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Abstract. Land surface temperature (LST) is a key variable for monitoring and evaluating global long-term cli-
mate change. However, existing satellite-based twice-daily LST products only date back to 2000, which makes it
difficult to obtain robust long-term temperature variations. In this study, we developed the first global historical
twice-daily LST dataset (GT-LST), with a spatial resolution of 0.05◦, using Advanced Very High Resolution
Radiometer (AVHRR) Level-1b Global Area Coverage (GAC) data from 1981 to 2021. The GT-LST product
was generated using four main processes: (1) GAC data reading, calibration, and preprocessing using open-
source Python libraries; (2) cloud detection using the AVHRR-Phase I algorithm; (3) land surface emissivity
estimation using an improved method considering annual land cover changes; (4) LST retrieval based on a non-
linear generalized split-window algorithm. Validation with in situ measurements from Surface Radiation Budget
(SURFRAD) sites and Baseline Surface Radiation Network sites showed that the overall root-mean-square er-
rors (RMSEs) of GT-LST varied from 1.6 to 4.0 K, and nighttime LSTs were typically better than daytime
LSTs. Intercomparison with the Moderate Resolution Imaging Spectroradiometer LST products (MYD11A1
and MYD21A1) revealed that the overall root-mean-square difference (RMSD) was approximately 3.0 K. Com-
pared with MYD11A1 LST, GT-LST was overestimated, and relatively large RMSDs were obtained during the
daytime, spring, and summer, whereas the significantly smaller positive bias was obtained between GT-LST and
MYD21A1 LST. Furthermore, we compared our newly generated dataset with a global AVHRR daytime LST
product at the selected measurements of SURFRAD sites (i.e., measurements of these two satellite datasets were
valid), which revealed similar accuracies for the two datasets. However, GT-LST can additionally provide night-
time LST, which can be combined with daytime observations estimating relatively accurate monthly mean LST,
with an RMSE of 2.7 K. Finally, we compared GT-LST with a regional twice-daily AVHRR LST product over
continental Africa in different seasons, with RMSDs ranging from 2.1 to 4.3 K. Considering these advantages, the
proposed dataset provides a better data source for a range of research applications. GT-LST is freely available at
https://doi.org/10.5281/zenodo.7113080 (1981–2000) (Li et al., 2022a), https://doi.org/10.5281/zenodo.7134158
(2001–2005) (Li et al., 2022b), and https://doi.org/10.5281/zenodo.7813607 (2006–2021) (J. H. Li et al., 2023).
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1 Introduction

Land surface temperature (LST) is one of the key physical
variables of land surface processes (Li et al., 2013). As an
indicator of the regional and global surface energy and water
balance (Duan et al., 2019; Liu et al., 2019; Ma et al., 2020;
Zhang et al., 2022), LST has been used to detect climate
change (Bright et al., 2017; Hansen et al., 2010; Jin and Dick-
inson, 2002; Li et al., 2015), estimate surface soil moisture
(Bai et al., 2019; Song et al., 2022; Zhao et al., 2021), moni-
tor vegetation (Duveiller et al., 2018; Sims et al., 2008; Weng
et al., 2004), assess drought (Sánchez et al., 2018; Zhang et
al., 2017), and study the urban thermal environment (Phan
and Kappas, 2018; Si et al., 2022). Many of these applica-
tions require long-term observations made at regular tem-
poral revisit intervals over large spatial scales (Hong et al.,
2022). Compared to traditional ground observations, which
are sparse, unevenly distributed, and able to obtain LST only
at a specific point, satellite observations offer a valid oppor-
tunity to obtain LST data with a large and continuous spatial
coverage.

LST cannot be measured directly by satellite but can be
estimated from satellite-based thermal infrared (TIR) data
(Li et al., 2013). To date, several methods for LST retrieval
have been developed in accordance with TIR data, such as
the mono-window algorithm (Qin et al., 2001), split-window
algorithms (Becker and Li, 1990; Wan and Dozier, 1996),
the temperature–emissivity separation algorithm (Gillespie
et al., 1998), and the physical day and night algorithm (Wan
and Li, 1997). Currently, a number of publicly available LST
products exist that are based on various TIR instruments
aboard satellite platforms and derived from different LST re-
trieval algorithms (Z.-L. Li et al., 2023). These LST prod-
ucts can be divided into three approximate categories ac-
cording to their spatial–temporal resolutions and time peri-
ods: (1) global LST products with low temporal resolution
but high spatial resolution, such as the Landsat LST prod-
uct (16 d and 30 m) and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) LST product
(16 d and 90 m) (Gillespie et al., 1998; Malakar et al., 2018),
(2) global LST products with medium spatial resolution
(1 km) and medium temporal resolution (twice daily), such as
the Advanced Very High Resolution Radiometer (AVHRR)
LST product, the (Advanced) Along-Track Scanning Ra-
diometer LST product, the Moderate Resolution Imaging
Spectroradiometer (MODIS) LST product, and the Visible
and Infrared Imagery Radiometer Suite LST product (Hul-
ley and Hook, 2018a, b; Prata, 2002; Trigo et al., 2011;
Wan, 2006;), and (3) regional LST products with relatively
low spatial resolution but high temporal resolution, such as
the Advanced Baseline Imager LST product (America, 1 h
and 2 km), the Spinning Enhanced Visible and InfraRed Im-
ager LST product (Africa, 15 min and 3 km), the Advanced
Geosynchronous Radiation Imager LST product (China, 1 h
and 4 km), and the Advanced Himawari Imagers LST prod-

uct (Japan, 1 h and 2 km) (Trigo et at., 2008; Yamamoto et
al., 2018; Yang et al., 2017; Yu et al., 2008). In summary, the
number of regional and global LST products derived from
TIR data has increased, but global daily satellite-derived LST
products with medium and high spatial resolution only date
back to the year 2000. However, many application fields, in-
cluding climate change, environmental monitoring, and me-
teorology, urgently require global LST products with twice-
daily observations that include more than 40 years of avail-
able data (IPCC, 2014; Liu et al., 2019; Ma et al., 2020). No-
tably, AVHRR is the only sensor that has the advantages of
frequent revisits (twice per day), relatively high spatial reso-
lution (4 km at the nadir), global coverage, and easy access
prior to 2000.

Several LST products were generated from AVHRR TIR
measurements before 2000 (Table 1). These products can be
broadly classified into two categories. The first includes re-
gional products with relatively high spatial or temporal res-
olution. For example, the European Space Agency produced
the World Land Surface Temperature Atlas dataset, which
provides monthly LST data over Europe at 1 km and 0.5◦

