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Abstract. Statistical postprocessing of medium-range weather forecasts is an important component of mod-
ern forecasting systems. Since the beginning of modern data science, numerous new postprocessing methods
have been proposed, complementing an already very diverse field. However, one of the questions that frequently
arises when considering different methods in the framework of implementing operational postprocessing is the
relative performance of the methods for a given specific task. It is particularly challenging to find or construct
a common comprehensive dataset that can be used to perform such comparisons. Here, we introduce the first
version of EUPPBench (EUMETNET postprocessing benchmark), a dataset of time-aligned forecasts and ob-
servations, with the aim to facilitate and standardize this process. This dataset is publicly available at https://
github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark (31 December 2022) and on Zen-
odo (https://doi.org/10.5281/zenodo.7429236, Demaeyer, 2022b and https://doi.org/10.5281/zenodo.7708362,
Bhend et al., 2023). We provide examples showing how to download and use the data, we propose a set of
evaluation methods, and we perform a first benchmark of several methods for the correction of 2 m temperature
forecasts.
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1 Introduction

Since the advent of numerical weather prediction, statistical
postprocessing techniques have been used to correct forecast
biases and errors. The term “postprocessing techniques” here
refers to methods which use past forecasts and observations
to learn information about forecast deficiencies that can then
be used to correct future forecasts. Nowadays, postprocess-
ing of weather forecasts is an important part of the forecast-
ing chain in modern prediction systems at national and inter-
national meteorological services.

Many postprocessing approaches have been proposed dur-
ing the last half century, ranging from the so-called perfect
prog method (Klein et al., 1959; Klein and Lewis, 1970)
to Bayesian model averaging (BMA) techniques (Raftery
et al., 2005) and including the emblematic model output
statistics (MOS) approach (Glahn and Lowry, 1972). Some
of these methods have been adapted to deal with ensemble
forecasts and also calibrate the associated forecast proba-
bilities, like the ensemble MOS (EMOS) method (Gneiting
et al., 2005). Recently, machine learning-based methods have
been proposed (Taillardat et al., 2016; Rasp and Lerch, 2018;
Bremnes, 2020), which were shown to improve upon the con-
ventional methods (Schulz and Lerch, 2022).

Systematic intercomparison exercises of both univariate
(e.g., Rasp and Lerch, 2018; Schulz and Lerch, 2022; Chap-
man et al., 2022) and multivariate (e.g., Wilks, 2015; Perrone
et al., 2020; Lerch et al., 2020; Chen et al., 2022; Lakatos
et al., 2023) postprocessing methods exist, often based on ar-
tificial simulated datasets mimicking properties of real-world
ensemble forecasting systems or based on real-world datasets
consisting of ensemble forecasts and observations for spe-
cific use cases. However, there is no comprehensive, widely
applicable benchmark dataset available for station- and grid-
based postprocessing that facilitates reuse and comparisons,
including a large set of potential input predictors and several
target variables relevant to operational weather forecasting at
meteorological services. The aim of the present work is to
pave the way towards achieving these aims, with the pub-
lication of an extensive – analysis-ready – forecast and ob-
servation dataset, consisting of both gridded data and data at
station locations. By an analysis-ready dataset, we mean that
the dataset formatting is tailored to obtain the most optimal
match between observations and forecasts. In practice, this
means that the observations are not provided as conventional
time series but rather at the times and locations that match
the forecasts.

Recently, the need for a common platform based on which
different postprocessing techniques of weather forecasts can
be compared was highlighted (Vannitsem et al., 2021) and
extensively discussed between several members of the expert
team of the postprocessing module running within the pro-
grams of the European Meteorological Network (EUMET-
NET). Here, we introduce the first step in the development
of such a platform, in the form of an easily accessible dataset

that can be used by a large community of users interested in
the design of efficient postprocessing algorithms of weather
forecasts for different applications. As stated in Dueben et al.
(2022), comprehensive benchmark datasets are needed to en-
able a fair, quantitative comparison between different tools
and methods while reducing the need to design and build
them, a task which requires domain-specific knowledge. In
this view, common benchmark datasets facilitate the collab-
oration of different communities with different expertise, by
lowering the energy barrier required to embark on specific
problems which would have otherwise required an excessive
and discouraging amount of resources.

Many datasets related to weather and climate prediction
were released during the last 3 years, emphasizing the need
and appetite of the field for ever more data. For instance,
datasets have been published related to sea ice drift (Rabault
et al., 2022), to hydrology (Han et al., 2022), to learning
of cloud classes (Zantedeschi et al., 2019), to subseasonal
and seasonal weather forecasting (Rasp et al., 2020; Garg
et al., 2022; Lenkoski et al., 2022; Wang et al., 2022), to
data-driven climate projections (Watson-Parris et al., 2022),
and – most relevant to the present work – to the benchmark-
ing of postprocessing methods (Haupt et al., 2021; Ashkboos
et al., 2022; Kim et al., 2022). Haupt et al. (2021) distribute
a collection of (partly preexisting) different datasets for spe-
cific postprocessing tasks, including ensemble forecasts of
the Madden–Julian Oscillation, integrated vapor transport
over the eastern Pacific and western United States, tempera-
ture over Germany, and surface road conditions in the United
Kingdom. By contrast, Ashkboos et al. (2022) provide a re-
duced set of global gridded 10-member ECMWF ensemble
forecasts for selected target variables.

Providing weather- or climate-related datasets to the
scientific community in a standardized and persistent
way remains a challenge, which was recently simpli-
fied by the introduction of efficient tools to store and
provide data to the users. We can mention, for ex-
ample, xarray (Hoyer and Joseph, 2017), Zarr (Miles
et al., 2020), dask (https://github.com/dask/dask, last ac-
cess: 24 April 2023) and the package climetlab (https://
github.com/ecmwf/climetlab, last access: 24 April 2023),
recently developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The dataset intro-
duced in the present article is, for instance, provided
by a climetlab plugin (https://github.com/EUPP-benchmark/
climetlab-eumetnet-postprocessing-benchmark, last access:
24 April 2023) but also accessible through other means and
programming languages (see the Supplement).

The EUPPBench (EUMETNET postprocessing bench-
mark) dataset consists of gridded and point ECMWF
subdaily forecasts of different kinds (deterministic high-
resolution, ensemble forecasts and reforecasts) over central
Europe (see Fig. 1). EUPPBench encompasses both station-
and grid-based forecasts for many different variables, en-
abling a large variety of applications. This – complemented
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by the inclusion of reforecasts – enables a realistic repre-
sentation of operational postprocessing situations, allowing
users and institutions to learn and improve their skills on
this crucial process. These operational aspects are, to our
knowledge, missing in the currently available postprocessing
benchmark datasets.

