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Abstract. Satellite radar backscatter contains unique information on land surface moisture, vegetation features,
and surface roughness and has thus been used in a range of Earth science disciplines. However, there is no sin-
gle global radar data set that has a relatively long wavelength and a decades-long time span. We here provide
the first long-term (since 1992), high-resolution (∼ 8.9 km instead of the commonly used ∼ 25 km resolution)
monthly satellite radar backscatter data set over global land areas, called the long-term, high-resolution scat-
terometer (LHScat) data set, by fusing signals from the European Remote Sensing satellite (ERS; 1992–2001;
C-band; 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009; Ku-band; 13.4 GHz), and the Advanced SCAT-
terometer (ASCAT; since 2007; C-band; 5.255 GHz). The 6-year data gap between C-band ERS and ASCAT
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was filled by modelling a substitute C-band signal during 1999–2009 from Ku-band QSCAT signals and cli-
matic information. To this end, we first rescaled the signals from different sensors, pixel by pixel. We then
corrected the monthly signal differences between the C-band and the scaled Ku-band signals by modelling the
signal differences from climatic variables (i.e. monthly precipitation, skin temperature, and snow depth) using
decision tree regression.

The quality of the merged radar signal was assessed by computing the Pearson r , root mean square er-
ror (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlap-
ping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the
regional (r ≥ 0.92, RMSE≤ 0.11 dB, and rRMSE≤ 0.38) and pixel levels (median r across pixels≥ 0.64, me-
dian RMSE≤ 0.34 dB, and median rRMSE≤ 0.88), suggesting high accuracy for the data-merging procedure.
The merged radar signals were then validated against the European Space Agency (ESA) ERS-2 data, which pro-
vide observations for a subset of global pixels until 2011, even after the failure of on-board gyroscopes in 2001.
We found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals,
with regional Pearson r values ranging from 0.79 to 0.98. These results showed that our merged radar data have
a consistent C-band signal dynamic.

The LHScat data set (https://doi.org/10.6084/m9.figshare.20407857; Tao et al., 2023) is expected to advance
our understanding of the long-term changes in, e.g., global vegetation and soil moisture with a high spatial
resolution. The data set will be updated on a regular basis to include the latest images acquired by ASCAT and
to include even higher spatial and temporal resolutions.

1 Introduction

Microwave remote sensing uses electromagnetic radiation
with a wavelength (λ) between 1 cm and 1 m as a measure-
ment tool (Ulaby et al., 1982). Depending on the source
of the energy from which the information is gathered, mi-
crowave remote sensing systems can be categorized into two
groups, namely passive (radiometer) and active (radar). Pas-
sive systems collect the radiation naturally emitted by the
observed surface, whereas active systems transmit a (radio)
signal in the microwave bandwidth and record the signal
backscattered by the target (Ulaby et al., 2014).

Due to the longer wavelength compared to visible and in-
frared radiation, microwaves exhibit the important property
of penetrating objects, with the penetrating ability increasing
with increasing wavelength. Microwaves at high frequencies
(such as Ku-band;∼ 13 GHz; λ=∼ 2 cm) are sensitive to at-
mospheric conditions, but those at lower frequencies, such
as C-band radio frequency (∼ 5 GHz; λ=∼ 6 cm), depend
less on cloud cover and heavy rain events, making this tech-
nique suitable for all weather conditions (Ulaby et al., 2014;
Carabajal and Harding, 2006; Le Toan et al., 2011). As a
result, long-wavelength microwave remote sensing has been
widely used in Earth science studies for atmosphere, land,
and ocean monitoring (Wentz, 1992; Wagner et al., 1999,
2007; Spreen et al., 2008; Shi et al., 2016; Steele-Dunne et
al., 2017; Murfitt and Duguay, 2021).

However, there is no single multi-decadal microwave data
set acquired at the C-band or longer wavelength that spans
more than 2 decades (Table 1). This has limited the use of
microwave data for trend analysis over extended time in-
tervals. Several passive microwave systems are available,

such as the Advanced Microwave Scanning Radiometer for
EOS (Earth Observation Satellite; AMSR-E; 2002–2011),
the Advanced Microwave Scanning Radiometer 2 (AMSR2;
2012–present), WindSat (2003–2012), Soil Moisture and
Ocean Salinity (SMOS; 2010–now), and Soil Moisture Ac-
tive Passive (SMAP; 2015–now), all of which provide data
with a wavelength of ∼ 6 cm or longer (Spreen et al., 2008;
Yao et al., 2021; Wigneron et al., 2017, 2021). However,
merging them into a harmonized data set with a time span
longer than 2 decades has been shown to be challenging,
mainly because AMSR-E has no overlapping observations
with AMSR2 (Du et al., 2017; Moesinger et al., 2020; Wang
et al., 2021).

Active microwave remote sensing, or radar, has the po-
tential to overcome this limitation. A scatterometer is one
type of radar known for its large footprint, global coverage,
and high revisit rate. These properties make scatterometers
interesting for the study of large-scale land surface dynam-
ics (Ulaby et al., 2014). Spaceborne scatterometer sensors
have been deployed since 1978 (NASA’s Seasat-A; Ku-band;
Table 1), but global coverage of scatterometer observation
dates back to the European Remote Sensing satellite (ERS-
1/-2) in the 1990s (C-band; from 1992 to 2001; Frison and
Mougin, 1996; Prigent et al., 2001). Over the past 3 decades,
multiple scatterometer missions have been launched with the
aim of obtaining full and repeated global coverage (Ulaby
et al., 2014), such as the Quick Scatterometer (QSCAT;
Ku-band; from 1999 to 2009), the Oceansat-2 Scatterome-
ter (OSCAT; Ku-band; since 2009), and the Advanced SCAT-
terometer (ASCAT; C-band; since 2007). Among these sen-
sors, both ERS-1/-2 and ASCAT operate at the C-band fre-
quency but have a temporal gap of about 6 years (i.e. be-
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Figure 1. Temporal coverages and radio frequencies of ERS-1/-2, QSCAT, and ASCAT. ERS-1/-2 and ASCAT have a C-band radio frequency
(5.3 GHz), and QSCAT has a Ku-band frequency (13.4 GHz). QSCAT operated between 1999 and 2009 in full mode, overlapping with both
ERS and ASCAT. Image courtesy of NASA and the European Space Agency (ESA).

tween 2001 and 2007). Filling this time gap would lead to
the first global C-band scatterometer data set with continuous
observations for the past 3 decades (since 1992). Moreover,
this data set could, in principle, be further extended because
ASCAT is still operational, and similar C-band radar mis-
sions have been secured for the future (such as the Sentinel
radar series and the MetOp Second Generation satellite mis-
sion; Malenovský et al., 2012; Lin et al., 2016).

