDGARv6.1	NAM	Namibia	Africa

			South-East Asia and
EDGARv6.1	NCL	New Caledonia	developing Pacific
EDGARv6.1	NER	Niger	Africa
EDGARv6.1	NGA	Nigeria	Africa
EDGARv6.1	NIC	Nicaragua	Latin America and Caribbean
			South-East Asia and
EDGARv6.1	NIU	Niue	developing Pacific
EDGARv6.1	NZL	New Zealand	Asia-Pacific Developed
EDGARv6.1	OMN	Oman	Middle East
EDGARv6.1	PAN	Panama	Latin America and Caribbean
EDGARv6.1	PER	Peru	Latin America and Caribbean
			South-East Asia and
EDGARv6.1	PLW	Palau	developing Pacific
			South-East Asia and
EDGARv6.1	PNG	Papua New Guinea	developing Pacific
EDGARv6.1	PRY	Paraguay	Latin America and Caribbean
	DVC		South-East Asia and
EDGARv6.1	PYF	French Polynesia	developing Pacific
EDGARv6.1	QAT	Qatar	Middle East
EDGARv6.1	REU	Reunion	Africa
EDGARv6.1	RUS	Russian Federation	Eurasia
EDGARv6.1	RWA	Rwanda	Africa
EDGARv6.1	SAU	Saudi Arabia	Middle East
EDGARv6.1	SDN	Sudan	Africa
EDGARv6.1	SEA	Int. Shipping	Int. Shipping
EDGARv6.1	SEN	Senegal	Africa
EDGARv6.1	SHN	Saint Helena	Africa
			South-East Asia and
EDGARv6.1	SLB	Solomon Islands	developing Pacific
EDGARv6.1	SLE	Sierra Leone	Africa
EDGARv6.1	SLV	El Salvador	Latin America and Caribbean
EDGARv6.1	SOM	Somalia	Africa
EDGARv6.1	SPM	Saint Pierre and Miquelon	North America
EDGARv6.1	STP	Sao Tome and Principe	Africa
EDGARv6.1	SUR	Suriname	Latin America and Caribbean
EDGARv6.1	SWZ	Swaziland	Africa
EDGARv6.1	SYC	Seychelles	Africa
EDGARv6.1	SYR	Syrian Arab Republic	Middle East
EDGARv6.1	ТСА	Turks and Caicos Islands	Latin America and Caribbean
EDGARv6.1	TCD	Chad	Africa
EDGARv6.1	TGO	Тодо	Africa
EDGARv6.1	ТЈК	Tajikistan	Eurasia
			South-East Asia and
EDGARv6.1	TKL	Tokelau	developing Pacific
EDGARv6.1	ТКМ	Turkmenistan	Eurasia
			South-East Asia and
EDGARv6.1	TLS	Timor-Leste	developing Pacific

			South-East Asia and
EDGARv6.1	TON	Tonga	developing Pacific
EDGARv6.1	тто	Trinidad and Tobago	Latin America and Caribbean
EDGARv6.1	TUN	Tunisia	Africa
EDGARv6.1	TZA	Tanzania United Republic of	Africa
EDGARv6.1	UGA	Uganda	Africa
EDGARv6.1	URY	Uruguav	Latin America and Caribbean
EDGARv6.1	UZB	Uzbekistan	Eurasia
EDGARv6.1	VCT	Saint Vincent and the Grenadines	Latin America and Caribbean
EDGARv6.1	VEN	Venezuela	Latin America and Caribbean
EDGARv6.1	VGB	Virgin Islands British	Latin America and Caribbean
			South-East Asia and
EDGARv6.1	VUT	Vanuatu	developing Pacific
			South-East Asia and
EDGARv6.1	WLF	Wallis and Futuna	developing Pacific
			South-East Asia and
EDGARv6.1	WSM	Samoa	developing Pacific
EDGARv6.1	YEM	Yemen	Middle East
EDGARv6.1	ZAF	South Africa	Africa
EDGARv6.1	ZMB	Zambia	Africa
EDGARv6.1	ZWE	Zimbabwe	Africa
JAPAN	JPN	Japan	Asia-Pacific Developed
REAS	AFG	Afghanistan	Southern Asia
REAS	BGD	Bangladesh	Southern Asia
			South-East Asia and
REAS	BRN	Brunei Darussalam	developing Pacific
REAS	BTN	Bhutan	Southern Asia
REAS	CHN	China	Eastern Asia
			South-East Asia and
REAS	IDN	Indonesia	developing Pacific
REAS	IND	India	Southern Asia
			South-East Asia and
REAS	КНМ	Cambodia	developing Pacific
			South-East Asia and
REAS	LAO	Lao People's Democratic Republic	developing Pacific
REAS	LKA	Sri Lanka	Southern Asia
REAS	MDV	Maldives	Southern Asia
DEAC			South-East Asia and
REAS	MMR	Myanmar	developing Pacific
REAS	MNG	Mongolia	Eastern Asia
DEAC	NAVC	Malaysia	South-East Asia and
REAS		Nalaysia	
REAS			Southern Asia
REAS	PAK	Pakistan	Southern Asia
DEAS		Philippipos	South-East Asia and
REAS	rnl	Karea Democratic Poonlo's	
REAS	PRK	Republic of	Fastern Asia
		Republic of	