The forecasts and reforecasts of EUPPBench are paired
with station observations and gridded reanalysis for the pur-
pose of training and verifying postprocessing methods. To
demonstrate how this dataset can be used, a benchmark of
state-of-the-art postprocessing methods has been conducted
to improve medium-range temperature forecasts. Although
limited in scope, the outcome of this benchmark already em-
phasizes the potential of the dataset to provide meaningful re-
sults and provides useful insights into the potential, diversity
and limitations of postprocessing over the study domain. Ad-
ditionally, performing the benchmark for the first time with
a large community also allows us to address the usefulness
of the established guidelines and protocols and to draw con-
clusions, which are important assets for the delivery of many
more benchmarks to come.

This article is structured as follow. The dataset structure
and metadata are introduced in Sect. 2. The design and the
verification setup of the benchmark which was carried out
upon publication of this dataset is explained in Sect. 3, while
in Sect. 4 the benchmarked methods are detailed. The results
of the benchmark are presented in Sect. 5. We draw some in-
teresting conclusions in Sect. 7 and outline plans for the fu-
ture development of the dataset and of other benchmarks to
come. Finally, the code of the benchmark and the data avail-
ability of the dataset are provided in Sect. 6.

2 EUPPBench v1.0 dataset

The EUPPBench dataset is available on a portion of Eu-
rope covering 45.75 to 53.5◦ in latitude and 2.5 to 10.5◦

in longitude. Therefore, this domain includes mainly Bel-
gium, France, Germany, Switzerland, Austria and the Nether-
lands. It is stored in Zarr format, a CF-compatible format
(https://cfconventions.org/, last access: 24 April 2023) (Gre-
gory, 2003; Eaton et al., 2003), which provides easy access
and allows users to “slice” the data along various dimensions
in an effortless and efficient manner. In addition, the forecast
and observation data are already paired together along corre-
sponding dimensions, therefore providing an analysis-ready
dataset for postprocessing benchmarking purposes.

EUPPBench includes both the 00:00 Z (midnight) sub-
daily ensemble forecasts and reforecasts (Hagedorn et al.,
2008; Hamill et al., 2008) produced by the Integrated Fore-
casting System (IFS) of ECMWF during the years 2017 and
2018, which are released by the forecasting center under the
CC-BY-4.0 license. Therefore, there are 730 forecast dates
and 209 reforecast dates over the 2-year span, with refore-
casts being produced twice a week (Monday and Thursday).

Figure 1. Spatial coverage of the dataset. Blue rectangle: spatial
domain of the gridded dataset. Blue dots: position of the stations
included in the dataset. Grey lines depict the latitude and longitude
grid.

Apart from the ensemble forecasts and reforecasts, the high-
resolution deterministic forecasts are also included. Each re-
forecast date, however, consists of 20 past forecasts com-
puted with the model version valid at the reforecast date
and initialized from 1 to 20 years in the past at the same
date of the year, thereby covering the period 1997–2017. In
total, there are 4180 reforecasts. The numbers of ensemble
members are 51 and 11 for the forecasts and reforecasts, re-
spectively. This includes the forecast control run which is as-
sumed to have the closest initial conditions to reality. The
choice of the years 2017 and 2018 was motivated by the
relatively small number of model changes in the ECMWF
forecast system during that period and, most importantly, the
absence of model resolution modifications, as shown by Ta-
ble 1. This implementation constraint is crucial to ensure that
no supplementary model error biases are introduced in the
datasets, as those biases can lead to a more-or-less severe
degradation of the postprocessing performances (Lang et al.,
2020; Demaeyer and Vannitsem, 2020).

The forecast and reforecast time steps are 6-hourly (in-
cluding the 0th analysis time steps) up to a lead time of 120 h
(5 d). The variables considered are mainly surface variables
and can be classified into two main categories: instantaneous
or processed. Table 2 details these two different kinds of vari-
able. Here, a “processed variable” means that the correspond-
ing variable has either been accumulated, averaged or filtered
over the past 6 h. In addition to these surface variables, the
extreme forecast indices1 (Lalaurette, 2003; Zsótér, 2006)
and some pressure-level variables are also available (see Ta-
bles 3 and 4, respectively).

1Commonly abbreviated as “EFI”.
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Table 1. ECMWF IFS model changes during the 2017–2018 time span.

Implementation date Summary of changes Resolution Full IFS documentation

5 June 2018 Cycle 45r1
(https://www.ecmwf.int/en/forecasts/
documentation-and-support/
evolution-ifs/cycles/
summary-cycle-45r1∗)

Unchanged Cycle 45r1 full documentation
(https://www.ecmwf.int/en/
publications/search?searc_all_field=
cy45r1&bib_title=&bib_event_series=
&bibcite_year=&bib_issues_number=
&name=&retain-filters=1∗)

11 July 2017 Cycle 43r3
(https://www.ecmwf.int/en/forecasts/
about-our-forecasts/evolution-ifs/
cycles/cycle-43r3∗)

Unchanged Cycle 43r3 full documentation
(https://www.ecmwf.int/en/
publications/search?searc_all_field=
cy43r3&bib_title=&bib_event_series=
&bibcite_year=&bib_issues_number=
&name=&retain-filters=1∗)

Source: https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model (last access: 2 December 2022). ∗ Last access: 2 June 2023.

2.1 General data structure

The EUPPBench dataset consists of observations and fore-
casts in two types: a gridded dataset and a dataset at station
locations. All forecasts are based on the ECMWF IFS fore-
casts. However, while the observational dataset at the station
locations is based on ground measurements, the reanalysis
ERA5 is taken as the gridded observational dataset. All fore-
cast and reforecast datasets are provided for 31 variables,
and additionally, the forecast dataset includes 9 EFI vari-
ables. The observations, on the other hand, include only 5
and 21 variables for the station-location and gridded datasets,
respectively. Additionally metadata on the model and obser-
vations are provided.

How to access the datasets is documented in the Sect. 6.
We now detail in the following subsections the sources and
properties of both dataset formats.

2.2 Gridded data

All gridded EUPPBench data are provided on a regular grid
of 0.25◦× 0.25◦, corresponding roughly to a 25 km hori-
zontal resolution at midlatitudes. As mentioned before, the
forecasts and reforecasts are provided by the ECMWF fore-
casting model in operation at the moment of their issuance.
They have both been regridded from the ECMWF original
ensemble forecasts O640 (or O1280 for the deterministic
forecasts)2 grid to the regular grid using the ECMWF MIR
interpolation package (Maciel et al., 2017), provided auto-
matically by the MARS archive system. This regridding was
done to be in line with the resolution of the ERA5 reanalysis
(Hersbach et al., 2020), which provides the gridded observa-
tions of the EUPPBench dataset.

2The ensemble forecasts grid O640 has a horizontal resolution
of 18 km, while the deterministic forecasts grid O1280 has a 9 km
horizontal resolution.

