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Abstract. The quantification of large-scale leaf-age-dependent leaf area index has been lacking in tropical and
subtropical evergreen broadleaved forests (TEFs), despite the recognized importance of leaf age in influencing
leaf photosynthetic capacity in this biome. Here, we simplified the canopy leaves of TEFs into three age co-
horts (i.e., young, mature, and old, with different photosynthesis capacities; i.e., Vc,max) and proposed a novel
neighbor-based approach to develop the first gridded dataset of a monthly leaf-age-dependent leaf area index
(LAI) product (referred to as Lad-LAI) at 0.25◦ spatial resolution over the continental scale during 2001–2018
from satellite observations of sun-induced chlorophyll fluorescence (SIF) that was reconstructed from MODIS
and TROPOMI (the TROPOspheric Monitoring Instrument). The new Lad-LAI products show good performance
in capturing the seasonality of three LAI cohorts, i.e., young (LAIyoung; the Pearson correlation coefficient of
R = 0.36), mature (LAImature; R = 0.77), and old (LAIold; R = 0.59) leaves at eight camera-based observa-
tion sites (four in South America, three in subtropical Asia, and one in the Democratic Republic of the Congo
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(DRC)) and can also represent their interannual dynamics, validated only at the Barro Colorado site, with R be-
ing equal to 0.54, 0.64, and 0.49 for LAIyoung, LAImature, and LAIold, respectively. Additionally, the abrupt drops
in LAIold are mostly consistent with the seasonal litterfall peaks at 53 in situ measurements across the whole
tropical region (R = 0.82). The LAI seasonality of young and mature leaves also agrees well with the seasonal
dynamics of the enhanced vegetation index (EVI; R = 0.61), which is a proxy for photosynthetically effective
leaves. Spatially, the gridded Lad-LAI data capture a dry-season green-up of canopy leaves across the wet Ama-
zonian areas, where mean annual precipitation exceeds 2000 mm yr−1, consistent with previous satellite-based
analyses. The spatial patterns clustered from the three LAI cohorts also coincide with those clustered from cli-
matic variables over the whole TEF region. Herein, we provide the average seasonality of three LAI cohorts
as the main dataset and their time series as a supplementary dataset. These Lad-LAI products are available at
https://doi.org/10.6084/m9.figshare.21700955.v4 (Yang et al., 2022).

1 Introduction

Tropical and subtropical evergreen broadleaved forests
(TEFs) account for approximately 34 % of global terrestrial
primary productivity (GPP; Beer et al., 2010) and 40 %–50 %
of the world’s gross forest carbon sink (Pan et al., 2011;
Saatchi et al., 2011). Despite a perennial canopy, TEFs shed
and rejuvenate their leaves continuously throughout the year,
leading to significant seasonality in canopy leaf demogra-
phy (Wu et al., 2016; Chen et al., 2021). This phenological
change in leaf demography is the primary cause of GPP sea-
sonality in TEFs (Saleska et al., 2003; Sayer et al., 2011; Leff
et al., 2012), and this thus largely regulates their seasonal car-
bon sinks (Beer et al., 2010; Aragao et al., 2014; Saatchi et
al., 2011).

A key plant trait linking canopy phenology with GPP sea-
sonality was shown to be leaf age (Wu et al., 2017; Xu et
al., 2017). At the leaf scale, the newly flushed young leaves
and maturing leaves show higher maximum carboxylation
rates (Vc,max) than the old leaves being replaced (De Weirdt
et al., 2012; Chen et al., 2020). Such age-dependent varia-
tions in Vc,max are associated with changes in leaf nutritional
contents (nitrogen, phosphorus, potassium, etc.) and stom-
atal conductance over time (Menezes et al., 2021). Xu et
al. (2017) and Menezes et al. (2021) monitored in situ leaf
age and leaf demography combined with leaf-level Vc,max
in Amazonian TEFs and found that Vc,max of newly flushed
leaves increases rapidly with leaf longevity, peaks at approx-
imately 2 months old, and then declines gradually as leaf
grows older (leaf age > 2 months). At canopy scale, it was
hypothesized that leaf demography and seasonal differences
in leaf age compositions of tree canopies control the GPP
seasonality in TEFs (Wu et al., 2016; Albert et al., 2018). A
similar mechanism was also observed from the ground-based
lidar signals which showed an increasing trend in upper
canopy leaf area index (LAI) during the dry season, whereas
there was a decrease in lower canopy LAI (more old leaves;
Smith et al., 2019). Wu et al. (2016) classified the canopy
leaves of Amazonian TEFs into three leaf age cohorts (young
at 1–2 months, mature at 3–5 months, and old at≥ 6 months).

The LAI of young and mature leaves increased during the dry
seasons and consequently promoted dry-season canopy pho-
tosynthesis. Based on the above age-dependent Vc,max at leaf
scale (Xu et al., 2017) and the LAI seasonality of different
leaf age cohorts at canopy scale (Wu et al., 2016), Chen et
al. (2020, 2021) developed a climate-triggered leaf litterfall
and flushing model and successfully represented the season-
ality of canopy leaf demography and GPP at four Amazo-
nian TEF sites. Overall, leaf-age-dependent LAI seasonality
is one of the vital biotic factors in influencing the GPP sea-
sonality in TEFs (Wu et al., 2016; Chen et al., 2020).

Although the leaf-age-dependent LAI seasonality can be
well documented at site level using phenology cameras (Wu
et al., 2016), it is still rarely studied and remains unclear
at the continental scale. The key causation for this is that
the leaf flushing and litterfall of TEFs in different climatic
regions experience different seasonal constraints of water
and light availability during recurrent dry and wet seasons
(Brando et al., 2010; Chen et al., 2020; Davidson et al., 2012;
Xiao et al., 2005). Thus, the seasonal patterns of LAI in dif-
ferent leaf age cohorts become very complex at the continen-
tal scale (Chen et al., 2020; Xu et al., 2015). Satellite-based
remote sensing (Saatchi et al., 2011; Guan et al., 2015) and
land surface model (LSM) technologies (De Weirdt et al.,
2012; Chen et al., 2020, 2021) are two commonly used ap-
proaches for detecting the spatial heterogeneity of plant phe-
nology at a large scale. However, for satellite-based studies,
most optical signals are saturated in TEFs due to the dense
covered canopies and thus fail to capture the seasonality of
total LAI in TEFs and are much less able to decompose the
LAI into different leaf age cohorts. These limitations prevent
satellite-based studies from accurately representing the age-
dependent LAI seasonality. Moreover, most Earth system
models (ESMs) also show poor performances in simulating
the LAI seasonality in different leaf age cohorts (De Weirdt
et al., 2012; Chen et al., 2020). This is because the under-
lying mechanisms linking seasonal water and light availabil-
ity with leaf flushing and litterfall seasonality are currently
highly debated and remain elusive at the regional scale (Leff
et al., 2012; Saleska et al., 2003; Sayer et al., 2011). This
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vague notion imposes a challenge for accurately modeling
continental-scale GPP seasonality in most LSMs (Restrepo-
Coupe et al., 2017; Chen et al., 2021).