			South-East Asia and
REAS	SGP	Singapore	developing Pacific
			South-East Asia and
REAS	THA	Thailand	developing Pacific
REAS	TWN	Taiwan_Province of China	Eastern Asia
			South-East Asia and
REAS	VNM	Viet Nam	developing Pacific
US EPA	PRI	Puerto Rico	North America
US EPA	USA	United States	North America
US EPA	VIR	Virgin Islands_USA	North America

S2 - Comparison of HTAP_v3 emission mosaic vs. regional and global inventories

In this section, the comparison between the HTAP_v3 mosaic emission time series by pollutant and region and the corresponding emissions from other inventories is presented (Figures S1-S5). In particular, we compare HTAP v3 against CEDS v2021 04 21 (O'Rourke, 2021), EDGARv5.0 (https://edgar.jrc.ec.europa.eu/dataset ap50, (Oreggioni et al., 2022)), EDGARv6.1 (which is used in HTAP v3 as gapfilling inventory, https://edgar.jrc.ec.europa.eu/dataset ap61), country inventories, GAINS (ECLIPSE v6b CLE) (Klimont et al., 2017), and REAS v3.2.1 (Kurokawa and Ohara, 2020) including the latest updates available at https://www.nies.go.jp/REAS/. In a few instances (Canada, China) multiple versions of the country inventories are available and the older version is plotted as "older country inv" in the first figure in each set below.

The country level inventories are from the US EPA (<u>https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data</u>; Version April 27, 2020), Environment and Climate Change Canada (<u>https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131</u>, downloaded August 2020), EMEP (<u>https://www.ceip.at/</u>, downloaded 2020), MEIC for China (Zheng et al 2018), Japan (REAS 3.2.1), Korea (<u>http://airemiss.nier.go.kr/</u>; downloaded 2020) and Taiwan (<u>http://teds.epa.gov.tw/</u> various databases and documents downloaded in 2020).

For each emission species two graphs are shown. The first shows comparisons at the country level (and Eastern/western European regions) where we can compare HTAP_v3 with the country-level inventory data as processed for CEDS. Note that CEDS is calibrated to the country level data shown in this graph, which means CEDS will generally align with the country-level data except where gap filling has taken place (as noted below). The second graph in each set below shows a comparison at the level of global regions, where we compare the three global inventories and, for Asia regions, REAS.

The graphs below exclude emissions from aviation, international shipping, and agricultural waste burning on fields. Note that, while we have attempted to harmonize geographic and sectoral coverage between the inventories, the correspondence is not always exact and this can lead to spurious differences. There are significant differences, for example, in how different inventories define the category "domestic shipping". We, therefore, focus on larger differences where this potentially impacts interpretation of the HTAP_v3 data.

S2.1- Comparison of SO₂ emissions

Overall, HTAP_v3 compares well with the country level data for SO₂. The largest discrepancy is for Australia. The Australia National Pollutant Inventory (NPI; <u>http://www.npi.gov.au/</u>) provides annual data for point sources. For non-point sources, however, this only provides data for one representative year, which is also not necessarily consistent between states. For this reason, there is no consistent time series data available for total emissions from the NPI. The CEDS emission data uses default estimates for area sources, but calibrates emissions from power plants and industrial sources (for species where point sources dominate, such as SO₂ from metal smelters) to the Australia NPI data. HTAP_v3 is based on EDGAR for Australia, as shown in the graph. While SO₂ values are similar by 2018, the NPI indicates that emissions were much higher than the HTAP_v3 values by 2000.

There is also a small difference between inventories for China. While CEDS is calibrated to MEIC, CEDS also contains bottom-up estimates for metal smelting SO₂ emissions that are not included in MEIC which increases total emissions in the mid to late 2000's. The difference becomes small by the end of the time series as increased penetration of acid production plants and pollution control devices is assumed to have substantially decreased SO₂ emissions from metal smelting.

At a regional level the largest differences between inventories, where the CEDS inventory has higher emissions than EDGAR (and HTAP_v3) or GAINS, are in Latin America from metal smelting (derived from bottom-up mass balance estimates plus some country data in CEDS), and the Middle East, where CEDS has higher emissions from oil and gas operations (derived from OMI satellite measurements). Differences in SO₂ emissions between HTAP_v3 and EDGAR_v6 for the Islands¹ regional grouping is associated with the emissions from Maldives which are provided by the REAS inventory and not by EDGAR.

¹In this comparison, 'Islands' includes emissions from: Cook Islands, Faeroe Islands, Maldives, Martinique, Niue, French Polynesia, Saint Pierre and Miquelon.

Figure S1 – SO₂ emission time series comparison by world region as provided by different inventories and HTAP_v3.

S2.2- Comparison of NOx emissions

Overall, HTAP_v3 compares well with the country level data for NOx with general agreement between the inventories for most regions. Trends in Australia are particularly uncertain, however, since there is no country-level time series information for mobile sources, which are a major driver of trends in NOx emissions. The figure illustrates how different assumptions impact the estimated trends, which differ between EDGAR v5, EDGAR v6 (on which HTAP_v3 is based), and CEDS (which uses emission factors from GAINS for mobile sources). The inventories also show different emission magnitudes for Japan. Possible drivers of differences include different assumptions about industrial sector emissions and the treatment of domestic shipping emissions, which are both significant contributors to emission totals in Japan. Similarly to So2, also differences in NOx emissions between HTAP_v3 and EDGAR_v6 for the Islands regional grouping is associated with the emissions from Maldives which are provided by the REAS inventory and not by EDGAR.

