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Abstract. A historical dataset of river chemistry and discharge is presented for 140 monitoring sites along the
US East Coast, the Gulf of Mexico, and the US West Coast from 1950 to 2022. The dataset, referred to here
as River Chemistry for the U.S. Coast (RC4USCoast), is mostly derived from the Water Quality Database of
the US Geological Survey (USGS) but also includes river discharge from the USGS’s Surface-Water Monthly
Statistics for the Nation and the U.S. Army Corps of Engineers. RC4USCoast provides monthly time series
as well as long-term averaged monthly climatological patterns for 21 variables including alkalinity and dis-
solved inorganic carbon concentration. It is mainly intended as a data product for regional ocean biogeochem-
ical models and carbonate chemistry studies in the US coastal regions. Here we present the method to derive
RC4USCoast and briefly describe the rivers’ carbonate chemistry patterns. The dataset is publicly available at
https://doi.org/10.25921/9jfw-ph50 (Gomez et al., 2022).

1 Introduction

Riverine fluxes of water, nutrients, alkalinity, and carbon ex-
ert a significant impact on the coastal ocean margins, modu-
lating patterns in primary production, dissolved oxygen, cal-
cium carbonate saturation, bottom acidification, and air–sea
carbon fluxes (e.g., Rabouille et al., 2008; Cai et al., 2011;
Siedlecki et al. 2017; Moore-Maley et al., 2018; Xie et al.,
2020; Liu et al., 2021). During the last decade or so, there has
been an increasing interest in better understanding and quan-
tifying the influence of river inputs on the coastal ecosystems
of the United States. This is reflected in a growing number of
ocean biogeochemical (BGC) modeling studies addressing

river-induced ocean patterns (e.g., Fennel et al., 2011, 2013;
Laurent et al., 2017; Siedlecki et al. 2017, 2021; Hood et al.,
2021; Gomez et al., 2021). Ocean BGC models need realistic
inputs of river-water properties to properly simulate coastal
ecosystem responses to river runoff, but the availability of
these inputs is usually limited (e.g., Kearney et al., 2021).
A few existing data products contain estimates of riverine
carbon and/or nutrients based on empirical or dynamic river
export models (e.g., Mayorga et al., 2010; Li et al., 2017,
2019; Lacroix et al., 2021; Regnier et al., 2022). These prod-
ucts were mainly developed for global budget analysis, and
consequently they often lack sufficient spatial resolution to
allow for the study of ecosystem dynamics at a regional scale
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or have significant regional biases. Motivated by the neces-
sity of high-resolution river chemistry data for regional ocean
BGC models, here we present the River Chemistry for the
U.S. Coast (RC4USCoast) database, a compilation of histor-
ical river chemistry and discharge records derived from the
US Geological Survey (USGS).

2 Dataset

The RC4USCoast database contains historical river chem-
istry records from 140 USGS monitoring stations re-
trieved from the Water Quality Database of the Na-
tional Water Information System (Alexander et al.,
1998; https://nwis.waterdata.usgs.gov/usa/nwis/qwdata, last
access: 7 March 2023). We use a set of stations similar to
those used in Stets and Striegl (2012), who selected stations
based on the availability of water quality records and prox-
imity to river mouths. These monitoring stations correspond
to 52 rivers in the US East Coast, 53 rivers in the Gulf of
Mexico, and 35 rivers in the US West Coast (Fig. 1; Ta-
ble S1 in the Supplement). It is worth noting that Stets and
Striegl (2012) reported average inorganic and organic car-
bon flux (g C yr−1) and yield (g C m−2 yr−1) for the selected
USGS stations, but they did not provide a dataset with the
riverine concentration of carbon. Therefore, RC4USCoast
advances by providing integrated information of the river-
ine concentration of dissolved inorganic carbon (DIC) and
alkalinity (Sect. 2.1), and (where available) additional inor-
ganic and organic nutrients relevant for coastal water quality
(Sect. 2.2) for those stations.