To fill the research gap, this study aimed to produce a
global gridded dataset of leaf-age-dependent LAI season-
ality product (Lad-LAI) over the whole TEF biomes from
2001 to 2018. For this purpose, we first simplified the canopy
GPP as being composed of three parts that were produced
from young, mature, and old leaves, respectively. GPP was
then expressed as a function of the sum of the product of
each LAI cohort (i.e., young, mature, and old leaves, denoted
as LAIyoung, LAImature, and LAIold, respectively) and corre-
sponding net CO2 assimilation rate (An, denoted as Anyoung,
Anmature, and Anold for young, mature, and old leaves, re-
spectively; Eq. 1). Then, we proposed a novel neighbor-based
approach to derive the values of three LAI cohorts. It was
hypothesized that forests in the adjacent four cells in the
gridded map exhibited consistent seasonality in both GPP
and LAI cohorts (LAIyoung, LAImature, and LAIold). Based on
this assumption, we applied Eq. (1) to each pixel and com-
bined the four equations of 2× 2 neighboring pixels to de-
rive the three LAI cohorts using a linear least squares with
the constrained method. The An parameter was calculated
using the Farquhar–von Caemmerer–Berry (FvCB) leaf pho-
tochemistry model (Farquhar et al., 1980), and GPP was lin-
early derived from an arguably better proxy in the form of
the TROPOMI (the TROPOspheric Monitoring Instrument)
solar-induced fluorescence (SIF), based on a simple SIF–
GPP relationship established by Chen et al. (2022; see Sect. 3
for details). This gridded dataset of three LAI cohorts pro-
vides new insights into tropical and subtropical phenology,
with more details of subcanopy level of leaf seasonality in
different leaf age cohorts, and will be helpful for developing
an accurate tropical phenology model in ESMs.

2 Study area and material

2.1 Tropical and subtropical evergreen broadleaved
forest biomes

In this study, we focused on the whole tropical and subtrop-
ical evergreen broadleaf forests (TEFs). The pixels labeled
TEFs, according to the International Geosphere–Biosphere
Program (IGBP) classification, were extracted as the study
area, based on the 0.05◦ spatial resolution MODIS land cover
map (Fig. 1; MCD12C1; Sulla-Menashe et al., 2018). The
study area contains three regions, namely South America
(18◦ N–30◦ S, 40–90◦W), the world’s largest and most biodi-
verse tropical rain forest, Republic of the Congo and Demo-
cratic Republic of the Congo (DRC; 10◦ N–10◦ S, 10◦W–
30◦ E), the western part of the Africa TEF region, and trop-
ical Asia (30◦ N–20◦ S, 70–150◦ E), covering the Southeast
Asian Peninsula, the majority of the Malay Archipelago and
northern Australia.

2.2 Input datasets for calculating GPP and An
parameters

The TROPOMI SIF data were used to derive the continent-
scale GPP (denoted as RTSIF-derived GPP), according to
the SIF–GPP relationship established by Chen et al. (2022),
which used 15.343 as a transformation coefficient to covert
SIF to GPP. The air temperature data from ERA5-Land (Zhao
et al., 2020), vapor pressure deficit (VPD) data from ERA-
Interim (Yuan et al., 2019), and downward shortwave so-
lar radiation (SW) from the Breathing Earth System Sim-
ulator (BESS; Ryu et al., 2018) were used to calculate
the Michaelis–Menton constant for carboxylase (Kc), the
Michaelis–Menton constant for oxygenase (Ko), the CO2
compensation point (0∗), dark respiration (Rdark), and Vc,max
and thus to calculate the An parameter according to the equa-
tions in Table S4 (see the Supplement). The calculation pro-
cesses are illustrated in Fig. 2. All datasets were aggregated
at the same spatial (0.125◦) and temporal resolutions (month;
Table S3).

2.3 Datasets for validating leaf-age-dependent LAI
seasonality

2.3.1 Ground-based seasonal LAI cohorts and litterfall
data

The top-of-canopy imagery observed by ground-based phe-
nology cameras were used to decompose the canopy LAI into
LAIyoung, LAImature, and LAIold. In total, imagery from eight
observation sites across the whole TEF region were used to
validate the simulation results (blue pentangles in Fig. 1; Ta-
ble S1 in the Supplement). Additionally, the seasonal litter-
fall data from 53 in situ sites (black circles in Fig. 1; Ta-
ble S6) spanning the TEFs were collected from globally pub-
lished articles to compare them with the phase of simulated
LAIold seasonality (see Sect. 3 for details). The multiyear
monthly litterfall data were averaged to the monthly mean to
compare them with the seasonality of the simulated LAIold.
Four eddy covariance flux tower sites (red triangles in Fig. 1;
Table S2) provided in situ seasonal GPP data to evaluate the
seasonality of RTSIF-derived GPP.

2.3.2 Satellite-based seasonal EVI data

To evaluate the LAI seasonality of photosynthetically effec-
tive leaves (i.e., young and mature leaves), this study used
the satellite-based MODIS and enhanced vegetation index
(EVI; Huete et al., 2002; Lopes et al., 2016; Wu et al., 2018)
as the remotely sensed proxied alternatives of effective leaf
area changes and new leaf flush (i.e., LAIyoung+mature; Wu
et al., 2016; Xu et al., 2015). To prove the robustness of the
products over a large spatial coverage, the seasonal LAI co-
horts of young and mature leaves were evaluated against the
EVI product, which was considered to be a proxy for leaf
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Figure 1. Study areas over tropical and subtropical evergreen broadleaves forests (TEF). Red triangles show the observed GPP seasonality at
four eddy covariance (EC) tower sites. Blue pentangles show the observed LAI cohorts at eight camera-based observation sites. Black circles
show the observed litterfall seasonality at 53 observation sites.

area changes in photosynthetically effective leaves (Xu et al.,
2015; Wu et al., 2016; de Moura et al., 2017).

