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Section numbers match the main paper. 

S3. Greenhouse gas concentrations  

Naming conventions and details for Sect. 3 of the main paper and here follow AR6 WGI Chapter 2 (Gulev et al., 2021). 

Table S1: Annual mean concentrations of well-mixed greenhouse gases (GHGs) in 2022, 2019, 1850 and 1750. Except for CO2, CH4 

and N2O, concentrations all are in parts per trillion [ppt]. For halogenated gases, concentrations are stated for each gas, with 5 
equivalents for HFCs, PFCs and Montreal gases given as the radiative equivalent of the most abundant gas in each category. 

 

Greenhouse gas 1750 1850 2019 2022 

CO2 [ppm] 278.3 285.5 410.1 417.1 

CH4 [ppb] 729.2 807.6 1866.3 1911.9 

N2O [ppb] 270.1 272.1 332.1 335.9 

NF3 0 0 2.1 2.7 

SF6 0 0 9.9 11 

SO2F2 0 0 2.5 2.8 

HFCs as HFC-134a-
eq 

0 0 237.7 287.2 

  HFC-23 0 0 32.5 36.1 

  HFC-32 0 0 20.4 31.1 

  HFC-125 0 0 29.5 39.7 

  HFC-134a 0 0 107.6 124.5 

  HFC-143a 0 0 24 28.9 

  HFC-152a 0 0 7.2 7.5 

  HFC-227ea 0 0 1.6 2.1 

  HFC-236fa 0 0 0.2 0.2 

  HFC-245fa 0 0 3.1 3.7 

  HFC-365mfc 0 0 1.1 1.2 

  HFC-43-10mee 0 0 0.3 0.3 

PFCs as CF4-eq 34 34 109.4 114.2 

  CF4 34 34 85.6 88.4 

  C2F6 0 0 4.8 5.1 

  C3F8 0 0 0.7 0.7 

  c-C4F8 0 0 1.8 1.9 

  n-C4F10 0 0 0.2 0.2 

  n-C5F12 0 0 0.1 0.2 
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  n-C6F14 0 0 0.2 0.2 

  i-C6F14 0 0 0.1 0.1 

  C7F16 0 0 0.1 0.1 

  C8F18 0 0 0.1 0.1 

Montreal gases as 
CFC-12-eq 

8.5 8.5 1031.8 1016.6 

  CFC-11 0 0 226.2 219.6 

  CFC-12 0 0 502.9 493.3 

  CFC-112 0 0 0.4 0.4 

  CFC-112a 0 0 0.1 0.1 

  CFC-13 0 0 3.3 3.4 

  CFC-113 0 0 69.8 68.2 

  CFC-113a 0 0 0.9 1 

  CFC-114 0 0 16.3 16.3 

  CFC-114a 0 0 1 1 

  CFC-115 0 0 8.7 8.8 

  HCFC-22 0 0 246.8 251.8 

  HCFC-31 0 0 0.1 0.1 

  HCFC-124 0 0 1 0.9 

  HCFC-133a 0 0 0.4 0.5 

  HCFC-141b 0 0 24.4 24.6 

  HCFC-142b 0 0 22.2 21.9 

  CH3CCl3 0 0 1.6 0.9 

  CCl4 0 0 78.1 74 

  CH3Cl 457 457 540.8 538 

  CH3Br 5.3 5.3 6.5 6.4 

  CH2Cl2 6.9 6.9 36.8 40.7 

  CHCl3 4.8 4.8 8.8 8.7 

  Halon-1211 0 0 3.3 3 

  Halon-1301 0 0 3.3 3.4 

  Halon-2402 0 0 0.4 0.4 
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S4. Effective radiative forcing (ERF) 

S4.1 Well-mixed greenhouse gas ERF methods 10 

Radiative forcings (RFs)from CO2, CH4 and N2O use the simplified formulas from concentrations in Meinshausen et al. (2020), 

derived from an updated functional fit to the line-by-line radiative transfer results by Etminan et al. (2016). These formulas 

are, to first order, logarithmic with CO2 concentrations, and a square-root dependence for CH4 and N2O, with additional 

corrections and radiative band, overlaps between gases. RF is converted to ERF using scaling factors (1.05, 0.86 and 1.07 for 

CO2, CH4 and N2O respectively) that account for tropospheric and land-surface rapid adjustments (Smith et al., 2018a; 15 

Hodnebrog et al., 2020a). ERF from other GHGs is assumed to scale linearly with their concentration based on their radiative 

efficiencies, expressed in W m-2 ppb-1 (Hodnebrog et al., 2020b, Smith et al., 2021b). A scaling factor translating RF to ERF is 

implemented for CFC-11 (1.13) and CFC-12 (1.12) (Hodnebrog et al., 2020a), whereas no model evidence exists to treat ERF 

differently to RF for other halogenated gases. 

 20 

Relative uncertainties in the ERF for CO2 (± 12%), CH4 (± 20%) and N2O (± 14%) are unchanged from AR6. These stem from 

a combination of spectroscopic uncertainties and uncertainties in the adjustment terms converting RF to ERF; uncertainties in 

the volume mixing concentrations themselves are assessed to be small (Sect. 2.2). Uncertainties in the ERF from halogenated 

gases are treated individually and are assessed as ±19% for gases with a lifetime of 5 or more years and ±26% for shorter-

lifetime gases. In AR6, a ±19% uncertainty was applied to the sum of the ERF from all halogenated gases. To maintain a 25 

consistent uncertainty range across the sum of ERF from halogenated gases with AR6, we inflate the uncertainty in each 

individual gas by a factor of 2.05. Uncertainties are applied by scaling the full ERF time series for each gas. 