2.1 Carbonate chemistry

RC4USCoast includes a river carbonate chemistry dataset
with monthly series and climatological data for alkalinity,
pH field, pH laboratory, DIC, and dissolved organic carbon
(DOC) (Table 1). To this effect, we processed more than
64 000 records of calcium carbonate (CaCO3) and bicarbon-
ate (HCO3), 60 000 pH field and laboratory records, and
9000 DOC records. Due to the substantially smaller number
of DIC measurements (∼ 1000) compared to those of alka-
linity and pH, we derived DIC from alkalinity, pH, and wa-
ter temperature using the CO2SYS program for CO2 system
calculations (van Heuven et al., 2011). Following Stets and
Striegl (2012), we assumed that (i) particulate inorganic car-
bon is small; thus, filtered and unfiltered measurements of
alkalinity are nearly the same, and (ii) organic alkalinity rep-
resents a small fraction of total alkalinity. A comparison be-
tween filtered and unfiltered measurements of alkalinity does
not show significant differences (Fig. 2a); thus, biases asso-
ciated with the first assumption are negligible. The second
assumption is required, because including the organic alka-
linity fraction in the total alkalinity term used to derive DIC
leads to some DIC overestimation. This could be a problem
in low-alkalinity rivers with high concentrations of organic

matter, as the latter contains anionic functional groups that
can contribute to alkalinity (Hunt et al., 2011). Stets and
Striegl (2012) discussed this issue further and showed that
organic alkalinity usually represents less than 10 % of total
alkalinity in US rivers and thus not producing important bi-
ases in the DIC calculations. Consistently, a comparison be-
tween measured DIC and the calculated DIC reveals a good
agreement, with no evident bias in the residuals of the least
squares model (Fig. 2b).

2.2 Other chemistry variables

The RC4USCoast database also contains a set of variables
that describe the runoff of nitrogen, phosphorus, and silica
(Table 2), including monthly time series of nitrate (NO3), ni-
trate plus nitrite (NO3 plus NO2), ammonia (NH4), organic
nitrogen plus ammonia (orgN), dissolved organic nitrogen
(DON), total nitrogen (TN), phosphate (PO4), total phospho-
rus (TP), and silicon dioxide (SiO2). For orgN, TN, and TP,
we generated two independent datasets for unfiltered and fil-
tered water samples (the former containing both dissolved
and particulate material and the latter only dissolved mate-
rial). For NO3, NO3 plus NO2, NH4, and PO4, we consid-
ered the USGS parameters for filtered water samples. In ad-
dition to these inorganic and organic nutrients, we also in-
cluded dissolved oxygen (DO) and water temperature in the
database.

2.3 River discharge

To provide a longer set of river discharge records than
those available in the USGS Water Quality Database, we
used monthly average data from the USGS Surface-Water
Monthly Statistics for the Nation database (https://waterdata.
usgs.gov/nwis/monthly, last access: 15 March 2023). Sim-
ilarly, for the Mississippi and Atchafalaya rivers, we
used records from the U.S. Army Corps of Engineers
(USACE; https://rivergages.mvr.usace.army.mil, last access:
15 March 2023). Specifically, we retrieved the Mississippi
discharge at the USACE’s station 01100 (Tarbert Landing)
and the Atchafalaya discharge at station 03045 (Simmes-
port). For a few rivers (Charles, James, Weeki Washee, and
Rio Grande) where monthly discharge was not available in
the USGS Surface-Water Monthly Statistics for the Nation
database or the USACE records, we used discharge from the
USGS Water Quality Database.

2.4 Database generation

Information for the selected river stations includes the
RC4USCoast river ID, the original USGS site ID, the USGS
site’s longitude and latitude, and an approximate longitude
and latitude for the river mouth (Fig. S1 in the Supplement).
A few rivers flow to other larger rivers, as described in Ta-
ble S1. The assigned mouth location in those cases corre-
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Figure 1. USGS stations used to derive river chemistry patterns. Green, red, and blue dots correspond to rivers discharging to the US East
Coast, Gulf of Mexico, and US West Coast, respectively.

Table 1. Carbon system variables in the RC4USCoast dataset.

Variable∗ Units USGS parameter Description Original USGS Water chemistry
code units measurements

Alkalinity (alk) meq m−3 00410 Acid-neutralizing capacity, unfiltered,
fixed endpoint titration, field

mg CaCO3 L−1 20 636

00419 Acid-neutralizing capacity, unfiltered,
inflection-point titration, field

mg CaCO3 L−1 393

29801 Alkalinity, filtered, fixed endpoint titra-
tion, laboratory

mg CaCO3 L−1 3340

39036 Alkalinity, filtered, fixed endpoint titra-
tion, field

mg CaCO3 L−1 587

39086 Alkalinity, filtered, inflection-point
titration, field

mg CaCO3 L−1 7325

90410 Acid-neutralizing capacity, unfiltered,
fixed endpoint titration, laboratory

mg CaCO3 L−1 8895

00440 Bicarbonate, unfiltered, fixed endpoint
titration, field

mg HCO3 L−1 16 168

00453 Bicarbonate, filtered, fixed endpoint
titration, field

mg HCO3 L−1 7193

pH field (phf) standard units 00400 pH, unfiltered, field standard units 45 866

pH lab (phl) standard units 00403 pH, unfiltered, laboratory standard units 14 452