We recognize that gridded observational datasets over the
study domain exist for specific variables that are more ac-
curate than ERA5. For instance, in the case of precipitation-
related variables (like the total precipitation contained in the
dataset at hand), ERA5 has been shown to provide – com-
pared to other datasets – a poor agreement with station ob-
servations (Zandler et al., 2019), mixed performances when
used to derive hydrological products (Hafizi and Sorman,
2022), yet good results when using perfect prog downscal-
ing methods (Horton, 2022). Notwithstanding, we emphasize
that the goal of this gridded dataset is to provide a representa-
tive “truth” for the purpose of benchmarking of postprocess-
ing methods. Additionally, the availability of a wide range of
variables in ERA5 and the spatiotemporal consistency among
different meteorological variables (a very important aspect in
the present context) cannot be provided by gridded observa-
tional datasets.

2.3 EUPPBench data at station locations

Subdaily station observations have been provided by many
national meteorological services (NMSs) participating in the
construction of this dataset, and a big part of the station data
can be considered open data (see Sect. 6). The observations
of 234 stations cover the entire 22-year time period 1997–
2018 necessary to match the reforecasts and forecasts. The
elevation of these stations varies from a few meters below
the sea level up to 3562 m for the Jungfraujoch station in
Switzerland. These stations constitute the most authoritative
sources of information about weather and climate provided
in each of the involved countries, being constantly monitored
and having the quality of the data checked.

The EUPPBench dataset at station locations consists of
the ECMWF forecasts and reforecasts at the grid point clos-
est to the station locations and the associated observations,
matched for each lead time. As shown in Table 2, there are
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Table 2. List of instantaneous and processed forecast variables on the surface level available in EUPPBench, all available in the EUPP-
Bench gridded and station-location forecast datasets, and the availability of the corresponding gridded and station-location observations. The
presence (“yes”) or absence (“no”) of corresponding observations are shown in the last two columns.

Parameter name Short name Units Gridded obs. Station obs.

2 m temperature (https://apps.ecmwf.int/codes/grib/param-db/?id=167∗) t2m K yes yes

10 m U wind component (https://apps.ecmwf.int/codes/grib/param-db/?id=165∗) 10u m s−1 yes no

10 m V wind component (https://apps.ecmwf.int/codes/grib/param-db/?id=166∗) 10v m s−1 yes no

Total cloud cover (https://apps.ecmwf.int/codes/grib/param-db/?id=164∗) tcc ∈ [0,1] yes yes

100 m U wind component (https://apps.ecmwf.int/codes/grib/param-db/?id=228246∗) 100u m s−1 no no

100 m V wind component (https://apps.ecmwf.int/codes/grib/param-db/?id=228247∗) 100v m s−1 no no

Convective available potential energy (https://apps.ecmwf.int/codes/grib/param-db/
?id=59∗)

cape J kg−1 yes no

Soil temperature level 1 (https://apps.ecmwf.int/codes/grib/param-db/?id=139∗) stl1 K yes no

Total column water
(https://apps.ecmwf.int/codes/grib/param-db/?id=136∗)

tcw kg m−2 yes no

Total column water vapor (https://apps.ecmwf.int/codes/grib/param-db/?id=137∗) tcwv kg m−2 yes no

Volumetric soil water layer 1 (https://apps.ecmwf.int/codes/grib/param-db/?id=39∗) swvl1 m3 m−3 yes no

Snow depth (https://apps.ecmwf.int/codes/grib/param-db/?id=141∗) sd m yes no

Convective inhibition (https://apps.ecmwf.int/codes/grib/param-db/?id=228001∗) cin J kg−1 no no

Visibility (https://apps.ecmwf.int/codes/grib/param-db/?id=3020∗) vis m no yes

Total precipitation (https://apps.ecmwf.int/codes/grib/param-db/?id=228∗) tp6 m yes yes

Surface sensible heat flux (https://apps.ecmwf.int/codes/grib/param-db/?id=146∗) sshf6 J m−2 yes no

Surface latent heat flux (https://apps.ecmwf.int/codes/grib/param-db/?id=147∗) slhf6 J m−2 yes no

Surface net solar radiation (https://apps.ecmwf.int/codes/grib/param-db/?id=176∗) ssr6 J m−2 yes no

Surface net thermal radiation (https://apps.ecmwf.int/codes/grib/param-db/?id=177∗) str6 J m−2 yes no

Convective precipitation (https://apps.ecmwf.int/codes/grib/param-db/?id=143∗) cp6 m yes no

Maximum temperature at 2 m (https://apps.ecmwf.int/codes/grib/param-db/?id=121∗) mx2t6 K yes no

Minimum temperature at 2 m (https://apps.ecmwf.int/codes/grib/param-db/?id=122∗) mn2t6 K yes no

Surface solar radiation downwards
(https://apps.ecmwf.int/codes/grib/param-db/?id=169∗)

ssrd6 J m−2 yes no

Surface thermal radiation downwards
(https://apps.ecmwf.int/codes/grib/param-db/?id=175∗)

strd6 J m−2 yes no

10 m wind gust (https://apps.ecmwf.int/codes/grib/param-db/?id=123∗) 10fg6 m s−1 yes yes

Remark: a “6” was added to the usual ECMWF short names to indicate the span (in hours) of the accumulation or filtering. ∗ Last access: 22 December 2022.

five variables currently available: 2 m temperature (t2m), to-
tal cloud cover (tcc), visibility (vis), total precipitation (tp6)
and 10 m wind gust (10fg6). More observation variables will
be added in subsequent versions of the dataset.

2.4 Static data and metadata

In addition to the forecasts and reforecasts, auxiliary fields
are provided, such as the land usage and the surface geopo-

tential which is proportional to the model orography (see
Fig. 2). Table 5 synthesizes this part of the dataset. These
constant fields have been extracted and are also provided in
the station metadata.

Depending on the kind of dataset, dimensions and differ-
ent information are embedded in the data. For gridded data,
the metadata available in the forecast, reforecast and observa-
tion datasets are detailed in Table 6. For station data, the fore-
cast and reforecast metadata are detailed in Table 7, while
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Table 3. List of available extreme forecast indices, all available in the EUPPBench gridded and station-location forecast datasets.

Parameter name Short name

2 m temperature EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132167∗) 2ti

10 m wind speed EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132165∗) 10wsi

10 m wind gust EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132049∗) 10fgi

CAPE EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132059∗) capei

CAPE shear EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132044∗) capesi

Maximum temperature at 2 m EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132201∗) mx2ti

Minimum temperature at 2 m EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132202∗) mn2ti

Snowfall EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132144∗) sfi

Total precipitation EFI (https://apps.ecmwf.int/codes/grib/param-db/?id=132228∗) tpi

Remark: by definition, observations are not available for the EFI. The EFIs are available for the model step ranges (in hours) 0–24, 24–48, 48–72,
72–96, 96–120, 120–144 and 144–168. The range of values of EFI goes from −1 to +1. ∗ Last access: 22 December 2022.

Table 4. List of variables on pressure levels, all available in the EUPPBench gridded and station-location forecast datasets.