Figure S2 – NOx emission time series comparison by world region as provided by different inventories and HTAP_v3.

S2.3- Comparison of CO emissions

While HTAP_v3 compares well with the country level data for CO, there is a large variation overall between the different global inventories. CO emission factors depend heavily on combustion process details which are difficult to capture with default regional emission factor

assumptions. An example of this is shown for Canada, where CO emission estimates appear to have changed significantly in more recent versions of the inventory.

There is a particularly large difference in China by 2000, where HTAP_v3 has CO emissions that peak around 2010, whereas CEDS has CO emissions peaking earlier and at a higher value, and EDGAR has no prominent peak in CO emissions. The difference is largely in the residential sector, with HTAP_v3 residential CO emissions decreasing when going back from 2005 to 2000, whereas residential sector CO emissions increase in CEDS driven by increases in residential biomass combustion when going back from 2005 to 2000.

Figure S3 – CO emission time series comparison by world region as provided by different inventories and HTAP_v3.

S2.4- Comparison of NMVOC emissions

While HTAP_v3 compares well with the country level data for NMVOC, there is a large variation overall between the different global inventories. HTAP_v3 NMVOC emissions are shifted higher than the country level inventories used in CEDS for a number of countries/regions. The reason for this difference is not clear, but may be due to more recent country data used in EDGAR-HTAP_v3 or differences in sectoral coverage.

Figure S4 – NMVOC emission time series comparison by world region as provided by different inventories and HTAP_v3.

S2.5- Comparison of NH₃ emissions

While HTAP_v3 compares well with the country level data for NH₃ in most cases, there is also a large variation overall between the different global inventories. In some cases, such as the USA, gridded NH₃ emissions in some key agricultural sectors was not available so these emissions were gap filled from EDGAR estimates.

Figure S5 – NH₃ emission time series comparison by world region as provided by different inventories and HTAP_v3.

S3 – Monthly variability of the emissions

Figures S6, S7 and S8 show the monthly contribution of the emissions of CO, NMVOC and SO_2 in 2015 for world regions. The largest variability is found for the residential sector and agriculture, while smaller variation is present for energy, industry and transport.

Figure S6 – Monthly variability of CO emissions for relevant emission sectors for the different world regions in 2015.

Figure S7 – Monthly variability of NMVOC emissions for relevant emission sectors for the different world regions in 2015.

Figure S8 – Monthly variability of SO₂ emissions for relevant emission sectors for the different world regions in 2015.

Figures S9-S14 show the monthly mean profiles for the different pollutants and relevant emission sectors. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles. With the exception of few data providers (EDGAR and ECCC), no inter-annual variability of the monthly profiles is found.

Figure S9 – Monthly mean profile of SO₂ emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period

covered by all data providers, for each region is represented together with the 10° and 90° percentiles, in grey.

Figure S10 – Monthly mean profile of NOx emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles.

Figure S11 – Monthly mean profile of CO emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles.

Figure S12 – Monthly mean profile of NMVOC emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles.

Figure S13 – Monthly mean profile of NH₃ emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles.

Figure S14 – Monthly mean profile of PM_{10} emissions for relevant emission sectors for the different world regions. The mean profile over the years 2002-2015, which is the period covered by all data providers, for each region is represented together with the 10° and 90° percentiles.

S4 NMVOC speciation

Table S4 provides the list of Global Emissions InitiAtive (GEIA) 25 NMVOC groups included in HTAP_v3 with the corresponding molecular formula.

Table S4 – List of NMVOC species included in HTAP_v3. R and R' denote functional groups. Where general formulae are not appropriate, the simplest molecular formula representing the group is provided. NA = not available

GEIA ID	GEIA group	Molecular formula
voc1	Alkanols (alcohols)	$C_nH_{2n}+_1OH$
voc2	Ethane	C ₂ H ₆
voc3	Propane	C ₃ H ₈
voc4	Butanes	C4H10
voc5	Pentanes	C ₅ H ₁₂
voc6	Hexanes and higher alkanes	$C_nH_{2n+2} \ (n \ge 6)$
voc7	Ethene (ethylene)	C ₂ H ₄
voc8	Propene	C ₃ H ₆
voc9	Ethyne (acetylene)	C ₂ H ₂
voc10	Isoprenes	C ₅ H ₈
voc11	Monoterpenes	$C_{10}H_{16}$

voc12	Other alk(adi)enes/alkynes (olefines)	C _n H _{2n-2}
voc13	Benzene (benzol)	C ₆ H ₆
voc14	Methylbenzene (toluene)	C7H8
voc15	Dimethylbenzenes (xylenes)	C ₆ H ₄ (CH ₃) ₂
voc16	Trimethylbenzenes	$C_{6}H_{3}(CH_{3})_{3}$
voc17	Other aromatics	C _n H _{2n-6}
voc18	Esters	R-C(=O)O-R'
voc19	Ethers (alkoxy alkanes)	R-O-R'
voc20	Chlorinated hydrocarbons	CH ₃ Cl
voc21	Methanal (formaldehyde)	CH ₂ O
voc22	Other alkanals (aldehyedes)	R-CHO
voc23	Alkanones (ketones)	R-C(=O)-R'
voc24	Acids (alkanoic)	R-C _n H _n COOH
voc25	Other NMVOC (HCFCs, nitriles, etc.)	NA