spatial resolution from 1992 to 1993 (Kerr et al., 1998).
Moreover, Pinheiro et al. (2006) developed a regional daily,
8 km resolution, daytime and nighttime LST dataset over
Africa for the NOAA-14 AVHRR from 1995 to 2000 (de-
noted as RT-LST). Khorchani et al. (2018) generated a long-
term AVHRR LST dataset with a spatial resolution of 1 km
for peninsular Spain at annual and seasonal timescales for
1981–2015. Furthermore, a long-term study by the TIME-
LINE (Time Series Processing of Medium Resolution Earth
Observation Data Assessing Long-Term Dynamics in our
Natural Environment) project of the Earth Observation Cen-
ter at the German Aerospace Center provided a long time
series of almost 40 years of daily AVHRR LST at 1 km spa-
tial resolution over Europe and northern Africa (Frey et al.,
2012, 2017; Holzwarth et al., 2021; Reiners et al., 2021). The
second category includes global products with low tempo-
ral resolution. For example, Ouaidrari et al. (2002) gener-
ated a global monthly average LST dataset at 8 km spatial
resolution for January and July 1989, based on the AVHRR
Land Pathfinder II project framework. Moreover, Jin (2004)
provided a monthly global 8 km, 0.5 and 5◦ resolution LST
dataset based on the diurnal temperature cycle model, which
spans a 17-year period (i.e., 1981–1998). A more recent
study by Ma et al. (2020) generated a global historical
daytime 0.05◦× 0.05◦ LST product (denoted as GD-LST)
by reprocessing the daytime AVHRR dataset (including re-
flectance data and brightness temperature data) provided by
the Land Long Term Data Record (LTDR) for 1981–2000. In
summary, these efforts are limited by covering only certain
regions (e.g., Europe or Africa) or their coarse temporal res-
olutions (e.g., daytime or monthly). To develop a long-term
(>40-year) satellite-derived LST product, it is necessary to
generate a twice-daily AVHRR LST product that covers a
period of more than 40 years or that can be combined with
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the existing satellite-derived twice-daily LST product (e.g.,
MODIS) after 2000. Moreover, global long-term meteorol-
ogy and climatology-related applications also demand global
and instantaneous AVHRR LST data with two observations
each day, which can be used to estimate relatively accurate
climate change indices such as the mean LST, extreme LST,
and diurnal LST range.

In this study, we aim to fill this research gap by developing
a standard global historical twice-daily (daytime and night-
time) LST product (GT-LST) at 0.05◦ spatial resolution. GT-
LST is derived from original long time series AVHRR Level-
1b Global Area Coverage (GAC) data spanning a 41-year pe-
riod (1981–2021). Section 2 introduces the data used in this
study, including data for LST generation and validation. Sec-
tion 3 describes the methodology for GT-LST generation and
validation. Section 4 presents and discusses the results. Sec-
tion 5 summarizes the main conclusions.

2 Datasets

2.1 AVHRR datasets

The GT-LST product is derived from AVHRR sensors in-
stalled aboard the NOAA series of Polar Operational Envi-
ronmental Satellites (POES) (Cracknell, 1997). According to
the operational times of different POES satellites, NOAA-
7/9/11/14/16/18/19 were selected to generate a global long-
term LST from 1981 to 2021 (Fig. 1). The orbital period
was about 102 min, producing 14 orbits per day (Kidwell,
1998). The AVHRR sensor has six spectral bands with a
spatial resolution of 1.1 km at the nadir and scan angles of
approximately ±55◦ off the nadir (Table 2). Although the
AVHRR sensors measure the same infrared bands, their spec-
tral responses are not completely identical. Figure 2 shows
the spectral responses of the two infrared bands of NOAA-
7/9/11/14/16/18/19.

The commonly used AVHRR Level-1b GAC data are
reduced-resolution data, which take the first scan line out of
every three, average four of each five consecutive samples
along the scan line, and are processed aboard the satellite in
real time. Therefore, AVHRR Level-1b GAC data are gener-
ally treated as having a coarse resolution of 4 km at the nadir,
and the pixel size increases with the satellite zenith angle
(VZA). Furthermore, as the VZA increases, the geolocation
accuracy of the AVHRR GAC scene becomes lower, particu-
larly when VZAs are larger than 40◦ (Wu et al., 2020). How-
ever, the AVHRR Level-1b GAC dataset is the only dataset in
which every place on Earth has been sampled at least twice
per day (daytime and nighttime) since 1981 (Kidwell, 1998).
Thus, AVHRR Level-1b GAC data are available for gen-
erating global daytime and nighttime LST data from 1981
to 2021. AVHRR GAC data were archived in Level-1b for-
mat with 10 bit precision. Then the data were assembled into
discrete datasets using full orbits with quality control. Each
file contains video data for the six channels and time codes,

quality indicators, Earth location, calibration information,
and solar zenith angles (SZAs). AVHRR Level-1b GAC data
were obtained from the NOAA Comprehensive Large Array-
Data Stewardship System (https://www.avl.class.noaa.gov/
saa/products/search?datatype_family=AVHRR, last access:
5 April 2023).

2.2 Datasets for generating simulations

To obtain the nonlinear generalized split-window (GSW) al-
gorithm coefficients, it is necessary to establish a compre-
hensive simulation dataset. In this study, we used the latest
version of the Thermodynamic Initial Guess Retrieval 2000
dataset, which is a reliable atmospheric profile dataset, and
the ASTER spectral library, which is a collection of the Jet
Propulsion Laboratory spectral library, Johns Hopkins Uni-
versity spectral library, and United States Geological Survey
spectral library.

The Thermodynamic Initial Guess Retrieval 2000 dataset
(V1.2) contains 2311 representative atmospheric situations
that were carefully selected from 8000 global radiosonde re-
ports (Chedin et al., 1985). Each situation consists of tem-
perature, ozone concentrations, and water vapor values at a
given pressure level from the surface to the top of the atmo-
sphere. Finally, we obtained 946 globally representative and
clear-sky atmospheric conditions by removing cloudy atmo-
spheric conditions, i.e., removing the relative humidity at any
pressure level exceeding 90 % or two adjacent pressure levels
exceeding 85 %. The ranges of water vapor content (WVC)
and near-surface air temperature values are 0.06–6.5 g cm−2

and 230–310 K under these atmospheric conditions.
The ASTER spectral library version 2.0 includes over

2300 spectra of natural and artificial materials covering the
wavelength range from 0.4 to 15.4 µm. In this study, we used
54 land surface emissivity spectra to represent different land
surface types, including 41 soil types, 4 vegetation types, 4
water body types, and 5 ice/snow types. The emissivity val-
ues of the AVHRR TIR channels were estimated by convolv-
ing the emissivity spectra with the relative spectral response
functions of AVHRR bands 4 and 5.

2.3 Datasets for emissivity estimation

For nonlinear GSW, emissivity is an essential parameter in
LST retrieval, and its accuracy directly affects LST accu-
racy. Four datasets were used for emissivity estimation, ex-
cept for the Level-1b reflectance dataset of the GT-LST prod-
uct: ASTER Global Emissivity Dataset (GED), Global Soil
Regions Map (GSRM), and global yearly land cover dynam-
ics of the Global Land Surface Satellite (GLASS-GLC) and
MODIS land cover product (MCD12C1).

The ASTER GED product, which provides the global
mean land surface emissivity in five ASTER TIR spectral
bands with spatial resolutions of 100 m and 1 km on 1◦× 1◦

grids, was generated by the National Aeronautics and Space
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Table 1. Characteristics of LST products generated with AVHRR data.

Dataset Spatial coverage Time span Temporal resolution Spatial resolution References

The World Land
Surface Temperature
Atlas dataset

Europe 1992–1993 Monthly 1 km and 0.5◦ Kerr et al. (1998)

RT-LST Africa 1995–2000 Daytime and
nighttime

8 km Pinheiro et al. (2006)

Annual and seasonal
LST dataset over penin-
sular Spain

Peninsular Spain 1981–2015 Annual and
seasonal

1.1 km Khorchani et al. (2018)

TIMELINE LST
dataset

European and
northern Africa

1981–2021 Daytime and nighttime 1 km Frey et al. (2012, 2017);
Reiners et al. (2021);
Holzwarth et al. (2021)

ALP-II LST dataset Global 1989 Monthly 8 km Ouaidrari et al. (2002)

LSTD Global 1981–1998 Monthly 8 km, 0.5 and 5◦ Jin (2004)

GD-LST Global 1981–2000 Daytime 0.05◦ Ma et al. (2020)

Figure 1. Coverage period of NOAA satellites used in this study (adapted from http://www.nasa.gov/pdf/111742main_noaa_n_booklet.pdf,
last access: 5 April 2023).