S4.2 Aerosol ERF methods 

Aerosol ERF is a combination of contributions from aerosol-radiation interactions (ERFari) and aerosol-cloud interactions 

(ERFaci).  30 

S4.2.1 Aerosol-radiation interactions 

Contributions to ERFari are assumed to scale linearly with certain SLCF emissions in Sect. 2.3 (SO2, BC, OC, NH3, NOx and 

VOC) or concentrations (CH4, N2O and ozone-depleting halocarbons) of primary aerosols and chemically active precursor 

species. The coefficients converting emissions or concentrations of each SLCF into ERF and its uncertainty come from Chapter 

6 of AR6 WGI (Szopa et al., 2021), originally from CMIP6 AerChemMIP models (Thornhill et al., 2021a). We scale these 35 
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coefficients to reproduce the headline AR6 WGI ERFari assessment of -0.3 W m-2 from 1750 to 2005-2014. Uncertainties are 

applied as a scale factor for each species and applied to the whole time series. 

 

The inclusion of more species that affect ERFari differs from the AR6 WGI calculation of ERFari in Chapter 7, which only 

used SO2, BC, OC and NH3 (Smith et al., 2021b). In the update, these four species remain the dominant aerosol and aerosol 40 

precursors. Additionally, these coefficients have changed slightly due to switching to CMIP6 era data.  In AR6, the 

coefficients’ scaling emissions to ERF for SO2, BC, OC and NH3 were provided by CMIP5-era models (Myhre et al., 2013a). 

The additional coefficients and slight changes to their magnitude had an imperceptible effect on the results but have been 

included to align with current best practice. This might be important in future years as NOx and VOC precursors might make 

up a larger fraction of ERFari. 45 

S4.2.2 Aerosol-cloud interactions 

ERFaci is estimated by assuming a logarithmic relationship with the change in cloud droplet number concentration (CDNC) 

as 

ERFaci = β log (1 + ΔCDNC)          (S1) 

 50 

ΔCDNC = sSO2ΔESO2 + sBCΔEBC + sOCΔEOC,        (S2) 

 

where sSO2, sBC and sOC are sensitivities of the change in CDNC with the change in emissions of SO2, BC and OC respectively 

(ΔE). This relationship is fit to estimates of ERFaci in 13 CMIP6 models contributing results to the piClim-histaer and histSST-

piAer experiments of RFMIP and AerChemMIP, respectively, to CMIP6. The ERFaci in these 13 models is estimated using 55 

the approximate partial radiative perturbation  (APRP) method (Taylor et al., 2007; Zelinka et al., 2014). 

 

The sSO2, sBC and sOC values from each model are combined into a kernel density estimate and sampled 100,000 times to provide 

a CMIP6-informed distribution of these parameters. To obtain β for each sample given (sSO2, sBC, sOC), a target ERFaci value for 

1750 to 2005-2014 is drawn from the headline AR6 distribution of -1.0 [-1.7 to -0.3] W m-2 and eq. (S1) rearranged. This 60 

follows a very similar procedure to AR6 and is based on Smith et al. (2021a) with three updates. Firstly, the relationships in 

eqs. (S1) and (S2) are slightly updated and simplified. Secondly, an additional two CMIP6 models have become available 

since the AR6 WG1 assessment, which expands the sampling pool for coefficients from 11 to 13. Thirdly, a slight error in 

computing ERFaci from APRP from the CMIP6 models in Smith et al. (2021a) has been corrected (Zelinka et al., 2023). 

 65 
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Estimates of aerosol ERF do not include explicit changes from the introduction of the International Maritime Organization 

(IMO) convention on sulfur content in fuel, though some of the impact of the legislation is implicitly captured by our activity-

data proxy estimate of emissions (Sect. 2.3). This may have reduced SO2 emissions from the shipping sector even more than 

we estimate from the impacts of COVID-19 alone. A secondary effect of shipping that we do not include is its spatial pattern. 

Unlike the majority of anthropogenic emissions which are land-based, shipping emits primarily in oceanic regions. Ship tracks 70 

very readily form in oceanic shallow stratocumulus regions (Watson-Parris et al., 2022), and the reduction of sulfate aerosol 

(an efficient cloud condensation nuclei) may reduce the magnitude (increase the positivity) of ERFaci more so than an 

equivalent reduction in emissions from another sector. One estimate puts this effect at up to +0.27 W m-2 (Yuan et al. 2022). 

The evidence for a different efficacy of ship-track SO2 emissions compared to land-based SO2 emissions will be reviewed in 

future should further research emerge. 75 

S4.3 Ozone ERF methods 

Ozone ERF is derived from CMIP6 model-based estimates. As in AR6 WGI Chapter 7, we use results from Earth system 

models (ESMs) and chemical transport models that produced historical ozone RF estimates in Skeie et al. (2020). We use only 

the six ESMs in Skeie et al. (2020) that are independent, include stratospheric and tropospheric ozone chemistry, and produce 

observationally plausible distributions of present-day ozone (Smith et al., 2021b). From these model time series of ozone RF 80 

from 1850 to 2014, we infer the sensitivity of ozone RF to emissions of NOx, VOC and CO; concentrations of CH4, N2O and 

ozone-depleting halogens; and global mean surface temperature (GMST) anomaly. The fit of the precursor sensitivities and 

GMST is performed using a least-squares curve fit, with the search bounds of each coefficient set to the 90% range (1.645 

times standard deviation) of each species’ contribution to ozone forcing determined using single-forcing experiments in 

