

Supplement of

A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests

Xueqin Yang et al.

Correspondence to: Xiuzhi Chen (chenxzh73@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

2(1) ERA-Interim VPD3We calculated vapor pressure deficits (VPD) from the 0.125° spatial resolution land ai4temperature (T _a) and dew point temperature (T _a) ERA-Interim dataset, which is a reanalysi5product based on the Integrated Forecast System of the European Centre for Medium-Rang6Weather Forecasts (ECMWF-IFS). The calculation (De et al. 2011) follows:7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp \left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp \left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T _a and T _d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P _{ant} is the air pressure, P _{nut} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T _{air} 18The ERA5-Land 2m T _{air} 19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin20air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating21between the lowest model level and the Earth's surface, taking account of the atmospheric22condition compared to ERA5 (Zhao, Gao et al., 2021).23(3) BESS SW24The Breathing Earth System Simulator (BESS) is a simplified process-based model the2	1	Supplementary Methods
3We calculated vapor pressure deficits (VPD) from the 0.125° spatial resolution land ai4temperature (T_a) and dew point temperature (T_a) ERA-Interim dataset, which is a reanalysi5product based on the Integrated Forecast System of the European Centre for Medium-Rang6Weather Forecasts (ECMWF-IFS). The calculation (Dee et al. 2011) follows:7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{mst} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P _{matt} is the air pressure, P _{mat} is the air pressure at mean sca level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T _{air} 18The ERA5-Land 2m T _{air} 19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature oc22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating25between the lowest model level and the Earth's surface, taking account of the atmospheric26conditions. The unit is kelvin (K) (Muño	2	(1) ERA-Interim VPD
4temperature (T_a) and dew point temperature (T_d) ERA-Interim dataset, which is a reanalysi5product based on the Integrated Forecast System of the European Centre for Medium-Rang6Weather Forecasts (ECMWF-IFS). The calculation (Dee et al. 2011) follows:7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_a are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air} 18The ERA5-Land 2m T_{air} 19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providing20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature oc21air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating25between the lowest model level and the Earth's surface, taking account of the atmospheric26conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).33(3) BESS SW34T	3	We calculated vapor pressure deficits (VPD) from the 0.125° spatial resolution land air
5product based on the Integrated Forecast System of the European Centre for Medium-Rang6Weather Forecasts (ECMWF-IFS). The calculation (Dee et al. 2011) follows:7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T _a and T _d are the land air temperature (°C) and dew point temperature (°C),12 $respectively.$ 13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_aust is the air pressure, P_ausl is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T _{air} 18The ERA5-Land 2m T _{air} 19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o21air a mabove the surface of land, sea or in-land waters. It is calculated by interpolating22between the lowest model level and the Earth's surface, taking account of the atmospheric23conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).24(3) BESS SW25The Breathing Earth System Simulator (BESS) is a simplified process-based model th25(4) RTSIF31	4	temperature (T_a) and dew point temperature (T_d) ERA-Interim dataset, which is a reanalysis
6Weather Forecasts (ECMWF-IFS). The calculation (Dec et al. 2011) follows:7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{mst} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_msi is the air pressure, P_msi is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air}18The ERA5-Land 2m T_air19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature oc23air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating24between the lowest model level and the Earth's surface, taking account of the atmospheric26conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).26The Breathing Earth System Simulator (BESS) is a simplified process-based model th25couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at26energy balance. It couples an atmospheric radiative transfer mode	5	product based on the Integrated Forecast System of the European Centre for Medium-Range
7 $VPD = SVP - AVP$ 8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{mst} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mat} is the air pressure, P_{mat} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air}18The ERA5-Land 2m T_air19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature oc22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating25between the lowest model level and the Earth's surface, taking account of the atmospheric26conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model th27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at28energy balance. It couples an atmospheric radiative transfer model and artificial neural29furth	6	Weather Forecasts (ECMWF-IFS). The calculation (Dee et al. 2011) follows:
8 $AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$ 9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{mst} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T _{air} 18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o21air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating22between the lowest model level and the Earth's surface, taking account of the atmospheric23(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the29couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at29energy balance. It couples an atmospheric radiative transfer model and artificial neural20network with forcings from MODIS atmospheric products.31<	7	VPD = SVP - AVP
9 $SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$ 10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{mst} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{mst} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_air18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model th27couples atmosphere and canopy radiative transfer model and artificial neural28energy balance. It couples an atmospheric radiative transfer model and artificial neural29further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori	8	$AVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_d}{T_d + 243.5}\right)$
10where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),11respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16) + 0.0065 \times Z}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air} 18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o23air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating24between the lowest model level and the Earth's surface, taking account of the atmospheric25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, and28energy balance. It couples an atmospheric radiative transfer model and artificial neural29network with forcings from MODIS atmospheric products.30(4) RTSIF31R	9	$SVP = 6.112 \times f_w \times exp\left(\frac{17.67 \times T_a}{T_a + 243.5}\right)$
11respectively. T_s and T_d are the land air temperature (°C) and dew point temperature (°C),12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{mal} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air} 18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o23air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating24between the lowest model level and the Earth's surface, taking account of the atmospheric25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model th27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, an28energy balance. It couples an atmospheric radiative transfer model and artificial neural29network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy32further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori33Instr	10	where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa),
12respectively.13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{mst} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_mst is the air pressure, P_msl is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_sir18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin,20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the29network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy32further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori33Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	11	respectively. T_a and T_d are the land air temperature (°C) and dew point temperature (°C),
13 $f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$ 14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T _{air} 18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providing20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the29network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy32further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori33Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	12	respectively.
14 $P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$ 15where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z16the altitude.17(2) ERA5-Land 2m T_{air} 18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providing20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at28energy balance. It couples an atmospheric radiative transfer model and artificial neural29further validated against tower-based SIF (Chen et al., 2022). The TROPOSpheric Monitori31Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	13	$f_w = 1 + 7 \times 10^{-4} + 3.46 \times 10^{-6} \times P_{mst}$
 where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z the altitude. (2) ERA5-Land 2m T_{air} The ERA5-Land 2m air temperature data were supplied by the European Centre for Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature o air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	14	$P_{mst} = P_{msl} \times \left(\frac{(T_a + 273.16)}{(T_a + 273.16) + 0.0065 \times Z}\right)^{5.625}$
16the altitude.17(2) ERA5-Land 2m Tair18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, ar energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori 3333Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	15	where P_{mst} is the air pressure, P_{msl} is the air pressure at mean sea level (1013.25 hPa) and Z is
17(2) ERA5-Land 2m Tair18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, and28energy balance. It couples an atmospheric radiative transfer model and artificial neural29network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy32further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori33Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	16	the altitude.
18The ERA5-Land 2m air temperature data were supplied by the European Centre for19Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providing20consistent view of the evolution of land variables over several decades at an enhanced21resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of22air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating23between the lowest model level and the Earth's surface, taking account of the atmospheric24conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).25(3) BESS SW26The Breathing Earth System Simulator (BESS) is a simplified process-based model the27couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at28energy balance. It couples an atmospheric radiative transfer model and artificial neural29network with forcings from MODIS atmospheric products.30(4) RTSIF31RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy32further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori33Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant34improvements in providing high spatial and temporal resolution SIF observations, but the	17	(2) ERA5-Land 2m T _{air}
 Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providin consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, an energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitorial Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	18	The ERA5-Land 2m air temperature data were supplied by the European Centre for
 consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	19	Medium Range Weather Forecasts (ECMWF). ERA5-Land is a reanalysis dataset providing a
 resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	20	consistent view of the evolution of land variables over several decades at an enhanced
 air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	21	resolution compared to ERA5 (Zhao, Gao et al., 2020). This parameter is the temperature of
 between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	22	air at 2m above the surface of land, sea or in-land waters. It is calculated by interpolating
 conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021). (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, and energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	23	between the lowest model level and the Earth's surface, taking account of the atmospheric
 (3) BESS SW The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, and energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	24	conditions. The unit is kelvin (K) (Muñoz-Sabater et al., 2021).
 The Breathing Earth System Simulator (BESS) is a simplified process-based model the couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	25	(3) BESS SW
 couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, at energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	26	The Breathing Earth System Simulator (BESS) is a simplified process-based model that
 energy balance. It couples an atmospheric radiative transfer model and artificial neural network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	27	couples atmosphere and canopy radiative transfers, canopy photosynthesis, transpiration, and
 network with forcings from MODIS atmospheric products. (4) RTSIF RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	28	energy balance. It couples an atmospheric radiative transfer model and artificial neural
 30 (4) RTSIF 31 RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy 32 further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori 33 Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant 34 improvements in providing high spatial and temporal resolution SIF observations, but the 	29	network with forcings from MODIS atmospheric products.
 RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitori Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	30	(4) RTSIF
 further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitorial Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	31	RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy is
 Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the 	32	further validated against tower-based SIF (Chen et al., 2022). The TROPOspheric Monitoring
34 improvements in providing high spatial and temporal resolution SIF observations, but the	33	Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant
	34	improvements in providing high spatial and temporal resolution SIF observations, but the