DOC (doc) mmol C m−3 00681 Organic carbon, filtered mg C L−1 9189

DIC measured
(dicm)

mmol C m−3 00691 Inorganic carbon, filtered mg C L−1 997

DIC calculated
(dic)

mmol C m−3 DIC derived from alkalinity, pH, and
temperature

∗ The abbreviated names of the variables indicated in parenthesis (in first column) are used in the netCDF files.
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Figure 2. Data comparison. (a) Filtered vs. unfiltered alkalinity; (b) measured vs. calculated DIC. Calculated DIC was derived from alkalin-
ity, pH, and temperature measurements.

Table 2. Additional variables in the RC4USCoast dataset.

Variablea Units USGS parameter Description Original USGS Water chemistry
code units measurements

NO3 (no3) mmol N m−3 00618 Nitrate, filtered mg N L−1 25 158
71851 Nitrate, filtered mg NO3 L−1 25 012

NOx (nox) mmol N m−3 00631 Nitrate plus nitrite, filtered mg N L−1 21 879

NH4 (nh4) mmol N m−3 71846 Ammonia (NH3+NH+4 ), filtered mg NH4 L−1 21 609
00608 Ammonia (NH3+NH+4 ), filtered mg N L−1 21 360

Organic nitrogen unfil-
tered (orgNu)

mmol N m−3 00625 Organic nitrogen plus ammonia, unfiltered mg N L−1 22 147

Organic nitrogen
filtered (orgNf)

mmol N m−3 00623 Organic nitrogen plus ammonia, filtered mg N L−1 11 904

DON (don) mmol N m−3 00607 Dissolved organic nitrogen, filtered mg N L−1 11 492

TN unfiltered (tnu) mmol N m−3 00600 Total nitrogen (inorganic+ organic nitrogen),
unfiltered

mg N L−1 24 528

TN filtered (tnf) mmol N m−3 00602 Total nitrogen (inorganic+ organic nitrogen),
filtered

mg N L−1 11 963

PO4 (po4) mmol P m−3 00660 Orthophosphate, filtered mg PO4 L−1 21 829
00671 Orthophosphate, filtered mg P L−1 20 298

TP unfiltered (tnu) mmol P m−3 00665 Total phosphorous (organic+ inorganic phos-
phorous), unfiltered

mg P L−1 28 100

TP filtered (tpf) mmol P m−3 00666 Total phosphorous (organic+ inorganic phos-
phorous), filtered

mg P L−1 20 739

Silica (sio2) mmol Si m−3 00955 Silica, filtered mg SiO2 L−1 32 837

Dissolved oxygen (do) mmol O2 m−3 00300 Dissolved oxygen, water, unfiltered mg O2 L−1 35 615

Temperature (temp) ◦C 00010 Water temperature ◦C 52 357

Discharge (disc) m3 s−1 00060 Mean dischargeb ft3 s−1

m3 s−1 00061 Instantaneous dischargec ft3 s−1

a The abbreviated names of the variables indicated in parenthesis (in first column) are used in the netCDF files. b Averaged discharge from the USGS Surface-Water Monthly Statistics for the Nation
was used for all rivers excepting the Mississippi–Atchafalaya (U.S. Army Corps of Engineers) and those listed in footnote c. c Instantaneous discharge from the USGS Water Quality Database was
used for the Charles, James, Weeki Washee, and Rio Grande rivers.
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Figure 3.

sponds to the mouth of the major stream discharging to the
ocean. For example, the dataset contains the Alabama and
Tombigbee rivers, which converge to the Mobile River, so
the associated river mouth for those two rivers is the Mobile
mouth (30.7◦ N, 88.0◦W).