The present study aims at filling the 6-year gap of the C-
band scatterometer data at the global scale (Fig. 1). As seen
in Table 1, QSCAT is a good candidate for fulfilling this task
because it operated between 1999 and 2009, thus overlap-
ping with both ERS-2 (between 1999 and 2001) and AS-
CAT (between 2007 and 2009). Recent studies also demon-
strated the feasibility of merging ERS-1/-2, QSCAT, and AS-
CAT (Bentamy et al., 2012; Tao et al., 2022; Frolking et
al., 2022a, b). In theory, the Ku-band signal interacts more
with smaller elements (such as raindrops, snow, and canopy
leaves) than the C-band signal, due to the difference in wave-
length (Saatchi et al., 2013). However, our previous work
(Tao et al., 2022) has shown that the Ku-band QSCAT sig-
nal in tropical regions can be adjusted to the ERS-2 obser-
vations during 1999–2001 and to the ASCAT observations
during 2007–2009 to obtain a simulated C-band signal (Tao
et al., 2022). Here, we further extend our previous approach
to the global scale through a better understanding of the sig-
nal mechanism and an improved technique for modelling the
signal differences (i.e. decision tree regression). Image res-
olution has also been enhanced; while the native resolution
of scatterometer images is often coarse (25 km or larger),
the National Aeronautics and Space Administration (NASA)
Scatterometer Climate Record Pathfinder (SCP; https://www.
scp.byu.edu/, last access: 20 January 2023) project has im-
proved the resolutions of ERS-1/-2, QSCAT, and ASCAT
images using the scatterometer image reconstruction (SIR)
with filtering (SIRF) algorithm, which combines multiple-
orbit satellite passes (Long et al., 1993; Early and Long,
2001). Specifically, ERS-1/-2 images of 8.9 km resolution in

the period of 1992–2001 and QSCAT (1999–2009) and AS-
CAT (2007–now) images of 4.45 km resolution have been
made publicly available. To guarantee a long time span
from 1992 onwards, we aggregated QSCAT and ASCAT
images to 8.9 km to be consistent with the resolution of
ERS-1/-2 images. We chose to produce a monthly radar
data set in this study because daily scatterometer images
do not provide full global coverage and also because the
higher spatial resolution was achieved at the cost of re-
duced temporal resolution, with daily images only being
available for polar regions (https://www.scp.byu.edu/docs/
EnhancedFAQ.html, last access: 20 January 2023). Besides,
the monthly time resolution has been frequently adopted by
previous global-scale studies (Sun et al., 2018). The result-
ing merged radar data set, named long-term, high-resolution
scatterometer (LHScat), is publicly available in netCDF for-
mat at https://doi.org/10.6084/m9.figshare.20407857 (Tao et
al., 2023). LHScat will be constantly updated to include the
latest images acquired by ASCAT and to include even higher
spatial and temporal resolutions. Below, we provide a de-
tailed illustration on the source data, methods, quality, and
validation of the LHScat data set.

2 Data and methods

2.1 ERS-1/-2, QSCAT, and ASCAT data

Scatterometers were originally designed to measure wind
speed and direction, particularly over oceans. However, their
data have also been found to be useful for land applications
such as soil moisture estimation, rainfall estimation, and for-
est monitoring. Here we analysed spaceborne scatterome-
ter data from the ERS-1/-2, QSCAT, and ASCAT sensors
(Fig. 1; Table 1). The backscatter of the radar signal, usu-
ally expressed in decibels (dB), is a function of the sensor
parameters (frequency, polarization, look angle, and spatial
resolution) and the dielectric and geometric properties of the
scattering objects.
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Table 1. Basic information of commonly used satellite microwave sensors.

Sensor Type Frequency (GHz) Launch End-of- Event Reference
date life date

AMSR Radiometer 6.9, 10.7, 18.7, 23.8, Dec 2002 Oct 2003
36.5, 50.3, 52.8, 89.0

AMSR-2 Radiometer 6.9, 7.3, 10.7, 18.7, May 2012 –
23.8, 36.5, 89.0

AMSR-E Radiometer 6.9, 10.7, 18.7, May 2002 Dec 2011 Antenna stopped rotating in NSIDC (2011)
23.8, 36.5, 89.0 October 2011.

ASAR SAR 5.331 Mar 2002 Apr 2012

ASCAT Scatterometer 5.3 Oct 2006 –

ERS-1 SAR, radiometer, 5.3 Jul 1991 Mar 2000 ERS-1 scatterometer stopped Attema et
scatterometer producing data in June 1996. al. (2000)

ERS-2 SAR, radiometer, 5.3 Apr 1995 Jul 2011 Some gyroscopes failed in 2000 Crapolicchio
scatterometer and 2001; tape recorder failed et al. (2012)

in June 2003.

OSCAT Scatterometer 13.5 Sep 2009 Feb 2014

OSCAT-2 Scatterometer 13.5 Sep 2016 Feb 2021

PALSAR SAR 1.3 Jan 2006 Apr 2011

PALSAR-2 SAR 1.3 May 2014 –

QSCAT Scatterometer 13.4 Jun 1999 Oct 2018 Antenna stopped rotating in NCAR
November 2009. Climate

data
guide
(2023)

Seasat-A Scatterometer 14.6 Jun 1978 Oct 1978

Sentinel-1 SAR 5.4 Apr 2014 – Sentinel-1B terminated in ESA (2022)
December 2021.

SMAP SAR, radiometer 1.3 Jan 2015 –

SMOS Radiometer 1.4 Nov 2009 –

SSM/I Radiometer 19.4, 22.2, 37, 85.5 Jun 1987 – Data quality of the SSM/I F08 Hollinger
85.5 GHz channel has degraded et al.
since December 1987; SSM/I F15 (1990),
22.2 GHz channel has become Hilburn
unusable since August 2006. and Wentz

(2008)

TMI Radiometer 10.7, 19.4, 21.3, 37.0, Nov 1997 Apr 2015 Observations cover only tropical Kummerow
85.5 areas. et al.