35 short temporal coverage of the data records has limited its applications in long-term studies 36 (Veefkind et al., 2012). RTSIF uses machine learning to reconstruct TROPOMI SIF for 2001-37 2020 with a spatial resolution of 0.05° and a temporal resolution of 8 days. We resample 38 temporal resolution as monthly. 39 (5) GOSIF-derived GPP 40 The GOSIF-derived GPP are generated based on various SIF-GPP relationships for the 41 period from 2000 to 2022. At site-level, the universal and biome-specific SIF-GPP 42 relationships are established based on SIF soundings from Orbiting Carbon Observatory-2 43 (OCO-2) and GPP data from 64 EC sites (Li and Xiao, 2019). And at grid cell level, a SIF-44 GPP relationship is established based on 0.05° GOSIF data and tower GPP. All these SIF-45 GPP relationships with different forms (universal and biome-specific, with and without 46 intercept) at both site and grid cell levels performed well in estimating GPP globally. 47 (6) FLUXCOM GPP 48 The FLUXCOM GPP are estimated from 3 machine learning methods (RF, ANN, 49 MARS) which were forced with CRUNCEPv6 meteorological data and mean seasonal cycles 50 of several MODIS based variables to merge carbon flux measurements from FLUXNET eddy 51 covariance towers with remote sensing and meteorological data (Jung et al., 2019). 52 FLUXCOM GPP was well validated and was provided at 0.5° spatial resolutions and monthly 53 intervals from 1980-2013 (Tramontana et al., 2016). 54 55 T_{air} and SW can be obtained directly from the relevant website. All of datasets used in 56 this study are listed in Table S3. The air temperature (T_{air}) gridded files are available at 57 website: https://rda.ucar.edu/datasets/ds314.3/. The ERA-Interim reanalysis datasets are 58 available at website: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-59 interim. (Dee et al., 2011). The Breathing Earth System Simulator (BESS) incoming 60 shortwave solar radiation (SW) gridded files are available at website: 61 http://environment.snu.ac.kr/bess_rad/. (Ryu et al. 2018). The reconstructed TROPOMI solar-62 induced fluorescence dataset (RTSIF) is available at website: 63 https://doi.org/10.6084/m9.figshare.19336346.v2. (Chen et al., 2022). The MODIS Enhanced 64 Vegetation Index (EVI) data are available at website: 65 https://modis.gsfc.nasa.gov/data/dataprod/ mod13.php. The GOSIF-derived GPP datasets are 66 available at website: http://data.globalecology.unh.edu/data/GOSIF-GPP_v2/. (Li and Xiao, 67 2019). The FLUXCOM GPP are available at website: https://www.bgc-68 jena.mpg.de/geodb/projects/Home.php. (Jung et al., 2019) 69

Supplementary Figures

72

73 Figure S1. Comparisons between monthly RTSIF-derived GPP (red) and observed GPP at

reddy covariance (EC) tower sites (blue). (a-b) Au-Rob, (c-d) BR-Sa1, (e-f) BR-Sa3, and (g-h)

75 GF-Guy.

76

78 Figure S2. Classifications of canopy leaves into young, mature and old age cohorts in

- 79 Dinghushan station. The boundaries of the imageries are those of the tree canopies that vary
- 80 between months.
- 81

82

Figure S3. The distribution map of measured LAI sites from previously published literatures.

85

86 Figure S4. The seasonality of observed total LAI values from previously published

87 literatures.

89 Figure S5. Spatial patterns of seasonal quality control (QC) datasets.

97 **Figure S7.** Comparison of the seasonality of LAI_{young+mature} observations and MODIS

98 Enhanced Vegetation Index (EVI) at eight camera-based observation sites. Green lines with

- 99 circle markers present LAI observations; olive lines with triangle markers present EVI. (a)
- 100 K67; (b) K34; (c) Barro Colorado; (d) EUCFLUX; (e) Din; (f) Gutian; (g) Banna; (h)
- 101 CONGOFLUX
- 102

103

Figure S8. The scatterplots of observed LAI_{young+mature} against EVI at 8 camera-based
 observation sites across study area.

106

Figure S9. Statistics of the mean Pearson correlation coefficient (R) and mean squared
deviation (MSD) between seasonality of simulated LAI_{young+mature} and MODIS Enhanced
Vegetation Index (EVI) in the 8 clustered sub-regions. (a) Mean of correlation coefficients in
each sub-region; (b) mean of d_{bias}, d_{var} and d_{phase} in each sub-region.