3 Methods

3.1 Decomposing LAI cohorts (young, mature, and old)
from SIF-derived GPP

Figure 2 illustrates the overall framework used to gener-
ate the leaf-age-dependent LAI seasonality product (Lad-
LAI). The majority of the tropical and subtropical TEFs re-
tain leaves year-round, and their total LAI shows marginally
small spatial and seasonal changes (Wu et al., 2016; Figs. S3,
S4). Therefore, previous modeling studies have assumed a
constant value for the total LAI in tropical and subtropical
TEFs (Cramer et al., 2001; Arora and Boer, 2005; De Weirdt
et al., 2012). Based on this, we collected observed seasonal
LAI dynamics in tropical and subtropical TEFs from pre-
viously published literature, which showed a constant value
of LAI at around 6.0 (Figs. S3, S4; Table S5). Thus, in this
study, we simplified the data to assume that the seasonal LAI
was approximately equal to 6.0 in tropical and subtropical
TEFs. We grouped the canopy leaves of tropical and sub-
tropical TEFs into three leaf age cohorts (i.e., young, ma-
ture and old leaves, respectively). Then, the total GPP was
defined as the sum of those produced by the young, mature,
and old leaves, respectively. According to the FvCB leaf pho-
tochemistry model (Farquhar et al., 1980), GPP can be ex-
pressed as function of the sum of the products of each LAI
cohort (LAIyoung, LAImature, and LAIold) and correspond-
ing net CO2 assimilation rate (Anyoung, Anmature, and Anold;
Eq. 1).

GPP= LAIyoung×Anyoung+LAImature×Anmature

+LAIold×Anold, (1)

where LAIyoung, LAImature, and LAIold are the leaf area in-
dex of young, mature, and old leaves, respectively. Anyoung,
Anmature, and Anold are the net rate of the CO2 assimilation,

dependent on three leaf age classes. GPP is the canopy total
gross primary production. The sum of LAIyoung, LAImature,
and LAIold was set as a constant in this study, equaling to
6.0.

The gridded GPP data over the whole TEFs were derived
from SIF (denoted as RTSIF-derived GPP) using a linear
SIF–GPP regression model (see Sect. 3.2), which was es-
tablished based on in situ GPP from 76 eddy covariance
(EC) sites (Chen et al., 2022). The Anyoung, Anmature, and
Anold were calculated according to the FvCB biochemi-
cal model (Farquhar et al., 1980; Bernacchi et al., 2003;
see Sect. 3.3). As there were three unknown variables (i.e.,
LAIyoung, LAImature, and LAIold) to be solved in Eq. (1), we
hypothesized that the adjacent four pixels exhibited homoge-
nous TEFs and consistent leaf demography and canopy pho-
tosynthesis. Then, we used the GPP and An data from the
adjacent four pixels to estimate their LAIyoung, LAImature,
and LAIold, based on Eq. (1), using linear least squares with
the constrained method. The inputs, on gridded datasets (i.e.,
RTSIF-derived GPP and An derived from Tair, VPD, and
SW; Table S3; Fig. 2), were sampled at 0.125◦ spatial res-
olution, while the output maps of LAIyoung, LAImature, and
LAIold were at 0.25◦ spatial resolution. Therefore, the out-
put maps of LAIyoung, LAImature, and LAIold were at a 0.25◦

spatial resolution. Additionally, to test the robustness of the
neighbor-based decomposition approach, we increased the
number of adjacent pixels from 4 (2× 2) to 16 (4× 4) to
produce another version of the Lad-LAI product, with a spa-
tial resolution of 0.5◦. All our analyses were conducted us-
ing Python (version 3.7; http://www.python.org, last access:
15 June 2023) and MATLAB (version R2019b) software.

3.2 Calculating the GPP (RTSIF-derived GPP) from
TROPOMI SIF

Satellite-retrieved solar-induced chlorophyll fluorescence
(SIF) is a widely used proxy for canopy photosynthesis
(Yang et al., 2015; Dechant et al., 2020). Here, we used
a long-term reconstructed TROPOMI SIF dataset (RTSIF;
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Figure 2. The workflow for mapping Lad-LAI using the Lsqlin method. Lsqlin is the abbreviation of the linear least squares solver with
bounds or linear constraints. All the abbreviations are described in Table S4 in the Supplement.

Chen et al., 2022) to estimate GPP seasonality. Previous anal-
yses showed that RTSIF was strongly linearly correlated to
eddy covariance (EC) GPP and used 15.343 as a transforma-
tion coefficient to convert RTSIF to GPP (Fig. 8a in Chen
et al., 2022). In this study, we followed previously published
literature to set a constant value of LAI around 6.0 for the
whole tropical and subtropical TEFs (Figs. S3, S4; Table S5).
We collected seasonal GPP data observed at four EC sites
from the FLUXNET2015 tier 1 dataset (Table S2; Pastorello
et al., 2020) and validated the Chen et al. (2022) simple SIF–
GPP relationship (Fig. S1 in the Supplement). Results con-
firmed the robustness of the Chen et al. (2022) simple SIF–

GPP relationship for estimating the GPP seasonality in trop-
ical and subtropical TEFs (R > 0.49). Despite the potential
overestimation (Fig. S1b) or underestimation (Fig. S1h) of
the magnitudes, the RTSIF-derived GPP mostly captured the
seasonality of the EC GPP at all four sites (dphase < 0.26).

3.3 Calculating the net rate of CO2 assimilation (An)

We calculated the net CO2 assimilation (An) using the FvCB
biochemical model (Farquhar et al., 1980). In this model, the
parameter An was calculated as the minimum of RuBisCO
(Wc), RuBP regeneration (Wj ), and TPU (Wp) to minus dark
respiration (Rdark; Bernacchi et al., 2013). The formulae for
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calculating An, Wc, Wj , Wp, Rdark, and the corresponding
intermediate variables were listed in Table S4.

3.3.1 Calculation of Wc

Wc is expressed as a function of the internal CO2 concen-
tration (ci), Kc, Ko, 0∗, and the maximum carboxylation
rate (Vc,max; Table S4 part1; Lin et al., 2015; Bernacchi et
al., 2013; Ryu et al., 2011; Medlyn et al., 2011; June et al.,
2004; Farquhar et al., 1980). The Kc, Ko, 0∗, and Vc,max
are temperature-dependent variables. Thus, we used Eq. (2)
to calculate their values at Tk by converting from those at
25◦. Then, we used the Medlyn et al. (2011) stomatal con-
ductance model to estimate internal CO2 concentration (ci;
Eq. 3), which is expressed as a function of the VPD rather
than relative humidity (Lin et al., 2015). The method for cal-
culating the Vc,max of each LAI cohort was introduced in
Sect. 3.4. The formulae for calculating corresponding inter-
mediate parameters are presented in Table S4.