To the extent it was possible given data availability, we
calculated monthly time series for all variables and all river
sites over the period 1950–2022. Temporal data gaps were
kept unfilled. In the Water Quality Database, river proper-
ties are characterized by a set of parameters, each associated
with a specific measurement type. As indicated in Tables 1
and 2, we used eight parameters to derive alkalinity; two pa-
rameters to derive NO3, NH4, and PO4; and one parameter
for the remaining variables: pH field, pH laboratory, DOC,
measured DIC, NO3 plus NO2, SiO2, DO, temperature, and
the filtered and unfiltered concentration of orgN, TN, and TP.
Using more than one parameter for alkalinity, NO3, NH4, and
PO4 was a reasonable option to improve the spatiotemporal

representation of the patterns, as concentration differences
between parameters, during overlapping periods, were mi-
nor and did not reveal evident biases (Figs. S2 and S3 in the
Supplement). Conversion factors were applied to present al-
kalinity in milliequivalent m−3 (meq m−3), the carbon-based
variables (DIC, DOC) in mmol C m−3, the nitrogen-based
variables (NO3, NO3 plus NO2, NH4, orgN, TN) in mmol
of N m−3, the phosphorous-based variables (PO4 and TP)
in mmol of P m−3, silica in mmol of SiO2 m−3, and dis-
solved oxygen in mmol of O2 m−3. To ensure data quality,
outliers, defined here as river chemistry values above and be-
low 3.5 standard deviations from the median, were removed.
Maximum alkalinity (and calculated DIC) values were lim-
ited to 8000 meq (mmol) m−3. pH records below 3.5 or above
10 units were discarded. Additionally, an upper threshold of
3.5 was used for the DIC-to-alkalinity ratio (DIC : Alk ratio),
based on values reported by Moore-Maley et al. (2018). Cal-
culated DIC records linked to DIC : Alk ratios greater than
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Figure 3. Number of monthly records (Nmr) in the dataset time series (1950–2022). The color bar range may vary between panels. Variable
description is in Tables 1 and 2.

3.5 were then removed. This was a very minor fraction of the
total monthly DIC records (3.7 %), mainly associated with
low-alkalinity values in the Toms, Satilla, St. Marys, and
Blackwater rivers.

Except for river discharge, which had average temporal
coverage of 85 %, the USGS time series had significant data
gaps as the parameter’s monitoring had a limited number of
years, and/or the parameter’s measurements were not per-
formed at a regular frequency. Figure 3 displays the num-
ber of records (data density) in the monthly time series for
each site. We omitted measured DIC, which was present at a
low number in only 10 % of the stations. The density maps
reveal large differences among rivers and variables. Monitor-
ing stations with the most complete chemistry records were
linked to rivers flowing to the Mid-Atlantic Bight, the Missis-
sippi and Atchafalaya, and a limited number of major rivers
on the West Coast and Texas coast. The greatest data den-

sity was for water temperature, pH field, and alkalinity, with
medians of 176, 170, and 149 records (over the 140 sites),
respectively, followed by dissolved oxygen, silica, and cal-
culated DIC, with medians of 138, 134, and 124 records, re-
spectively. At the other end, variables with low data density
were DON and DON, with medians of 21 and 14 records,
respectively.

To complement the time series and provide a ready-to-use
dataset for ocean biogeochemical model applications with no
data gaps, we generated monthly climatologies using all data
during 1950–2022. We also generated climatologies for the
1950–1989 and 1990–2022 periods, as a way to represent
temporal variation in the climatological pattern. We consid-
ered those multidecadal periods, as the temporal coverage in
the river chemistry dataset did not resolve well decadal vari-
ability for all sites. To ensure a minimum number of observa-
tions to derive the monthly climatologies, for each variable
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Figure 4. Frequency histogram derived from the long-term site-averaged (a) alkalinity and (b) DIC-to-alkalinity (DIC : Alk) ratio for all
rivers (All) and for rivers discharging at the East Coast, Gulf of Mexico, and West Coast.

and station we calculated the number of records per calen-
dar month. If the median value of this record count (over the
12 months) was less than five or any month had no data, then
the monthly climatology was substituted by the long-term an-
nual average.

A brief description of the carbon system variables in the
RC4USCoast database (based on alkalinity and calculated
DIC) is provided in the following section. Mean patterns for
other variables are shown in the Supplement (Fig. S4).

3 Main carbon system patterns

The site-averaged alkalinity concentration ranges from
40 meq m−3 (Blackwater) to 5605 meq m−3 (Santa Clara).
The frequency distribution for this variable displays a posi-
tive skewness with a median of 662 meq m−3 and 42 % of the
values lower than 500 meq m−3 (Fig. 4a). The largest frac-
tion of low-alkalinity (<500 meq m−3) rivers is on the East
Coast, especially for rivers flowing to the Gulf of Maine and
South Atlantic Bight (Fig. 5a). On the other hand, the largest
fraction of high-alkalinity (>2000 meq m−3) rivers is in the
Gulf of Mexico (Fig. 4a), mainly clustered over the Texas
and western Florida coasts (Fig. 5a). Along the West Coast,
there is a clear meridional gradient in river alkalinity, with
the highest values in Southern California and the lowest in
Oregon and Washington (Fig. 5a).