+LAI_{young} +LAI_{mature} +LAI_{old} +Litterfall +RTSIF-derived GPP +EVI +T_{air} +VPD +SW

- 114 Figure S10. Seasonality of LAI_{young}, LAI_{mature}, LAI_{old}, litterfall, RTSIF-derived GPP, EVI,
- 115 T_{air}, VPD and SW at 22 sites in south America.

- **Figure S11.** Seasonality of LAI_{young}, LAI_{mature}, LAI_{old}, litterfall, RTSIF-derived GPP, EVI,
- 119 T_{air}, VPD and SW at 7 sites in Congo.

Figure S12. Seasonality of LAI_{young}, LAI_{mature}, LAI_{old}, litterfall, RTSIF-derived GPP, EVI,

123 T_{air}, VPD and SW at 24 sites in tropical Asia.

127 Figure S13. The scatterplot of 0.25-degree LAI_{young}, LAI_{mature}, LAI_{old} against 0.5-degree LAI

128 cohort datasets in the 8 clustered regions.

- 131 Figure S14. Seasonality of RTSIF-derived GPP (yellow lines), GOSIF-derived GPP (pink
- 132 lines) and FLUXCOM GPP (blue lines) datasets in 8 sub-regions classified by the K-means
- 133 clustering analysis. (a-c) South America; (d-e) Congo; (f-h) tropical Asia.
- 134

135

136 Figure S15. The scatterplots of simulated LAIs generated from GOSIF-derived GPP against

137 observed LAIs at 8 camera-based observation sites across study area.

138

139

Figure S16. The scatterplots of simulated LAIs generated from FLUXCOM GPP against
 observed LAIs at 8 camera-based observation sites across study area.

144 Figure S17. Comparison of RTSIF-derived GPP (upper panels), GOSIF-derived GPP (middle

- 145 panels) and FLUXCOM GPP (bottom panels) datasets at 8 observation sites. (a) The
- 146 correlation coefficients (R); (b) mean squared deviation (MSD).
- 147

Supplementary Tables

Site ID	Site Name	Latitude	Longitude	
K67	Santarem-Km67-Primary Forest	2.86	54.96	
K07	Ecosystem Research Station	-2.80	-34.90	
V24	Manaus-K34 Forest Ecosystem	2.61	60.21	
K34	Research Station	-2.01	-00.21	
	Smithsonian Tropical Research	9.15	-79.85	
Barro Colorado	Institute, Barro Colorado Island,			
	Panama			
Engliss	Eucalyptus Plantation, Sao Paulo	-22.97	-48.73	
Eucliux	state, Brazil			
Congoflux	Tropical Forest, DR Congo	0.81	24.50	
	Dinghushan Forest Ecosystem			
Din	Research Station	23.17	112.54	
Gutian	Gutianshan Natural Reserve	29.23	118 40	
Guttan		27.23	110.40	
Banna	Xishuangbanna Tropical	21.92	101.27	
	Rainforest			

Table S1 Information of eight sites with observations of LAI cohorts

Table S2 Information of four sites with observations of eddy covariance data

Site ID	Site Name	Latitude	Longitude	
	Robson Creek, Queensland,			
AU-Rob	Australia Forest Ecosystem Research	-17.12	145.63	
	Station			
	Santarem-Km67-Primary Forest	2.86	54.06	
DK-Sai	Ecosystem Research Station	-2.80	-34.90	
	Santarem-Km83-Logged Forest	2.02	54.07	
DK-Sa5	Ecosystem Research Station	-3.02	-34.97	
CE Curr	Guyaflux (French Guiana) Forest	5 70	52.02	
OF-Ouy	Ecosystem Research Station	3.20	-32.92	

158	Table S3 Inputting gridded datasets to calculate the net rate of CO ₂ assimilation (An) in	
159	Figure 2	

159 Figure 2.

Name abbr.	Datasets Name	Source	Spatial- resolution	Time- resolution	During
T _{air}	temperature	ERA5-Land	0.1deg	monthly	195001- 202112
VPD	vapor pressure deficit	ERA Interim	0.125deg	monthly	198201- 201812
SW	downward short wave radiation	BESS	0.05deg	daily	200101- 201912
RTSIF	sun-induced chlorophyll fluorescence	TROPOMI-SIF	0.05deg	8days	200101- 201812
GOSIF GPP	gross primary production derived from OCO-2 Solar- induced chlorophyll fluorescerce (GOSIF)	OCO-2 SIF	0.05deg	monthly	200001- 202212
FLUXCOM GPP	gross primary production based on eddy covariance flux tower measurements	FLUXCOM	0.5deg	monthly	198001- 201312

Table S4 -part1 Equations for calculating An, W_c , W_j and W_p and intermediate variables in

162 Figure 2.

Equations	Notes	Ref.
$A_n = \min\left\{w_c, w_j, w_p\right\} - R_{dark}$	Net carbon assimilation rate $(A_n, \mu mol/m^2/s)$.	Farquhar et al., 1980; Bernacchi et al., 2013
$w_{c} = V_{c \max} \times \frac{c_{i} - \Gamma^{*}}{c_{i} + K_{C} \times (1 + \frac{O}{K_{O}})}$	Rubisco-limited photosynthetic rate (w_c , μ mol/m ² /s)	Farquhar et al., 1980
$w_{j} = J \times \frac{c_{i} - \Gamma^{*}}{4 \times (c_{i} + 2 \times \Gamma^{*})}$	Electron-transport limited rate of photosynthetic rate $(w_j, \mu \text{mol/m}^2/\text{s})$	Farquhar et al., 1980
$J = \frac{J_e + J_{\max} - \sqrt{(J_e + J_{\max})^2 - 4 \times \Theta \times J_e \times J_{\max}}}{2 \times \Theta}$	The rate of electrons through the thylakoid membrane (µmol/m ² /s)	Farquhar et al., 1980; Bernacchi et al., 2013
$J_e = PAR_{total} \times \alpha \times \beta \times \Phi_{PSII}$	The rate of whole electron transport provided by light $(\mu mol/m^2/s)$.	Bernacchi et al., 2013
$w_p = 0.5 \times V_{c \max}$	Triose phosphate export limited rate of photosynthesis (µmol/m ² /s)	Ryu et al., 2011
$Para = Para_{25} \times \exp(\frac{(T_{K} - 298.15) \times \Delta H_{para}}{R \times T_{K} \times 298.15})$	Temperature dependence function for various parameters including K_C , K_O , Γ^* , R_{dark} and V_{cmax} . T_K denotes leaf temperature in Kelvin. Reference temperature is 25 °C.	Bernacchi et al., 2013
$J_{\max} = J_{\max,25} \times \exp((\frac{25 - T_{opt}}{\Omega_T})^2 - (\frac{T_K - 273.15 - T_{opt}}{\Omega_T})^2)$	Temperature dependence frunction for maximum electron transport rate (J_{max}). T_{opt} is the optimal temperature for J_{max} .	Bernacchi et al., 2013; June et al., 2004
$g_{s} = 1.6 \times (1 + \frac{g_{1}}{\sqrt{VPD}}) \times \frac{A_{n}}{c_{a}}$ $A_{n} = g_{s} \times (c_{a} - c_{i})$ $\Rightarrow c_{i} = c_{a} \times (1 - \frac{1}{1.6 \times (1 + \frac{g_{1}}{\sqrt{VPD}})})$	Use optimal stomatal model to estimate internal CO_2 concentration (c_i) from atmospheric CO_2 concentration (c_a) and vapor pressure deficit (VPD)	Lin et al., 2015; Medlyn et al., 2011