Table S5 -	Regional	manning	to be an	plied for	NMVOC	speciation
I able 55	regional	mapping	to be app	pincu ioi		speciation

Country		Regionala_VOC_grou	Region
code	Country name	ping	definition
ABW	Aruba	ОТ	Other
AFG	Afghanistan	AS	Asia
AGO	Angola	ОТ	Other
AIA	Anguilla	ОТ	Other
AIR	Int. Aviation	ОТ	Other
ALA	Åland Islands	EU	Europe
ALB	Albania	EU	Europe
AND	Andorra	EU	Europe
ANT	Netherlands Antilles	ОТ	Other
ARE	United Arab Emirates	ОТ	Other
ARG	Argentina	ОТ	Other
ARM	Armenia	EU	Europe
ASM	American Samoa	ОТ	Other
ATA	Antarctica	ОТ	Other
ATF	French Southern Territories	ОТ	Other
ATG	Antigua and Barbuda	ОТ	Other
AUS	Australia	ОТ	Other
AUT	Austria	EU	Europe
AZE	Azerbaijan	EU	Europe
BDI	Burundi	OT	Other
BEL	Belgium	EU	Europe
BEN	Benin	ОТ	Other

BFA	Burkina Faso	ОТ	Other
BGD	Bangladesh	AS	Asia
BGR	Bulgaria	EU	Europe
BHR	Bahrain	ОТ	Other
BHS	Bahamas	ОТ	Other
BIH	Bosnia and Herzegovina	EU	Europe
BLR	Belarus	EU	Europe
BLZ	Belize	ОТ	Other
BMU	Bermuda	ОТ	Other
BOL	Bolivia	ОТ	Other
BRA	Brazil	ОТ	Other
BRB	Barbados	ОТ	Other
BRN	Brunei Darussalam	AS	Asia
BTN	Bhutan	AS	Asia
BVT	Bouvet Island	ОТ	Other
BWA	Botswana	ОТ	Other
CAF	Central African Republic	ОТ	Other
CAN	Canada	NA	North America
ССК	Cocos (Keeling) Islands	OT	Other
CHE	Switzerland	EU	Europe
CHL	Chile	OT	Other
CHN	China	AS	Asia
CIV	Cote d'Ivoire	OT	Other
CMR	Cameroon	ОТ	Other
COD	Congo_the Democratic Republic of the	OT	Other
COG	Congo	ОТ	Other
СОК	Cook Islands	ОТ	Other
COL	Colombia	ОТ	Other
СОМ	Comoros	ОТ	Other
CPV	Cape Verde	ОТ	Other
CRI	Costa Rica	ОТ	Other
CUB	Cuba	ОТ	Other
CXR	Christmas Island	ОТ	Other
CYM	Cayman Islands	ОТ	Other
СҮР	Cyprus	EU	Europe
CZE	Czech Republic	EU	Europe
DEU	Germany	EU	Europe
DJI	Djibouti	ОТ	Other
DMA	Dominica	ОТ	Other
DNK	Denmark	EU	Europe
DOM	Dominican Republic	ОТ	Other
DZA	Algeria	ОТ	Other
E27	Europe - 27 MS	EU	Europe
ECU	Ecuador	ОТ	Other
EGY	Egypt	ОТ	Other
ERI	Eritrea	ОТ	Other

ESH	Western Sahara	ОТ	Other
ESP	Spain	EU	Europe
EST	Estonia	EU	Europe
ETH	Ethiopia	ОТ	Other
FIN	Finland	EU	Europe
FJI	Fiji	ОТ	Other
FLK	Falkland Islands (Malvinas)	ОТ	Other
FRA	France	EU	Europe
FRO	Faroe Islands	EU	Europe
FSM	Micronesia, Federated States of	ОТ	Other
GAB	Gabon	ОТ	Other
GBR	United Kingdom	EU	Europe
GEO	Georgia	EU	Europe
GGY	Guernsey	EU	Europe
GHA	Ghana	ОТ	Other
GIB	Gibraltar	EU	Europe
GIN	Guinea	OT	Other
GLP	Guadeloupe	OT	Other
GMB	Gambia	OT	Other
GNB	Guinea-Bissau	OT	Other
GNQ	Equatorial Guinea	OT	Other
GRC	Greece	EU	Europe
GRD	Grenada	ОТ	Other
GRL	Greenland	EU	Europe
GTM	Guatemala	OT	Other
GUF	French Guiana	OT	Other
GUM	Guam	OT	Other
GUY	Guyana	OT	Other
HKG	Hong Kong	AS	Asia
HMD	Heard Island and McDonald Islands	OT	Other
HND	Honduras	OT	Other
HRV	Croatia	EU	Europe
HTI	Haiti	OT	Other
HUN	Hungary	EU	Europe
IDN	Indonesia	AS	Asia
IMN	Isle of Man	EU	Europe
IND	India	AS	Asia
IOT	British Indian Ocean Territory	AS	Asia
IRL	Ireland	EU	Europe
IRN	Iran, Islamic Republic of	OT	Other
IRQ	Iraq	OT	Other
ISL	Iceland	EU	Europe
ISR	Israel	ОТ	Other
ITA	Italy	EU	Europe
JAM	Jamaica	ОТ	Other
JEY	Jersey	EU	Europe