Thornhill et al. (2021a) from a number of CMIP6 models contributing to AerChemMIP. UKESM1-0-LL has an anomalously 85 

large stratospheric ozone depletion response to halocarbons (Keeble et al., 2021), so this model was excluded when 

constructing these ranges. In CMIP6, experimental results that vary CO and VOC emissions separately are not available, so 

individual contributions from CO and VOC to the CO+VOC total are based on their fractional contributions from ACCMIP 

(CMIP5-era) models in Stevenson et al. (2013). For the global mean temperature contribution, we use the model responses to 

ozone forcing per degree warming in chemistry-enabled models in abrupt-4xCO2 experiments (Thornhill et al., 2021b). 90 

Following AR6, we do not differentiate between stratospheric and tropospheric ozone, and we also assume that ERF is the 

same as RF as there is limited model evidence to suggest otherwise. 
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S4.4 ERF from other anthropogenic forcers 

Minor categories of anthropogenic forcers include contributions from land use and land-use change other than via GHG 

emissions, aviation contrails and contrail-induced cirrus; stratospheric water vapour from methane oxidation; and light 95 

absorbing particles on snow and ice. 

 

The methodology to estimate ERF from land use and land-use change has been updated to use a scale factor with cumulative 

CO2-LUC emissions since 1750. This provides a similar time history to the land use ERF in AR6 and links this directly to land 

use ERF in future scenarios (Smith et al., 2021b). We anchor the 1750-2019 assessment to be the same as AR6 at -0.20 [-0.30 100 

to -0.10] W m-2 under this updated methodology. With this, albedo changes and effects of irrigation (mainly via low-cloud 

amount) are accounted for, while other biogeophysical effects of land use and land-use change are deemed to be of second-

order importance (Smith et al., 2021b). 

 

Stratospheric water vapour from methane oxidation was assessed to be 0.05 [0.00 to 0.10] W m -2 in AR6 for 1750-2019. We 105 

use the same scale factor applied to methane ERF used in AR6.  

 

The ERF from light absorbing particles on snow and ice (LAPSI) is assumed to scale with emissions of black carbon. As in 

AR6, the contribution from brown carbon is assumed to be negligible. We align the coefficient that converts BC emissions to 

ERF from LAPSI to be 0.08 [0.00 to 0.18] W m-2 for 1750-2019. 110 

 

To estimate ERF from aviation contrails and contrail-induced cirrus in AR6, emissions of NOx from the aviation sector in 

CEDS were scaled to reproduce an ERF of 0.0574 [0.019 to 0.098] W m -2 for 1750-2018 as assessed in Lee et al. (2021). We 

more closely follow the original methods of Lee et al. (2021) in this update to base our ERF estimates as closely as possible 

on aviation activity data. The Lee et al. (2021) ERF time series is extended to 2019 based on aviation fuel consumption from 115 

the International Energy Agency’s (IEA) World Oil Statistics (2022). For 2020, 2021 and 2022, we use fuel consumption data 

from the International Air Transport Association (IATA, 2022). 

S4.5 Methods for estimating natural forcing 

Natural forcing is composed of solar irradiance and volcanic eruptions.  
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S4.5.1 Solar irradiance 120 

The method to compute solar forcing is unchanged from AR6, using a composite time series prepared for PMIP4 (Jungclaus 

et al., 2017) and CMIP6 (Matthes et al., 2017). The headline assessment of solar ERF is based on the most recent solar cycle 

(2009-2019), which is unchanged from AR6. Solar ERF estimates are computed relative to complete solar cycles encompassing 

the full “pre-industrial” period where proxy data exist (6754 BCE to 1745 CE).  

S4.5.2 Volcanic 125 

Volcanic ERF consists of contributions from stratospheric sulfate aerosol optical depth (sAOD; a negative forcing) and 

stratospheric water vapour (sWV; a positive forcing). The sAOD time series (at a nominal wavelength of 550 nm) is 

constructed from a combination of four datasets which have temporal overlap. We use ice-core deposition data from HolVol 

v1.0 (Sigl et al., 2022) for 9500 BCE to 1900 CE. These data have been extended backwards in time from the equivalent 

dataset used in AR6 (eVolv2k; Toohey and Sigl, 2017) which had temporal coverage of 500 BCE to 1900 CE. For 1850 to 130 

2014 we use the CMIP6 volcanic sAOD dataset (Dhomse et al., 2020). For 1979 onwards, the CMIP6 dataset was constructed 

using the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) v1.0 (Thomason et al., 2018). We use an updated, 

extended version of GloSSAC (v2.2) providing sAOD up to 2021, which is itself an extension of the version used in AR6 

(v2.0) ending in 2018 (Kovilakam et al., 2020). The 525 nm extinction from GloSSAC is used and converted to 550 nm using 

an Ångstrom exponent of -2.33. For 2013 to 2022, we use the Ozone Mapping and Profiling Limb Profiler (OMPS LP) Level 135 

3 aerosol optical depth at 745 nm, which is scaled to achieve the same time mean sAOD as GloSSAC in the overlapping 2013-

2021 period as a single Ångstrom exponent is not suggested for this conversion. The 745 nm band is used as this is reported 

to be more stable than the bands closer to 550 nm from OMPS LP (Taha et al., 2021). Other than for the 2013-2021 overlap 

between GloSSAC v2.2 and OMPS LP in which only GloSSAC is used, we use a cross-fading approach to blend datasets in 

overlapping periods. Differences between datasets are minimal. sAOD is converted to a radiative effect using a scaling factor 140 

of -20 ± 5 as in AR6 (Smith et al., 2021b) that is representative of CMIP5 and CMIP6 models. Effective radiative forcing is 

calculated with reference to the change in this radiative effect since “pre-industrial”, defined as the mean of all available years 

before 1750 CE. In other words, the mean of the pre-1750 period is defined as zero forcing.  