Administration’s Jet Propulsion Laboratory (Hulley et al.,
2015). The emissivity of the ASTER GED was developed
from all clear-sky ASTER data acquired over 2000–2008
using temperature–emissivity separation algorithms and the
water vapor scaling atmospheric correction algorithm. This
product also provides the mean LST, mean normalized dif-
ference vegetation index (NDVI), global digital elevation
model, land–water mask, and other data. In this study, we
used the ASTER GED mean emissivity and mean NDVI at
1 km spatial resolution.

The GSRM product provides the global distribution of
12 major soil types with an approximately 0.03◦ spa-
tial resolution. It was generated by the United States
Department of Agriculture using a reclassification of
the FAO-UNESCO Soil Map of the World combined

with a soil climate map (https://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013, last ac-
cess: 5 April 2023).

The GLASS-GLC product provides the first record of the
1982–2015 global yearly land cover dynamics with a spa-
tial resolution of 5 km (Liu et al., 2020). It forms part of the
global land surface satellite products and is generated using
the Google Earth Engine platform. This land cover product
contains seven types of land cover: barren land, tundra, crop-
land, grassland, shrubland, forest, and snow/ice. The average
overall accuracy of each land cover type from 1982 to 2015
according to 2431 test sample units is 82.81 %. The GLASS-
GLC product from 1982 to 2005 was used in this study. The
MCD12C1 product provides global maps of land cover at
a spatial resolution of 0.05◦ and an annual time step, start-
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Figure 2. Spectral response functions of NOAA-7/9/11/14/16/18/19 channels 4 and 5 and ASTER channels 10 to 14.

Table 2. Spectral-band widths (µm) of AVHRR sensors.

Channel AVHRR-2 AVHRR-3 Main application
(NOAA-7, 9, 11, 14) (NOAA-15 to NOAA-19, Metop-A, Metop-B)

1 0.58–0.68 0.58–0.68 Ice/snow, daytime clouds

2 0.725–1.10 0.725–1.10 Vegetation cover, land–water boundaries

3A NA 1.58–1.64 Dust monitoring, snow/ice detection

3B 3.55–3.93 3.55–3.93 Nighttime clouds, volcanic eruptions

4 10.3–11.3 10.3–11.3 Sea/land surface temperature, daytime/nighttime imagery

5 11.5–12.5 11.5–12.5 Sea/land surface temperature, daytime/nighttime imagery

Note: “NA” means the channel is not available.

ing from 2001 and continuing to the present (Sulla-Menashe
and Friedl, 2018). In this study, the Collection-6 MCD12C1
product from 2006 to 2020 was employed. In the absence of
available global land cover datasets for 1981 and 2021, the
land cover data for 1982 and 2020 were used as a substitute
in this study.

To match the GT-LST pixels, these global surface datasets
were mosaicked and resampled to 0.05◦ spatial resolution in
terms of their geographic longitude and latitude.

2.4 Atmospheric water vapor content dataset

The ancillary dataset used for LST retrieval was the Modern-
Era Retrospective Analysis for Research and Applications
Version 2 Reanalysis dataset, tavg1_2d_slv_Nx, which pro-
vides an hourly time-averaged WVC (the variable name

is TQV in this dataset) at 0.5◦× 0.625◦ spatial resolution
(https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last
access: 5 April 2023). The TQV dataset was corrected to
match the spatial resolution and overpass time of AVHRR
prior to LST retrieval.

2.5 Validation datasets

Validation of product accuracy is necessary before applying
a new LST product. In this study, ground-based validation,
satellite product intercomparison, and comparison with ex-
isting AVHRR LST data were used to assess the accuracy of
the retrieved product.

In situ measurements from the Surface Radiation Bud-
get (SURFRAD) network and the Baseline Surface Radia-
tion Network (BSRN) were used to validate GT-LST. The
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SURFRAD network was established in 1993 to support ac-
curate, continuous, and long-term measurements of climate
research in the United States (Augustine et al., 2000). In this
study, we selected seven stations of the SURFRAD network
representing various land cover types and providing in situ
data between 1994 and 2005 (Table 3). SURFRAD sites pro-
vide quality-controlled measurements of solar/infrared up-
welling/downwelling radiation. Upwelling and downwelling
TIR radiances are the primary measurements used to retrieve
in situ LST. The instrumental error of the SURFRAD sta-
tion gives rise to uncertainty in the retrieved LST value of
less than 1 K (Guillevic et al., 2012). Therefore, the LST
from SURFRAD has been widely used to evaluate ASTER,
MODIS, and VIIRS LST products (Wang et al., 2008; Wang
and Liang, 2009). The BSRN has 76 stations that have de-
tected important changes in the Earth’s radiation field at
the Earth’s surface since 1992. These stations provide high-
quality surface and upper-air meteorological observations,
which are important in supporting the validation and con-
firmation of satellites. We selected four sites with measure-
ments of upwelling and downwelling TIR radiances before
2000 (Table 3). In situ LST measurements were estimated
using the Stefan–Boltzmann law as follows:

LSTs =
4

√
R ↑ − (1− εb)R ↓

σεb
, (1)

where LSTs is the in situ LST, σ is the Stefan–Boltzmann
constant, R ↑ and R ↓ are the upwelling and downwelling
longwave radiation, respectively, and εb is the broadband
emissivity, which was derived from Duan et al. (2019).

The MODIS LST products (MYD11A1 and MYD21A1)
were used to evaluate the accuracy of GT-LST. MYD11A1
LST is a daily level-3 LST product, which is a typical oper-
ational and standard LST product with a 1 km spatial resolu-
tion from 2002 to the present. MYD11A1 observations were
obtained by the MODIS sensor aboard the Aqua satellites
and pass through the Equator at approximately 13:30/01:30
local solar time. Every pixel has quality flags containing
cloud contamination, emissivity, input data, and calibration.
In this study, Collection-6.1 MYD11A1 of 2004 was selected
for sensor-to-sensor comparison. The MYD21A1 LST prod-
uct, which uses the same observations with MYD11A1 but
uses the temperature–emissivity separation method to dy-
namically retrieve LST and emissivity, was also selected to
make an intercomparison with GT-LST in this study. This
intercomparison was conducted in four months in 2004 (Jan-
uary, April, July, and October), which cover different sea-
sons.

Globally and regionally historical AVHRR LST prod-
ucts, GD-LST and RT-LST, were used to compare to GT-
LST. GD-LST especially is the only currently available
global daytime AVHRR LST, with a spatial resolution of
0.05◦× 0.05◦ from 1981 to 2000. Compared to GT-LST,
GD-LST is not derived from the original AVHRR Level-1b

GAC datasets but from LTDR datasets that reprocess day-
time AVHRR data such as the reflectance, top-of-atmosphere
brightness temperature of TIR bands, and NDVI. RT-LST is
a twice-daily LST product at 8 km resolution over continen-
tal Africa from 1995 to 2000, which is based on GAC data.
Auxiliary data of RT-LST only include cloud mask and ob-
servation time without VZAs.

3 Methodology

3.1 LST generation

This study developed an AVHRR LST processing system to
produce a global historical twice-daily (daytime and night-
time) LST dataset with a 0.05◦ spatial resolution from 1981
to 2021 (Fig. 3). The system includes four steps: (1) data
reading, calibration, and preprocessing; (2) cloud detection;
(3) land surface emissivity estimation; (4) LST retrieval. In
the following subsections, we describe each major compo-
nent of the processing system.