JOR	Jordan	OT	Other
JPN	Japan	AS	Asia
KAZ	Kazakhstan	AS	Asia
KEN	Kenya	OT	Other
KGZ	Kyrgyzstan	AS	Asia
КНМ	Cambodia	AS	Asia
KIR	Kiribati	OT	Other
KNA	Saint Kitts and Nevis	OT	Other
KOR	Korea, Republic of	AS	Asia
KWT	Kuwait	OT	Other
LAO	Lao People's Democratic Republic	AS	Asia
LBN	Lebanon	OT	Other
LBR	Liberia	OT	Other
LBY	Libyan Arab Jamahiriya	OT	Other
LCA	Saint Lucia	OT	Other
LIE	Liechtenstein	EU	Europe
LKA	Sri Lanka	AS	Asia
LSO	Lesotho	OT	Other
LTU	Lithuania	EU	Europe
LUX	Luxembourg	EU	Europe
LVA	Latvia	EU	Europe
MAC	Масао	AS	Asia
MAR	Morocco	OT	Other
МСО	Monaco	EU	Europe
MDA	Moldova, Republic of	EU	Europe
MDG	Madagascar	OT	Other
MDV	Maldives	AS	Asia
MEX	Mexico	OT	Other
MHL	Marshall Islands	OT	Other
МКД	Macedonia, the former Yugoslav Republic of	EU	Europe
MLI	Mali	OT	Other
MLT	Malta	EU	Europe
MMR	Myanmar	AS	Asia
MNE	Montenegro	EU	Europe
MNG	Mongolia	AS	Asia
MNP	Northern Mariana Islands	OT	Other
MOZ	Mozambique	OT	Other
MRT	Mauritania	OT	Other
MSR	Montserrat	OT	Other
MTQ	Martinique	OT	Other
MUS	Mauritius	OT	Other
MWI	Malawi	OT	Other
MYS	Malaysia	AS	Asia
MYT	Mayotte	OT	Other
NAM	Namibia	OT	Other

NCL	New Caledonia	ОТ	Other
NER	Niger	ОТ	Other
NFK	Norfolk Island	ОТ	Other
NGA	Nigeria	ОТ	Other
NIC	Nicaragua	ОТ	Other
NIU	Niue	ОТ	Other
NLD	Netherlands	EU	Europe
NOR	Norway	EU	Europe
NPL	Nepal	AS	Asia
NRU	Nauru	ОТ	Other
NZL	New Zealand	ОТ	Other
OMN	Oman	ОТ	Other
РАК	Pakistan	AS	Asia
PAN	Panama	ОТ	Other
PCN	Pitcairn	ОТ	Other
PER	Peru	ОТ	Other
PHL	Philippines	AS	Asia
PLW	Palau	ОТ	Other
PNG	Papua New Guinea	AS	Asia
POL	Poland	EU	Europe
PRI	Puerto Rico	ОТ	Other
PRK	Korea, Democratic People's Republic of	AS	Asia
PRT	Portugal	EU	Europe
PRY	Paraguay	ОТ	Other
PSE	Palestinian Territory	ОТ	Other
PYF	French Polynesia	ОТ	Other
QAT	Qatar	ОТ	Other
REU	Reunion	ОТ	Other
ROU	Romania	EU	Europe
RUS	Russian Federation	EU	Europe
RWA	Rwanda	ОТ	Other
SAU	Saudi Arabia	ОТ	Other
SCG	Serbia and Montenegro	EU	Europe
SDN	Sudan	ОТ	Other
SEA	Int. Shipping	ОТ	Other
SEN	Senegal	ОТ	Other
SGP	Singapore	AS	Asia
	South Georgia and the South Sandwich		
SGS	Islands	ОТ	Other
SHN	Saint Helena	ОТ	Other
SJM	Svalbard and Jan Mayen	EU	Europe
SLB	Solomon Islands	ОТ	Other
SLE	Sierra Leone	ОТ	Other
SLV	El Salvador	ОТ	Other
SMR	San Marino	EU	Europe
SOM	Somalia	ОТ	Other