(2000)

WindSat 6.8, 10.7, 18.7, 23.8, Jan 2003 Oct 2020 Service interrupted from February Wentz et
37.0 2005 to June 2005 and from June al. (2013)

2007 to August 2007.
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ERS-1, launched in 1991 by the European Space
Agency (ESA), carries the first spaceborne C-band scat-
terometer with repeated and global geographical cover-
age (Carabajal and Harding, 2006; Table 1). The ERS-1
scatterometer data were available globally between 1992
and 1996, and the mission finally ended on March 2000 be-
cause of the failure of the attitude control system (Crapolic-
chio and Lecomte, 2003). ERS-2 was launched by ESA in
April 1995 as a follow-up to ERS-1. However, starting from
early 2001 until the end of mission in 2011, ERS-2 has been
operating without gyroscopes, which largely reduced its spa-
tial coverage (Carabajal and Harding, 2006). Consequently,
the distribution of global coverage ERS-2 images to the user
community was discontinued for the period 2001–2011. Both
sensors operate on a sun-synchronous, near-circular polar or-
bit, passing the Equator at 10:30 LT in descending mode. The
incidence angle of ERS-1 and ERS-2 ranges from 16 to 50◦.
ERS-1/-2 images were acquired in vertical (V)-polarization
mode and were usually gridded at 25 or 12.5 km resolutions
(Frison and Mougin, 1996).

The SeaWinds scatterometer (13.4 GHz; Ku-band) on
board QSCAT was launched by NASA in 1999 and collected
data in full mode until November 2009. It provides normal-
ized cross-sectional backscatter values at fixed incidence an-
gles of 46◦ in the horizontal (H)-polarization mode and 54.1◦

in V-polarization mode. Its ascending and descending orbits
cross the Equator at 06:00 and 18:00 LST (local standard
time), respectively. The QSCAT images are normally deliv-
ered at a resolution of 22 km× 22 km (Tsai et al., 2000).

ASCAT, on board the Meteorological Opera-
tional (MetOp) series of satellites, was launched in
October 2006 as a successor of the ERS-1/-2 scatterometers.
The frequency of ASCAT (5.255 GHz; C-band) was de-
signed to be consistent with ERS-1/-2, although the range of
its incidence angles was extended to cover 25–65◦. ASCAT
passes the Equator at 09:30 LT in descending mode and
21:30 LT in ascending mode. The backscatters of ASCAT
are often gridded at a spatial resolution of 25 or 50 km.
ASCAT images are available in V-polarization mode, the
same as for ERS-1 and ERS-2 (Figa-Saldaña et al., 2002).

The NASA SCP project has enhanced the resolutions of
ERS-1/-2, QSCAT, and ASCAT images to a nominal im-
age pixel resolution of 8.9, 4.45, and 4.45 km per pixel,
respectively. We downloaded the enhanced-resolution im-
ages from the Brigham Young University (BYU) Centre
for Remote Sensing (https://www.scp.byu.edu/, last access:
15 March 2023). The images are available for typical global
regions under the Lambert equal-area projection, including
Europe, the Bering Sea, Siberia, North America, East Asia,
Central America, Australia, Alaska, Oceania, North Africa,
Southern Africa, South America, and South Asia. Three re-
gions, namely Antarctica, Greenland, and the Arctic region,
were not considered in this research because of the lack of
QSCAT and ASCAT images in the BYU version. Images
were provided in the SIR format and were read and dis-

played using the functions provided at https://www.scp.byu.
edu/downloads.html (last access: 20 January 2023).

2.2 Data preprocessing

We first aggregated QSCAT and ASCAT images of the
BYU version at the resolution of ERS-1/-2 images, namely
8.9 km per pixel. Ascending path QSCAT and ASCAT im-
ages were used. The ascending path time of QSCAT acqui-
sition (06:00 LT) is before sunrise, and the ascending path
time of ASCAT (21:30 LT) is well after sunset, so both re-
flect nighttime land surface conditions. The ERS-1/-2 images
of the BYU version are generated by combining the images
of all paths to ensure the highest possible spatial and tempo-
ral coverages; we therefore used the all-path ERS-1/-2 im-
ages. ERS-2 signals during August 1996–June 1997 were in-
creased by 0.2 dB to account for the sensor calibration bias
(Crapolicchio and Lecomte, 2003).

V-polarization QSCAT images were merged with V-
polarization ERS-1/-2 and ASCAT images. H-polarization
QSCAT images were also tried, but very similar merged sig-
nals were obtained. The BYU data centre provides images
synthesized from acquisitions made over periods of 17, 3,
and 4 consecutive days for ERS-1/-2, QSCAT, and ASCAT,
respectively. For all three sensors, images acquired within a
month were averaged. ERS-1/-2 and ASCAT observations
of the BYU version were normalized to a common 40◦ in-
cidence angle to be free of angle influence on the observa-
tions. Monthly signals exceeding 3 standard deviations from
the long-term mean were consider to be outliers. Some AS-
CAT images were found to have strip patterns. Fortunately,
all the strips were characterized by regions with a low num-
ber of radar observations and thus can be masked by thresh-
olding for a minimum number of observations, which was
set to 20 (Tao et al., 2022). To avoid water contamination,
we excluded pixels within which more than 2 % of the pixel
area are “water”, using the 300 m resolution ESA Climate
Change Initiative (CCI) land cover map for the year of 2015
(http://maps.elie.ucl.ac.be/CCI/viewer/, last access: 20 Jan-
uary 2023).

2.3 Scaling radar time series

Similar to Tao et al. (2022), a two-step approach was used to
merge the C-band (ERS-1/-2 and ASCAT) and Ku-band (QS-
CAT) signals into a continuous long-term radar data set. The
first step of the method was to unify the backscatter values
from different sensors (i.e. data rescaling). The second step
was to harmonize the scaled data into a smooth time series
by addressing their monthly differences (Fig. 2).

Regarding data rescaling, previous test beds have proposed
two methods for rescaling time series, namely a linear regres-
sion correction (Brocca et al., 2011) and a cumulative density
function (CDF) matching technique (Liu et al., 2009). The
linear regression correction involves first scaling a time series
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Figure 2. Flow chart illustrating the development and assessment
of the LHScat data set. Inputs/outputs are coloured in green, the
signal-merging procedures coloured in yellow, and assessment and
validation for the merged signals coloured in blue.

within the range of the reference time series and then apply-
ing a linear regression equation between the two to minimize
error. The CDF method further divides two time series into
their quantile segments and then constructs a regression for
each segment so that the CDF of a time series matches the
CDF of the reference time series (Liu et al., 2009).