 

The January 2022 eruption of Hunga Tonga-Hunga Ha’apai (HTHH) was an exceptional episode in that it emitted large 145 

amounts of water vapour into the stratosphere (Millán et al., 2022; Sellitto et al., 2022). Jenkins et al. (2023) determined the 

HTHH eruption increased volcanic ERF by +0.12 W m-2 due to sWV. The 2022 volcanic ERF has therefore been increased to 

account for this. sWV injections from other volcanic eruptions historically have been assumed to be negligible. This 

assumption for the whole Holocene is probably incorrect (1883 Krakatau may have also emitted substantial amounts of sWV 
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(Joshi and Jones, 2009)), but at present no known proxy datasets for sWV injections from volcanic eruptions before the 150 

observational era exist. After 1991 Pinatubo there was a marked increase in sWV above Colorado (40°N) that peaked and 

declined over a period of around three years following the eruption (Hurst et al., 2011). However, this was significantly smaller 

than the perturbation from HTHH (Millán et al., 2022) and may be obscured against a background of increasing sWV from a 

changing QBO state (Fueglistaler and Haynes, 2005), and reanalysis data show no obvious water vapour signal averaged across 

the tropical lower stratosphere (Dessler et al., 2014). We therefore do not adjust the volcanic ERF for sWV from 1991 Pinatubo 155 

or any other eruption. 

S5. Global surface temperature 

Surface temperature information on land and sea is available with low latency through WMO distribution channels, with 

monthly station data from a substantial number of stations reported within a few days of the end of the month. Sea-surface 

temperature data from ships and buoys are gathered from the Global Telecommunication System with a short delay. These are 160 

consolidated into global datasets by a number of institutions, making it feasible to report GMST updates within a few weeks 

of the end of the period of interest. The number of reporting locations on land with near-real time data available for reporting 

for the most recent periods is typically less than that available for historical data, as not all observation sites report recent data 

reliably, but this lower observation density only slightly increases the uncertainty in estimates of recent annual GMST 

compared with the past 20-30 years (Trewin et al., 2021). 165 

 

The GMST assessment in AR6 was based on four datasets: HadCRUT5 (Morice et al., 2021), Berkeley Earth (Rohde and 

Hausfather, 2020), NOAAGlobalTemp - Interim (Vose et al., 2021) and Kadow et al. (2020). (A fifth dataset, China-MST 

(Sun et al., 2021), was used for the land assessment only.) The four GMST datasets were chosen by virtue of being quasi-

globally complete, having data back to 1850, using the most recent generation of SST analyses and using analysed (rather than 170 

climatological) values over sea ice. The first two of these are routinely updated operationally, with data for each year becoming 

available in the first few weeks of the following year. NOAAGlobalTemp - Interim was not updated operationally at the time 

AR6 was published but has become NOAA’s main operational GMST dataset (under the name NOAAGlobalTemp 5.1) as of 

January 2023. All three datasets are updated and published monthly. The dataset by Kadow et al. is updated on an ad hoc basis 

by the authors. To date, all four datasets remain supported with only minor version changes (if any) since AR6, but it is likely 175 

that more substantive version changes will occur to one or more over time, potentially leading to differences from the AR6. 

The key differences between the AR6 datasets and those used in the annual WMO and BAMS State of the Climate reports are 

that WMO and BAMS also incorporate reanalyses (ERA5 and JRA-55). These reports also include the GISTEMP (Lenssen et 
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al., 2019) dataset (excluded by AR6 because it starts in 1880) but do not include the dataset by Kadow et al. yet (as that is not 

updated operationally).  180 

 

The GMST values used in AR6 were calculated from the gridded datasets produced by the data providers, using a consistent 

methodology - calculating the mean anomaly for each of the Northern and Southern Hemisphere as a latitude-weighted mean 

of available grid point values and then defining the global mean anomaly as the mean of the two hemispheric values. (This is 

equivalent to the method used by the Met Office Hadley Centre to report global values from HadCRUT5.) The values thus 185 

calculated may differ from those reported by the data providers themselves, due to different averaging methodologies. 

Although the difference is less pronounced in the AR6 datasets than in earlier generations of datasets, there are more grid 

points with missing data in the Southern Hemisphere than the Northern Hemisphere (particularly before an observation 

network was established on Antarctica in the 1950s), and using hemispheric means ensures that the two hemispheres are 

equally weighted.  190 

 

The uncertainty assessment in AR6 combines the spread of the individual datasets, with uncertainties derived from ensembles 

for HadCRUT5 and an earlier version of NOAAGlobalTemp, with the other two datasets assumed to have the same uncertainty 

as HadCRUT5. HadCRUT5 is the only one of the datasets for which regularly updated ensembles are currently produced, 

limiting the extent to which uncertainty assessments can be regularly updated from those used in AR6. In this update it was 195 

assumed that the width of the confidence interval for each individual dataset was the same as that used in AR6.  

S7. Human-induced warming 

This presents the three methods of estimating human-induced warming and describes how they have been updated since AR6 

WGI. 