SPM	Saint Pierre and Miquelon	NA	North America
SRB	Serbia	EU	Europe
STP	Sao Tome and Principe	ОТ	Other
SUR	Suriname	ОТ	Other
SVK	Slovakia	EU	Europe
SVN	Slovenia	EU	Europe
SWE	Sweden	EU	Europe
SWZ	Swaziland	ОТ	Other
SYC	Seychelles	ОТ	Other
SYR	Syrian Arab Republic	ОТ	Other
ТСА	Turks and Caicos Islands	ОТ	Other
TCD	Chad	ОТ	Other
TGO	Тодо	ОТ	Other
THA	Thailand	AS	Asia
ТЈК	Tajikistan	AS	Asia
TKL	Tokelau	ОТ	Other
ТКМ	Turkmenistan	AS	Asia
TLS	Timor-Leste	AS	Asia
TON	Tonga	ОТ	Other
ТТО	Trinidad and Tobago	ОТ	Other
TUN	Tunisia	ОТ	Other
TUR	Turkey	EU	Europe
TUV	Tuvalu	ОТ	Other
TWN	Taiwan_Province of China	AS	Asia
TZA	Tanzania_United Republic of	ОТ	Other
UGA	Uganda	ОТ	Other
UKR	Ukraine	EU	Europe
UMI	United States Minor Outlying Islands	NA	North America
URY	Uruguay	ОТ	Other
USA	United States	NA	North America
UZB	Uzbekistan	AS	Asia
VAT	Holy See (Vatican City State)	EU	Europe
VCT	Saint Vincent and the Grenadines	ОТ	Other
VEN	Venezuela	ОТ	Other
VGB	Virgin Islands_British	ОТ	Other
VIR	Virgin Islands_USA	ОТ	Other
VNM	Viet Nam	AS	Asia
VUT	Vanuatu	ОТ	Other
WLF	Wallis and Futuna	ОТ	Other
WSM	Samoa	ОТ	Other
YEM	Yemen	ОТ	Other
ZAF	South Africa	ОТ	Other
ZMB	Zambia	ОТ	Other
ZWE	Zimbabwe	ОТ	Other

S5 Qualitative uncertainty estimates of global emissions

A qualitative indication of the emission variability at global level is reported in Table S6 and it is calculated as the relative difference between EDGARv6.1 and HTAP_v3 emissions by sector and pollutant. Further explanations are provided in section xx of the manuscript.

Table S6 – Variability of global emission estimates by sector and pollutant, calculated as
the relative difference between HTAP_v3 emissions and the EDGARv6.1 estimates.
Variability ranges are based on the qualitative classes defined in the EMEP/EEA
Guidebook 2019 as low (L), low medium (LM), upper medium (UM), high (H).

Sub	(EDGARv6.1-	(EDGARv6.1-	varibility	varibility
stan	HTAP_v3)/HTAP_v3	HTAP_v3)/HTAP_v3	range, year	range, year
ce	, year 2000	, year 2018	2000	2018
OC	69.3%	128.7%	UM	Н
BC	-1.9%	77.8%	L	UM
SO2	-0.3%	44.5%	L	LM
NOx	15.8%	24.4%	LM	LM
СО	22.3%	20.7%	LM	LM
NM				
voc	34.9%	15.5%	LM	LM
PM2				
.5	-16.4%	-1.2%	LM	L
PM1				
0	-17.2%	-2.7%	LM	L
NH3	-1.9%	-39.5%	L	LM
NM				
VOC	59.3%	96.4%	UM	UM
SO2	-15.8%	85.5%	LM	UM
OC	-24.0%	50.3%	LM	UM
BC	-3.7%	47.8%	L	LM
PM2				
.5	-46.6%	40.2%	LM	LM
NO	1.50/	24 50/		
NUX	-1.6%	21.5%	L	
PINIT	CO 20/	0.5%	118.4	
0	-60.3%	-0.5%	UIVI	L
<u> </u>	DE 00/	2 60/	1.5.4	1
0	-23.0/0	-2.076		L
инз	-53.7%	-51.2%		
	-55.770	-54.270	0101	0101
co	53.5%	64.1%	UM	UM
	23.370	01.170		
		1	1	1
	Sub stan ce OC BC SO2 NOX CO NM VOC PM2 .5 PM1 0 NH3 NM VOC SO2 OC SO2 OC BC PM2 .5 NOX PM1 0 NOX PM1 0 NOX CO NH3	Sub (EDGARv6.1- HTAP_v3)/HTAP_v3 , year 2000 OC 69.3% BC -1.9% SO2 -0.3% NOx 15.8% CO 22.3% NM VOC VOC 34.9% PM1 - 0 -17.2% NH3 -1.9% NM VOC VOC 59.3% SO2 -15.8% OC -24.0% BC -3.7% PM2 .5 .5 -46.6% NOx -1.6% PM1 0 0 -60.3% CO -25.8% NH3 -53.7% CO 53.5%	Sub (EDGARv6.1- HTAP_v3)/HTAP_v3 , year 2000 (EDGARv6.1- HTAP_v3)/HTAP_v3 , year 2018 OC 69.3% 128.7% BC -1.9% 77.8% SO2 -0.3% 44.5% NOx 15.8% 24.4% CO 22.3% 20.7% NM 20.7% 20.7% VOC 34.9% 15.5% PM2 - - .5 -16.4% -1.2% PM1 - - 0 -17.2% -2.7% NH3 -1.9% -39.5% NM - - VOC 59.3% 96.4% SO2 -15.8% 85.5% OC -24.0% 50.3% BC -3.7% 47.8% PM2 - - .5 -46.6% 40.2% NOx -1.6% 21.5% PM1 - - 0 -60.3% -0.5% CO	Sub (EDGARv6.1- HTAP_v3)/HTAP_v3 (EDGARv6.1- HTAP_v3)/HTAP_v3 varibility range, year 2000 OC 69.3% 128.7% UM BC -1.9% 77.8% L SO2 -0.3% 44.5% L NOx 15.8% 24.4% LM CO 22.3% 20.7% LM NM VOC 34.9% 15.5% LM PM2 - - - - -5 -16.4% -1.2% LM - PM1 - - - - - OC 59.3% 96.4% UM - - SO2 -15.8% 85.5% LM - NM - - - - - VOC 59.3% 96.4% UM - - SO2 -15.8% 85.5% LM - - NM - - - - - -