Para= Para25 × exp
(

(Tk− 298.15)×1Hpara

R× Tk× 298.15

)
, (2)

where Para denotes a correction factor arising from the tem-
perature dependence of Vc,max, Para25 are values of the
temperature-dependent parameters (Kc, Ko, 0∗, and Vc,max)
at the temperature 25◦, Tk denotes temperature in Kelvin,
1Hpara is the activation energy for temperature dependence,
and R is the universal gas constant.

ci = ca×

1−
1

1.6×
(

1+ g1√
VPD

)
 , (3)

where ca is atmospheric CO2 concentration (380 ppm – parts
per million). VPD is calculated from the air temperature and
dew point temperature of the global ERA-Interim reanaly-
sis dataset (Dee et al., 2011), using the method of Yuan et
al. (2019). The calculation formula of VPD is described in
the Supplement. In this study, we used the value of 3.77 for
the stomatal slope (g1) in the stomatal conductance model,
according to Lin et al. (2015).

3.3.2 Calculation of Wp

Wp was calculated as the function of Vc,max, which was given
different values for different LAI cohorts based on multiple
in situ observations (Sect. 3.4).

3.3.3 Calculation of Wj

Wj was calculated from Vc,max, ci, and the rate of electrons
through the thylakoid membrane (J ; Bernacchi et al., 2013).
The parameter J was calculated from the maximum electron
transport rate (Jmax), and the rate of the whole electron trans-
port provided by light (Je; Bernacchi et al., 2013). Jmax was

expressed as a temperature-dependent function of the max-
imum electron transport rate (Jmax,25) at 25◦. Temperature
(Tair) and Je were expressed as a function of total photo-
synthetically active radiation (PAR) absorbed by the canopy
(PARtotal) that was the sum of the active radiation in the beam
(PARb,0) and the diffused (PARd,0) light (Weiss and Norman,
1985), which were calculated from downward shortwave ra-
diation (SW; Ryu et al., 2018). The formula for PARtotal is
given in Eq. (4), and the formulae for other intermediate pa-
rameters (i.e., PARb,0, PARd,0, ρcb, ρcd, k′b, k′d, and CI) are
listed in Table S4.

PARtotal = (1− ρcb)×PARb,0

×
(
1− exp

(
−kb

′
×CI ×LAItotal

))
+ (1− ρcd)×PARd,0

×
(
1− exp

(
−kd

′
×CI ×LAItotal

))
, (4)

where PARtotal is total PAR absorbed by the canopy, PARb,0
is the active radiation, PARd,0 is diffused radiation, and
LAItotal is a total LAI. Here, we used a constant value of 6.0,
according to De Weirdt et al. (2012).

3.4 Classifying three LAI cohorts with different Vc,max

In this study, we compared in situ samples of Vc,max25 data
against different leaf age across tropical and subtropical
TEFs from previous publications. Mature leaves (leaf age
70–160 d) show the highest Vc,max25 compared to those of
newly flushed leaves (leaf age < 60 d) and old leaves (leaf
age > 200 d), as seen in Menezes et al. (2021). Therefore,
in this study, we classified the canopy leaves into three co-
horts, namely young (leaf age < 2 months), mature (leaf age
3–5 months), and old cohorts (leaf age > 6 months), as per
Wu et al. (2016). The Vc,max25 values for young, mature, and
old cohorts were set to 60, 40, and 20 µmol m−2 s−1, respec-
tively, according to previous ground-based observations by
Chen et al. (2020).

3.5 Decomposing camera-based LAI into three leaf age
cohorts

We classified the canopy leaves into young, mature, and old
age cohorts based on the green color band from the top-of-
canopy imagery observed by a RGB camera. This is because
the brightness of different leaf age leaves differs greatly in
the values of the green color band. Raster density slicing is
a useful classification method for detecting the attributes of
various ground objects (Kartikeyan et al., 1998). Therefore,
we set three brightness thresholds to divide young (blue), ma-
ture (green), and old (yellow) leaves and background (gray)
for the same canopy extent in each month (Fig. S2). This
analysis was conducted in ENVI 5 Service Pack 3 software.
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3.6 Evaluating the LAIyoung+mature seasonality and its
spatial patterns using satellite-based EVI products

To compare the seasonality of LAIyoung+mature with those of
EVI, we calculate the mean squared deviation (MSD) and
their three components, namely dbias, which denotes the dif-
ferences about absolute value, dvar, which denotes the differ-
ences in seasonal fluctuations, and dphase, which denotes the
differences in peak phase to evaluate this consistency com-
prehensively (see Sect. 3.8). Additionally, we compared the
spatial patterns of the wet- minus dry-season differences (1)
between the observed and simulated variables, following the
work of Guan et al. (2015). To determine the wet and dry
seasons in each grid cell, we defined a month as being a dry
one when its monthly average precipitation was smaller than
the potential evapotranspiration (PET) computed using the
method of Maes et al. (2019); other months were classified
as wet ones. The wet- minus dry-season LAIyoung+mature (de-
noted as 1LAIyoung+mature) was calculated for each grid cell
as the wet-season average LAIyoung+mature value minus the
dry-season average value of LAIyoung+mature.

3.7 Evaluating the LAIold seasonality using
ground-based litterfall data

Litterfall is closely related to the seasonal dynamics of old
leaves (i.e., LAIold; Chen et al., 2020; Yang et al., 2021). Pre-
vious analyses indicated that, in general, a sharp decrease in
LAIold corresponded to a peak in litterfall (Pastorello et al.,
2020; Midoko Iponga et al., 2019; Ndakara, 2011; Barlow et
al., 2007; Dantas and Phillipson, 1989). Based on this causal
relationship between litterfall and LAIold, we compared the
time of seasonal litterfall peak with the time of abrupt drops
in LAIold to indirectly evaluate the simulated LAIold season-
ality. To accurately detect the onset date of old leaves being
shed and the day of the litterfall peak, we used a least squares
regression analysis method, developed by Piao et al. (2006),
to smooth the LAIold and litterfall seasonal curves. The sixth-
degree polynomial function (n= 6) was applicable to the re-
gression (Eq. 5).