S7.1 Global Warming Index 200 

Introduced in Otto et al. 2015, and refined with full uncertainty assessment in Haustein et al., 2017, the Global Warming Index 

(GWI) quantifies anthropogenic warming by using an established “multi-fingerprinting” approach to decompose total warming 

into its various components; preliminary anthropogenic and natural warming time series are first estimated from radiative 

forcings, and a multivariate linear regression is then taken between these preliminary GMST contributions and observed 

GMST, with the best fit providing the attributed anthropogenic and natural contributions to warming. As such, the GWI 205 

attribution method is directly tied to observations and has a low dependence on uncertainties in climate sensitivity and forcing. 
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Substantive annual updates to the GWI assessment depend on annual updates for effective radiative forcings (ERFs) and 

observed temperature (GMST), both of which are provided as a part of this update (Sects. 4 and 5 respectively). The remaining 

inputs to the GWI assessment are updated at the less-frequent CMIP cadence; however these contributions only weakly 210 

influence the GWI results. Further, by recomputing a “historical-only” GWI time series based only on data up to a given year, 

it can be shown that GWI is relatively insensitive to end-date or short-term fluctuations in observed GMST, minimising 

potential confusion about the current level of warming, such as the perception of a hiatus or acceleration (see AR6 WGI 

Chapter 3 Cross-Chapter Box 3.1, Eyring et al., 2021), due to short-term internal variability. This, combined with the 

conceptual simplicity of the method, makes the GWI a relatively transparent and robust method for attributing anthropogenic 215 

warming and well-suited to providing reliable annual updates. 

 

Where the GWI method previously separated warming contributions into two components, “anthropogenic” and “natural”, and 

independently attributed them, this update further separates and independently attributes contributions within the 

Anthropogenic component, adopting the groupings from AR6: “well-mixed greenhouse gases”, “other human forcings” and 220 

“natural forcings”. The climate response model used to estimate (pre-regression) warming from radiative forcing is updated 

from the AR5 Impulse Response model (AR5-IR; from AR5 Chapter 8 Supplement (Myhre et al., 2013b)) used in Haustein et 

al. (2017) to the Finite-amplitude Impulse Response model (FaIR; Leach et al., 2021;  Smith et al., 2018b; Millar et al., 2017), 

which has established use in SR1.5 and AR6; climate response uncertainty is included by using around 30 sets of parameters 

that correspond to FaIR emulating the CMIP6 ensemble, as provided in Leach et al. (2021). The updated historical ERF input 225 

to FaIR is given in Sect. 4, with uncertainty accounted for using a representative 1000-member probabilistic ensemble. 

Observed GMST and its uncertainty are provided by the 200-member ensemble of the annually updated HadCRUT5 (Morice 

et al. 2021; see Sect. 5). Uncertainty from internal variability is accounted for by using between 100-200 realisations of internal 

variability sampled from the CMIP6 piControl simulations. Since some CMIP6 models may have unrealistically high decadal 

variability, our estimates of uncertainty may be conservative (Erying et al., 2021). Here, to partly address this, piControl time 230 

series are first filtered, removing simulations that drift or exhibit unrealistic variability amplitudes, changing by more than 

0.15 °C per decade. 

 

Producing the GWI ensemble with ~1 billion members is computationally expensive; therefore an ensemble with ~6 million 

members is randomly subsampled to obtain results. Uncertainty converges at this scale, and repeat random samplings at the 235 

same scale lead to variation in the results of about 0.01°C. 
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S7.2 Kriging for climate change 

The kriging for climate change method was originally introduced by Ribes et al. (2021), and subsequently extended in Qasmi 

and Ribes (2022), to attribute past warming and constrain temperature projections over the 21st century. This statistical method 

is very similar to snsemble Kalman filtering or kriging. In the original publication (Ribes et al., 2021), a subset of 22 CMIP6 240 

models was used to form an a priori distribution (in a Bayesian sense) of past attributable warming. Then the posterior 

distribution of past attributable warming given observations was derived. This application was based on HadCRUT4-CW 

GMST observations (Cowtan and Way, 2014), inflated by 6% to account for stronger warming of GSAT relative to GMST. 

Results from this calculation were quoted in Eyring et al. (2021). 

 245 

The update made here uses the same subset of 22 CMIP6 models. However, HadCRUT5 observations are used, instead of 

previous datasets, over an extended 1850-2022 period. Consistent with the AR6 assessment about GMST to GSAT warming 

ratio, no scaling correction is applied; i.e. the global mean value from HadCRUT5 is assumed to be representative of GSAT 

changes (see Sect. 7.1.2). As it relies on available CMIP6 simulations, this update assumes that the world has followed a SSP2-

4.5 pathway since 2015. Emissions in the SSP scenarios are similar in the period up until 2022 and close to those which have 250 

occurred (e.g. Chen et al., 2021); therefore this is a reasonable approximation. Future updates with this method will incorporate 

new observations. In parallel, we will try to replace the CMIP6 models by emulators, thus allowing the latest available 

estimates of radiative forcings to be considered, instead of the SSP2-4.5 scenario. 

S7.3 Regularized optimal fingerprinting 

Optimal fingerprinting is the name given to optimal regression-based approaches to attribution, in which observed anomalies 255 

are regressed onto the simulated response to individual forcings from climate models, with the regression coefficients used to 

infer attributable contributions to observed changes (e.g. Allen and Stott, 2003; Eyring et al., 2021). Ribes et al. (2013) 

proposed an improved version of the standard total least squares regression, known as regularised optimal fingerprinting, which 

exhibited improved accuracy in perfect model tests. Gillett et al. (2021) applied this approach to regress observed 5-year mean 

observed GMST onto the simulated response to individual forcings from the DAMIP simulations (Gillett et al., 2016) of 13 260 

CMIP6 models. In order to ensure a like-for-like comparison, Gillett et al. (2021) regressed observations of GMST, derived 

from gridded non-infilled near-surface air temperature over land and sea ice, and sea surface temperature over oceans, onto 