HTAPv3_4.2_Fugit					
ive	BC	36.7%	50.2%	LM	UM
HTAPv3_4.2_Fugit					
ive	NH3	30.2%	19.4%	LM	LM
HTAPv3_4.2_Fugit	NM				
ive	voc	10.7%	13.4%	L	L
HTAPv3_4.2_Fugit					
ive	NOx	29.9%	8.9%	LM	L
HTAPv3_4.2_Fugit	PM1				
ive	0	-0.6%	0.9%	L	L
HTAPv3_4.2_Fugit	PM2				
ive	.5	-29.0%	-23.0%	LM	LM
HTAPv3_4.2_Fugit					
ive	ос	-65.0%	-51.1%	UM	UM
HTAPv3_4.3_Solv	NM				
ents	voc	2.2%	-25.2%	L	LM
HTAPv3_4.3_Solv	PM2				
ents	.5	-69.8%	-60.2%	UM	UM
HTAPv3_4.3_Solv	PM1				
ents	0	-74.5%	-67.6%	UM	UM
HTAPv3_4.3_Solv					
ents	NH3	-99.8%	-99.6%	UM	UM
HTAPv3_5.1_Road					
_Transport	NH3	52.3%	80.2%	UM	UM
HTAPv3_5.1_Road					
_Transport	NOx	-4.2%	-16.4%	L	LM
HTAPv3_5.1_Road					
_Transport	CO	-21.3%	-47.0%	LM	LM
HTAPv3_5.1_Road					
_Transport	OC	-36.2%	-51.1%	LM	UM
HTAPv3_5.1_Road	NM				
_Transport	VOC	-11.0%	-58.1%	L	UM
HTAPv3_5.1_Road					
_Transport	BC	-48.3%	-60.5%	LM	UM
HTAPv3_5.1_Road	PM2				
_Transport	.5	-63.2%	-74.5%	UM	UM
HTAPv3_5.1_Road					
_Transport	SO2	-53.1%	-81.2%	UM	UM
HTAPv3_5.1_Road	PM1				
_Transport	0	-90.3%	-93.8%	UM	UM
HTAPv3_5.2_Brak					
e_and_Tyre_wear	BC	26.1%	19.1%	LM	LM
HTAPv3_5.2_Brak					
e_and_Tyre_wear	OC	-33.5%	-25.6%	LM	LM
HTAPv3_5.2_Brak	PM2				
e_and_Tyre_wear	.5	-57.1%	-48.0%	UM	LM
HTAPv3_5.2_Brak	PM1				
e_and_Tyre_wear	0	-84.9%	-80.0%	UM	UM
HTAPv3_5.3_Dom	NM				
estic_shipping	VOC	249.9%	191.3%	Н	Н

HTAPv3_5.3_Dom					
estic_shipping	со	221.2%	188.7%	Н	Н
HTAPv3_5.3_Dom					
estic_shipping	SO2	-5.5%	13.7%	L	L
HTAPv3_5.3_Dom	PM2				
estic_shipping	.5	11.4%	13.6%	L	L
HTAPv3 5.3 Dom	PM1				
estic shipping	0	11.1%	13.5%	L	L
HTAPv3 5.3 Dom					
estic shipping	вс	5.2%	11.3%	L	L
HTAPv3 5.3 Dom					
estic shipping	ос	6.3%	6.0%	L	L
HTAPv3 5.3 Dom					
estic shipping	NOx	-5.2%	3.3%	L	L
HTAPv3 5.3 Dom		0.12/0	0.075		
estic shipping	NНЗ	-41.5%	-20.9%	IM	IM
HTAPv3 5.4 Othe					
r ground transpo	PM2				
rt	.5	-34.5%	8.9%	IM	1
HTAPv3 5.4 Othe		0 110/0	0.070	2.00	-
r ground transpo					
rt	ИНЗ	-13.8%	-17 4%	1	IM
HTAPv3 54 Othe	1113	10.0/0	17.170	-	Livi
r ground transpo					
rt	NOx	-55 5%	-33.1%	LIM	I M
HTAPV3 54 Othe	NOA	33.370	55.1/0	OW	
r ground transpo	PM1				
rt	0	-47 7%	-37 7%	IM	IM
HTAPV3 54 Othe		-7.770	37.770	LIVI	LIVI
r ground transpo					
rt	00	-71 8%	-41 7%	LIM	I M
HTAPV3 54 Othe	00	, 1.0,0	11.770	0111	2.01
r ground transpo	NM				
rt	VOC	-80.8%	-64.6%	UМ	UМ
HTAPv3 54 Othe		00.070	0 1.070		
r ground transpo					
rt	BC	-86.0%	-73.3%	UM	UM
HTAPv3 54 Othe		001070	, 010, 0	0	0
r ground transpo					
rt	co	-82.6%	-82.3%	UМ	UM
HTAPv3 54 Othe		02.070	02.070	0	0
r ground transpo					
rt	SO2	-83.8%	-84.0%	UМ	UМ
HTAPv3 6 Reside	PM1		0		
ntial	0	30.2%	18.2%	LM	LM
HTAPv3 6 Reside	-	50.270	10.270		
ntial	ИНЗ	15.0%	ፈ ዓ%	IM	1
HTAPV3 6 Reside		13.070	4.570		-
ntial	502	-8 0%	२ ०%	1	1
HTAPV3 6 Reside	PM2	0.076	5.570	-	-
ntial	5	_7 /10/	_0 5%	1	
inclui		-7.4/0	-9.5/0	L	L