Table S4 -part2 Equations for calculating An, W_c , W_j and W_p and intermediate variables in

165 Figure 2.

Symbol/Equations	Notes	Ref.
<i>c</i> _{<i>a</i>} = 380	Atmospheric CO ₂ concentration (ppm)	
$g_1 = 3.77$	Coefficient in stomatal conductance scheme	Lin et al., 2015
$J_{\max,25} = 1.67 \times V_{c\max,25}$	Maximum electron transport rate $(\mu mol/m^2/s)$ at 25 °C	Medlyn et al., 2002
<i>O</i> = 210	Atmospheric O ₂ concentration (pp thousand)	
<i>R</i> = 8.314	Universal gas constant (J/K/mol)	
$T_{opt} = 35$	Optimal temperature for J_{max} (°C)	Lloyd and Farquhar, 2008
$K_{C,25} = 404.9$ $\Delta H_{K_C} = 79.43$	Michaelis-Menton constant for carboxylase (µmol/mol) at 25 °C and activation energy for temperature dependence (kJ/mol)	Bernacchi et al., 2001
$K_{0,25} = 278.4$ $\Delta H_{K_0} = 36.38$	Michaelis-Menton constant for oxygenase (mmol/mol) at 25 °C and activation energy for temperature dependence (kJ/mol)	Bernacchi et al., 2001
$R_{dark,25} = 0.015 \times V_{c \max,25}$ $\Delta H_{R_{dark}} = 46.39$	Leaf dark respiration (µmol/m ² /s) at 25 °C and activation energy for temperature dependence (kJ/mol)	Bernacchi et al., 2001
$V_{c \max, 25}$ $\Delta H_{V_{c \max}} = 65.33$	Maximum carboxylation rate (µmol/m ² /s) at 25 °C is acquired from observations. Its activation energy for temperature dependence (kJ/mol) is listed	Bernacchi et al., 2001
$\Gamma_{25}^* = 42.75$ $\Delta H_{\Gamma^*} = 38.83$	CO ₂ compensation point (μmol/mol) at 25 °C and activation energy for temperature dependence (kJ/mol)	Bernacchi et al., 2001
$\alpha = 0.85$	Leaf absorbance fraction of photosynthetically active radiation (PAR)	Farquhar et al., 1980; Bernacchi et al., 2013
$\beta = 0.5$	Fraction of PAR that reaches PSII system	Farquhar et al., 1980; Bernacchi et al., 2013
$\Phi_{PSII} = 0.85$	Maximum quantum efficiency of PSII photochemistry.	Bernacchi et al., 2003; Evans, 1989; von Caemmerer et al., 2000
$\Theta = 0.7$	Convexity of light-response curve.	Bernacchi et al., 2003; Evans, 1989; Ögren and Evans, 1993
$\Omega_T = 11.6 + 0.18 \times T_{opt}$	Coefficient for the temperature function of J_{max} . T _{opt} is optimal temperature for J_{max} (°C)	Bernacchi et al., 2003

- 167 **Table S4 -part3** Equations for calculating An, W_c , W_j and W_p and intermediate variables in
- 168 Figure 2.

Equations	Notes	Ref.
$PAR_{total} = (1 - \rho_{cb}) \times PAR_{b,0} \\ \times (1 - exp(-k'_b \times CI \times LAI_{total})) \\ + (1 - \rho_{cd}) \times PAR_{d,0} \\ \times (1 - exp(-k'_d \times CI \times LAI_{total}))$	Total PAR absorbed by canopy (µmol/m ² /s)	He et al., 2012; Ryu et al., 2011; De Pury and Farquhar, 1997
$k_b' = \frac{0.46}{\cos(SZA)}$	Extinction coefficient for beam and scattered beam PAR	De Pury and Farquhar, 1997
$k'_d = 0.719$	Extinction coefficient for diffuse and scattered diffuse PAR	De Pury and Farquhar, 1997
$\rho_{cb} = 0.029$	Canopy reflection coefficient for beam PAR	De Pury and Farquhar, 1997
$\rho_{cd} = 0.036$	Canopy reflection coefficient for diffuse PAR	De Pury and Farquhar, 1997
<i>CI</i> = 0.63	Leaf clumping index	He et al., 2012; Ryu et al., 2011

169 Equations to calculate radiative transfer within canopy with a total leaf area index as *LAI*_{total}.

- 171 Table S4 -part4 Equations for calculating An, W_c, W_j and W_p and intermediate variables in
- 172 Figure 2.
- 173 Equations to calculate incoming photosynthetically active radiation in beam (PAR_{b,0}) and in
- 174 diffuse (PAR_{d,0}) over canopy. R_{short} denotes total short-wave radiations from BESS SW. P
- 175 denotes observed air pressure and P_0 denotes standard air pressure.