GMST derived from CMIP6 model output in the same way (Cowtan et al., 2015). However, since globally complete GSAT is 

usually used in the climate impact literature which served as a basis for global warming goals, Gillett et al. (2021) used 

regression coefficients to infer attributable warming in globally complete GSAT.  265 
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Gillett et al. (2021) used CMIP6 DAMIP simulations which generally finished in 2020 and therefore cannot directly be used 

to infer attributable warming in subsequent years. However, some modelling centres ran single-forcing DAMIP simulations 

into the future under the SSP2-4.5 scenario (Gillett et al., 2016). Data from concatenated historical and ssp245, hist-nat and 

ssp245-nat, and hist-GHG and ssp245-GHG were taken from CanESM5 (50, 10, 10), IPSL-CM6A-LR (11, 10, 6) and 270 

MIROC6 (3, 50, 50), where numbers in brackets indicate the respective ensemble sizes. Our approach assumes that observed 

drivers have evolved as in the SSP2-4.5 scenario over the period since 2015, which is a reasonable assumption to the present 

(e.g. Chen et al., 2021). As in Gillett et al. (2021), internal variability was estimated from intra-ensemble anomalies. Whereas 

the Gillett et al. (2021) results assessed by Eyring et al. (2021) were based on HadCRUT4, this dataset is no longer being 

updated, and therefore we use the non-infilled version of HadCRUT5 here (Morice et al., 2021). As shown by Gillett et al. 275 

(2021), using HadCRUT5 in place of HadCRUT4 results in a 7% increase in the best estimate of anthropogenic warming for 

2010-2019. Gillett et al. (2021) regressed 34 5-year means of GMST over the period 1850-2019 onto simulated GMST over 

the same period. Here we extend the analysis using 35 5-year means, with the latter based on observations from January 2020 

to February 2023 and the model output masked in the same way. In order to be consistent with the Global Warming Index and 

kriging for climate change approaches described above, and for comparison with GMST observations, we primarily report 280 

attributable warming in globally complete GMST here, rather than GSAT (see Sect. 7.1.2). Calculated anthropogenic warming 

in GSAT in 2010-2019 computed using HadCRUT5 with this approach of 1.16 (1.04-1.29) °C can be compared with the same 

quantity reported in Gillett et al. (2021) (their Supplementary Table 1) of 1.18 (1.09-1.27) °C, indicating good consistency. 

 

The method described above is easily updatable into the future using the same set of simulations, simply by updating 285 

observations to a later date and masking model output accordingly. As in the KCC method, a caveat to this approach is that it 

relies on SSP2-4.5 simulations from which actual anthropogenic forcing might be expected to gradually diverge and from 

which actual natural forcing could rapidly diverge, for example, were a major volcanic eruption to occur. 

 

Table S2: Estimates of global mean surface air temperature (GSAT) warming attributable to multiple influences (in °C) relative to 290 
the 1850–1900 baseline period. Values are given as the median, with the 5-95 percentile range in brackets, provided to 0.01°C 

precision. GSAT results here are only provided for regularised optimal fingerprinting (ROF) because the GSAT results for the other 

attribution methods (the Global Warming Index (GWI) and kriging for climate change (KCC)) are identical to the GMST results 

for those methods. 

Component 

 

Method 

 2010-2019 

(decade average) 

 2013-2022 

(decade average) 

2017 

(single year) 

2022 

(single year) 

Human-

induced 

ROF 

 1.16 (1.04 to 1.29)  1.26 (1.10 to 1.41)  1.26 (1.06 to 1.41)  1.41 (1.13 to 1.69) 

Well-mixed 

greenhouse 

gases  1.39 (1.14 to 1.65)  1.47 (1.20 to 1.74)  1.45 (1.15 to 1.80)  1.58 (1.25 to 1.92) 
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Other 

human 

forcings  -0.21 (-0.43 to 0.00)  -0.21 (-0.43 to 0.01)  -0.21 (-0.45 to 0.03)  -0.19 (-0.45 to 0.07) 

Natural 

forcings  0.02 (0.00 to 0.03)  0.02 (-0.03 to 0.06)  0.01 (-0.05 to 0.08)  -0.01 (-0.15 to 0.12) 

 295 

 

Table S3: Estimates of global mean surface temperature (GMST) warming attributable to multiple influences (in °C) relative to the 

1850–1900 baseline period, provided for each warming attribution method and the overall multi-method assessment. Values for 

individual attribution methods are given as the median, with the 5-95 percentile range in brackets, provided to 0.01°C precision. 

Values for the assessment are calculated as defined in Sect. 7.3 and given as best estimates with likely ranges in brackets. 300 
 

Variable Method 

2010-2019 

(decadeaverage

) 

2013-2022 

(decadeaverage

) 

2017 

(single year) 

2022 

(single year) 

2017  

(trend-based) 

2022 

(trend-based) 

Human-

induced 

GWI 
1.08 
(0.98 to 1.18) 

1.15 
(1.05 to 1.25) 

1.14  
(1.04 to 1.24) 

1.26  
(1.14 to 1.37) 

1.13  
(1.02 to 1.23) 

1.25  
(1.14 to 1.37) 

KCC 
1.01 

(0.86 to 1.14) 

1.08 

(0.92 to 1.22) 

1.06  

(0.91 to 1.21) 

1.19  

(1.02 to 1.35) 

1.06  

(0.91 to 1.20) 

1.18 

(1.02 to 1.34) 

ROF 
1.11 
(0.98 to 1.24) 

1.19 
(1.05 to 1.34) 

1.18  
(1.02 to 1.33) 

1.34  
(1.18 to 1.51) 