3.1.1 Data reading, calibration, and preprocessing

The first step in our framework includes reading, decod-
ing, performing quality control, and calibrating packed 10 bit
AVHRR Level-1b GAC data (Fig. 3). In this study, we used
an open-source and community-driven package, Pygac, to
process the 41-year AVHRR Level-1b GAC data record. Py-
gac is a Python package used for reading, calibrating, and
navigating data from the AVHRR instrument in GAC and Lo-
cal Area Coverage (LAC) formats (Devasthale et al., 2017).
Many studies have processed AVHRR GAC/LAC data us-
ing this package (Karlsson et al., 2017; Pareeth et al., 2016;
Wu et al., 2021). By inputting the AVHRR Level-1b GAC
data and two-line elements of a satellite into the Pygac pro-
gram, we can obtain calibrated quality-control (QC) flags,
sun-satellite position, reflectance and brightness temperature
data. The complete details of the package are provided at
https://github.com/pytroll/pygac (last access: 5 April 2023).

We then remapped and rebinned the data into the World
Geodetic System 1984 projection with 0.05◦grid cells. Ow-
ing to the wider scan angles of NOAA satellites, panoramic
bow-tie effects were apparent at the edges of the images (Pa-
reeth et al., 2016). Thus, we used the Pyresample package
to resample the AVHRR Level-1b GAC data and correct for
bow-tie effects. Further details of the package are explained
at https://github.com/pytroll/pyresample (last access: 5 April
2023). In areas where multiple AVHRR observations were
available for a given grid cell, especially at polar latitudes, we
selected and stored only one observation per grid cell with
the maximum brightness temperature from channel 4 (Pin-
heiro et al., 2006; El Saleous et al., 2000). We assumed that
this observation had a lower possibility of including cloud.
Then, we distinguished daytime and nighttime observations
using SZAs to ensure compatibility with the cloud-detection
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Table 3. Details of the validation sites used in this study.

Name Elevation (m) Land cover type Latitude Longitude Valid period

SURFRAD BND 230 Croplands 40.0519 −88.3731 1995–2005
DRA 1007 Open shrublands 36.6237 −116.0195 1998–2005
FPK 634 Grasslands 48.3078 −105.1017 1994–2005
GWN 98 Cropland/natural vegetation mosaic 34.2547 −89.8729 1994–2005
PSU 376 Cropland/natural vegetation mosaic 40.7201 −77.9309 1998–2005
TBL 1689 Grasslands 40.1250 −105.2368 1995–2005
SXF 473 Croplands 43.7343 −96.6233 2003–2005

BSRN BAR 8 Tundra 71.3230 −156.6070 1995–2005
NYA 11 Tundra 78.9227 11.9273 1999–2005
PAY 491 Cultivated 46.8123 6.9422 1995–2005
TAT 25 Grass 36.0581 140.1258 1996–2005

Figure 3. Schematic of the workflow used to generate the GT-LST product.

algorithm (Stowe et al., 1999). If the SZA of a pixel was less
than 85◦, the pixel and its observations were assigned to the
daytime class; otherwise, they were assigned to the nighttime
class.

3.1.2 Cloud detection

Currently, no global daytime and nighttime cloud mask
datasets are available for AVHRR Level-1b GAC data be-

fore 2000. Therefore, to obtain global daytime and nighttime
cloud-free pixels from 1981 to 2021, we adapted the Clouds
from AVHRR-Phase I (CLAVR-1) algorithm, which classi-
fies each 2× 2 AVHRR Level-1b GAC pixel array into clear,
mixed, and cloudy classifications (Stowe et al., 1999). The
CLAVR-1 algorithm used three different tests to perform the
classification: contrast, spectral, and spatial signature thresh-
old tests. This algorithm is a more generic approach that de-
tects cloud/clear observations over both day and night and
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land and ocean via the day-land algorithm, day-ocean al-
gorithm, night-land algorithm, and night-ocean algorithm.
Further details of the algorithm are provided by Stowe et
al. (1999). In this study, we used the day-land and night-land
algorithms of CLAVR-1 to identify clear and cloudy pixels
and create a cloud mask dataset (Fig. 3).

3.1.3 Land surface emissivity estimation

To retrieve LST using nonlinear GSW, the land surface emis-
sivity must be known a priori. The NDVI threshold method is
an operationally simplified emissivity estimation method that
is widely used to estimate emissivity from AVHRR observa-
tions (Liu et al., 2019; Ma et al., 2020; Sobrino et al., 2008).
However, previous studies have combined this method with a
fixed land cover dataset to determine the long-term emissiv-
ity (Frey et al., 2017; Ma et al., 2020; Reiners et al., 2021).
As an intrinsic property of the surface, land surface emissiv-
ity predominantly depends on the land cover type, which is
highly temporally dynamic because of phenological changes
and human activities. Therefore, to obtain relatively accurate
emissivity values, we developed an improved method that
considers annual changes in land cover from the GLASS-
GLC dataset and combines ASTER GED data with the NDVI
threshold method to estimate the emissivity (Fig. 3).

First, we assumed that the emissivity of an AVHRR pixel
can be described as the weighted ensemble of bare soil emis-
sivity and vegetation emissivity, where the weights are deter-
mined by the vegetation cover fraction:

εi = εi,vPv+ εi,s (1−Pv) . (2)

Here, εi is the emissivity in channel i, εi,v is the vegetation
emissivity in channel i, εi,s is the bare soil emissivity in chan-
nel i, and Pv is the fraction of vegetation cover, calculated as
follows:

Pv =
NDVI−NDVImin

NDVImax−NDVImin
, (3)

where NDVImax and NDVImin are the thresholds for pure
vegetation and pure bare soil pixels, respectively. According
to Sobrino et al. (2001), NDVImax and NDVImin were set to
0.5 and 0.2, respectively. When NDVI is no more than 0.2,
the pixel is assumed to be pure bare soil with no vegetation
cover; when NDVI is no less than 0.5, the pixel is assumed
to be pure dense vegetation.

Following Eq. (2), the bare soil component emissivity of
ASTER channels 10–14 can be calculated as follows:

εAST
i,s =

εAST
i −Pvε

AST
i,v

1−Pv
, (4)

where εAST
i,s is the bare soil emissivity in ASTER channel i

(i = 10, . . . , 14), and εAST
i,v is the emissivity of dense vege-

tation in ASTER channel i. Because the emissivity spectra

of dense vegetation are similar and vary slightly in the TIR
region, we used the dense vegetation emissivity of ASTER
channel i provided by Meng et al. (2016). εAST

i is the emis-
sivity of the ASTER GED product in channel i. Pv is cal-
culated from the NDVI of the ASTER GED product accord-
ing to Eq. (3). For long-term cloud-cover pixels and dense-
vegetation pixels (Pv = 1), the bare-soil emissivities of these
ASTER pixels are null values. To generate a global gap-free
bare-soil emissivity map of ASTER, we used the average
emissivity of the same soil type within 5× 5 neighborhood
pixels to fill these null values. Because of some pixels with no
valid neighbor pixels for averaging, we needed to enlarge the
neighborhood until all null values are filled. Soil-type data
are described in Sect. 2.3.

Figure 2 shows that the spectral range of ASTER channels
10–14 covers AVHRR channels 4 and 5. A linear regression
relationship was used to convert the bare soil emissivity val-
ues from ASTER channels to AVHRR channels.

εAVH
j,s = b0+ b1ε

AST
10,s + b2ε

AST
11,s + b3ε

AST
12,s + b4ε

AST
13,s + b5ε

AST
14,s , (5)

where εAVH
j,s is the bare soil emissivity in the AVHRR channel

j (j = 4, 5), and b0 to b5 are the coefficients provided by Ma
et al. (2020).

The emissivity of each vegetation type in the GLASS-GLC
dataset was obtained from Ma et al. (2020). Specifically, the
vegetation type of a pixel was determined from the annual
global land cover dataset (see Sect. 2.3). NDVI values were
derived from the reflectance data of AVHRR channels 1 and
2 (see Sect. 3.1). In addition, the emissivity values of water
pixels and ice/snow pixels were used to distinguish nonvege-
tated pixels. We then produced a daily dynamic global emis-
sivity map for AVHRR channels 4 and 5. Further details can
be found in Ma et al. (2020).