We found that the CDF method and the linear regression
correction performed well in most regions (Fig. S1 in the
Supplement). However, the CDF method failed in regions
with a strong QSCAT signal trend, such as the deforested
areas in southern Amazonia (Fig. 3a). This is mainly be-
cause QSCAT and ASCAT overlapped during 3 years, and
the QSCAT signals in these 3 years do not cover the full sig-
nal range during 1999–2009. Linear regression correction, as
used in Tao et al. (2022), is a preferable option to cope with
this issue, but it is sensitive to sudden changes in radar signal
(Fig. 3b). To overcome these limitations, we used the rescal-
ing method illustrated in the following equation (Brocca et
al., 2010, 2013; Draper et al., 2009):

Qscaled =
(
Qoriginal−Qmean_overlap

)
/QSD_overlap

·ASD_overlap+Amean_overlap, (1)

where Qscaled indicates the scaled QSCAT signals, and
Qoriginal means the original QSCAT signals prior to signal
rescaling. Qmean_overlap and QSD_overlap indicate the mean
and standardized deviation of the QSCAT signals with AS-
CAT in the overlapping period (i.e. 2007–2009). Likewise,
Amean_overlap and ASD_overlap indicate the mean and standard-

ized deviation of the ASCAT signals in the overlapping pe-
riod.

This method has been used by previous research for rescal-
ing soil moisture observations (Brocca et al., 2010, 2013;
Draper et al., 2009). Here we found it to be robust to both the
trends and sudden changes in radar signal (Fig. 3). We there-
fore used it to unify the scales of ERS-1/-2, QSCAT, and AS-
CAT signals. Specifically, monthly QSCAT signals were first
scaled against monthly ASCAT signals, pixel by pixel. We
chose ASCAT as the baseline for the rescaling because it has
the best radiometric quality (lower sensitivity; higher radio-
metric resolution) and because it is still operational. There-
after, ERS-2 signals were scaled against QSCAT signals (al-
ready scaled against ASCAT) using the same method. The
ERS-1 and ERS-2 data sets were already calibrated, so there
was no need to rescale them separately.

2.4 Addressing the monthly signal differences

Most existing research averaged the scaled signals directly
to obtain a long-term merged time series (Du et al., 2017;
Moesinger et al., 2020), but we here seek to correct the
monthly signal differences before averaging the scaled sig-
nals. We previously found that the C-band and the scaled
Ku-band signals exhibited large monthly differences in trop-
ical regions (Tao et al., 2022). Importantly, the differences
showed a seasonal pattern, with the Ku-band radar signal
higher than C-band signal during the dry season and lower
in the wet season. This phenomenon could be explained by
the fact that the Ku-band signal has a shorter wavelength
and lower penetrating ability relative to C-band and is thus
more affected by tropical rainfall or intercepted water on leaf
surfaces (Weissman et al., 2012; Prigent et al., 2022). To
eliminate the signal differences, we first modelled the sig-
nal differences using rainfall as a predictor and then added
the modelled signal differences to the Ku-band signal (Tao et
al., 2022).

To extend our previous approach to the global scale, we
explored the monthly signal difference against not only rain-
fall but also snow depth and skin temperature. Analogous
to the effect of rainfall on Ku-band signals in tropical re-
gions, we expect that snowpack prevents the Ku-band sig-
nal from reaching the land surface in regions covered by
snow (Kelly et al., 2003; Naeimi et al., 2012). Skin tem-
perature is related to a range of hydrological processes such
as surface freeze/thaw, ice melting, and forest canopy evap-
oration (Konings et al., 2017). All of these could impact
the radar signals by altering the water content of the mea-
sured objects. We therefore also expect skin temperature to
be an effective predictor of the signal differences. Impor-
tantly, signal differences in many regions are caused by more
than one climatic phenomenon. For instance, both precipita-
tion and skin temperature could impact the Ku-band signals
in forested regions through, respectively, rainfall contamina-
tion and canopy evaporation. In cold regions such as the Ti-
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Figure 3. Comparisons between the CDF method, the linear regression correction, and the method illustrated in Eq. (1) for rescaling radar
signals. In most regions, the three methods performed almost equally well (Fig. S1), but the CDF method and the linear regression correction
failed for signals with a strong trend or sudden changes. (a) Comparison between the CDF method and the method shown in Eq. (1) for
rescaling a QSCAT signal time series with a strong decreasing trend. (b) Comparison between the linear regression correction and the
method shown in Eq. (1) for rescaling a QSCAT signal time series with sudden increases in signal during the overlapping period.

betan Plateau, precipitation, snow depth, and skin tempera-
ture could be jointly responsible for the signal differences,
especially considering the hydrological process of rainfall–
snow/ice formation–snow/ice melting (Fig. 4a).

Thus, in order to model the signal differences from cli-
matic variables accurately, we used decision tree regression.
This technique recursively partitions observations into two
sets based on a predictor that minimizes the predictive er-
rors (Sankaran et al., 2005; Pekel, 2020). Compared with
other modelling techniques, decision tree regression can be
efficiently performed without a heavy computation burden.
Besides, a major advantage of the decision tree regression
is that it produces a model with easily interpretable rules
(Sankaran et al., 2005; Loh, 2011). One example is shown in
Fig. 4; while precipitation, skin temperature, and snow depth

all contribute to the signal differences in 1 pixel of the Ti-
betan Plateau (Fig. 4a), the decision tree model clearly dis-
sects the causes of the signal differences by creating binary
trees first based on snow depth, then on precipitation, and fi-
nally on skin temperature (Fig. 4b). After the decision tree
modelling, the Pearson r value between the C-band and Ku-
band signals increases largely from 0.55 to 0.91 (Fig. 4c).

To summarize, combining monthly climatic variables and
decision tree regression modelling, we corrected the monthly
signal differences, pixel by pixel, using the following steps:

1. For each pixel, a decision tree regression model was
built taking the monthly signal differences during the
overlapping periods (i.e. 1999–2001, and 2007–2009)
as a dependent variable and monthly ERA5-Land rain-
fall, snow depth, and skin temperature (0.1× 0.1◦ reso-
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Figure 4. Illustration on the correction of the monthly signal differences between the C-band and the scaled Ku-band signals in the overlap-
ping years (1999–2001 and 2007–2009), taking 1 pixel in the Tibetan Plateau (88.01◦ E, 33.73◦ N) as an example. (a) The C-band and the
scaled Ku-band signals before correction. The three panels in (a) show the radar signals against monthly precipitation (mm), skin temperature
(K), and snow depth (mm). The vertical dotted line in each panel separates the ERS-QSCAT overlapping period (1999–2001) and QSCAT-
ASCAT (2007–2009) overlapping period. (b) Decision tree regression with monthly precipitation, skin temperature, and snow depths as
predictors of the signal differences. (c) The C-band and the final corrected Ku-band signals by the decision tree regression.

lution; Muñoz-Sabater, 2019) as explanatory variables.
We used the MATLAB function fitrtree to implement
the decision tree modelling (The MathWorks, Inc.).