Parameter name Level Short name Units

Temperature (https://apps.ecmwf.int/codes/grib/param-db/?id=130∗) 850 t K

U component of wind (https://apps.ecmwf.int/codes/grib/param-db/?id=131∗) 700 u m s−1

V component of wind (https://apps.ecmwf.int/codes/grib/param-db/?id=132∗) 700 v m s−1

Geopotential (https://apps.ecmwf.int/codes/grib/param-db/?id=129∗) 500 z m2 s−2

Specific humidity (https://apps.ecmwf.int/codes/grib/param-db/?id=133∗) 700 q kg kg−1

Relative humidity (https://apps.ecmwf.int/codes/grib/param-db/?id=157∗) 850 r %

Remark: only gridded observations (reanalysis) are available for these variables. ∗ Last access: 22 December 2022.

the observation metadata are detailed in Table 8. For all data,
attributes specifying the sources and the license are always
provided.

3 Postprocessing benchmark

To illustrate the usefulness of the EUPPBench dataset, a
benchmark of several state-of-the-art postprocessing meth-
ods – many of which are currently in operation in NMSs –
was performed, including some more recent and more ad-
vanced methods. This first exercise was based on a small
subset of the dataset. Along the same line, the verification
process of this benchmark also focused on some general as-
pects typically considered for operational postprocessing. In
this section, we describe the general framework that we used
to conduct this benchmark. The following sections will be
devoted to the methods and the results obtained. We begin
by detailing the design of this experiment.

3.1 Experiment design

The postprocessing benchmark at hand considers the correc-
tion of the ensemble forecasts of the 2 m temperature at the
nearest forecast grid point from every station available in the
dataset, spanning several European countries and the whole
EUPPBench area. We note that this area includes orograph-
ically difficult regions, nearly flat plains, and also stations
close to the sea or located on islands. Discrepancies may
therefore occur between forecasts and observations due to
poor observational representativity at the scale of the model
or due to challenges in the model representation of a wide
range of physical processes. We note also that, due to the
coarse nature of the gridded forecast dataset, the forecast grid
points are not evenly situated with respect to the stations they
represent, with sometimes huge differences in elevation or
situation (e.g., forecast point at sea) that may induce large
temperature biases.

Within this simplified benchmark exercise, the only pre-
dictor that could be used to perform the postprocessing is the
temperature at 2 m itself. Additionally the use of the (static)
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Table 5. List of available constant fields.

Parameter name Short name Units

Land use (https://apps.ecmwf.int/codes/grib/param-db/?id=260184∗) landu 1, 2, 3, . . . , 44, 48

Model terrain height (https://apps.ecmwf.int/codes/grib/param-db/?id=260183∗) mterh m

Surface geopotential (https://apps.ecmwf.int/codes/grib/param-db/?id=129∗) z m2 s−2

The land usage is extracted from the CORINE2018 (https://land.copernicus.eu/pan-european/corine-land-cover, last access: 30 July 2022) dataset
(Copernicus Land Monitoring Service, 2018). More details are provided in the legend entry of the metadata within each file. The model terrain height is
extracted from the EU-DEM v1.1 (https://land.copernicus.eu/imagery-in-situ/eu-dem, last access: 1 August 2023) data elevation model dataset (Copernicus
Land Monitoring Service, 2022). Finally, the model orography can be obtained by dividing the surface geopotential by g = 9.80665 m s−2. ∗ Last access:
22 December 2022.

Figure 2. Static fields in the gridded dataset. (a) The model orography obtained by dividing the model surface geopotential by g =
9.80665 m s−2. (b) Grid point land usage provided by the CORINE 2018 dataset (Copernicus Land Monitoring Service, 2018). Numeri-
cal codes indicating the usage categories are included in the dataset metadata.

metadata was allowed, and some methods used latitude and
longitude, elevation, land use, model orography, lead time,
and also the day of the year. The 11-member reforecasts pro-
duced during the 2017–2018 period were considered train-
ing data, while the 51-member forecasts for the same period
were used as test data for verification. This setup introduced
some challenges for the implementation of some of the post-
processing methods described below.

To avoid a potential overlap between the reforecasts and
the forecasts, the forecasts from 2017 that were included in
the reforecasts of 2018 have been removed from the train-
ing dataset. Since the ECMWF reforecasts data are produced
each Monday and Thursday, the reforecasts (per lead time)
for 2017 do not overlap with those of 2018.

However, one notable difference between the training data
and the test data is the number of ensemble members: en-
semble forecasts contain 51 members, while ensemble re-
forecasts include 11 members. Also, note that in both cases
the ECMWF control run forecast is included in the ensem-
ble (as the 0th ensemble member). The high-resolution de-
terministic forecast runs were not used nor postprocessed in
the current benchmark.

3.2 Verification setup and methodology

Forecasts from the various methods analyzed here are avail-
able for particular forecast initialization times, lead times and
for a specific place of interest (here the locations of mea-
surement stations). For those distinct pairs of ensemble fore-
casts and verifying observations, we compute a range of fore-
cast verification measures to quantify forecast performance.
These verification measures are then aggregated across time
and/or space in order to extract summary information on
forecast performance. According to how the aggregation is
done, the analysis will focus on different aspects of the fore-
casts. Do the forecast exhibit systematic temporal or spatial
errors? How does the forecast quality decrease with the lead
time? Can we distinguish spatial patterns or does the perfor-
mance depend on the elevation? The verification study ad-
dresses these questions by comparing the performance of the
different methods using these aggregated verification mea-
sures. In particular, the postprocessed forecasts at the station
locations are compared with the station observations within
the test dataset (2017–2018).

Forecast quality is multifaceted (Murphy, 1993), and no
single score can capture all aspects. Here we use four metrics
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Table 6. The metadata provided in the files of the gridded forecasts, reforecasts and observational datasets.

Metadata Description

latitude Latitude of the grid points.

longitude Longitude of the grid points.

depthBelowLandLayer Layer below the surface (valid for some variables only, here there is only the
upper surface level).

number Number of the ensemble member. The 0th member is the control run. It is also
present in observation for compatibility reasons but set to 0.

time Forecast or reforecast date (reforecasts are only issued on Mondays and Thurs-
days).

year Dimension to identify the year in the past; year= 1 means a forecast valid
20 years ago at the reforecast day and month, and year= 20 means a forecast
valid one year before the reforecast date. Only valid for reforecasts.

step Step of the forecast (the lead time).

surface Layer of the variable considered (here there is just one, at the surface).

isobaricInhPa Pressure level in hectopascal (or millibar).

valid_time Actual time and date of the corresponding forecast data.

Remark: bold metadata denote dimensions indexing the datasets.

to address different aspects of forecast quality: the bias to di-
agnose forecast bias, the continuous ranked probability score
(CRPS; Hersbach, 2000) to quantify forecast accuracy, the
forecast spread to quantify sharpness and the spread–error
ratio as an indication of forecast reliability. The bias is de-
fined as the average difference between the ensemble mean
and observation, and it points out if an ensemble has positive
or negative systematic errors. The CRPS compares the cu-
mulative distribution functions (CDFs) of the forecasts with
the corresponding observations. The CRPS generalizes the
mean absolute error to probabilistic forecasts and is sensitive
to both forecast reliability and sharpness.