LAIold = a0+a1x+a2x
2
+a3x

3
+a4x

4
+a5x

5
+a6x

6, (5)

where x is the day of a year.
The slope of seasonal LAI (LAIold, ratio) was calculated in

Eq. (6). The date of abrupt drops in LAIold was defined as the
time with the most negative values of LAIold, ratio.

LAIold, ratio(t) =
(
LAIold(t+1)−LAIold(t)

)
/
(
LAIold(t)

)
, (6)

where LAIold, ratio is the slope of seasonal LAIold curve.
LAIold(t+1) and LAIold(t) are the corresponding monthly LAI
at times t + 1 and t , respectively.

3.8 Evaluation metrics

Two metrics were chosen to evaluate the seasonality of Lad-
LAI against the that of other proxies, namely the Kobayashi

and Salam (2000) decomposition of the mean square differ-
ence between the model and observation and the Pearson
(1896) correlation coefficient for gridded fields.

3.8.1 Mean squared deviation (MSD)

The mean squared deviation (MSD) was given by Kobayashi
and Salam (2000):

MSD=
1
n

n∑
i=1

(xi − yi)2 (7)

SB= (x− y)2 (8)

SDs =

√
1
n

∑n

i=1
(xi − x)2 (9)

SDm =

√
1
n

∑n

i=1
(yi − y)2 (10)

SDSD= (SDs−SDm)2 (11)
LCS= 2SDsSDm (1− r) , (12)

where the mean squared deviation is the square of the root
mean squared deviation or RMSD (i.e., MSD = RMSD2),
xi is the simulated data at time t , and yi is the observed one
at time t (month). SDs is standard deviation of the simula-
tion, and SDm is the standard deviation of the measurement.
The lower the value of the MSD, the closer the simulation is
to the measurement. The MSD can be decomposed into the
sum of three components, including the squared bias (dbias;
dbias = SB), the squared difference between standard devi-
ations (variance-related difference; dvar; dvar = SDSD), and
the lack of correlation weighted by the standard deviations
(phase-related difference; dphase; dphase = LCS). r indicates
the correlation coefficient between x and y.

3.8.2 Pearson correlation coefficient (R)

The Pearson correlation coefficient is a measure of the linear
correlation between two variables (Merkl and Waack, 2009).
The correlation coefficient between x and y was as follows:

ρx,y =
cov(x,y)
σxσy

=
E
(
(x−µx)

(
y−µy

))
σxσy

. (13)

3.9 The quality control (QC) for the Lad-LAI product

We provided information on the data quality control (QC)
along with the Lad-LAI product (Fig. S5). In the QC system
(Table S7), data quality was divided into four levels, where
level 1 represents the highest quality, level 2 and level 3 rep-
resent good and acceptable quality, respectively, and level 4
should be used with caution. This QC product was generated
according to residual sum of squares (RSSs; Melgosa et al.,
2008) and the root mean square error (RMSE; Chen et al.,
2020), obtained from the constrained least squares method
that was used to estimate derive monthly Lad-LAI data.
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Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold, in comparison with observed data at four sites in South America. (a,
d, g, and j) Simulated LAIs. (b, e, h, and k) Observed LAIs. (c, f, i, and l) Scatterplots between simulated and observed LAIs. Lime green
dots are LAIyoung, green dots are LAImature, and orange dots are LAIold.

4 Results

4.1 Comparison of LAI cohort seasonality with site
observations

The simulated leaf-age-dependent LAI seasonality product
was validated against the camera-based measurements of
LAIyoung, LAImature, and LAIold at four sites in South Amer-
ica, one site in Congo, and three sites in China. Overall, the
LAI seasonality of mature and old classes from the new Lad-
LAI products agrees well at these sites, with very fine-scale
collections of monthly LAI of mature (R = 0.77; MSD =
0.69) and old leaves (R = 0.59; MSD = 0.62). However, the
seasonality of simulated LAI from young leaves performs
poorly (R = 0.36; MSD= 0.45). It is also interesting to note
that the canopy leaf phenology of TEFs at these sites dif-
fers greatly. In South America, at K67, K34, and EUCFLUX
sites, both in situ and simulated LAIyoung and LAImature de-
crease early in the dry season, around February, and convert

to an increase early in wet season, around June (Fig. 3a, b, d,
e, j, k). At the Barro Colorado site, LAIyoung increases from
the late dry to early wet season, around March, in response
to the increasing incoming shortwave radiation, and in con-
trast, LAImature starts to increase in the wet season, around
June (Fig. 3g, h). However, in subtropical Asia, LAIyoung
and LAImature increase during the wet season and peak with
largest rainfall in June or July at the Din, Gutian, and Banna
sites (Fig. 5a, b, d, e, g, h). In Congo, we only found one site
(CONGOFLUX) with a 6-month observation period (from
May to October). The seasonality of LAIyoung and LAImature
are similar to those in tropical Asia, while having smaller
variations in magnitude due to the moderate seasonality of
sunlight in the equatorial region (Fig. 4a, b). Overall, there
is a reverse pattern for the LAIold seasonality compared to
LAImature for all eight sites.

Additionally, only one ground site (Barro Colorado site
in Panama) had observed time series camera-based pheno-
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Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with observed data at one site in Congo. (a) Simulated
LAIs. (b) Observed LAIs. (c) Scatterplots between simulated and observed LAIs. Lime green dots are LAIyoung, green dots are LAImature,
and orange dots are LAIold.

logical imagery, which was then used to evaluate the capac-
ity of Lad-LAI in representing the interannual dynamics of
three LAI cohorts, with R values being equal to 0.54, 0.64,
and 0.49 for LAIyoung, LAImature, and LAIold, respectively
(Fig. 6). However, more in situ long-term observations are
needed to test the robustness of the time series variations. The
temporal variations in LAIyoung, LAImature, and LAIold across
eight sub-regions classified by the K-means clustering anal-
ysis are shown in Fig. S6. Results showed that, for example,
the LAImature increased significantly due to 2015 drought in
the Amazon basin (e.g., sub-region S2; Fig. S6) and south-
east Asia (e.g., sub-region S7; Fig. S6), indicating a good
capability for detecting the dynamics of LAIyoung, LAImature,
and LAIold in response to climate disturbances.