1.15  
(1.01 to 1.28) 

1.33  
(1.13 to 1.52) 

Assessmen

t 
1.07 

(0.8 to 1.3) 

1.14 

(0.9 to 1.4) 

1.13  

(0.9 to 1.4) 

1.26  

(1.0 to 1.6) 

1.11  

(0.9 to 1.3) 

1.26  

(1.0 to 1.6) 

Well-

mixed 

greenhous

e gases 

GWI 
1.25 
(1.06 to 1.51) 

1.31 
(1.11 to 1.58) 

1.30 
(1.10 to 1.57) 

1.40  
(1.19 to 1.69) 

1.30  
(1.10 to 1.56) 

1.40  
(1.18 to 1.69) 

KCC 
1.40 

(1.06 to 1.71) 

1.47 

(1.11 to 1.79) 

1.45  

(1.10 to 1.78) 

1.56  

(1.18 to 1.92) 

1.45 

(1.10 to 1.78) 

1.56  

(1.18 to 1.92) 

ROF 
1.34 

(1.11 to 1.56) 

1.41 

(1.17 to 1.65) 

1.39  

(1.15 to 1.64) 

1.51 

(1.26 to 1.77) 

1.38  

(1.15 to 1.62) 

1.51  

(1.25 to 1.76) 

Assessmen

t 
1.33 

(1.0 to 1.8) 

1.40 

(1.1 to 1.8) 

1.38  

(1.1 to 1.8) 

1.49  

(1.1 to 2.0) 

1.38  

(1.0 to 1.8) 

1.49 

(1.1 to 2.0) 

Other 

human 

forcings 

GWI 
-0.17 
(-0.42 to 0.02) 

-0.16 
(-0.41 to 0.03) 

-0.16  
(-0.41 to 0.03) 

-0.14  
(-0.39 to 0.04) 

-0.17  
(-0.42 to 0.02) 

-0.14  
(-0.39 to 0.05) 

KCC 
-0.39 

(-0.68 to -0.10) 

-0.39 

(-0.68 to -0.09) 

-0.39  

(-0.69 to -0.09) 

-0.38  

(-0.68 to -0.06) 

-0.39  

(-0.69 to -0.09) 

-0.38  

(-0.69 to -0.07) 

ROF 
-0.21 
(-0.41 to 0.00) 

-0.20 
(-0.41 to 0.00) 

-0.20  
(-0.41 to 0.00) 

-0.19  
(-0.38 to 0.00) 

-0.21 
(-0.43 to 0.00) 

-0.19 
(-0.40 to 0.01) 

 

Assessmen

t 
-0.26 
(-0.7 to 0.1) 

-0.25 
(-0.7 to 0.1) 

-0.25  
(-0.7 to 0.1) 

-0.24  
(-0.7 to 0.1) 

-0.26  
(-0.7 to 0.1) 

-0.24  
(-0.7 to 0.1) 

Natural 

forcings 

GWI 
0.06 

(0.03 to 0.10) 

0.06  

(0.03 to 0.10) 

0.06  

(0.03 to 0.10) 

0.05  

(0.02 to 0.09) 

0.06  

(0.03 to 0.10) 

0.06 

(0.03 to 0.10) 

KCC 
0.06 
(0.04 to 0.08) 

0.06  
(0.04 to 0.07) 

0.06  
(0.04 to 0.08) 

0.04  
(0.03 to 0.06) 

0.06  
(0.04 to 0.08) 

0.05  
(0.03 to 0.07) 

ROF 
0.02 

(-0.02 to 0.05) 

0.02  

(-0.02 to 0.06) 

0.01  

(-0.03 to 0.06) 

-0.01  

(-0.07 to 0.04) 

0.02  

(-0.02 to 0.05) 

0.01  

(-0.03 to 0.06) 

 

Assessmen

t 
0.05 

(-0.1 to 0.1) 

0.04 

(-0.1 to 0.1) 

0.04  

(-0.1 to 0.2) 

0.03  

(-0.1 to 0.1) 

0.05  

(-0.1 to 0.1) 

0.04  

(-0.1 to 0.1) 
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        305 
Figure S1: Assessed contributions to observed warming and supporting lines of evidence; see AR6 WG1 Figure 3.8. The shaded 

bands show assessed likely ranges of temperature change, relative to the 1850-1900 baseline, attributable to total anthropogenic 

influence (Ant), well-mixed greenhouse gases (GHGs), other human forcings (OHFs), and natural forcings (Nat). The left of each 

pair of bands depicts the results quoted from AR6, and the right of each pair of bands depicts a repeat calculation for the same 

period as the IPCC assessment, using the revised datasets and methods, to validate the updated assessment of attributable warming. 310 
Panel (a) presents decade-average warming as used in AR6, with results quoted from AR6 WGI Chapter 3 on the left and the repeat 

assessment on the right. The solid horizontal bar in each band shows the best estimate for each warming component; if no best 

estimate was provided, it was retrospectively calculated using the AR6 method and depicted using a horizontal dotted line to facilitate 

comparison. In AR6, Global Warming Index results were reported as GMST, kriging for climate change results were calculated as 

GMST and scaled by 1.06 for reporting as GSAT, and regularised optimal fingerprinting was reported as GSAT; for the repeat, all 315 
methods are reported in terms of GMST (see Sect. 7.1.2 for discussion). Panel (b) presents single-year warming as used in SR1.5, 

with results quoted from SR1.5 Chapter 1 on the left (which was based only on the GWI) and the repeat assessment on the right, 

which now includes all of the attribution methods and the multi-method assessment approach used in AR6, as discussed in Sect. 