The average river DIC concentration shows a very similar
spatial pattern to the average river alkalinity, as both variables

are highly correlated (r = 0.99; Fig. S5 in the Supplement).
However, DIC tends to be greater than alkalinity, which is
reflected in an average DIC : Alk ratio of 1.33 over the 140
stations. Like alkalinity, the frequency distribution of the site
averaged DIC : Alk ratios has a positively skewed distribu-
tion (Fig. 4b), with a median of 1.17, and minimum and
maximum values of 0.92 (Los Angeles) and 3.09 (Shoal),
respectively. Rivers with the lowest DIC : Alk ratios are in
the West Coast, where DIC is on average 8 % greater than
alkalinity (Fig. 5b). Large DIC : Alk ratios are mainly asso-
ciated with low-alkalinity rivers, and the opposite is true for
high-alkalinity rivers. Indeed, the relationship between these
two variables has a clear linear pattern for alkalinities below
∼ 500 meq m−3, where the mean DIC : Alk ratio decreases
0.234 units per every 100 meq alkalinity increase (Fig. 6a).
Moreover, we found that the standard deviation of the DIC :
Alk ratio (SDDIC:Alk) is inversely linked to the mean alka-
linity (Fig. 6b). Most rivers with a mean alkalinity below
200 meq m−3 have a SDDIC:Alk greater than 0.4, whereas
most rivers with a mean alkalinity above 1000 meq m−3 have
a SDDIC:Alk lower than 0.2.

To further investigate the river carbonate chemistry vari-
ability, we examined monthly records for the stations with
the largest data density. Those stations are associated with six
rivers in the East Coast (Connecticut, Delaware, Schuylkill,
Choptank, Susquehanna, and Neuse), two rivers in the Gulf
of Mexico (Mississippi and Atchafalaya), and four rivers in
the West Coast (Santa Ana, Sacramento, Eel, and Klamath).
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Figure 5. Long-term mean (colored dots and squares) of the river (a) alkalinity and (b) DIC-to-alkalinity ratio. Squares (dots) represent river
stations with a mean discharge greater (smaller) than 500 m3 s−1. Color bar in (a) is in log scale.

Figure 6. Between-river variability in the DIC-to-alkalinity (DIC : Alk) ratio as a function of alkalinity: (a) mean DIC : Alk ratio vs. mean
alkalinity; (b) standard deviation of the DIC : Alk ratio vs. mean alkalinity. Each dot represents one of 140 rivers in the dataset. Green, red,
and blue dots depict the rivers flowing to the East Coast, Gulf of Mexico, and West Coast, respectively.
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Figure 7. Carbon system patterns for 12 selected rivers: (a) DIC vs. alkalinity and (b) DIC : Alk ratio vs. alkalinity; (c) monthly climatolog-
ical patterns of alkalinity; and (d) alkalinity vs. logarithm of discharge. All patterns were derived for the 12 rivers with the largest number of
records in the database: Connecticut (ID= 11), Delaware (23), Schuylkill (24), Choptank (25), Susquehanna (26), Neuse (35), Mississippi
(86), Atchafalaya (88), Santa Ana (107), Sacramento (113), Eel (117), and Klamath (119) rivers.

A strong positive relationship between the monthly alkalinity
and DIC records is evident for all of the 12 stations (Fig. 7a).
The coefficients of determination (R2) for the linear regres-
sion of DIC against alkalinity average to 0.89, ranging from
0.57 (Neuse) to 0.99 (Eel) (Table S2 in the Supplement).
Like the patterns in Figure 6, the monthly records show an
inverse relationship between the DIC : Alk ratio and alka-
linity (i.e., an increased variability in the DIC: Alk ratio at
low-alkalinity values and vice versa at high-alkalinity val-
ues) (Fig.7b). The Choptank and Neuse rivers, in the lower
end of the alkalinity concentration, show the largest disper-
sion in the DIC : Alk ratio, with values ranging from ∼ 1 to
higher than 2.5. In contrast, the high-alkalinity Santa Ana
River displays a much smaller variability, with the maximum
DIC : Alk ratio around 1.1. Seasonal patterns for alkalinity
(and DIC) tend to show enhanced values during summer and
fall, and minimum values during winter and spring (Fig. 7c),
concurrent with low and high discharge periods, respectively.