For calibrated forecasts, the ensemble standard deviation
(commonly referred to as forecast spread) corresponds to the
magnitude of the forecast error. A sharper ensemble forecast
(i.e., an ensemble forecast with low spread) is therefore more
informative and skillful. In this study we analyze the spread-
/skill relationship by comparing the ratio of the average en-
semble standard deviation divided by the root-mean-squared
error of the ensemble mean. A spread–error ratio smaller than
one indicates a lack of forecast spread (forecast underdisper-
sion), whereas values larger than one indicate overdispersion.
It should be noted that spread–error ratio equal to one is only
a necessary but not sufficient condition for forecast reliabil-
ity, and care should be taken when interpreting the spread–
error ratio in particular in the presence of remaining system-
atic biases. To complement, we also analyze rank histograms.
These histograms show where the observation places within
the ensemble when it is sorted from the lowest to the high-

est value. A reliable ensemble would lead to a flat rank his-
togram. The shape of the rank histogram can help to detect
deficiencies in ensemble calibration, e.g., a U-shaped rank
histogram indicates underdispersion or conditional biases.

The verification using the different measures allows us to
detect if the compared postprocessing methods have system-
atic errors or biases and if the postprocessed ensembles are
well calibrated, overconfident or underconfident.

The reference forecast dataset will be the raw IFS ensem-
ble at the nearest forecast grid point from every station. The
difference between IFS orography and station elevation is
taken into account by applying a constant lapse-rate correc-
tion of 6.5 ◦C km−1. In this study, some results are also pre-
sented conditioned on the station elevation to detect remnant
orographic influences.

The verification results for the different postprocessing
methods are obtained after performing quality-control tests
on the initial data to detect possible inconsistencies, unre-
alistic values and missing data. Missing postprocessed pre-
dictions for individual time steps and locations in the test
set are replaced by the direct model output (DMO). Postpro-
cessing methods with missing values are therefore intention-
ally penalized. The rationale behind this is that EUMETNET
postprocessing (EUPP) aims at improving operational fore-
casting systems in which forecasts need to be provided in
any case. Additionally, this approach discourages hedging,
i.e., artificially increasing the performance of a postprocess-
ing method, by replacing known cases with underperforming
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Table 7. The metadata provided in the files of the forecast, reforecast at the station locations.

Metadata Description

station_latitude Latitude of the station.

station_longitude Longitude of the station.

station_altitude Elevation of the station (in meters).

station_id Unique identifier for the station.

depthBelowLandLayer Layer below the surface (valid for some variables only, here there is only the upper surface
level).

number Number of the ensemble member. The 0th member is the control run. It is also present in
observation for compatibility reasons but set to 0.

time Forecast or reforecast date (reforecasts are only issued on Mondays and Thursdays).

year Dimension to identify the year in the past; year= 1 means a forecast valid 20 years ago at the
reforecast day and month, and year= 20 means a forecast valid one year before the reforecast
date. Only valid for reforecasts.

step Step of the forecast (the lead time).

surface Layer of the variable considered (here there is just one, at the surface).

isobaricInhPa Pressure level in hectopascal (or millibar).

station_land_usage Land usage at the station location, extracted from the CORINE 2018 (https://land.copernicus.
eu/pan-european/corine-land-cover∗) dataset.

station_name Name of the station.

model_latitude Latitude of the model grid point.

model_longitude Longitude of the model grid point.

model_altitude True elevation (in meters) of the model grid point, extracted from the EU-DEMv1.1 (https:
//land.copernicus.eu/imagery-in-situ/eu-dem∗) data elevation model dataset.

model_orography Surface height (in meters) in the model at the model grid point.

model_land_usage Land usage at the model grid point, extracted from the CORINE 2018 dataset (https://land.
copernicus.eu/pan-european/corine-land-cover∗).

valid_time Actual time and date of the corresponding forecast data.

Remark 1: bold metadata denote dimensions indexing the datasets. Remark 2: the metadata with “model” in their name indicate properties of the closest model
grid point to the station location, and at which the forecasts corresponding to the station observations was extracted from the gridded dataset. ∗ Last access:
1 August 2022.

skill by a missing value. Additionally, score differences are
tested for statistical significance (see Appendix A).

4 Postprocessing methods

Along with the dataset and verification framework described
above, the present work further includes a collection of fore-
casts of exemplary postprocessing methods along with cor-
responding code for their implementation. Note that with
providing forecasts of a selected set of methods, we do not
intend to provide a comprehensive or systematic compari-
son to establish the best approach but rather aim to present
an overview of both commonly used and more advanced

methods ranging from approaches from statistics to machine
learning. Those can be used in subsequent research for devel-
oping extensions to existing approaches and for comparing
novel methods to established baselines. Short descriptions of
the methods available in the present benchmark are provided
below, and verification results are presented in Sect. 5. Spe-
cific details regarding the adaptation and implementation of
the different methods, as well as code, available from the cor-
responding GitHub repositories.3 For a general overview of
recent developments in postprocessing methodology, we re-

3See a detailed list of the methods GitHub repositories
at https://github.com/EUPP-benchmark/ESSD-benchmark (last ac-
cess: 25 April 2023).
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Table 8. Station observations metadata

Metadata Description

altitude Elevation of the station (in meter).

land_usage Land usage at the station location, extracted from the CORINE 2018 dataset (https:
//land.copernicus.eu/pan-european/corine-land-cover∗).

latitude Latitude of the station.

longitude Longitude of the station.

station_id Unique identifier of the station.

station_name Name of the station.

step Step of the forecast (the lead time).

time Forecast or reforecast date (reforecasts are only issued on Mondays and Thursdays).

Remark: bold metadata denote dimensions indexing the datasets. ∗ Last access: 30 June 2022.

fer to Vannitsem et al. (2018, 2021). Note that a direct com-
parison of computational costs is challenging because of the
differences in terms of the utilized hardware infrastructure,
software packages and parallelization capabilities, and this
might be considered in future work, ideally within a fully
automated procedure (see Sect. 7). That said, the computa-
tional costs of all considered postprocessing methods are by
several orders of magnitude lower than those required for the
generation of the raw ensemble forecasts.

Within the present section, we use the following notation.
For a specific forecast instance t (at a specific location and
for a specific initialization and lead time), we denote the en-
semble forecasts by xm(t), where m= 1, . . .,M , their mean
value by µens(t), and their standard deviation by σ ens(t). The
corresponding observation is denoted by y(t).

4.1 Accounting for systematic and representativeness
errors (ASRE)

ASRE postprocessing tackles systematic and representative-
ness errors in two independent steps. A local bias correction
approach is applied to correct for systematic errors. For each
station and each lead time, the averaged difference between
reforecasts and observations in the training dataset is com-
puted and removed from the forecast in the validation dataset.
The difference averaging is performed over all training dates
centered around the forecast valid date within a window of
±30 d.