2. After tree construction, cross-validation procedures
were used to avoid overfitting. We increased the value
for the MinLeafSize parameter from 1 to 30, with a
step size of 1, and calculated the cross-validated errors.
The MinLeafSize corresponding to the minimum cross-
validated error was used, which ensures an optimal tree
depth and a high predicative accuracy. Here, 5-fold
cross-validation was used because only ∼ 60 overlap-
ping observations (or ∼ 60 months) were available dur-
ing 1999–2001 and 2007–2009, but we verified that the
results were not altered with 10-fold cross-validation.
The variable importance of the decision tree regres-
sion was quantified using the MATLAB function pre-
dictorImportance and the structure of the decision tree.
While the former strictly computes the changes in pre-
dictive error due to splits for every predictor, the latter
simply relies on the sequence of the predictors used to
split the decision tree (i.e. the predictor used in the first
split is the most important).

3. The decision tree regression model was then applied
on climatic data from 1999 to 2009, and the predicted

signal differences were added to the full QSCAT time
series. In this way, the QSCAT signal was transformed
into a substitute C-band signal.

4. After transforming the QSCAT data, we built a time se-
ries for each pixel for the 1992–2022 period, combin-
ing ERS-1/-2, QSCAT, and ASCAT time series. Radar
observations from the overlapping periods (1999–2001
and 2007–2009) were averaged across sensors.

5. To assess the effectiveness of the data-merging ap-
proach, Pearson r (unitless), RMSE (dB), and relative
RMSE (rRMSE; unitless) between the C-band and the
corrected Ku-band signals in the overlapping periods
(1999–2001 and 2007–2009) were finally calculated.

r =

∑
(xi − x) (xi − y)√∑

(xi − x)2∑ (yi − y)2
(2)

RMSE=

√∑
(xi − yi)2

n
(3)

rRMSE=
RMSE
σy

, (4)

where x denotes the mean of the monthly Ku-band sig-
nals x in the overlapping years, y denotes the mean of
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the monthly C-band signals y in the overlapping years,
xi and yi denote the values of x and y at the ith month,
respectively, σy denotes the standard deviation of y,
and n denotes the number of months in the overlapping
years. rRMSE was used because it is normalized against
the standard deviation of the signal and can therefore be
compared across regions.

2.5 Validation of the data-merging approach

We also conducted a stricter evaluation of the data-merging
approach. From January 2001 to 2011, the ERS-2 satellite
experienced a series of failures that affected its data conti-
nuity and spatial coverage. However, observations were oc-
casionally available for a subset of global pixels (Crapolic-
chio et al., 2012). This period overlaps with the QSCAT
operating period; thus it can be used to test whether the
corrected Ku-band (QSCAT) signal shows a consistent dy-
namic with the C-band signal. Recently, the European Space
Agency (ESA) released the ERS-2 data set for the period of
2001–2011 reprocessed with the latest Advanced Scatterom-
eter Processing System (ASPS) version 10.04 (Crapolic-
chio et al., 2012; https://earth.esa.int/eogateway/news/ers-
1-scatterometer-l2-dataset-processed-with-asps-v10-04, last
access: 4 April 2023). We used this version of ERS-2 data
(hereafter referred to as ESA ERS-2) to validate our data-
merging approach. Excluding Australia, Southern Africa,
and the Bering Sea, 10 out of the 13 global regions were
covered by the ESA ERS-2 data set during 2001 and 2011.
For each of these 10 regions, we calculated monthly radar
backscatter coefficients at 40◦ incidence angle from the ESA
ERS-2 data set for comparison with our merged radar data
set. To normalize the incidence angle, a linear regression was
fitted between all incidence angles and the radar backscat-
ter coefficients, and the R squared value and RMSE value
of the regression were recorded. The backscatter coefficient
at 40◦ incidence angle was then predicted by the regression.
To ensure data quality, the predicted backscatter coefficient
was not used if the RMSE was higher than 0.5 dB. Since
the ESA ERS-2 data have a resolution of 25 km, we aggre-
gated our merged radar signals to that resolution. For each
month between 2001 and 2011, pixels with available ESA
ERS-2 observations were located, and their ERS-2 signals
were averaged across pixels. Because the footprints of the
ESA ERS-2 observations are not fixed temporally, different
months have a different subset of pixels. Our merged radar
time series from the same pixels were then averaged and
compared with the ESA ERS-2 signal mean. Months with too
few pixels (< 100) having ESA ERS-2 observations were not
considered. This increases the strictness of the comparison in
the sense that there is an additional spatial variation in pixels
embedded within the radar time series.

3 Results

3.1 Merged radar signals and quality assessments

The merged radar signal, averaged across pixels within a re-
gion, is presented in Fig. 5. Pearson r , RMSE, and rRMSE
between the C-band and the corrected Ku-band signals in the
overlapping years (1999–2001 and 2007–2009) were used to
assess the quality of the merged radar signal. All 13 regions
had a r value larger than 0.92, with a maximum of 0.99.
We also obtained low RMSE values (from 0.05 to 0.11 dB),
even in regions with a large seasonal amplitude in radar sig-
nal, such as Siberia, where the seasonal amplitude is around
3 dB but the RMSE is only 0.11 dB. This result was further
confirmed by the low rRMSE values obtained in all regions,
which ranged from 0.14 to 0.38.

We further assessed the data-merging quality at the pixel
level. Before correcting the monthly signal differences, the
Pearson r values between the C-band and the scaled Ku-
band signals showed a long-tailed distribution in all regions
(Fig. 6). Regional median r values were relatively low, rang-
ing from −0.22 to 0.91, and negative r values were found in
almost all regions. After correcting the monthly signal differ-
ences, the regional median r values ranged from 0.64 to 0.94,
with no negative r values observed (Fig. 6). The improve-
ment was the most obvious in the northern high latitudes,
such as Europe (r improved from 0.54 to 0.87), the Bering
Sea (r from −0.13 to 0.94), Alaska (r from −0.16 to 0.94),
and Siberia (r from −0.22 to 0.94). In contrast, the improve-
ments for five regions, namely Central America, Australia,
North Africa, South America, and South Asia, were rela-
tively limited because their median r values prior to signal
correction were already high. All of these five regions con-
tain large portions of barren lands, deserts, shrublands, or
grasslands, where the Ku-band signal is not as impacted as
in forested and snow-covered regions.