Equations	Notes	Ref.
$PAR_{b,0} = R_{short} \times f_{PAR} \times f_{PAR,b}$	The canopy top	Weiss
$PAR_{d,0} = R_{short} \times f_{PAR} \times (1 - f_{PAR,b})$	photosynthetically active	and
	radiation in beam $(PAR_{b,\theta})$	Norman,
	and diffuse $(PAR_{d,0})$ light	1985
$f_{PAR} = \frac{R_{b,vis} + R_{d,vis}}{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}}$ $f_{PAR,b} = \frac{R_{b,vis}}{R_{b,vis} + R_{d,vis}}$ $0.9 - \frac{R_{short}}{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}}$ $\times (1 - (\frac{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}}{0.7})^2)$	The fraction of total PAR over total incoming radiation (f_{PAR}) and the fraction of beam PAR over total PAR ($f_{PAR,b}$)	Weiss and Norman, 1985
$600 \times a^{-0.185 \times \frac{P}{P_0} \times m}$	Expected beam visible radiation under clear sky	Weiss
$R_{b,vis} = \frac{000 \times e}{1000}$	(W/m^2)	Norman
m		1985
$R = -\frac{0.4 \times (600 - R_{b,vis} \times m)}{1000}$	Expected diffuse visible	Weiss
m m	radiation under clear sky	and
	(W/m^2)	Norman,
		1985
$-0.06 \times \frac{P}{P_0} \times m$	Expected beam near-	Weiss
$R_{\rm toric} = \frac{720 \times e^{-10} - W}{-10}$	clear sky (W/m^2)	and
^D ,mr m		Norman, 1985
$0.6 \times (720 - R_{hadred} \times m - w)$	Expected diffuse near-	Weiss
$R_{d,nir} = \frac{1}{m}$	infrared radiation under	and
	clear sky (W/m ²)	Norman,
		1985
$1220 \times 10^{-1.195+0.4459 \times \log_{10} m - 0.0345 \times (\log_{10} m)^2}$	Expected water absorbance	Weiss
$W = 1320 \times 10$	of near-infrared radiation	and
	in the atmosphere (W/m^2)	Norman,
		1985
$m = \cos(SZA)^{-1}$	Parameter calculated from	Weiss
	solar zenith angle (SZA)	and
		Norman,
		1985

NO.	LAI mean	Sites	Methods	Ref.
1	6.0	ORCHIDEE TrBE module	Module	De Weirdt et al., 2012
2	5.88	K34	observation	Wu et al., 2016
3	5.45	Tapajo´s National Forest	observation	Asner et al., 2003
4	6.04	Barro Colorado Island	observation	Wirth et al., 2001
5	6.0	Costa Rican Forest	observation	Clark et al., 2008;
6	5.89	K67	observation	Wu et al., 2016
7	5.9	Tapajo's National Forest	observation	Brando et al., 2008
8	5.7	K67	observation	Smith et al., 2019
9	5.34	Congo	observation	de Wasseige et al., 2003
10	5.93	Xishuangbanna	observation	Li et al., 2010
11	5.67	Dinghushan	observation	Zhao, Chen et al., 2020

Table S5. Information of total LAI mean values from previously published literatures.

Site	Latitude	Longitude	Reference
1	15.50	-90.45	Kunkel-Westphal and Kunkel, 1979
2	-2.61	-60.21	Pastorello et al., 2020
3	-2.85	-54.95	Pastorello et al., 2020
4	-0.45	-51.70	Barlow et al., 2007
5	-1.73	-47.15	Dantas and Phillipson, 1989
6	6.85	4.35	Hopkins, 1966
7	7.48	4.57	Odiwe and Muoghalu, 2003
8	5.70	6.20	Ndakara, 2011
9	4.57	9.45	Songwe and Fasehun, 1995
10	4.37	9.27	Songwe and Fasehun, 1995
11	0.51	12.80	Midoko Iponga et al., 2019
12	8.48	77.28	Sundarapandian and Swamy, 1999
13	8.47	77.36	Sundarapandian and Swamy, 1999
14	21.93	101.27	CERN
15	14.50	101.92	Yamashita et al., 2010
16	22.13	106.82	Lu et al., 2008
17	21.93	108.35	Wu, 1991
18	22.97	108.35	Rong, 2009
19	23.01	108.59	Zeng, 2011
20	19.12	109.95	Wang, 2007
21	21.08	110.17	Ren et al., 1998
22	21.85	111.02	Ren et al., 1998
23	23.47	111.87	Chen and Wang, 1992
24	22.68	112.90	Zou et al., 2006
25	22.68	112.90	CERN
26	26.10	117.20	Wu, 2006
27	24.33	117.43	Pan et al., 2010
28	26.19	117.43	Yang et al., 2003
29	27.70	117.68	Lin et al., 1999
30	24.77	117.86	Liu et al., 2009

Table S6. Information of 53 sites with ground-based observations of seasonal litterfall data.

31	24.77	117.86	Tang, 2010
32	26.47	117.95	Zheng et al., 2011
33	4.97	117.80	Burghouts et al., 1992
34	-1.52	120.03	Triadiati et al., 2011
35	-27.33	152.75	Hegarty, 1991
36	-11.42	-55.33	Zhang et al., 2014
37	-2.85	-54.95	Rice et al., 2004
38	4.79	-74.20	Zhang et al., 2014
39	5.45	-61.88	Zhang et al., 2014
40	-1.00	-52.00	Zhang et al., 2014
41	-3.01	-54.97	Melton et al., 2014
42	-2.00	-54.00	Zhang et al., 2014
43	-4.33	-62.47	Zhang et al., 2014
44	-2.57	-60.12	Wu et al., 2016
45	5.27	-52.92	De Weirdt et al., 2012
46	7.20	-75.34	Zhang et al., 2014
47	-11.42	-55.33	Zhang et al., 2014
48	6.22	-5.03	Zhang et al., 2014
49	-23.14	-44.18	Silva-Filho et al., 2006
50	-21.02	-40.92	Jackson, 1978
51	9.38	-79.96	Unpublished data, S. J. Wright
52	-23.18	-46.87	Morellato, 1992
53	-25.18	-48.30	Scheer et al., 2009

Table S7. Information of data quality control (QC) for the Lad-LAI product

QC class	QC value	RSS	RMSE (m ² m ⁻²)
Best	1	0-1	0-1
Good	2	1-4	1-2
Acceptable	3	4-9	2-3
Cautious use	4	>9	>3

185 **References:**

Asner, G.P., Scurlock, J.M.O. and A. Hicke, J.: Global synthesis of leaf area index
observations: implications for ecological and remote sensing studies, Global Ecol.