Representativeness errors are accounted for separately us-
ing a universal method inspired by the perfect prog approach
(Klein et al., 1959; Klein and Lewis, 1970). A normal distri-
bution is used to represent the diversity of temperature values
that can be observed at a point within an area given the aver-
age temperature of that area. For an area of a given size (i.e., a
model grid box), the variance of the distribution is expressed
as a function of the difference between station elevation and

model orography only (see Eq. 4 in Ben Bouallègue, 2020).
Random draws from this probability distribution are added
to each ensemble member to simulate representativeness un-
certainty.

4.2 Reliability calibration (RC)

Reliability calibration is a simple, nonparametric technique
that specifically targets improving the forecast reliability
without degrading forecast resolution. Two additional steps
are applied prior to reliability calibration, targeted at cor-
recting forecast bias; initially a lapse rate correction of
6.5 ◦C km−1 between the station elevation and model orog-
raphy is applied, followed by a simple bias correction calcu-
lated independently at each station. Following bias correc-
tion, probabilistic forecasts are derived from the bias cor-
rected ensemble member forecasts by calculating the pro-
portion of ensemble members which exceed thresholds at
0.5 ◦C intervals. At each threshold, the exceedance proba-
bilities are calibrated separately. The reliability calibration
implementation largely follows Flowerdew (2014), although
in this study, all sites are aggregated into a single reliabil-
ity table which is used to calibrate forecasts across all sites.
As in Flowerdew (2014), a set of equally spaced percentiles
are extracted using linear interpolation between the thresh-
olds, which are treated as pseudo-ensemble members for
verification. The nonparametric nature of reliability calibra-
tion makes it attractive for a range of diagnostics, includ-
ing temperature, if combined with other simple calibration
techniques such as those applied here. Reliability calibration
was implemented using IMPROVER (Roberts et al., 2023),
an open-source codebase developed by the Met Office and
collaborators.

Earth Syst. Sci. Data, 15, 2635–2653, 2023 https://doi.org/10.5194/essd-15-2635-2023

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


J. Demaeyer et al.: The EUPPBench postprocessing benchmark dataset 2645

4.3 Member-by-member postprocessing (MBM)

The member-by-member approach calibrates the ensemble
forecasts by correcting the systematic biases in the ensem-
ble mean with a linear regression-based MOS technique and
rescaling the ensemble members around the corrected en-
semble mean (Van Schaeybroeck and Vannitsem, 2015). This
procedure estimates the coefficients αMBM, βMBM and γMBM

in the formula providing the corrected ensemble:

x̃m(t)= αMBM(t)+βMBM(t)µens(t)+ γMBM(t)x′m(t), (1)

by optimizing the CRPS separately for each station and for
each lead time. x′m(t)= xm(t)−µens(t) here denotes the devi-
ation of the member m from the ensemble mean. The results
were obtained with the Pythie package (Demaeyer, 2022a),
training on the 11 members of the training dataset to obtain
the coefficients αMBM, βMBM and γMBM and then using them
to correct the 51 member forecasts of the test dataset. One of
the main advantages of MBM postprocessing is that – by de-
sign – it preserves simultaneously spatial, temporal and inter-
variable correlations in the forecasts.

4.4 Ensemble model output statistics (EMOS)

EMOS is a parametric postprocessing method introduced
in Gneiting et al. (2005). The temperature observations are
modeled by a Gaussian distribution. The location (µ) and
scale (σ ) parameters of the forecast distribution can be de-
scribed by two linear regression equations via

y(t)∼N (µ,σ ){
µ(t)= βEMOS

0 + f EMOS
1 (doy)+βEMOS

1 µens(t)
log(σ )= γ EMOS

0 + gEMOS
1 (doy)+ γ EMOS

1 log(σ ens(t)),
(2)

with βEMOS
0 , γ EMOS

0 , βEMOS
1 and γ EMOS

1 acting as re-
gression coefficients and f EMOS

1 (doy) and gEMOS
1 (doy) act-

ing as seasonal smoothing functions to capture a seasonal
bias of location and scale. The seasonal smoothing func-
tion is a combination of annual and biannual base func-
tions (sin(2π doy/365), cos(2π doy/365), sin(4π doy/365)
and cos(4π doy/365)) as presented in Dabernig et al. (2017).
The implemented EMOS version is based on the R package
crch (Messner et al., 2016) with maximum likelihood es-
timation. Fifty-one equidistant quantiles between 1 % and
99 % of the distribution are drawn to match the number
of members from the raw ECMWF forecasts, which were
needed for verification. EMOS is applied separately to every
station and lead time.

4.5 EMOS with heteroscedastic autoregressive error
adjustments (AR-EMOS)

AR-EMOS extends the EMOS approach by estimating pa-
rameters of the predictive distribution based on ensemble
forecasts adjusted for autoregressive behavior (Möller and

Groß, 2016). For each ensemble forecast xm(t), the respec-
tive error series zm(t) := y(t)− xm(t) is defined, and an au-
toregressive (AR) process of order pm is fitted to each
zm(t) individually. Based on the estimated parameters of the
AR(pm) processes, an AR-adjusted forecast ensemble is ob-
tained via

x̃m(t)= xm(t)+αAR
m +

pm∑
j=1

βAR
m,j [y(t − j )− xm(t − j )−αAR

m ], (3)

where αAR
m and βAR

m,j , where j = 1, . . .,pm, are the coeffi-
cients of the respective AR(pm) process. The adjusted en-
semble forecasts are employed to estimate the mean and
variance parameter of the predictive Gaussian distribution.
Estimation of the predictive variance was further refined in
Möller and Groß (2020). The method is implemented in the
R package ensAR (Groß and Möller, 2019). However, some
adaptations had to be made to the method and implementa-
tion in order to accommodate the benchmark data; see code
documentation in the corresponding GitHub repository.

4.6 D-vine copula-based postprocessing (DVQR)

In the D-vine (drawable vine) copula-based postprocessing,
a multivariate conditional copula C is estimated using a
pair-copula construction for the graphical D-vine structure
according to Kraus and Czado (2017). D-vine copulas en-
able a flexible modeling of the dependence structure be-
tween the observation y and the ensemble forecast x1, . . .,xm
(e.g., Möller et al., 2018). The covariates x1, . . .,xm are se-
lected by their predictive strength based on the conditional
log-likelihood. Afterwards, D-vine copula quantile regres-
sion (DVQR) allows us to predict quantiles α ∈ (0,1) that
represent the postprocessed forecasts via

F−1
y|x1,...,xm

(α|x1(t), . . .,xm(t)) := F−1
y

(
C−1(α|Fx1 (x1(t)), . . .,Fxm (xm(t)))

)
, (4)

where Fxi denotes the marginal distributions of xi for all
i = 1, . . .,m; F−1

y the inverse marginal distribution of y; and
C−1 is the conditional copula quantile function. The imple-
mentation of this method is mainly based on the R package
vinereg by Nagler (2020), where the marginal distribu-
tions are kernel density estimates. DVQR is estimated sepa-
rately for every station and lead time using a seasonal adap-
tive training period.