This pattern is consistent with multiple studies conducted in
specific river basins, suggesting dilution of carbonate chem-
istry variables during high discharge conditions (e.g., Cai,
2003; Guo et al., 2008; Joesoef et al., 2017). Indeed, a lin-
ear relationship between the logarithm of discharge (logDisc)
and alkalinity is evident for each of the 12 stations (Fig. 7d).
The adjusted linear regression models for these rivers are all
significant, with linear regression coefficients ranging from
0.33 (Sacramento) to 0.69 (Eel) (Table S2).

The inverse relationship between logDisc and alkalinity
in Fig. 7d can be extended to other rivers in the database.
Figure 8 shows the regression coefficient (slope) and R2 for
the stations where the regression was significant, explained
at least 20 % of the alkalinity variance, and included at least
30 observations (78 out of 140 rivers). The sensitivity of river
alkalinity to changes in discharge, reflected in the magnitude
of the regression coefficient, is greater in the high-alkalinity
rivers flowing to the Gulf of Mexico, Southern California,

https://doi.org/10.5194/essd-15-2223-2023 Earth Syst. Sci. Data, 15, 2223–2234, 2023
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Figure 8. (a) Regression coefficient and (b) coefficient of determination (R2) for the adjusted linear regressions between alkalinity and the
logarithm of discharge (colored dots and squares). Patterns are shown only for the stations that have a significant regression coefficient, an
R2 greater than 0.2, and more than 30 observations (78 out of 140 stations). Squares (dots) represent river stations with a mean discharge
greater (smaller) than 500 m3 s−1.

and eastern Florida coasts and smaller in the low-alkalinity
rivers flowing to the Pacific Northwest coast and East Coast
(Fig. 8a). This determines a significant negative correlation
between the regression coefficient and the site-averaged al-
kalinity (r =−0.69). The R2 coefficient pattern shows an
important spatial variability (Fig. 8b), which is not linked to
river alkalinity or discharge. The largest R2 values (>0.5)
characterize rivers flowing to the Pacific Northwest coast,
Florida Panhandle, and South Atlantic Bight. Similar pat-
terns were found for the relationship between logDisc and
DIC (not shown).

4 Data availability

The river chemistry data product is available in
netCDF format at NOAA/NCEI with a DOI of
https://doi.org/10.25921/9jfw-ph50 and NCEI accession
number 0260455 (Gomez et al., 2022). For each of the
selected river stations, we provide monthly time series and

climatologies for each variable. Excel spreadsheets reporting
the USGS parameters used to generate the dataset, the
station and river mouth locations (latitude/longitude), the
number of records in the series, and the first and last year in
the series are also provided in the dataset.

5 Summary and conclusion

Retrieving data from the USGS Water Quality Database has
complexities, such as identifying nearshore sites for coastal
studies (USGS contains more than 2400 sites across the
United States, many in inland waters that are not directly rel-
evant to coastal ocean analyses) or integrating water quality
parameters to characterize biogeochemical properties (water
properties are usually described by more than one USGS pa-
rameter). Thus, a user not familiar with the USGS database
may require considerable time and effort to identify river
sites and parameters. We facilitate this task, providing an in-
tegrated river chemistry and discharge dataset for 140 USGS
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nearshore sites, which contains relevant variables to charac-
terize biogeochemical and water fluxes (land-to-ocean) along
the US West Coast, US East Coast, and Gulf of Mexico.
RC4USCoast includes data for alkalinity, pH, nutrients, and
novel estimates of river DIC. River mouth location (latitude,
longitude) is reported for each USGS site, which expedites
the data integration in coastal biogeochemical studies. The
main goal is to fill a gap for river carbonate chemistry prod-
ucts, as necessary inputs for regional model simulations that
include ocean biogeochemistry. We also note the utility of
this product for skill assessment of hydrologic and riverine
chemistry models estimating discharge and nutrient load-
ing patterns resulting from climate and land use activities
(e.g., Lee et al., 2019). Patterns in RC4USCoast show dis-
tinct regional features for alkalinity and DIC. The average
and standard deviation of the DIC : Alk ratio increased in
low-alkalinity rivers, and both alkalinity and DIC concen-
tration were inversely related to river discharge. Our results
revealed a significant spatiotemporal variability in carbonate
chemistry, which can play a significant role on coastal bio-
geochemical dynamics.

Supplement. The supplement related to this article is available
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