4.2 Comparison of patterns of gridded LAI cohort
seasonality with climatic and phenological patterns

The in situ measurements of LAIyoung, LAImature, and LAIold
suggested diverse patterns of Lad-LAI seasonality over the
TEFs. Nevertheless, the sparse coverage of these sites cre-
ated challenges for a comprehensive and direct evaluation of
leaf-age-dependent LAI seasonality product. To evaluate the
robustness of the gridded Lad-LAI seasonality product at the
regional scale, we further conducted spatial clustering anal-
yses of LAIyoung, LAImature, and LAIold, using the K-means
analysis method.

Surprisingly, the spatial patterns of Lad-LAI product clus-
tered from satellite-based vegetative signals (Fig. 7g–i) co-
incide well with those clustered from in-dependent climatic
variables (rainfall, radiation, etc.; Fig. 7a–c). These patterns
are also similar to those of the climate–phenology rhythms
mapped by Yang et al. (2021), which suggested different cor-
relations of litterfall seasonality with canopy phenology be-
tween different climate–phenology rhythms (Fig. 7d–f). In
the central (sub-region S2) and south (sub-region S3) Ama-
zon (Fig. 7g), the seasonality of LAIyoung, LAImature, and
LAIold (Fig. 8b, c) are similar to those of the BR-Sa1 and BR-

Sa3 sites. And in subtropical Asia (sub-region S6; Fig. 7i),
the seasonality of the three LAI cohorts (Fig. 8f) are similar
to those of the Din, Gutian, and Banna sites. Notably, in the
sub-region S8, located geographically between sub-regions
S6 and S7, LAIyoung shows a peak at July, and LAImature
shows a bimodal phenology (Fig. 8h). The remaining four
sub-regions (sub-regions S1, S4, S5, and S7) are all located
near the Equator. The magnitudes of seasonal changes in
LAI cohorts are smaller than those in sub-regions S2, S3,
S6, and S8 (away from the Equator). It is worth noting that,
for these sub-regions around the Equator, there is a bimodal
seasonality pattern for LAImature, with the first peak around
March and the second peak around August (Fig. 8a, d, e, g).
This is consistent with the findings of Li et al. (2021), who
found that tropical and subtropical TEFs changed from a uni-
modal phenology at higher latitudes to a bimodal phenology
at lower latitudes.

4.3 Sub-regional evaluations of gridded LAIyoung+mature
seasonality, using satellite-based EVI products

The gridded dataset of monthly LAIyoung+mature was in-
directly evaluated using the satellite-based EVI products
(Wang et al., 2017; de Moura et al., 2017; Xiao et al., 2005;
Wu et al., 2018), as EVI was consistent with LAIyoung+mature
in seasonality (Figs. S7–S8), which agreed with previous
findings that EVI can be considered to be a proxy for
the leaf area change in those leaves with high photosyn-
thetic efficiency (Huete et al., 2006; Lopes et al., 2016; Wu
et al., 2018). This is because EVIs are very sensitive to
changes in the near-infrared (NIR) reflectance (Galvão et
al., 2011), while young and mature leaves also reflect more
NIR signals than the older leaves they replace (Toomey et
al., 2009). The linear correlation and MSD decompositions
(see Sect. 3) between simulated and satellite-based EVIs are
displayed in Fig. 9. Overall, the seasonal LAIyoung+mature
is well correlated with satellite-based EVI (R > 0.40) in
78.26 % of the TEFs, and the average correlation coefficient
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Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with observed data at three sites in tropical Asia. (a,
d, g) Simulated LAIs. (b, e, h) Observed LAIs. (c, f, i) Scatterplots between simulated and observed LAIs. Lime green dots are LAIyoung,
green dots are LAImature, and orange dots are LAIold.

Figure 6. Time series of simulated LAIyoung, LAImature, and LAIold, in comparison with observed data at Barro Colorado site in Panama.
(a) Simulated LAIs. (b) Observed LAIs. (c) Scatterplots between simulated and observed LAIs.

is equal to 0.61 (Fig. 9a–c). The MSD is smaller than 0.1 in
89.69 % of the whole tropical and subtropical TEFs (Fig. 9d–
f). Statistics in the eight clustered sub-regions show that
the seasonal LAIyoung+mature of Lad-LAI data mostly cor-
relate better with seasonal EVI in high-latitude areas (sub-
region S2 R = 0.65; sub-region S3 R = 0.71; sub-region
S6 R = 0.67) than those in low latitudes (sub-region S1
R = 0.46; sub-region S5 R = 0.61; sub-region S7 R = 0.44;
sub-region S8 R = 0.64), except for sub-region S4 (R =

0.72; Figs. 10, S9). The MSD components also confirm a
better performance of LAIyoung+mature seasonality in high-
latitude areas (sub-region S2 dbias = 0.009, dvar = 0.001, and
dphase = 0.030; sub-region S3 dbias = 0.009, dvar = 0.002,
and dphase = 0.030; sub-region S6 dbias = 0.016, dvar =

0.005, and dphase = 0.040) than in low-latitude areas near
the Equator (sub-region S1 dbias = 0.012, dvar = 0.001, and
dphase = 0.041; sub-region S4 dbias = 0.020, dvar = 0.001,
and dphase = 0.031; sub-region S5 dbias = 0.017, dvar =
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Figure 7. Comparison of sub-regions of Lad-LAI products (g–i) with those of climatic factors classified by the K-means clustering analysis
(a–c), following Chen et al. (2021), and those of the three climate–phenology regimes (d–f), as developed by Yang et al. (2021).

0.001, and dphase = 0.032; sub-region S7 dbias = 0.018,
dvar = 0.002, and dphase = 0.043; sub-region S8 dbias =

0.012, dvar = 0.005, and dphase = 0.035; Figs. 11, S9). This
happens because the accuracy of Lad-LAI in representing the
seasonality of LAI cohorts depends highly on the input SIF
data, which have low sensitivity to canopy phenology and
show marginally small seasonal changes nearby the Equator,
for example, in tropical Asia (Guan et al., 2015, 2016).

Additionally, previous studies indicated a large-scale
green-up area over the tropical and subtropical region during
the dry seasons (i.e., Guan et al., 2015; Tang and Dubayah,
2017; Myneni et al., 2007), where the average annual precip-
itation exceeds 2000 mm yr−1. Here, we calculated the dif-
ferences (1) between wet- and dry-season LAIyoung+mature
(i.e., LAIyoung+ LAImature), to test whether the Lad-LAI
can capture this green-up spatial pattern. Spatial patterns of
1LAIyoung+mature (Fig. 12) are similar than those developed
by Guan et al. (2015), with higher LAIyoung+mature during
the dry season (blue area) in large areas north of the Equator.