HTAPv3_6_Reside	NM				
ntial	voc	-17.0%	-18.3%	LM	LM
HTAPv3 6 Reside					
ntial – –	ос	-16.5%	-20.5%	LM	LM
HTAPv3 6 Reside					
ntial	со	-20.6%	-20.5%	LM	LM
HTAPv3 6 Reside					
ntial	NOx	-39.0%	-28.8%	LM	LM
HTAPv3 6 Reside					
ntial	вс	-41.6%	-40.3%	LM	LM
	NM				
HTAPv3 7 Waste	voc	78.1%	54.9%	UM	UM
HTAPv3 7 Waste	502	9.2%	7.4%	1	1
LITADV2 7 Maste	302 NU12	24.50	12.20/		L
HTAPV3_7_Waste		-34.5%	-13.3%	LIVI	L
	PIVIT	CO 90/	40.00		
HTAPV3_7_Waste	0	-60.8%	-48.6%		LIVI
HTAPv3_7_Waste	NOx	-50.5%	-57.3%	UM	UM
	PM2				
HTAPv3_7_Waste	.5	-70.5%	-58.4%	UM	UM
HTAPv3_7_Waste	BC	-81.2%	-74.0%	UM	UM
HTAPv3_7_Waste	OC	-89.9%	-82.7%	UM	UM
HTAPv3_7_Waste	со	-95.7%	-95.8%	UM	UM
HTAPv3_8.1_Agric					
ultural_waste_bur					
ning	ос	7.5%	6.7%	L	L
HTAPv3_8.1_Agric					
ultural_waste_bur	PM2				
ning	.5	6.6%	6.1%	L	L
HTAPv3_8.1_Agric					
ultural_waste_bur					
ning	со	7.0%	5.8%	L	L
HTAPv3 8.1 Agric					
ultural waste bur	PM1				
ning – –	0	5.6%	5.4%	L	L
HTAPv3 8.1 Agric					
ultural waste bur					
ning – –	SO2	5.6%	5.1%	L	L
HTAPv3 8.1 Agric					
ultural waste bur					
ning – –	NOx	5.4%	4.9%	L	L
HTAPv3 8.1 Agric					
ultural waste bur					
ning – –	BC	3.8%	4.0%	L	L
HTAPv3 8.1 Agric					
ultural waste bur					
ning	NH3	1.0%	2.7%	L	L
HTAPv3 8.1 Agric	-				
ultural waste bur	NM				
ning	VOC	-1.1%	0.3%	L	L
~					

HTAPv3_8.2_Agric					
ulture_livestock	NOx	11.5%	10.7%	L	L
HTAPv3_8.2_Agric	NM				
ulture_livestock	VOC	-14.7%	-9.4%	L	L
HTAPv3_8.2_Agric					
ulture_livestock	NH3	-25.2%	-20.9%	LM	LM
HTAPv3_8.2_Agric	PM1				
ulture_livestock	0	-33.8%	-26.7%	LM	LM
HTAPv3_8.2_Agric	PM2				
ulture_livestock	.5	-34.8%	-27.8%	LM	LM
HTAPv3_8.3_Agric					
ulture_crops	NOx	13.1%	11.7%	L	L
HTAPv3_8.3_Agric					
ulture_crops	NH3	16.6%	8.7%	LM	L
HTAPv3_8.3_Agric	NM				
ulture_crops	VOC	6.9%	6.8%	L	L
HTAPv3_8.3_Agric	PM2				
ulture_crops	.5	-82.1%	-77.8%	UM	UM
HTAPv3_8.3_Agric	PM1				
ulture_crops	0	-92.6%	-91.6%	UM	UM

References

Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681-8723, 10.5194/acp-17-8681-2017, 2017.

Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmospheric Chemistry and Physics, 20, 12761-12793, https://doi.org/10.5194/acp-20-12761-2020, 2020.

O'Rourke, P. R., Smith, S. J., Mott, A., Ahsan, H., McDuffie, E. E., Crippa, M., Klimont, S., McDonald, B., Z., Wang, Nicholson, M. B, Feng, L., and Hoesly, R. M.: Community Emissions Data System (Version 04-21-2021), Zenodo. <u>https://doi.org/10.5281/zenodo.4737769</u> 2021.

Oreggioni, G. D., Mahiques, O., Monforti-Ferrario, F., Schaaf, E., Muntean, M., Guizzardi, D., Vignati, E., and Crippa, M.: The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport, Energy Policy, 168, 113021, https://doi.org/10.1016/j.enpol.2022.113021, 2022.