188 Biogeogr., 12, 191-205, 10.1046/j.1466-822X.2003.00026.x, 2003.

- Barlow, J., Gardner, T. A., Ferreira, L. V., and Peres, C. A.: Litter fall and decomposition in
 primary, secondary and plantation forests in the Brazilian Amazon, Forest Ecol. Manag.,
- 191 247, 91-97, 10.1016/j.foreco.2007.04.017, 2007.
- Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R., and Long, S. P.: Improved
 temperature response functions for models of Rubisco-limited photosynthesis, Plant,
 Cell Environ., 24, 253-259, 10.1111/j.1365-3040.2001.00668.x, 2001.
- Bernacchi, C. J., Pimentel, C., and Long, S. P.: In vivo temperature response functions of
 parameters required to model RuBP-limited photosynthesis, Plant, Cell Environ., 26,
 1419-1430, 10.1046/j.0016-8025.2003.01050.x, 2003.
- Bernacchi, C. J., Bagley, J. E., Serbin, S. P., Ruiz-Vera, U. M., Rosenthal, D. M., and
 Vanloocke, A.: Modelling C₃ photosynthesis from the chloroplast to the ecosystem,
 Plant, Cell Environ., 36, 1641-1657, 10.1111/pce.12118, 2013.
- Brando, P. M., Nepstad, D. C., Davidson, E. A., Trumbore, S. E., Ray, D. and Camargo, P.:
 Drought effects on litterfall, wood production and belowground carbon cycling in an
 Amazon forest: Results of a throughfall reduction experiment, Philos. T. R. Soc. B., 363,
- 204 1839-1848, 10.1098/rstb.2007.0031, 2008.
- Burghouts, T., Ernsting, G., Korthals, G., and Vries, T. D.: Litterfall, leaf litter decomposition
 and litter invertebrates in primary and selectively logged dipterocarp forest in Sabah,
 Malaysia, Philos. T. R. Soc. B., 335, 407-416, 10.1098/rstb.1992.0032, 1992.
- 208 Chinese Ecosystem Research Network (CERN): http://www.cnern.org.cn., last access: 13
 209 November 2022.
- Chen, X., Huang, Y., Nie, C., Zhang, S., Wang, G., Chen, S., and Chen, Z.: A long-term
 reconstructed TROPOMI solar-induced fluorescence dataset using machine learning
 algorithms, Sci. Data, 9, 427, 10.1038/s41597-022-01520-1, 2022.
- Chen, Z. H., Zhang, H. T., and Wang, B. S.: Studies on biomass and production of the lower
 subtropical evergreen broad-leaved forest in Heishiding Natural Reserve, VII. Litterfall,
- litter standing crop and litter decomposition rate, Journal of Tropical and Subtropical
 Botany, 107-114, http://europepmc.org/abstract/CBA/539457, 1992.
- 217 Clark, D.B., Olivas, P.C., Oberbauer, S.F., Clark, D.A. and Ryan, M.G.: First direct
- 218 landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of
- global primary productivity, Ecol. Lett., 11, 163-172, 10.1111/j.1461-
- 220 0248.2007.01134.x, 2008.

- Dantas, M. and Phillipson, J.: Litterfall and litter nutrient content in primary and secondary
 Amazonian 'terra firme' rain forest, J. Trop. Ecol., 5, 27-36,
 10.1017/s0266467400003199, 1989.
- De Pury, D. G. G. and Farquhar, G. D.: Simple scaling of photosynthesis from leaves to
 canopies without the errors of big-leaf models, Plant, Cell Environ., 20, 537-557,
 10.1111/j.1365-3040.1997.00094.x, 1997.
- de Wasseige, C., Bastin, D. and Defourny, P.: Seasonal variation of tropical forest LAI based
 on field measurements in Central African Republic, Agr. Forest Meteorol., 119, 181194, 10.1016/S0168-1923(03)00138-2, 2003.
- De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., and
 Steppe, K.: Seasonal leaf dynamics for tropical evergreen forests in a process-based
 global ecosystem model, Geosci. Model Dev., 5, 1091-1108, 10.5194/gmd-5-1091-2012,
 2012.
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg,
 L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
- 237 Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
- 238 Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
- B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-
- Interim reanalysis: configuration and performance of the data assimilation system, Q. J.
 Roy. Meteor. Soc., 137, 553-597, 10.1002/gi,828, 2011.
- Roy. Meteor. Soc., 137, 553-597, 10.1002/qj.828, 2011.
 Evans, J. R.: Photosynthesis and Nitrogen Relationships in Leaves of C₃ Plants, Oecologia,
- 243 78, 9-19, jstor.org/stable/4218825, 1989.
- Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic
 CO₂ assimilation in leaves of C₃ species, Planta, 149, 78-90, 10.1007/BF00386231,
 1980.
- He, L., Chen, J. M., Pisek, J., Schaaf, C. B., and Strahler, A. H.: Global clumping index map
 derived from the MODIS BRDF product, Remote Sens. Environ., 119, 118-130,
 10.1016/j.rse.2011.12.008, 2012.
- Hegarty, E. E.: Leaf litter production by lianes and trees in a sub-tropical Australian rain
 forest, J. Trop. Ecol., 7, 201-214, 10.1017/s0266467400005356, 1991.
- Hopkins, B.: Vegetation of the Olokemeji Forest Reserve, Nigeria: IV. The litter and soil with
 special reference to their seasonal changes, J. Ecol., 54, 10.2307/2257811, 1966.
- Jackson, F. J.: Seasonality of flowering and leaf-fall in a Brazilian subtropical lower montane
 moist forest, Biotropica, 10, 38-42, 10.2307/2388103, 1978.

- June, T., Evans, J. R., and Farquhar, G. D.: A simple new equation for the reversible
- temperature dependence of photosynthetic electron transport: a study on soybean leaf,
 Funct. Plant Biol., 31, 275-283, 10.1071/FP03250, 2004.
- Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm,
 C., Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-
- 261 atmosphere energy fluxes, Sci. Data, 6, 74. 10.1038/s41597-019-0076-8, 2019.
- Kunkel-Westphal, I. and Kunkel, P.: Litterfall in a guatemalan primary forest, with details of
 leaf-shedding by some common tree species, J. Ecol., 67, 10.2307/2259119, 1979.
- Li, X., and Xiao, J.: Mapping photosynthesis solely from solar-induced chlorophyll
 fluorescence: A global, fine-resolution dataset of gross primary production derived from
 OCO-2, Remote Sens., 11, 2563, 10.3390/rs11212563, 2019.
- Li, Z., Zhang, Y., Wang, S., Yuan, G., Yang, Y. and Cao, M.: Evapotranspiration of a tropical
 rain forest in Xishuangbanna, southwest China, Hydrol. Process., 24, 2405-2416,
 10.1002/hyp.7643, 2010.
- Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., Eamus, D., de
 Dios, Victor R., Mitchell, P., Ellsworth, D. S., de Beeck, M. O., Wallin, G., Uddling, J.,
- 272 Tarvainen, L., Linderson, M.-L., Cernusak, L. A., Nippert, J. B., Ocheltree, T. W.,
- 273 Tissue, D. T., Martin-StPaul, N. K., Rogers, A., Warren, J. M., De Angelis, P.,
- Hikosaka, K., Han, Q., Onoda, Y., Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal,
- 275 D., Bosc, A., Löw, M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tausz-
- 276 Posch, S., Zaragoza-Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M.,
- 277 Ghannoum, O., Hutley, Lindsay B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama, K.,
- 278 Limousin, J.-M., Meir, P., Lola da Costa, A. C., Mikkelsen, T. N., Salinas, N., Sun, W.,
- and Wingate, L.: Optimal stomatal behaviour around the world, Nat. Clim. Change, 5,
 459-464, 10.1038/nclimate2550, 2015.
- Lin, Y., He, J., Yang, Z., Liu, C., Lin, P., and Li, Z.: Yield and dynamics of litter in
 Castanopsis chinensis community in Wuyi Mountains, Journal of Xiamen University
 (Natural Science), 128-134, 1999. (in Chinese)
- Liu, W., Fan, H., Gao, C., Huang, R., and Su, B.: Litter mass and nutrient flux in Eucalyptus
 plantation in continuous age series, J. Ecol., 28, 1928-1934, 2009. (in Chinese)
- Lloyd, J. and Farquhar, G. D.: Effects of rising temperatures and [CO2] on the physiology of
 tropical forest trees, Philos. T. R. Soc. B., 363, 1811-1817, 10.1098/rstb.2007.0032,
 2008.