Regarding RMSE (Fig. 7), regional median RMSE values
varied between 0.15 and 1.52 dB before the correction for
signal differences but decreased sharply after the correction
for signal differences (between 0.13 and 0.34 dB; Fig. 7).
The most obvious improvement was still observed in the
northern high latitudes such as Europe (RMSE decreased
from 0.66 to 0.33 dB), the Bering Sea (RMSE from 1.32 to
0.31 dB), Alaska (RMSE from 1.28 to 0.31 dB), and Siberia
(RMSE from 1.52 to 0.34 dB). Regional median rRMSE val-
ues were lower than 0.88, and in most regions lower than 0.5
(Fig. S2), consistent with the RMSE-based assessments. Be-
sides, although rRMSE values were generally low in the final
LHScat data set, tropical regions, mountainous regions, and
arid regions had relatively higher rRMSE values than other
regions (Fig. S3).
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Figure 5.

3.2 Importance of the predictor variables

We found that the most important predictors calculated by
the MATLAB function predictorImportance (Fig. 8) were al-
most identical to the predictors used in the first splits of the
decision trees (Fig. S4). We therefore illustrated the vari-
able importance below, using the results presented in Fig. 8
(i.e. those calculated with predictorImportance). For 33.3 %
of all the pixels, signal differences were most accurately pre-
dicted by rainfall (hereafter referred to as Type 1 pixels;
Fig. 8). This type of pixel was mainly found in the Southern
Hemisphere, particularly in tropical regions. In the Northern
Hemisphere, such pixels were primarily located in the low
and middle latitudes (Fig. 8).

For 57.8 % of all the pixels, the signal differences were
most accurately predicted by skin temperature (hereafter re-
ferred to as Type 2 pixels; Fig. 8). This type of pixel was
widely distributed across the globe. In tropical regions, the
spatial pattern of Type 2 pixels is similar to the pattern of
Type 1 pixels (Fig. 8), which is expected because skin tem-

perature and rainfall are correlated. The main differences be-
tween the distributions of Type 1 and Type 2 pixels were
found in the northern high latitudes and dry regions, such
as the hyper-arid Saharan and Arabian deserts.

Signal differences in the remaining 8.9 % pixels were most
accurately predicted by snow depth (Fig. 8; hereafter referred
to as Type 3 pixels). As expected, this type of pixel was pri-
marily found in mountainous regions such as the Himalayas
and the southern part of the Andes, as well as in the very
high-latitude regions in the Northern Hemisphere.

3.3 Independent validation of the merged radar signal

The quality of the merged radar signals was also validated
directly against the ESA ERS-2 data (see Sect. 2.5). The
number of ESA ERS-2 pixels available for a comparison
differed across regions. Furthermore, the pixel number de-
creased greatly in around 2003 in many regions (Fig. S5).
Despite the variations in pixel number, we found highly sim-
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Figure 5.

ilar monthly dynamics between the merged radar signals and
the ESA ERS-2 signals in all regions. Using the Pearson r
value as an index of similarity, all regions had a Pearson r
value higher than 0.79, with a maximum of 0.98. Six regions
had a r value higher than 0.90 (ranging from 0.90 to 0.98)
(Fig. 9). This validation shows that the LHScat data are un-
likely to be biased due to the cross-period merging method.

4 Data availability

The LHScat data set can be downloaded at
https://doi.org/10.6084/m9.figshare.20407857 (Tao et
al., 2023).

5 Discussion

5.1 Rescaling the radar time series

The purpose of this project was to create the first global
long-term radar backscatter data set with a consistent C-band
signal dynamic. C-band ERS-1/-2 (1992–2001) and ASCAT
(2007 onwards) signals were bridged by Ku-band QSCAT
(1999–2009) signals. Observations overlapped between the
three sensors, which allowed us to rescale the signal times
series.

The CDF matching technique has been a classical signal
rescaling method (Liu et al., 2009, 2011). For instance, Liu
et al. (2011) used the CDF method for recalling the vege-
tation optical depth (VOD) derived from the Special Sen-
sor Microwave/Imager (SSM/I; 1987–2007), Tropical Rain-
fall Measuring Mission (TRMM) Microwave Imager (TMI;
1998–2008), and AMSR-E (2002–2008) sensors. Moesinger
et al. (2020) also used it for rescaling VOD products from SS-
M/I, AMSR-E, AMSR2 (2012–2019), and WindSat (2003–
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Figure 5. Time series and quality assessment of the merged LHScat radar time series at the regional level. Each row shows one region.
Inside each row, the map in the left panel shows the location of the region. The Lambert equal-area projection is used in the map. The
line plot in the right panel shows the merged radar time series, averaged across pixels and coloured according to sensors. The Pearson r
(unitless), RMSE (dB), and rRMSE (unitless) labelled in the panel were calculated using the C-band and the corrected Ku-band signals in
the overlapping years (1999–2001 and 2007–2009) as indicators of the data-merging quality.

2012). In these previous studies, the overlapping periods
among sensors are relatively long, with some even exceed-
ing 10 years. In contrast, neither the ERS-2-QSCAT nor the
QSCAT-ASCAT overlapping periods span more than 3 years.
The rescaled QSCAT signals by CDF could therefore be bi-
ased, due, for instance, to deforestation in southern Amazo-
nia (Fig. 3a). The linear regression correction can tackle this
issue (Tao et al., 2022) but is sensitive to sudden changes in

radar signal. As shown in Fig. 3b, the QSCAT signal surged
in 2009 in one location of Alaska, and the linear regression
correction created an obvious bias in the rescaled QSCAT
signals. This situation is rare in tropical regions but appears
more frequent in northern high latitudes, possibly due to the
surface freeze–thaw process. Although we have excluded po-
tential outliers from the radar signals by implementing a stan-

Earth Syst. Sci. Data, 15, 1577–1596, 2023 https://doi.org/10.5194/essd-15-1577-2023



S. Tao et al.: A global long-term, high-resolution satellite radar backscatter data record (1992–2022+) 1589

Figure 6. Pearson r-based quality assessment of the LHScat data set at the pixel level. Each panel shows the result of one region. Inside
each panel, the Pearson r values between the C-band and the scaled Ku-band signals in the overlapping years (1999–2001 and 2007–2009)
were calculated for all pixels and coloured in orange. As a comparison, the Pearson r values between the C-band and the corrected Ku-band
signals in the overlapping years were also calculated and coloured in green. The medians of the Pearson r values are labelled in each panel.