3.1.4 LST retrieval

To obtain the LST, we adopted the nonlinear GSW algorithm
proposed by Wan (2014) because of its simplicity, efficiency,
and high accuracy. The algorithm can be formulated as fol-
lows:

LST= a0+

(
a1+ a2

1− ε
ε
+ a3

1ε

ε2

)
T4+ T5

2

+

(
a4+ a5

1− ε
ε
+ a6

1ε

ε2

)
T4− T5

2
+ a7(T4− T5)2, (6)

with ε = (ε4+ ε5)/2 and 1ε = ε4− ε5, where T4 and T5 are
the brightness temperatures measured in AVHRR channels
4 and 5, ε4 and ε5 are the land surface emissivity values in
channels 4 and 5, ε is the average emissivity for these two
channels, 1ε is the emissivity difference between these two
channels, and an (n= 0, 1, . . . , 7) are coefficients related to
the WVC and satellite zenith angles.

The coefficient simulation for the nonlinear GSW algo-
rithm is based on the radiative transfer theory in a cloud-free

Earth Syst. Sci. Data, 15, 2189–2212, 2023 https://doi.org/10.5194/essd-15-2189-2023



J.-H. Li et al.: A global twice-daily AVHRR-derived land surface temperature dataset (1981–2021) 2197

atmosphere (Fig. 3). The channel radiance received at the top
of the atmosphere in the TIR channel of the sensor can be de-
scribed using the radiative transfer theory:

Li = εiBi (Ts)τi +R
atm↑
i + (1− εi)R

atm↓
i , (7)

where Li is the top-of-atmosphere radiance in channel i, εi
is the emissivity in channel i, Bi is the Planck function, Ts
is the LST, τi is the total atmospheric transmittance in chan-
nel i, and Ratm↑

i and Ratm↓
i are the thermal-path atmospheric

upwelling and downwelling radiances in channel i, respec-
tively.

To estimate the coefficients, the VZA sensor was set to
0, 33.56, 44.42, 51.32, 56.25, and 60◦. A moderate spec-
tral resolution atmospheric transmittance algorithm and a
computer model (MODTRAN, version= 5.2) were run using
946 clear-sky atmospheric profile data to simulate the atmo-
spheric parameters. By convolving these parameters with the
spectral response functions of the two AVHRR TIR chan-
nels, we obtained the channel atmospheric parameters of
each VZA, including the total atmospheric transmittance and
thermal-path atmospheric upwelling and downwelling radi-
ances. To ensure that the simulation experiments were repre-
sentative, the bottom air temperature (Tbat) of the profiles was
adopted as the LST. Specifically, LST varies from Tbat−5 to
Tbat+15 K in 5 K intervals for Tbat ≥ 290 K and from Tbat−5
to Tbat+ 5 K in 5 K intervals for Tbat<290 K (Tang, 2018).
In a subsequent step, we converted the LST, channel atmo-
spheric parameters (τi , R

atm↑
i and Ratm↓

i ), and channel emis-
sivity mentioned earlier to brightness temperature using the
radiative transfer theory (Eq. 7). The brightness temperatures
and LST were then used for coefficient estimation accord-
ing to Eq. (6). To improve the fitting accuracy for each VZA
mentioned above, the averaged emissivity values, WVC, and
LST were divided into two, six, and five subranges, respec-
tively. More details can be found in Tang et al. (2008) and
Liu et al. (2018). The coefficients a0 to a7 in Eq. (6) were
obtained using the least-squares method for each subrange.

Finally, the LST product was retrieved in two steps. In the
known subranges of emissivity and WVC, the initial LST
was estimated with coefficients derived for the entire range
of LST, whereas the ultimate LST was estimated using coef-
ficients for a suitable LST subrange determined by the initial
LST (Tang, 2018).

3.2 LST validation

To assess the quality of the GT-LST product, two classical
LST validation approaches were used in this study: ground-
based validation (Göttsche et al., 2016; Ouyang et al., 2017;
Wang and Liang, 2009) and satellite product intercomparison
(Guillevic et al., 2014; Trigo et al., 2008). To further demon-
strate the preponderance of this product, we also compared
GT-LST with historical AVHRR LST products (i.e., GD-LST
and RT-LST).

Ground-based validation was performed between in situ
LST obtained from seven stations within the SURFRAD net-
work and four stations within the BSRN network and GT-
LST from 1994 to 2005. Four criteria were used to guarantee
the validation results. (1) The two LST datasets were accu-
rately matched under the condition of geolocation. (2) Time
differences between in situ LST and GT-LST acquisition of
less than 3 min were permitted, as measurements were pro-
vided by the SURFRAD network every 3 min. (3) We only
used high-quality data of GT-LST (QC= 0) and in situ data
with the quality flag corresponding to high-quality data. (4)
To further minimize the effect of cloud contamination, a pop-
ular method, “3σ -Hampel identifier”, was employed to fur-
ther remove cloudy samples (Duan et al., 2019).

S = 1.4628×median {|xk − xm|} (8)

Here, xk are the differences between GT-LST and in situ
LST, and xm is the median of the dataset {xk}. Matchups with
differences of less than xm−3σ or greater than xm+3σ were
regarded as cloudy contamination.

In this study, satellite product intercomparison was per-
formed between GT-LST and the MODIS LST products
(MYD11A1 and MYD21A1). Because these two MODIS
LST products have provided daily LST since 2002, the
comparisons were limited to data in 2004 (see Sect. 2.1).
Five criteria were used to guarantee the validation results.
(1) MODIS LST matched GT-LST in space. (2) Because
MODIS LST has a finer spatial resolution than GT-LST,
MODIS LST was spatially aggregated to the GT-LST pixel
scale with a simple arithmetic mean and a rigorous standard
that all MODIS pixels within a GT-LST pixel must be valid.
(3) Differences in the acquisition time between MODIS LST
and GT-LST of less than 15 min were permitted. (4) Dif-
ferences in VZAs between MODIS and GT-LST were not
more than 15◦. (5) We only use high-quality LST values of
MODIS (QC= 0, i.e., good-quality data with no need to ex-
amine more details) and GT-LST (QC= 0).

In contrast to the ground-based validation and satellite
product intercomparison mentioned above, the comparisons
for AVHRR LST products were performed using different
strategies. Concretely, GT-LST during daytime was com-
pared with that of GD-LST using a strategy that compares
GT-LST and GD-LST with the same SURFRAD measure-
ments concurrently with the satellite overpass to evaluate the
difference in the absolute accuracy of these two products.
GT-LST was compared with RT-LST using two strategies.
(1) Two days, 15 January and 15 July 1997, were selected to
implement the comparison over continental Africa because
they represent the median time of different seasons (winter
and summer, respectively). (2) Because RT-LST has a coarser
spatial resolution, the closest GT-LST LST values were ex-
tracted based on the longitude and latitude of each pixel of
RT-LST.
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4 Results and discussion