Lu, L., Jia, H., He, R., Li, J., and Tan, S.: A preliminary study on litter falls of six kinds of plantations in the tropical South Asia, Forestry Science Research, 21, 346-352, 2008. (in Chinese)

292 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., 293 Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal 294 and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 295 2134-2144, 10.1111/j.1365-2486.2010.02375.x, 2011. Medlyn, B. E., Drever, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. 296 297 F., Le Roux, X., Montpied, P., Strassemever, J., Walcroft, A., Wang, K., and Loustau, 298 D.: Temperature response of parameters of a biochemically based model of 299 photosynthesis. II. A review of experimental data, Plant, Cell Environ., 25, 1167-1179, 300 10.1046/j.1365-3040.2002.00891.x, 2002. 301 Melton, J., Shrestha, R., and Arora, V.: The influence of soils on heterotrophic respiration 302 exerts a strong control on net ecosystem productivity in seasonally dry Amazonian 303 forests, Biogeosciences, 11, 1151-1168, 10.5194/bgd-11-12487-2014, 2014. 304 Midoko Iponga, D., Mpikou, R. G. J., Loumeto, J., and Picard, N.: The effect of different 305 anthropogenic disturbances on litterfall of a dominant pioneer rain forest tree in Gabon, 306 Afr. J. Ecol., 58, 281-290, 10.1111/aje.12696, 2019. 307 Morellato, C. P.: Nutrient cycling in two south-east brazilian forests. I litterfall and litter 308 standing crop, J. Trop. Ecol., 8, 205-215, 10.1017/S0266467400006362, 1992. 309 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., 310 Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., 311 Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: 312 ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth. Syst. 313 Sci. Data, 13, 4349-4383, 10.5194/essd-13-4349-2021, 2021. 314 Ndakara, O. E.: Litterfall and nutrient returns in isolated stands of persea gratissima (avocado 315 pear) in the rainforest zone of southern Nigeria, Ethiopian Journal of Environmental 316 Studies and Management, 4, 10.4314/ejesm.v4i3.6, 2011. 317 Odiwe, A. I. and Muoghalu, J. I.: Litterfall dynamics and forest floor litter as influenced by fire in a secondary lowland rain forest in Nigeria, Trop. Ecol., 44, 241-249, 2003. 318 319 Ögren E. and Evans J.R.: Photosynthetic light-response curves. I. The influence of CO_2 320 partial pressure and leaf inversion, Planta, 189, 180-190, 1993. Pan, H., Huang, S., Hong, W., Zhao, K., and Zhang, Z.: Litter mass and carbon return 321 322 dynamics of three species of Acacia plantation, Journal of Fujian Forestry University, 323 30, 104-108, 10.13324/j.cnki.jfcf.2010.02.013, 2010. (in Chinese) 324 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Poindexter, 325 C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., 326 Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. 327 A., Ardo, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, 328 D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer,

329	C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J.,
330	Bolstad, P. V., Bonal, D., Bonnefond, J. M., Bowling, D. R., Bracho, R., Brodeur, J.,
331	Brummer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna,
332	M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo,
333	C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da
334	Rocha, H., Dai, X., Davis, K. J., Cinti, B., Grandcourt, A., Ligne, A., De Oliveira, R. C.,
335	Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. D., Dolman, H., Domingo, F.,
336	Dong, G., Dore, S., Duce, P., Dufrene, E., Dunn, A., Dusek, J., Eamus, D., Eichelmann,
337	U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S.,
338	Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno,
339	M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede,
340	M., Goldstein, A. H., Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C.,
341	Grunwald, T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J.,
342	He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hortnagl, L., Hutley, L., Ibrom, A.,
343	Ikawa, H., Jackowicz-Korczynski, M., Janous, D., Jans, W., Jassal, R., Jiang, S., Kato,
344	T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O.,
345	Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon,
346	H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.
347	M., Lion, M., Liska, A. J., Lohila, A., Lopez-Ballesteros, A., Lopez-Blanco, E., Loubet,
348	B., Loustau, D., Lucas-Moffat, A., Luers, J., Ma, S., Macfarlane, C., Magliulo, V.,
349	Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S.,
350	Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F.,
351	McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W., Meyers, T.,
352	Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K., Montagnani, L., Moore, C. E.,
353	Moors, E., Moreaux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck, J., Nesic,
354	Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K.,
355	Oechel, W., Olesen, J. E., Ourcival, J. M., Papuga, S. A., Parmentier, F. J., Paul-
356	Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk, N.,
357	Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, U., Raz-Yaseef, N.,
358	Rebmann, C., Reed, D., Dios, V. R., Restrepo-Coupe, N., Reverter, B. R., Roland, M.,
359	Sabbatini, S., Sachs, T., Saleska, S. R., Sanchez-Canete, E. P., Sanchez-Mejia, Z. M.,
360	Schmid, H. P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L.,
361	Sedlak, P., Serrano-Ortiz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Sigut, L.,
362	Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant, C.,
363	Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J., Tomassucci,
364	M., Tuovinen, J. P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van
365	Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D.,