4.7 Distributional regression network (DRN)

Rasp and Lerch (2018) first proposed the use of neural net-
works (NNs) for probabilistic ensemble postprocessing. In a
nutshell, their DRN approach extends the EMOS framework
by replacing prespecified link functions with a NN connect-
ing inputs and distribution parameters, enabling flexible non-
linear dependencies to be learned in a data-driven way. The
parameters of a suitable parametric distribution are obtained
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as the output of the NN, which may utilize arbitrary predic-
tors as inputs, including additional meteorological variables
from the numerical weather prediction (NWP) system and
station information. In our implementation for EUPPBench,
we closely follow Rasp and Lerch (2018) and assume a Gaus-
sian predictive distribution. We fit a single DRN model per
lead time jointly for all stations and encode the station iden-
tifier and land-use via embedding layers to make the model
locally adaptive. Since the use of additional input informa-
tion has been a key aspect in the substantial improvements
of DRN and subsequent extensions in other NN-based meth-
ods over EMOS, similar benefits are less likely here due to
the limitation to ensemble predictions of the target variable
only in the experimental setup; see Rasp and Lerch (2018)
for more detailed comparisons.

4.8 ANET

ANET (Atmosphere NETwork) is a NN approach, similar
to DRN, for postprocessing ensembles with variable mem-
ber counts. ANET estimates the parameters of a predictive
Gaussian distribution jointly for all lead times and over all
stations. ANET processes individual ensemble members first
and combines them into a single output inside the architec-
ture later. A dynamic attention mechanism facilitates focus-
ing on important sample members, enabling ANET to retain
more information about individual members in cases where
the ensemble describes a more complex distribution. Like-
wise, we take advantage of the fact that we are predicting the
parameters of a Gaussian distribution by computing the mean
and spread of the residuals µi1 and σ i1 rather than the direct
distribution parameter values. ANET thus computes the dis-
tribution parameters for a lead time i asµANET

i (t)= µens
i (t)+

µ1,i , σANET
i (t)= S(σ ens

i (t)+ σ1, i), where S denotes the
softplus activation function S(x)= ln(1+ ex), ensuring that
the standard deviation remains positive. The model is trained
by minimizing the negative log-likelihood function. For more
details about the method, see Mlakar et al. (2023a).

5 Results

Here we present the results from the verification of the sub-
mission to the benchmark. The CRPS (Fig. 3a) as a measure
of forecast accuracy clearly demonstrates the benefit of post-
processing. The elevation-corrected ECMWF DMO exhibits
pronounced diurnal variability in CRPS with forecast errors
at night being considerably more pronounced than during the
day. Postprocessing achieves a reduction of these forecast
errors by up to 50 % early in the forecast lead time and by
10 %–40 % on day 5. Most postprocessing methods perform
similarly with the notable exception of ANET that achieves
the lowest CRPS and exhibits less diurnal variability in fore-
cast errors.

Postprocessing improves forecast performance by reduc-
ing systematic biases (Fig. 3b) and by increasing ensemble

spread (Fig. 3c) to account for sources of variability not in-
cluded in the NWP system. The ensemble spread of most
postprocessing methods is similar with the notable exception
of RC that generates much more dispersed forecasts in par-
ticular early in the forecast lead time.

Forecast calibration is assessed with the spread–error ratio
(Fig. 3d) and the rank histogram (Fig. 4). ECMWF DMO
is heavily overconfident resulting in a spread–error ratio
smaller than 1 and a U-shaped rank histogram. Postprocessed
forecasts are much better calibrated with indication of some
remaining forecast overconfidence for all methods but RC
(Fig. 3d). The rank histogram in Fig. 4 allows for a different
perspective on forecast calibration with indication of fore-
cast overdispersion (inverse U-shape) for many of the post-
processed forecasts.

Postprocessed forecasts have been produced for a number
of stations in central western Europe. With very few excep-
tions, postprocessing improves forecast quality everywhere
as illustrated by the positive values of continuous ranked
probability skill score (CRPSS) in Fig. 5. These findings
are corroborated by the significance testing presented in Ap-
pendix A. Most of the postprocessing methods perform sim-
ilarly with more pronounced improvements in complex to-
pography and less pronounced improvements in the north-
ern and predominantly flat part of the domain. As a notable
exception, ANET forecasts perform better in particular for
high-altitude stations in Switzerland (see also Fig. 6).

In Fig. 6 we present the relationship with station alti-
tude for a range of scores to further explore the specifics
of the postprocessing methods. For example forecasts with
the elevation-corrected ECMWF DMO for high-altitude sta-
tions are systematically too cold, indicating that the constant
lapse rate correction applied to ECMWF DMO is an approx-
imation at best. The AR-EMOS method appears to produce
the smallest biases overall, whereas there is some remaining
negative bias at altitude in many of the methods and positive
biases in RC. The remaining large biases in the AR-EMOS
method are from missing predictions that have been filled
with ECMWF DMO.

The CRPS at each station in Fig. 6 shows that the reduc-
tion in forecast errors and correspondingly increased fore-
cast skill is generally more pronounced at altitude. Compared
with the other postprocessing approaches, ANET achieves
lower CRPS for high-altitude stations (above 1000 m).

The spread–error ratio as a necessary condition for fore-
cast calibration also reveals considerable differences be-
tween postprocessing approaches. The ASRE and RC meth-
ods in particular exhibit large variations in spread–error ratio
from station to station, whereas the other methods exhibit
much more uniform spread–error ratios. Please note that the
strong underdispersion of ECMWF DMO as indicated by the
spread–error ratio in Figs. 3 and 6 is slightly reduced when
systematic biases are removed (not shown). For the postpro-
cessed forecasts, the effect of remaining systematic biases
on the spread–error ratio is negligible. More detailed analy-
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Figure 3. Average scores at each lead time, aggregated across all stations and forecasts.

Figure 4. Rank histogram of forecasts submitted to the benchmark experiment, aggregated across all stations, forecasts and lead times. Note
that the visualization for ECMWF DMO is clipped for better comparison with the rank histograms of the postprocessed forecasts.

ses of the results would of course be possible but are beyond
the scope of this publication on the benchmark dataset, and
they will be the subject of a dedicated work.

6 Code and data availability

The most straightforward way to access the dataset is
through the climetlab (https://github.com/ecmwf/climetlab,
last access: 22 December 2022) EUMETNET postprocessing
benchmark plugin at https://github.com/EUPP-benchmark/
climetlab-eumetnet-postprocessing-benchmark (last access:
31 December 2022). This plugin provides easy access to the
dataset stored on the ECMWF European Weather Cloud. An
example showing how to use the plugin is documented in the
Supplement, along with other unofficial ways to access the
data.