4.1 Comparison with in situ LST

We first compared GT-LST data with in situ LST data at the
BND, DRA, FPK, GWN, PSU, SXF, and TBL sites from the
SURFRAD network for 1994–2005 (Fig. 4). Each scatter-
plot shows the overall validation count, RMSE, bias, stan-
dard deviation, and coefficient of determination (R2). First,
the GWN site had the most data points matching the GT-LST,
which meant that more data passed the validation criteria
shown in Sect. 3.2 at this site than at other sites. The stations
with the next highest number of matching data points were
BND, DRA, FPK, and TBL. The stations PSU and SXF had
the least valid points because the time period for these two
sites was smaller (1998–2005 and 2003–2005). The over-
all RMSE range was approximately 1.6–4.0 K (Fig. 4), 1.8–
4.8 K for daytime observations, and 1.0–3.3 K for nighttime
observations (Table 4). The RMSEs of all the sites except
PSU for nighttime observations were less than 3.0 K. Com-
pared to daytime observations, nighttime observations of all
sites except GWN and PSU had better accuracy with lower
RMSEs. This is because in situ LST measurements during
the daytime do not necessarily have good spatial representa-
tiveness for the satellite sensor footprint (Duan et al., 2019;
Göttsche et al., 2016). In contrast, the LST was more spa-
tially homogeneous at night. The BND site exhibited low ac-
curacy with the largest RMSE and bias values; this result was
also confirmed by previous studies (Liu et al., 2019; Ma et al.,
2020; Reiners et al., 2021). A positive bias (GT-LST–in situ
LST) was found for all SURFRAD sites except for daytime
observations at the GWN stations. Furthermore, R2 values
between the retrieved LST and in situ LST ranged from 0.94
to 0.99, indicating a high correlation between these data. We
further compared GT-LST data with in situ LST data at the
BAR, NYA, PYA, and TAT sites from the BSRN network
for 1995–2005. Figure 5 shows the scatterplots between GT-
LST and in situ LST at four BSRN sites. The accuracy of
the GT-LST product at BSRN sites is relatively worse than
that at SURFRAD sites, with RMSE (bias) ranges from 3.1 K
(−2.7 K) to 4.0 K (2.5 K). It should be noted that the rel-
atively poor accuracy at BSRN sites is possible due to the
large spatial heterogeneity of LST at these sites.

Many studies have obtained similar results. For example,
Duan et al. (2019) evaluated the accuracy of the Collection-6
MODIS LST data based on in situ LST observations and ob-
tained large RMSE values (>2 K) during the daytime. More-
over, Martin et al. (2019) evaluated the accuracies of several
LST products (AATSR, GOES, MODIS, and SEVIRI) based
on multiple years of in situ LST observations and concluded
that the average daytime and nighttime accuracies over the
entire time span were within±4 and±2 K, respectively. Fur-
thermore, Ma et al. (2020) and Liu et al. (2019) compared
AVHRR LST with in situ LST during the daytime and re-

Figure 4. GT-LST versus in situ LST for 1994–2005 at the (a)
BND, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, and (g) TBL
sites.

vealed RMSE variations of 2.3–3.9 and 2.2–4.1 K, respec-
tively. Therefore, the accuracy of GT-LST is encouraging.

4.2 Comparison with MODIS LST

An intercomparison between GT-LST and MYD11A1 LST
was performed on a global scale for 2004 (see Sect. 3.2).
Specifically, Fig. 6 shows the daytime and nighttime RMSD
values of 3.4 and 3.1 K and that of positive bias of 1.4
and 2.4 K between GT-LST and MYD11A1 LST for 2004,
respectively. This result is similar to that of Reiners et
al. (2021), who compared a regional 1 km AVHRR LST
product of the TIMELINE project with MODIS LST for
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Table 4. GT-LST versus in situ LST during the daytime and nighttime.

Site Day Night

Count RMSE (K) Bias (K) Count RMSE (K) Bias (K)

SURFRAD BND 760 4.8 3.6 565 2.6 1.8
DRA 747 2.7 1.0 533 1.9 0.6
FPK 731 3.2 2.2 435 2.0 1.0
GWN 1193 1.9 −0.5 840 2.1 1.5
PSU 431 1.9 0.1 331 3.3 1.8
SXF 250 1.8 0.1 146 1.0 0.1
TBL 631 2.2 0.7 488 2.1 1.4

BSRN BAR 166 3.4 −1.8 163 3.1 −0.5
NYA 125 3.9 −2.7 53 4.2 −2.6
PAY 607 3.9 3.3 249 3.7 2.2
TAT 599 3.3 −1.6 530 2.9 2.2

Figure 5. Scatterplots between GT-LST and in situ LST at (a) BAR,
(b) NYA, (c) PYA, and (d) TAT.

2003–2014 and reported RMSD and bias values of approxi-
mately 2.7 and 2.2 K, respectively. However, as can be seen
in the red box of Fig. 6, there are some considerable scattered
samples (111 samples) which perform large LST differences
(more than 20 K). Figure A1 shows that all scattered samples
are barren land cover type and arid climate type. About two-
thirds of all the samples (77 samples) happened in Haiya,
Sudan, on 31 March 2004. The samples of the rest (34 sam-
ples) happened in Taif, Saudi Arabia, on 2 April 2004. For
these samples, we double-checked variables that are essen-
tial in GT-LST retrieval. The result showed that values of all
the variables are reasonable, except BTs of TIR bands. Ab-
normally high BTs at these nighttime samples were found on

31 March and 2 April 2004 (Fig. A2), which led to extremely
high LSTs. The possible reasons for abnormally high BTs
may be instrument failure on these two days.

Figure 7 shows the RMSD and bias between GT-LST and
MYD11A1 LST for 2004 over various land cover types.
The RMSD varied from 2.1 to 4.2 K, and the bias varied
from approximately 0.6 to 3.3 K. Specifically, savannas and
cropland/natural vegetation mosaics had an RMSD of larger
than 4 K. The permanent snow and ice and the water bod-
ies’ land cover types had an RMSD of less than 2.5 K, with
the water bodies exhibiting the lowest RMSD of 2.1 K. We
further analyzed the land cover types of different groups.
Forests except deciduous broadleaf forests, including ever-
green needleleaf forests, evergreen broadleaf forests, decid-
uous needleleaf forests, and mixed forests, had an RMSD
of less than 3 K. Shrublands, including open shrublands and
closed shrublands, had a similar RMSD of 3.3 K. Savan-
nas and croplands, including woody savannas and savannas,
croplands, and cropland/natural vegetation mosaics, respec-
tively, had the largest RMSDs. The possible reason is that the
fraction of the vegetation cover of savannas and croplands
varies greatly due to the influence of natural and human fac-
tors, which leads to the underestimation of emissivity com-
pared with the fixed emissivity of MYD11A1, resulting in an
overestimation of LST. Snow and ice and water bodies had
the smallest RMSDs.

Spring (March–May), summer (June–August), fall
(September–November), and winter (December–February)
of 2004 were used to perform a seasonal intercomparison at a
global scale. Figure 8 shows the GT-LST versus MYD11A1
LST during different seasons. The plot shows a strong
correlation, with R2 values greater than 0.97 and a positive
bias between GT-LST and MYD11A1 LST in each season.
The RMSDs of each season varied from approximately 3.0
to 3.5 K. Moreover, we observed a seasonal pattern, with a
higher RMSD and bias in spring and summer and a lower
RMSD and bias in fall and winter.
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Figure 6. Intercomparison of GT-LST and MYD11A1 LST in 2004: (a) daytime; (b) nighttime.

Figure 7. RMSD and bias between GT-LST and MYD11A1 LST
in 2004 for various land cover types. ENF: evergreen needleleaf
forests, EBF: evergreen broadleaf forests, DNF: deciduous needle-
leaf forests, DBF: deciduous broadleaf forests, MXF: mixed forests,
CSR: closed shrublands, OSR: open shrublands, WDS: woody sa-
vannas, SVN: savannas, GRS: grasslands, PMW: permanent wet-
lands, CRP: croplands, UBL: urban and built-up lands, CNV: crop-
land/natural vegetation mosaics, PSI: permanent snow and ice,
BRN: barren, WTB: water bodies, and ALL: all land cover types.