366	Vygodskaya, N., Walker, J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S.,
367	Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R.,
368	Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale, D.: The
369	FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data,
370	Sci. Data, 7, 225, 10.1038/s41597-020-0534-3, 2020.
371	Ren, H., Peng, S., Liu, H., Yu, Z., and Fang, D.: Study on litter and its ecological benefits of
372	tropical artificial mixed forest in Xiaoliang, J. Appl. Ecol., 11-15, 1998.
373	Rong, Y.: Study on dynamics of litter production, quality and decomposition of Eucalyptus
374	urophylla \times Eucalyptus grandis and Acacia crassicarpa plantations, Guangxi Universit,
375	2009. (in Chinese)
376	Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land products of
377	shortwave radiation and diffuse and total photosynthetically active radiation at 5 km
378	resolution from 2000, Remote Sens. Environ., 204, 812-825, 10.1016/j.rse.2017.09.021,
379	2018.
380	Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T. A., Beringer, J., van
381	Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O.: Integration of MODIS land and
382	atmosphere products with a coupled-process model to estimate gross primary
383	productivity and evapotranspiration from 1 km to global scales, Global Biogeochem.
384	Cy., 25, n/a-n/a, 10.1029/2011gb004053, 2011.
385	Scheer, B. M., Gatti, G., Wisniewski, C., Mocochinski, Y. A., Cavassani, T. A., Lorenzetto,
386	A., and Putini, F.: Patterns of litter production in a secondary alluvial Atlantic Rain
387	Forest in southern Brazil, Braz. J. Bot., 32, 805-817, 2009.
388	Sharma, E. and Ambasht, R. S.: Litterfall, Decomposition and Nutrient Release in an Age
389	Sequence of Alnus Nepalensis Plantation Stands in the Eastern Himalaya, J. Ecol., 75,
390	10.2307/2260309, 1987.
391	Silva-Filho, V. E., Machado, W., Oliveira, R. R., Sella M. S., Lacerda, and D. L.:Mercury
392	deposition through litterfall in an Atlantic Forest at Ilha Grande, Southeast Brazil,
393	Chemosphere, 65, 2477-2484, 2006.
394	Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., de Oliveira, E., Restrepo-Coupe, N.,
395	Chen, S., Woodcock, T., dos Santos, D. B., Alves, L. F., Figueira, M., de Camargo, P.
396	B., de Oliveira, R. C., Aragão, L. E. O. C., Falk, D. A., McMahon, S. M., Huxman, T. E.
397	and Saleska, S. R.: Seasonal and drought-related changes in leaf area profiles depend on
398	height and light environment in an Amazon forest. New Phytol., 222, 1284-1297,
399	10.1111/nph.15726, 2019.
400	Songwe, N. C., Okali, D. U. U., and Fasehun, F. E.: Litter decomposition and nutrient release
401	in a tropical rainforest, Southern Bakundu Forest Reserve, Cameroon, J. Trop. Ecol., 11,
402	333-350, 10.1017/s0266467400008816, 1995.

403	Sundarapandian, S. M. and Swamy, P. S.: Litter production and leaf-litter decomposition of
404	selected tree species in tropical forests at Kodayar in the Western Ghats, India, Forest
405	Ecol. Manag., 123, 231-244, 10.1016/s0378-1127(99)00062-6, 1999.
406	Tang, J.: Dynamics of litter fall and nutrient return in Eucalyptus grandis plantation, Journal
407	of Nanchang Institute of Technology, 29, 60-64, 2010. (in Chinese)
408	Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., R'aduly, B.,
409	Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P.,
410	Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across
411	global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313,
412	2016.
413	Triadiati, Tjitrosemi, S., Guhardja, E., Sudarsono, Qayim, I., and Leuschner, C.: Litterfall
414	production and leaf-litter decomposition at natural forest and cacao agroforestry in
415	central Sulawesi, Indonesia, Asian Journal of Biological Sciences, 4, 221-234,
416	10.3923/ajbs.2011.221.234, 2011.
417	Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes,
418	H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R.,
419	Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser,
420	H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for
421	global observations of the atmospheric composition for climate, air quality and ozone
422	layer applications, Remote Sens. Environ., 120, 70-83, 10.1016/j.rse.2011.09.027, 2012.
423	Wang, M., Liu, Q., and Gao, J.: Litter dynamics of four plant communities affected by
424	typhoon in the central hilly area of Hainan Island, Journal of Hainan Normal University
425	(Natural Science), 156-160, 2007. (in Chinese).
426	Weiss, A. and Norman, J. M.: Partitioning solar radiation into direct and diffuse, visible and
427	near-infrared components, Agr. Forest Meteorol., 34, 205-213, 10.1016/0168-
428	1923(85)90020-6, 1985.
429	Wirth, R., Weber, B., and Ryel, R. J.: Spatial and temporal variability of canopy structure in a
430	tropical moist forest, Acta Oecol., 22(5-6), 2001.
431	Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan,
432	K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S.,
433	Kobayashi, H., Ferreira, M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G.,
434	Huxman, T. E., Huete, A. R., Nelson, B. W., and Saleska, S. R.: Leaf development and
435	demography explain photosynthetic seasonality in Amazon evergreen forests, Science,
436	351, 972-976, 10.1126/science.aad5068, 2016.
437	Wu, Y.: Study on Litter and Nutrient Cycling in Four Kinds of Evergreen Plantations,
438	Guangxi Forestry Technology, 38-41+28, 10.19692/j.cnki.gfs.1991.01.007, 1991. (in
439	Chinese)

- Wu, Z.: Litter quantity, composition and dynamics of human-promoted evergreen broadleaved secondary forest, Mountain Journal, 215-221, 2006. (in Chinese)
- Yamashita, N., Ohta, S., Sase, H., Luangjame, J., Visaratana, T., Kievuttinon, B., Garivait,
 H., and Kanzaki, M.: Seasonal and spatial variation of nitrogen dynamics in the litter and
 surface soil layers on a tropical dry evergreen forest slope, Forest Ecol. Manag., 259,
- 445 1502-1512, 10.1016/j.foreco.2010.01.026, 2010.
- Yang, Y., Lin, P., Guo, J., Lin, R., Chen, G., He, Z., and Xie, J.: Litter quantity, nutrient
 return and litter decomposition in natural forest and plantation of Castanopsis grizii, J.
 Ecol., 1278-1289, 2003.
- Zeng, S.: Litter yield analysis of fast-growing tree species Eucalyptus and Acacia plantation,
 Jilin Agriculture, 231-232, 2011. (in Chinese)
- Zhang, H., Yuan, W., Dong, W., and Liu, S.: Seasonal patterns of litterfall in forest ecosystem
 worldwide, Ecol. Complex., 20, 240-247, 2014.
- Zhao, P., Gao, L., Wei, J., Ma, M., Deng, H., Gao, J., and Chen, X.: Evaluation of ERAInterim Air Temperature Data over the Qilian Mountains of China, Adv. Meteorol.,
 7353482, 10.1155/2020/7353482, 2020
- Zhao, Y., Chen, X., Smallman, T. L., Flack-Prain, S., Milodowski, D. T., and Williams, M.:
 Characterizing the Error and Bias of Remotely Sensed LAI Products: An Example for
- 458 Tropical and Subtropical Evergreen Forests in South China, Remote Sens., 12, 3122,

459 10.3390/rs12193122, 2020.

- Zheng, J., Yang, z., Ling, h., and Chen, G.: Yield and monthly dynamics of litter in Phoebe
 plantation, Journal of Fujian Normal University (Natural Science), 27, 88-92, 2011. (in
 Chinese)
- 463 Zou, B., Li, Z., Ding, Y., and Tan, W.: Litter dynamic characteristics of four plantation
- 464 forests in South subtropical zone, Journal of Ecology, 715-721, 2006. (in Chinese)