In addition, the dataset has been uploaded in Zarr
format on Zenodo for long-term storage. See De-
maeyer (2022b) (https://doi.org/10.5281/zenodo.7429236)
for the gridded data and Bhend et al. (2023)
(https://doi.org/10.5281/zenodo.7708362) for the station
data.

However, the Switzerland station data which are part of
the dataset are not presently freely available. These sta-

tion data may be obtained from IDAWEB (https://gate.
meteoswiss.ch/idaweb/, last access: 15 May 2023) at Me-
teoSwiss, and we are not entitled to provide it online. Reg-
istration with IDAWEB can be initiated here: https://gate.
meteoswiss.ch/idaweb/prepareRegistration.do (last access:
15 May 2023). For more information, please also read https:
//gate.meteoswiss.ch/idaweb/more.do?language=en (last ac-
cess: 15 May 2023).

The documentation of the dataset is available at
https://eupp-benchmark.github.io/EUPPBench-doc/files/
EUPPBench_datasets.html (EUMETNET, 2023) and is also
provided in the Supplement.

The code and scripts used to perform the benchmark
are available on GitHub and have been centralized in a
single repository: https://github.com/EUPP-benchmark/
ESSD-benchmark (last access: 24 April 2023). This repos-
itory contains links to the scripts sub-repositories along
with a detailed description of each method. In addition,
these codes have been also uploaded to Zenodo: veri-
fication code (https://doi.org/10.5281/zenodo.7484371;
Primo-Ramos et al., 2023), MBM method
(https://doi.org/10.5281/zenodo.7476673, De-
maeyer, 2023), reliability calibration method
(https://doi.org/10.5281/zenodo.7476590;
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Figure 5. Continuous ranked probability skill score (CRPSS) per station, averaged across all forecasts and all lead times. CRPSS is computed
using the ECMWF DMO as the reference forecast and positive values indicate that the postprocessed forecasts outperform ECMWF DMO.
Stations at which forecast skill is negative are marked by square symbols.

Figure 6. Average scores ordered by station elevation; the elevation-corrected ECMWF DMO is shown alongside the results from the
postprocessing methods submitted to the benchmark experiment, aggregated across all forecasts and all lead times.
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Evans and Hooper, 2023), ASRE method
(https://doi.org/10.5281/zenodo.7477735;
Ben Bouallègue, 2023), EMOS method
(https://doi.org/10.5281/zenodo.7477749;
Dabernig, 2023), AR-EMOS method
(https://doi.org/10.5281/zenodo.7477633; Möller, 2023),
DRN method (https://doi.org/10.5281/zenodo.7477698;
Chen et al., 2023b), DVQR method
(https://doi.org/10.5281/zenodo.7477640; Jobst, 2023), and
ANET method (https://doi.org/10.5281/zenodo.7479333,
Mlakar et al., 2023b).

Finally, to allow for further studies and a better repro-
ducibility, the output data (the corrected forecasts) provided
by each method have also been uploaded to Zenodo (See
https://doi.org/10.5281/zenodo.7798350, Chen et al., 2023a).

7 Conclusions and prospects

A benchmark dataset is proposed in the context of the EU-
METNET postprocessing (EUPP) program for comparing
statistical postprocessing techniques that are nowadays an in-
tegral part of many operational weather-forecasting suites.
This dataset includes ensemble forecasts and reforecasts of
the ECMWF for the period 2017–2018, as well as the corre-
sponding gridded and station observations, over a region cov-
ering a small portion of western Europe. This region covers a
variety of topographies including coastal, flat and mountain-
ous areas. To illustrate the usefulness of this dataset, a stan-
dardized exercise is established in order to allow for an ob-
jective and rigorous intercomparison of postprocessing meth-
ods. This exercise included the contribution of many well-
established state-of-the-art postprocessing techniques. De-
spite the limited scope of the presented exercise, this collab-
orative effort will serve as a reference framework and will be
strongly extended. The whole process includes (i) the down-
load of the data or their access on the European Weather
Cloud (where the dataset is stored; see Sect. 6), (ii) the appli-
cation of the different techniques by the contributors and (iii)
the verification of the results by the verification team. This
proof-of-concept proved to be very successful.

While the authors constructed and performed this bench-
mark, some lessons were learned along the way:

– As much as possible, avoid maintaining an archive or a
database of scores for the experiments. Instead compute
verification results for the experiments on the fly and
only store the summary results. This has the advantage
that you can easily add (or remove) scores, summaries
of scores, without going through the complex process
necessary to update an archive (with new submissions
and additional scores).

– Either be very strict about the format of submitted pre-
dictions, or use software that is aware of the NetCDF
data model and that can handle slight inconsistencies
(e.g., reordering of dimensions or dimension values)

– Quality control is imperative. While the verification re-
sults generally quickly indicate whether there are any
major issues with the submitted predictions, issues may
already arise earlier than that (making verification im-
possible). Catching these errors and establishing a feed-
back loop with the submitters is important. One way to
solve this with NetCDF format is to check the NetCDF
header of the submission for format compliance.

These points are important for the next EUPP projects,
which will aim to harness the full potential of this dataset, by
postprocessing other, less predictable variables (e.g., rainfall,
radiation), on station and gridded data, and by allowing many
predictors instead of only the target variable itself, which can
be expected to yield substantial improvements in predictive
performance, in particular for the more advanced machine
learning approaches (Rasp and Lerch, 2018). By considering
broader aspects of forecasting (e.g., spatial and temporal as-
pects) as well as more specific scores, the verification task for
these forthcoming studies will allow us to use more advanced
and cutting-edge concepts in the field. The lessons learned
from these experiments will also be valuable to other groups
engaging with the design and operation of such benchmark-
ing experiments. Ultimately, one of the long-term goals of
the current benchmark is to provide an automated procedure
to upload and compare new approaches to the existing pool
of methods available. It is an ambitious goal, with many chal-
lenges ahead, but the benefits it will bring make it worth pur-
suing.

Appendix A: Significance assessment

To assess the significance of the CRPS differences observed
between each pair of postprocessing methods in the bench-
mark results, we compute the percentage of station and lead
time combinations for which a standard t test of the null hy-
pothesis of equal predictive performance indicates a signifi-
cant difference at a level of 5 %. The p values of these tests
have been adjusted for multiple testing by controlling the
false discovery rate using the Benjamini–Hochberg proce-
dure (Benjamini and Hochberg, 1995). The results are shown
in Fig. A1, where each cell in the table shows for what per-
centage of the station and lead time combinations the method
denoted in the row performs significantly better than the
method denoted in the column. From this, additional con-
clusions can be drawn. For instance, all the methods produce
a large fraction of significantly better forecasts (i.e., with a
lower CRPS) than the ECMWF DMO, while ANET, EMOS,
DVQR and AR-EMOS outperform the other methods.
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Figure A1. Percentage of station and lead time combinations for
which the forecast denoted in the row performs significantly (at 5 %
level) better in terms of the CRPS than the forecast denoted in the
column. The p values have been adjusted for multiple testing using
the Benjamini–Hochberg correction.
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