As noted above, these validation results are encouraging.
However, GT-LST was overestimated when compared with
MYD11A1 LST. A reasonable explanation could be that the
emissivity used for the retrieval of AVHRR LST was lower
than that of MYD11A1 LST. Specifically, the emissivity of
MYD11A1 LST was derived from the classification-based
method, whereas that of GT-LST was derived from the NDVI
threshold method, which considers annual changes in land
cover and dynamically retrieves daily emissivity. As a re-
sult, the dynamic emissivity of GT-LST is typically lower
than that of MYD11A1, which leads to overestimation of the
LST (Hulley et al., 2016; Guillevic et al., 2014; Reiners et al.,

2021; Ren et al., 2011). Figure A3 shows that the mean biases
(GT-LST – MYD11A1) for LSTs calculated with emissivity
differences less than −0.05, between −0.05 and −0.03, be-
tween −0.03 and −0.01, between −0.01 and 0.01, and more
than 0.01 are 7.0, 4.3, 2.3, 0.8, and 0.7 K, respectively. To
further demonstrate this point, we compared GT-LST with
MYD21A1 LST. Figure 9 shows the daytime and nighttime
RMSD values of 3.2 and 2.5 K and that of bias of 0.1 and
1.3 K between GT-LST and MYD21A1 LST for 4 months in
2004. Compared to the result of MYD11A1, the significantly
smaller bias was obtained for MYD21A1. The possible rea-
son is attributed to the fact that the MYD21A1 LST uses the
same observations with MYD11A1 but uses a physics-based
method to dynamically retrieve emissivity.

4.3 Comparison with existing AVHRR LST data

A recent study by Ma et al. (2020) generated a global
historical daytime 0.05◦× 0.05◦ LST product from NOAA
AVHRR data for 1981–2000 (see Sect. 2.5). To further vali-
date the GT-LST product, we compared these two LST prod-
ucts at the selected SURFRAD sites (see Sect. 3.2). The
results of the daytime comparison, shown in Fig. 10, were
as follows. First, comparing these two AVHRR LST prod-
ucts to the same in situ LSTs showed that both GT-LST and
GD-LST obtained approximately similar accuracies, with an
overall RMSE of 3.0 K. Except for the BND and FPK sta-
tions, GT-LST showed higher accuracy for all sites, espe-
cially the GWN and PSU stations, which had RMSE values
of less than 2 K. All the sites showed positive biases for GT-
LST other than GWN, whereas only BND and FPK had pos-
itive biases for GD-LST.

However, GD-LST data are limited in that they are only
obtained during the daytime, which somewhat limits their
practical applications. Meteorology- and climatology-related
applications require at least two instantaneous LSTs (i.e.,
one daytime LST and one nighttime LST) to estimate
temperature-based climate change indices such as the mean
LST, extreme LST, and LST ranges for different temporal
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Figure 8. Intercomparison of GT-LST and MYD11A1 LST in 2004: (a) spring; (b) summer; (c) fall; (d) winter.

Figure 9. Intercomparison of GT-LST and MYD21A1 LST in January, April, July, and October 2004: (a) daytime; (b) nighttime.

scales. In contrast, the GT-LST product significantly im-
proved the generation of the two instantaneous LSTs per day
(Fig. 11). Furthermore, many studies have shown that two
satellite observations that are separated by approximately
12 h can be used to estimate a relatively accurate daily and
monthly mean LST (i.e., DMLST and MMLST) (Chen et al.,
2017; Liu et al., 2023; Xing et al., 2021). Therefore, it was
possible to derive an estimate of the global accurate DMLST
and MMLST based on the average value of daytime and
nighttime overpasses of the AVHRR sensors (Fig. 12). To es-
timate MMLST, first obtain the mean instantaneous clear-sky
LST at daytime and nighttime and then use these mean values

to estimate MMLST according to the simple linear regression
method (see Appendix B). In order to validate the accuracy
of MMLST results, we compared MMLST based on GT-LST
with that of in situ LST observations from SURFRAD sites
for 1994–2005. All in situ LST measurements are all-sky and
complete in a certain month, which means that the in situ
MMLST is the true MMLST. Figure 13 showed that MML-
STs derived from GT-LST are related to the true MMLST,
with an R2 value of 0.94 and an RMSE value of 2.7 K. This
result is similar to that of Chen et al. (2017), who compared
MMLST from MODIS day and night instantaneous clear-sky
LST with actual MMLST from 156 flux tower stations and
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Figure 10. Intercomparison of GT-LST and GD-LST with in situ
LST during the daytime at (a) BND, (b) DRA, (c) FPK, (d) GWN,
(e) PSU, (f) TBL, and (h) all stations.

reported RMSE values of approximately 2.7 K. However, a
positive bias of 1.3 K between GT-LST MMLST and in situ
MMLST should be noted. One possible reason is that the in
situ MMLST of some sites does not represent the MMLST
over the 0.05◦× 0.05◦ pixel.

Moreover, a comparison between GT-LST and RT-LST
was performed during daytime and nighttime over continen-
tal Africa on 15 January and 15 July 1997 (Fig. 14). As can
be seen, GT-LST and RT-LST had an RMSD of more than
2.1 K and a bias of more than 1.1 K. A likely explanation
is that the emissivity of GT-LST is lower than that of RT-
LST, which leads to overestimation of the LST. Compared to
daytime LST, nighttime LST had an improvement with lower
RMSD due to the comparatively spatially homogeneous LST
during night. Furthermore, the RMSD of 15 July is distinctly

higher than 15 January because the atmospheric condition is
hot and wet on 15 July and cool and dry on 15 January.

4.4 Benefits, limitations, and future prospects

To the best of our knowledge, a global historical twice-daily
LST dataset for the period 1981–2021 has never before been
generated because of the limitations of large amounts of orig-
inal Level-1b data handling (i.e., approximately 14 TB), huge
amounts of process variable data generation (i.e., approx-
imately 10 TB), and complicated data-processing flow de-
sign. Based on the experience of other research institutions
and scholars, we generated the GT-LST product based on
AVHRR observations, which showed advantages in spatial
coverage and temporal resolution compared to existing stud-
ies. Moreover, to obtain a relatively accurate emissivity, we
used an improved method that considers annual changes in
land cover to estimate the emissivity. The GT-LST product,
with two observations every day, can provide daily, monthly,
and yearly mean LST datasets. This can reduce the num-
ber of gaps and uncertainty in instantaneous LST data. Fur-
thermore, the mean LST is more valuable than the instanta-
neous LST for global climate change. Although many LST
products can provide global twice-daily LST after 2000, we
still extend the time span of GT-LST to 2021. In this way,
users can obtain a relatively homogeneous twice-daily LST
product over a long time series. Furthermore, the overlap-
ping observations between the GT-LST product and other
LST datasets during the extension period can be used to cali-
brate the bias when combining these datasets. In conclusion,
the GT-LST product is suitable for detecting climate changes
over the past 40 years, such as global extreme LST changes
and trends of global mean LST.

However, it should be noted that observations of equato-
rial crossing time for NOAA afternoon satellites become pro-
gressively later after launch (Fig. 15). As the orbit drifts, the
AVHRR sensors change the illumination conditions and local
solar times of observations. Users are therefore urged to be
cautious when using the AVHRR LST product, especially in
the LST range. The timings of the occurrences of maximum
and minimum LSTs are approximately 13:30 and 01:30 lo-
cal solar time, respectively, which correspond to the initially
observed time of NOAA afternoon satellites. However, the
overpass time of these satellites gradually drifts backward
because of drift in the satellite orbits over time. For example,
the initial NOAA-14 overpass (equatorial crossing) time was
13:30 local solar time (descending) in 1994 but had shifted to
16:30 local solar time by the end of 2000. Although several
studies have proposed correction methods for this problem,
the accuracy of the AVHRR LST after orbital drift correction
is lower than that without orbital drift correction (Liu et al.,
2019). Although the GT-LST product extends the time span
of LST data, it has a number of missing values (Fig. 11). For
MMLST, it still has a few gaps (Fig. 12b). A variety of fac-
tors such as cloud cover, orbital gaps, and instrument failure
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Figure 11. GT-LST data for 27 July 1997: (a) daytime; (b) nighttime.

are responsible for this limitation. Finally, the geolocation
accuracy of the GT-LST product basically meets the demand
of global applications at 0.05◦ spatial resolution. However, if
users need very high-geolocation-quality GT-LST data, we
suggested that the GT-LST data with VZAs less than 40◦

should be preferred.
In summary, future work should focus on the following.