Figure 7. RMSE-based quality assessment of the LHScat data set at the pixel level. Each panel shows the result of one region. Inside each
panel, the RMSE values (dB) between the C-band and the scaled Ku-band signals in the overlapping years (1999–2001 and 2007–2009) were
calculated for all pixels and coloured in orange. As a comparison, the RMSE values between the C-band and the corrected Ku-band signals
in the overlapping years were also calculated and coloured in green. The medians of the RMSE values are labelled inside each panel. The
rRMSE-based quality assessment is available in the Supplement (Figs. S2 and S3).

dard deviation filter (see Sect. 2.2), such sudden changes
were not identified as outliers.

We used a simple yet effective method for rescaling the
signal time series. This method is rooted in the discipline
of statistics and has been used successfully by previous re-
search for rescaling soil moisture data (Brocca et al., 2010,

2013; Draper et al., 2009). We here further demonstrated its
capability of rescaling microwave signals with a short over-
lapping period (∼ 3 years). Additionally, the results shown in
Fig. 3 suggest that this method is robust in response to both
the trends and sudden changes in the radar signal. Merging
the time series of satellite observations has been an important
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Figure 8. Spatial distribution of variable importance for predicting the signal differences between the C-band and the scaled Ku-band
signals in the overlapping years (1999–2001, 2007–2009). The variable importance was calculated from the decision tree regression model
using the MATLAB function predictorImportance. For pixel Types 1, 2, and 3, the most important variables are monthly precipitation, skin
temperature, and snow depth, respectively.

yet challenging task in Earth science studies. Many sensors
have temporal overlaps, such as among AMSR-E, ASCAT,
Sentinel-1, and SMOS, with the lengths of overlapping pe-
riod ranging from several months to a couple of years (Ta-
ble 1). Rescaling these data using Eq. (1) could uncover inter-
esting mechanisms underlying the signal differences, which
is an important prerequisite for creating data sets with an
even longer time span.

5.2 Signal quality and merging mechanism

After rescaling the radar time series from different sen-
sors, monthly signal differences were corrected by modelling
them from climatic variables (namely precipitation, skin tem-
perature, and snow depth). The quality of the merged radar
signals was assessed against the ESA ERS-2 data set. Highly
similar monthly time series were obtained, suggesting high
accuracy for the merging procedure.

Why did rainfall, skin temperature, and snow depth suc-
cessfully predict the signal differences? The main reason is
that the Ku-band signal has a lower penetrating ability in
comparison to the C-band signal because of its shorter wave-
length. In regions with a strong rainfall, such as the trop-
ics, Ku-band signals are more impacted by raindrops and
the intercepted water on leaf surfaces, thus showing differ-
ent seasonal patterns with C-band signals (Fig. 4a). The rain-
fall attenuation of high-frequency microwave signals (Ku/Ka
band or 13/35 GHz) is used for microwave-derived rain re-
trieval, such as for the case of precipitation radar operating at
13.8 GHz on board TRMM (Iguchi et al., 2000).

Skin temperature is found to be an effective predictor of
the signal differences for 57.8 % of all pixels (Fig. 8). This is
expected because skin temperature not only correlates with
rainfall but also reflects several land surface processes. In
tropical regions, skin temperature was found as an almost

equally important predictor of signal difference as rainfall.
The first explanation for this result is that there is a negative
correlation between skin temperature and rainfall in tropical
regions. A second explanation could be the increased evap-
otranspiration of the rainforest canopy in dry periods due to
high vapour pressure deficit. Increased evapotranspiration is
correlated with skin temperature and could impact the Ku-
band signals, thus influencing the top canopy moisture. This
phenomenon therefore helps to explain why Ku-band signals
are higher than C-band signals in dry periods (Guan et al.,
2015; Konings et al., 2017).

In boreal regions (Fig. 8), skin temperature is also an effec-
tive predictor of the signal differences. This could be related
to the fact that the local land surfaces in these regions are
seasonally frozen, or covered by ice, thus causing different
signal performances between Ku-band and C-band signals.
The surface freeze–thaw cycle is captured by skin temper-
ature changes, explaining why there is a skin-temperature-
predicted signal difference in these regions.

In arid regions such as the Saharan and Arabian deserts
(Fig. 8), skin temperature also explained the signal differ-
ences in most pixels. These regions receive limited amount of
rainfall annually. Soil moisture is therefore mainly controlled
by land surface processes, such as the seasonal changes in
wind intensity/direction in deserts, which modify the rough-
ness of the sand dunes and finally lead to a temporal variation
in soil moisture (Frappart et al., 2015). Soil moisture changes
with skin temperature, leading to changes in the penetration
depths of C-band and Ku-band signals, due to the attenua-
tion of the microwave signal as a function of moisture. This
hypothesis could explain why skin temperature is closely re-
lated to the signal differences in some arid regions.

Snow depth was found to be the most effective predictor
of the signal differences in mountainous and high-latitude re-
gions seasonally covered by snow. The Ku-band signal in-
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Figure 9. Validation of the merged LHScat radar signals against the ESA ERS-2 data. Note that LHScat values are different from ESA
ERS-2 values because the LHScat signals have been rescaled, taking ASCAT as the baseline.

teracts with snow because of its short wavelength; thus its
dynamics follow the seasonal changes in snow depth. The
Ku-band signal is higher when snow depth is deeper, and
vice versa (Fig. 4a), but the C-band signal shows the oppo-
site dynamic, possibly because of a deeper penetration. In

fact, this phenomenon has long been recognized by classical
research which models snow depth or snow water equiva-
lent from microwave signal differences (Kelly et al., 2003).
Since the launch of Scanning Multichannel Microwave Ra-
diometer (SMMR) in 1978, microwave data have been used
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to estimate snow depth and snow water equivalent. One of
the classical methods is based on the fact that microwaves at
different frequencies respond differently to snow cover. For
instance, the Chang et al. (1982) equation utilizes the channel
differences between low- (such as 19 GHz) and high- (such
as 37 GHz) frequency brightness temperatures observed by
passive microwave sensors. Here, we found similar signal
differences between low- (C-band) and high- (Ku-band) fre-
quency radar signals. Since several radar sensors at differ-
ent frequencies are operating, efforts could be made to create
products of snow depth or snow water equivalent by combin-
ing radar signals of different frequencies such as QSCAT and
ASCAT.