7.3.2. Both bars are reported in GMST. No assessment was provided for components other than Ant in SR1.5. 

     320 
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Figure S2: Time series for each attribution method used in the updated assessment of warming contributions, expressed in terms of 

global mean surface temperature (GMST). Coloured plumes correspond to warming contributions broken down by natural forcings 

(Nat), well-mixed greenhouse gases (GHGs) and other human forcings (OHFs). Total human-induced warming (Ant) is therefore 325 
the sum of contributions from GHG and OHF. The plume range is given by the 5-95% range of the Global Warming Index (GWI), 

with the GWI best estimate given by the solid lines. The dashed line presents the best estimate from the kriging for climate change 

(KCC) method, and the dotted line presents the best estimate from the regularised optimal fingerprinting (ROF) method. GWI and 

KCC are given as annual values based on infilled GMST from HadCRUT5; ROF is given as annual values of globally complete 

GMST. The CMIP6 pre-industrial control (piControl) simulations are used as a proxy for multiple samplings of internal variability 330 
and are used to account for attribution uncertainty resulting from internal variability in the GWI method (see Supplementary Sect. 

7.1). 

 



 

 

16 

 

 

 

 

 335 

Figure S3: Time series for each attribution method used in the updated assessment of warming contributions, expressed in terms of 

global mean surface temperature (GMST). Coloured plumes are given for both 17-83% and 5-95% ranges and correspond to 

warming contributions to observed warming broken down by natural forcings (Nat), well-mixed greenhouse gases (GHGs) and other 

human forcings (OHFs). Total warming (Tot) is the total attributable warming and therefore the sum of contributions from GHG, 

OHF and Nat. Observation data from (infilled) HadCRUT5 are presented with 9-95% uncertainty bars. Panel (a) presents results 340 
from the Global Warming Index method (Supplementary Sect. 7.1); the CMIP6 pre-industrial control (piControl) simulations are 

used as a proxy for multiple samplings of internal variability and used to account for uncertainty in the attribution resulting from 

internal variability (see Supplementary Sect. 7.1). Panel (b) presents results from the kriging for climate change methods 

(Supplementary Sect. 7.2). Panel (c) presents results from regularised optimal fingerprinting (Supplementary Sect. 7.3), with the 

time series for Tot being approximated by the sum of the Ant and Nat medians; note that this is different from GWI and KCC, 345 
where Tot is an attributed quantity. 

The results for each individual methods are available in csv form in the Climate Indicator repository: 

https://github.com/ClimateIndicator/anthropogenic-warming-assessment/. 

S8. Remaining carbon budget  

Estimating the remaining carbon budget (RCB) requires an estimate of future non-CO2 warming. The latter estimate is derived 350 

from the emissions trajectories as modelled by internally consistent emissions scenarios. While RCB estimates are for CO2 

emissions only, the consideration of non-CO2 warming implies that assumptions are also made about reductions in other 

anthropogenic forcers. These reductions have to be kept in mind, as a shortfall in non-CO2 greenhouse gas emissions would 

result in a smaller RCB estimate. For instance, the estimate of RCBs consistent with limiting warming to 1.5°C assumes a 

median reduction in CH4 emissions between 2020 and 2050 of about 50% (while the interquartile range across available 355 

scenarios is 45–58%), about a 25% reduction between 2020 and 2050 in N2O emissions (interquartile range: 7–35%), and a 

77% reduction between 2020 and 2050 in SO2 emissions (interquartile range: 75–79%). Assumed reductions consistent with 

https://github.com/ClimateIndicator/anthropogenic-warming-assessment/
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other levels of warming are provided in Table S2. The estimates reported in Table 7 of the main paper are based on the median 

non-CO2 emission reductions. Falling short of achieving the assumed non-CO2 greenhouse gas emissions reductions would 

further reduce the RCB. Sulfur dioxide emissions are more tightly co-controlled with CO2 reduction because of the phase-out 360 

of unabated fossil fuel combustion and air pollution control measures (Rogelj et al., 2014a, 2014b). A shortfall in their 

reductions would therefore be less conceivable in a net-zero CO2 world. 

Table S4: Non-CO2 reductions implied in remaining carbon budget (RCB) estimates. Values represent the changes in non-CO2 

emissions between 2020 and 2050, consistent with the RCB estimates for 1.5°C, 1.7°C and 2.0°C. The median changes are the default 

and marked in light blue. Any deviation from this median assumption results in an increase or decrease of the RCB estimate. 365 

Temperature level for which RCB was estimated Percentile Implied non-CO2 change between 2020 and 2050 [%] 

    CH4 N2O SO2 

1.5°C 10th -64 -47 -84 

  25th -58 -35 -79 

  50th -48 -25 -77 

  75th -45 -7 -75 

  90th -41 -4 -65 

1.7°C 10th -63 -44 -79 

  25th -53 -29 -77 

  50th -47 -15 -75 

  75th -42 -8 -71 

  90th -35 -4 -65 

2.0°C 10th -54 -37 -76 

  25th -47 -24 -74 

  50th -35 -9 -68 

  75th -27 -1 -60 

  90th -18 +5 -52 
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S9. Examples of climate and weather extremes: maximum temperature over land 

 
Figure S4: Calculation of land mean annual maximum temperature (TXx) offset between 1850-1900 and 1961-1990. A linear 

regression of TXx as a function of global mean temperature from Berkeley Earth is fitted to data from 1955-2020. The TXx offset 370 
of 0.53 °C is then obtained by multiplying the slope of the linear regression (1.25 °C / °C) with the global mean temperature difference 

between 1850-1900 and 1961-1990 (0.43°C).  
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