(1) To alleviate the orbit drift effect, researchers should de-
velop a new orbit drift correction method based on two obser-
vations every day. (2) To fill in the missing values, the prod-
uct could be combined with microwave sensors, or an annual
temperature cycle model could be employed. (3) To further
analyze climate change, it is essential to generate mean and
extreme LST datasets based on the GT-LST product. (4) To
combine the GT-LST product with other LST datasets, it is
necessary to research how to calibrate the bias between the
GT-LST and other LST datasets.

5 Data availability

The global historical twice-daily (daytime and nighttime)
LST product (GT-LST) at 0.05◦ spatial resolution from
1981 to 2021 is available at https://doi.org/10.5281/zenodo.
7113080 (1981–2000) (Li et al., 2022a), https://doi.org/
10.5281/zenodo.7134158 (2001–2005) (Li et al., 2022b),
and https://doi.org/10.5281/zenodo.7813607 (2006–2021)
(J. H. Li et al., 2023).

6 Conclusions

In this study, we developed a global historical twice-daily
LST product with two observations per day for 1981–2021,
which was designed to fill the gap in long-term global ob-
servations. First, we proposed a framework for generating an
AVHRR historical instantaneous LST dataset with two ob-
servations every day from 1981 to 2021. The framework con-
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Figure 12. Daily and monthly mean LST based on GT-LST: (a) daily mean LST for 27 July 1997; (b) monthly mean LST in August 2000.

Figure 13. Monthly mean LST based on GT-LST versus monthly
mean LST based on in situ LST from 1994 to 2005.

tains four major segments: (1) data reading, calibration, and
preprocessing using open-source Python packages; (2) cloud
detection based on the published CLAVR-1 algorithm; (3)
land surface emissivity estimation using the NDVI threshold
algorithm considering annual land cover changes; (4) LST
retrieval based on a nonlinear generalized split-window al-
gorithm. We used the proposed method to generate a global
0.05◦× 0.05◦ twice-daily (daytime and nighttime) AVHRR
LST product from 1981 to 2021, which also contained help-
ful ancillary products, including the recorded UTC time of
observations, VZAs, cloud masks, and latitude and longitude
data.

To assess the accuracy of this product, we employed
three evaluation methods. Ground-based validation, which
involved a comparison between the GT-LST product and
multiyear SURFRAD and BSRN in situ measurements from
1994 to 2005, showed that the R2 values of all selected data
were greater than 0.92, and the overall RMSE range was
approximately 1.6–4.0 K: 1.8–4.8 K for daytime observa-
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Figure 14. GT-LST versus RT-LST during daytime and nighttime on 15 January and 15 July 1997: (a) daytime of 15 January 1997;
(b) nighttime of 15 January 1997; (c) daytime of 15 July 1997; (d) nighttime of 15 July 1997.

Figure 15. Equatorial crossing time of NOAA afternoon satellites (adapted from https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_
avhrr_ect.php, last access: 5 April 2023).

tions and 1.0–4.2 K for nighttime observations. These results
suggested competitive accuracy with other satellite-derived
LST products. Intercomparison with the satellite products
MYD11A1 and MYD21A1 LST showed that, (1) in 2004,
the overall RMSD was 3.2 K and the bias was 1.8 K between
GT-LST and MYD11A1 LST, (2) according to RMSD values
between GT-LST and MYD11A1 LST, nighttime data were
more accurate than daytime, as LST is more spatially homo-
geneous at night, (3) a higher RMSD and bias between GT-
LST and MYD11A1 LST were observed in spring and sum-

mer, whereas a lower RMSD and bias were observed in fall
and winter, and (4) compared to the result of MYD11A1, the
significantly smaller bias was obtained for MYD21A1. Com-
parisons with existing AVHRR LST products (i.e., GD-LST
and RT-LST) showed that (1) GT-LST and GD-LST products
at the selected measurements of SURFRAD sites exhibited
similar accuracies, with an overall RMSE of 3.0 K, (2) GT-
LST showed a substantial improvement from GD-LST that
is only obtained during the daytime, because it generates two
instantaneous LST values (daytime and nighttime) every day
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and then can estimate the global DMLST and MMLST, (3)
daytime and nighttime observations of GT-LST can provide
relatively accurate MMLST under all-sky conditions, with a
RMSE of 2.7 K, and (4) compared with RT-LST over con-
tinental Africa in different seasons, the results showed that
the RMSD range was 2.1–4.1 K and the bias range was 1.1–
3.4 K.

Appendix A: Supplementary tables and figures

Table A1. Statistics for the relationship between the regressions of the eight combinations and actual monthly mean LST.

Case Combinations a1 a2 b RMSE R2 Number
(daytime/nighttime)

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095
2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241
3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381
4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303
5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165
6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818
7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992
8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765

Figure A1. Distribution of the 111 scattered samples.
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Figure A2. An example of abnormally high BTs on (a) 31 March 2004 and (b) 2 April 2004.

Figure A3. Difference between GT-LST and MYD11A1 LST stratified by the difference between GT-LST and MYD11A1 emissivity (water
vapor content <5 g cm−2; satellite zenith angle<50◦).
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Figure A4. Monthly mean LST based on GT-LST using a simple
average method versus monthly mean LST based on in situ LST
from 1994 to 2005.

Appendix B: Detailed description of the monthly
mean LST

The impact of NOAA satellite orbital drift means that day-
time and nighttime observations from NOAA afternoon
satellites cannot accurately represent maximum and min-
imum temperatures. Therefore, the monthly mean LST
(MMLST) according to the simple average method has a sig-
nificantly lower accuracy than other studies (Fig. A4). Xing
et al. (2021) proposed using nine combinations of two to four
MODIS instantaneous retrievals, of these at least one day-
time LST and one nighttime LST to estimate mean LSTs,
and determined the weight for every moment. Inspired by
the work of Xing et al. (2021), we determined to use sim-
ple linear combinations of monthly mean daytime and night-
time LST values that were observed at observation times
for NOAA to estimate MMLST with ground-based measure-
ment. For the combinations of two valid monthly mean LSTs
(one daytime LST and one nighttime LST), the regression
models can be written as follows:

MMLST= a1×MMLSTday+ a2×MMLSTnight+ b, (B1)

where MMLST is the ground-based monthly mean LST,
a1, a2, and b are the fitting coefficients, MMLSTday is the
monthly mean in situ LST at the NOAA daytime observa-
tion, and MMLSTnight is the monthly mean in situ LST at the
NOAA nighttime observation.

Taking into account the observed times of NOAA satel-
lites with orbital drift effect since 1981, combinations of
two observations from these satellites contain eight cases:
13:30–17:00/01:30–05:00 local solar time in a 0.5 h interval.
Based on the in situ LST measurements during the period
2003 to 2018 at 227 flux stations operating in globally di-
verse regions, we determined the fitting coefficients (listed in

Table A1). Subsequently, we used these coefficients along
with GT-LST monthly mean daytime and nighttime LSTs
and Eq. (B1) to calculate the MMLST of GT-LST.
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