It is also worth noting that, although climatic data were
used to merge radar signals into a single time series, this does
not mean that our final radar signals contain mainly climate
information. The three climatic variables were merely used
to model signal differences, which were then added to the
Ku-band signals. Besides, the 1999–2009 period accounts for
only a third of the entire time span. Thus, the main informa-
tion contained in the merged signals is related to features of
the land surface rather than to climate.

5.3 Limitations and future works

We used the reanalysis ERA5-Land monthly climatic data
to model the signal differences. As a result, whether signal
differences can be accurately modelled partly depends on
the accuracy of the ERA5-Land climatic data. Future work
will test the effectiveness of other climatic data sets for mod-
elling the signal differences. The accurate mapping of some
climatic variables, such as snow depth, is challenging (Or-
solini et al., 2019; Clifford, 2010; Pulliainen et al., 2020).
This is critical in the high-latitude regions such as north-
ern Alaska, where snow depth is the most important vari-
able predicting the signal differences. The estimation of rain-
fall is also challenging in regions with sparse climate sta-
tions such as the tropics. An increasing number of climate
data sets has been made publicly available, including the
Modern-Era Retrospective analysis for Research and Appli-
cations, version 2 (MERRA-2; Gelaro et al., 2017), and the
Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS). The snow depth product of MERRA-2 has
been demonstrated as being superior to ERA5 in mainland
China (Zhang et al., 2021). The CHIRPS precipitation was
also validated to have an excellent performance in tropical
Africa (Camberlin et al., 2019). Thus, it is possible that these
climate products may produce a better merging quality for
tropical and mountainous regions where the rRMSE values
remained relatively high (Fig. S3).

Except for climatic layers, remote-sensing-based layers
such as the normalized difference vegetation index (NDVI)
could be useful for modelling the signal differences in veg-
etated areas. NDVI reflects the vegetation growth condition,
which is the result of several environmental factors interact-

ing. NDVI therefore contains kinds of multiple environmen-
tal information. In addition, aerosol could be a contributing
factor to the signal differences, especially in deserts such as
the Sahara, where the rRMSE values in the final LHScat
data set remained relatively high (Fig. S3). The Sentinel-
5P mission provides near-real-time, high-resolution aerosol
products starting from the year 2018 (Ingmann et al., 2012).
Analysis will soon be conducted to assess whether NDVI and
aerosol layers can further improve the data-merging quality.

Another potentially useful data set to be included into
our data-merging framework is the Oceansat-2 scatterome-
ter (OSCAT). OSCAT also provides Ku-band backscatters
akin to QSCAT but operating in a different period (be-
tween 2009 and 2014; Bhowmick et al., 2013). QSCAT op-
erated in full mode between 1999 and 2009 and overlapped
with ASCAT during 3 years (2007–2009). Adding OSCAT
will expand the overlapping period by 5 years (up to 2014),
which could help further improve the data-merging method.

In Tao et al. (2022), linear regression was established to
predict the signal differences from monthly rainfall amounts
because the signal differences exhibited a good linear rela-
tionship with rainfall in tropical rainforest regions. Decision
tree regression was also adopted in Tao et al. (2022) for a lim-
ited number of pixels mainly located in the ever-wet north-
western Amazonian and Asian tropical rainforests. This is
because the relationship between signal differences and rain-
fall in these ever-wet regions is nonlinear. The present study
used only the decision tree regression (Fig. 4) and used three
climatic variables to increase the modelling accuracy. More
advanced machine learning techniques are an option in the
future.

The LHScat data set currently has a spatial resolution
of 8.9 km, which is much higher than the ∼ 25 km reso-
lution of previous microwave data sets (Liu et al., 2011;
Moesinger et al., 2020). This was achieved partly by reducing
the temporal resolution, since the SIRF algorithm requires
multiple-orbit satellite passes to obtain a fine spatial reso-
lution (Long et al., 1993; Early and Long, 2001). We fur-
ther composited the images into a monthly temporal resolu-
tion for facilitating global-scale studies, such as global veg-
etation biomass and soil moisture estimations. However, we
acknowledge that the monthly temporal resolution might be
less useful for local-scale studies requiring frequent obser-
vations such as phenological monitoring (Pfeil et al., 2020).
New versions of LHScat with even higher spatial and tem-
poral resolutions are being created using the methodology
developed in this study. Higher spatial resolution can be
achieved by merging only QSCAT and ASCAT images. As
stated in the introduction to this paper, the BYU data cen-
tre provides QSCAT and ASCAT images at the resolution
of 4.45 km. It is therefore possible to generate a global C-
band radar data set at 4.45 km resolution but with a shorter
time span (since the QSCAT mission started in 1999). It is
also possible to have higher temporal resolutions, such as
time-averaged (such as weekly) resolutions (Lin et al., 2016).
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New versions of LHScat will be made publicly available at
https://doi.org/10.6084/m9.figshare.20407857.

C-band radar data have been widely used in Earth science
studies for monitoring vegetation dynamics, mapping defor-
estation and soil moisture, and estimating snow water equiv-
alent (Chang et al., 1982; Clifford, 2010; Kelly et al., 2003;
Liu et al., 2009; Saatchi et al., 2013; Steele-Dunne et al.,
2017; Smith and Bookhagen, 2018). Thus, the merged radar
signals are expected to be useful in a range of research dis-
ciplines. A possible outcome is to separate the signal into
soil moisture and vegetation optical depth (VOD). In this
way, the signals can be more directly related to the soil or
vegetation dynamics. Technically, extracting VOD and soil
moisture from LHScat signal is feasible with the help of the
Water Cloud Model (Liu et al., 2021), and efforts are be-
ing devoted to developing a LHScat VOD data set at the
global scale. Considering its long time span (since 1992)
and high resolution, LHScat VOD would be suitable for the
assessment of long-term global vegetation changes. Using
the optical Moderate Resolution Imaging Spectroradiometer
(MODIS) leaf area index data, a recent study found that most
of the world’s vegetated areas are becoming greener, particu-
larly in China and India (Chen et al., 2019). Using the optical
vegetation index NDVI, another recent research explored the
long-term (2000–2020) resilience change in global forests
(Forzieri et al., 2022). It would be interesting to re-evaluate
the vegetation trends using LHScat VOD data. While radar
signal penetrates the upper forest canopy and interacts di-
rectly with the water molecules contained in forest biomass,
optical greenness data reflect the canopy features of the top-
most leaf layer which could be maintained due to leaf de-
mography or light availability (Guan et al., 2015; Wu et al.,
2016). We therefore expect the LHScat VOD to provide new
insights into the long-term changes in global forests.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-1577-2023-supplement.
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