This indicates an emergence of new leaf flush and an increase
in mature leaves, resulting in the canopy green-up phe-
nomenon observed by previous satellite-based signals. It is
interesting to note that the total areas (blue regions in Fig. 12)
of this dry-season green-up shown by LAIyoung+mature are
smaller than those shown by SIF signals that are almost ev-
erywhere north of the Equator. That is because that new and
mature leaves often have a higher photosynthetic capacity
than old leaves. A slight or moderate green-up in new and
mature leaves (i.e., increase in LAIyoung+mature) would boost
a strong increase in photosynthesis, inducing the significant
green-up shown by photosynthesis-related signals (e.g., SIF
data). Therefore, photosynthesis proxies likely overestimate
the areas with the green-up of new leaves during the dry sea-
sons in the real world.
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Figure 8. Seasonality of simulated LAIyoung, LAImature, and LAIold in eight sub-regions classified by the K-means clustering analysis.

Figure 9. Pearson correlation coefficient (R) and mean squared deviation (MSD) between seasonality of the simulated LAIyoung+mature and
MODIS enhanced vegetation index (EVI).
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Figure 10. Statistics of the Pearson correlation coefficient (R) between the seasonality of simulated LAIyoung+mature and MODIS enhanced
vegetation index (EVI) in the eight clustered sub-regions.

Figure 11. Statistics of the mean squared deviation (MSD) between seasonality of simulated LAIyoung+mature and MODIS enhanced vege-
tation index (EVI) in the eight clustered sub-regions.
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Figure 12. Spatial pattern of dry-season green-up using wet-season LAIyoung+mature minus dry-season LAIyoung+mature.

Figure 13. Evaluation of simulated LAIold using ground-observed litterfall seasonality. (a–i) Days of an abrupt decrease in LAIold in
comparison with days of corresponding litterfall peak at nine specific sites, for example. The orange curves represent simulated LAIold.
Dots on the orange curves represent the point with an abrupt decrease in LAIold. The black curves represent the observed seasonal litterfall
mass. The dots on the black curves represent the point with litterfall peak. (j) Comparisons of the days when LAIold has an abrupt decrease
(DayLAIold) against the days when monthly litterfall peaks (Daylitterfall).

4.4 Sub-regional evaluations of gridded LAIold
seasonality using site-based litterfall observations

The seasonal patterns of LAIold were evaluated indirectly
using ground-based seasonal litterfall observations from 53
sites over the tropical and subtropical TEFs (black circles
in Figs. 1, S10–S12). Here, we selected nine specific sites
(Fig. 13), with different patterns of litterfall seasonality and
LAIold seasonality, to illustrate the results of the analyses.
Figure 13a–i illustrate the days on which there is an abrupt
decrease in monthly LAIold, which are close to the monthly
litterfall peak. The days when LAIold decreases the sharpest
(DayLAIold) agree well with the days on which their monthly
litterfall peaks (Daylitterfall; Fig. 13j) and are mostly dis-
tributed near the diagonal lines (R = 0.82). This validation
from seasonal litterfall data indirectly demonstrates the ro-
bustness of the LAIold seasonality of the Lad-LAI product.

4.5 Testing potential uncertainties in the Lad-LAI
products

To prove the robustness of the neighbor-based decomposi-
tion approach, we compared the Lad-LAI products gener-
ated based on 2× 2 neighboring pixels with those based on
4×4 neighboring pixels. Results show that the seasonality of
LAIyoung, LAImature, and LAIold in the 0.5◦ Lad-LAI prod-
ucts based on 4× 4 neighboring pixels are highly consistent
with those of the 0.25◦ one that is based on 2×2 neighboring
pixels across the whole tropical region (Fig. 14), with the cor-
relation coefficients (R) being equal to 0.63, 0.68, and 0.95,
respectively (Fig. S13).

To test the uncertainties caused by the GPP estimation, we
added two more GPP products, i.e., GOSIF-derived GPP (Li
and Xiao, 2019) and FLUXCOM GPP (Jung et al., 2019),
to produce another two versions of the Lad-LAI products.

Earth Syst. Sci. Data, 15, 2601–2622, 2023 https://doi.org/10.5194/essd-15-2601-2023



X. Yang et al.: A gridded dataset of leaf-age-dependent LAI seasonality product 2615

Figure 14. The seasonality of LAIyoung, LAImature, and LAIold between 0.25◦ and 0.5◦ Lad-LAI datasets in the eight clustered regions.
Lime green represents LAIyoung, green represents LAImature, and orange represents LAIold. Solid lines represent the 0.25◦ dataset, and the
dashed lines represent the 0.5◦ dataset.

Figure 15. Seasonality of simulated LAIyoung, LAImature, and LAIold from GOSIF-derived GPP in comparison with observed data at eight
sites. (a) K67. (b) K34. (c) Barro Colorado. (d) EUCFLUX. (e) Din. (f) Gutian. (g) Banna. (h) CONGOFLUX.

The GPP seasonality coincides well between these three data
sources across all eight sub-regions (Fig. S14). By compar-
ing them with the ground-based LAI cohorts at eight observa-
tion sites, the results show that the Lad-LAI generated from
RTSIF-derived GPP show the highest correlation and a mini-
mal deviation with the in situ measurements, withR equaling

0.36, 0.77, and 0.59 and MSD equaling 0.45, 0.69, and 0.62
for LAIyoung, LAImature, and LAIold, respectively (Figs. 15–
16, S15–S17). Additionally, we also compared the seasonal
variability in LAIyoung, LAImature, and LAIold between three
Lad-LAI versions in eight sub-regions classified by the K-
means clustering analysis (Fig. 17). In general, three versions
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Figure 16. Seasonality of simulated LAIyoung, LAImature, and LAIold from the FLUXCOM GPP in comparison with observed data at eight
sites. (a) K67. (b) K34. (c) Barro Colorado. (d) EUCFLUX. (e) Din. (f) Gutian. (g) Banna. (h) CONGOFLUX.

of Lad-LAI products all performed well in eight sub-regions
with a consistent seasonal variability (Fig. 17). For the re-
gional average, sub-regions S4, S5, S6, S7, and S8 show
a highly consistent seasonality of LAIyoung, LAImature, and
LAIold between these three products, whereas the Lad-LAI
generated from GOSIF-derived GPP performs a poorly in
capturing the seasonality of LAI cohorts in the Amazon (sub-
regions S1, S2, and S3).

5 Discussion

Leaf-age-dependent LAI performs well in describing the sea-
sonal replacements of canopy leaves in TEFs (Wu et al.,
2016; Chen et al., 2020), showing it to be a critical plant
trait for representing the tropical and subtropical phenology
(Doughty and Goulden, 2008; Saleska et al., 2007). How-
ever, to our knowledge, there is currently no continental-
scale information of such leaf-age-dependent LAI data over
the whole TEFs, as it can be neither mapped from sparse
site observations (Wu et al., 2016) nor modeled from ESMs,
which are triggered by unclear climatic drivers (Chen et al.,
2020). These constraints hinder global researchers from ac-
curately simulating large-scale photosynthesis (GPP) season-
ality using remote sensing approaches and ESMs (Chen et
al., 2020).

The Lad-LAI product developed in this study is the first
continental-scale gridded dataset of monthly LAI in different
leaf age cohorts. Although still needing more in situ observa-
tions for an adequate validation, the seasonality of the three
LAI cohorts performs well at the eight sites (four in South
America, three in subtropical Asia, and one in Congo) with
very fine-scale collections of monthly LAIyoung, LAImature,
and LAIold. To test the robustness of the gridded Lad-LAI
products over the whole TEFs, the seasonality of LAImature
was also validated pixel by pixel using satellite-based EVI
products, and the phases of LAIold seasonality were com-

pared with those of seasonal litterfall data from 53 site mea-
surements, respectively. Moreover, the LAIyoung+mature from
the new Lad-LAI products can also directly represent the
large-scale dry-season green-up of canopy leaves north of
the Equator. Overall, direct and indirect evaluations demon-
strated the robustness of the developed Lad-LAI products.

It should be noted that, over the regions with a large mag-
nitude of annual precipitation nearby the Equator, there are
no obvious dry seasons, and thus tree canopy phenology
changes are smaller than higher-latitude ones throughout the
year (Yang et al., 2021). The LAI of young, mature, and old
leaf cohorts all show a bimodal phenology with marginally
small seasonal changes near the Equator, which is captured
by the developed Lad-LAI product. Second, we used a con-
stant coefficient to transfer from SIF data to GPP and also
assumed a constant value for the total LAI over the whole
TEFs, which might bring additional uncertainties. This can
be seen from the MSD evaluations, where the bias-related
term dominates the total MSD, especially in regions near the
Equator. However, this has less of an impact on the season-
ality of Lad-LAI, as the phase-related term of MSD is much
smaller.

Additionally, the maximum carboxylation rate (Vc,max) of
leaves changes significantly with leaf age (Xu et al., 2017).
Currently, most ESMs define Vc,max as a function of leaf
age, whereas their relationship is still less well understood in
TEFs due to sparse in situ measurements (Chen et al., 2020).
This consequentially leads to the poor representation of LAI
and GPP seasonality in ESMs (De Weirdt et al., 2012). To
overcome this challenge, here we simplified the tree canopy
into three big-leaf types (i.e., young, mature, and old) in
TEFs, similar to the two big-leaf models developed for tem-
perate and boreal forests (Best et al., 2011; Clark et al., 2011;
Harper et al., 2016), which simplified the tree canopy into
sun and shade leaves. However, some uncertainty remains on
the assumption, as it neglects the spatial and temporal vari-
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Figure 17. Seasonality of simulated LAIyoung, LAImature, and LAIold from three version products in eight sub-regions classified by the
K-means clustering analysis. Solid lines represent LAI generated from RTSIF-derived GPP, dashed lines represent LAI generated from
GOSIF-derived GPP, and dotted lines represent LAI generated from FLUXCOM GPP. Lime green represents LAIyoung, green represents
LAImature, and orange represents LAIold.

ations in Vc,max, which changes with the seasonal climate
anomaly and also differs between nearby pixels in high het-
erogeneous forest ecosystems. This assumption may bring
uncertainties for simulating seasonal An and therefore influ-
ence the seasonality of Lad-LAI.

In summary, we developed a new method to produce the
first global gridded dataset for a leaf-age-dependent LAI
product across the whole TEFs at the continental scale. Al-
though some uncertainties might remain, the Lad-LAI prod-
ucts could provide seasonal age-dependent LAI data at the
pixel level to develop a common phenology model for the
whole tropical and subtropical TEFs in ESMs that are cur-
rently run at a coarser resolution. With the development of
remote sensing technology, finer temporal and spatial resolu-
tions of SIF products will enable finer temporal- and spatial-
resolution maps of Lad-LAI products in the future.

6 Data availability

The 0.25◦ leaf-age-dependent LAI seasonality (Lad-LAI)
data from 2001–2018 are presented in this paper as
the main dataset, and their time series are as a sup-
plementary dataset. The two datasets are available at
https://doi.org/10.6084/m9.figshare.21700955.v4 (Yang et
al., 2022). Besides, we also provided another two versions
of Lad-LAI generated from GOSIF-derived GPP and FLUX-
COM GPP, respectively. These datasets are compressed
in a GeoTiff format, with a spatial reference of WGS84.
Each file in these datasets is named as follows: “LAI_{leaf
age}_{spatial resolution}_{month/year-month}.tif”.

7 Conclusions

This study, for the first time, developed a continental-scale
gridded dataset of monthly LAI in three leaf age cohorts from
2001–2018 RTSIF data. The LAI seasonality of young, ma-
ture, and old leaves was evaluated using in situ measurements
of seasonal LAI data, satellite-based EVI, and in situ mea-
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surements of seasonal litterfall data. The evaluations from
these datasets demonstrate the robustness of the seasonality
of three leaf age cohorts. The new Lad-LAI products indi-
cate diverse patterns over the whole tropical and subtropi-
cal regions. In the central and south Amazon, LAIyoung and
LAImature decrease early in the dry season, around February,
and start to increase early in the wet season, around June.
On the contrary, in subtropical Asia, LAIyoung and LAImature
increase during the wet season and peak with the largest rain-
fall volume in June or July. In regions near the Equator, the
LAI cohorts show a bimodal phenology but with marginally
small changes in the magnitude. The proposed method will
enable us to produce finer temporal- and spatial-resolution
maps of Lad-LAI products by using precise temporal- and
spatial-resolution data as input. The Lad-LAI products will
be helpful for diagnosing the adaption of tropical and sub-
tropical forest to climate change and will also help improve
the development of phenology models in ESMs.
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