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Abstract. Green roofs can mitigate heat, increase biodiversity, and attenuate storm water, giving some of the
benefits of natural vegetation in an urban context where ground space is scarce. To guide the design of more sus-
tainable and climate-resilient buildings and neighbourhoods, there is a need to assess the existing status of green
roof coverage and explore the potential for future implementation. Therefore, accurate information on the preva-
lence and characteristics of existing green roofs is needed, but this information is currently lacking. Segmenta-
tion algorithms have been used widely to identify buildings and land cover in aerial imagery. Using a machine
learning algorithm based on U-Net (Ronneberger et al., 2015) to segment aerial imagery, we surveyed the area
and coverage of green roofs in London, producing a geospatial dataset (https://doi.org/10.5281/zenodo.7603123,
Simpson et al., 2023). We estimate that there was 0.23 km2 of green roof in the Central Activities Zone (CAZ)
of London, 1.07 km2 in Inner London, and 1.89 km2 in Greater London in the year 2021. This corresponds to
2.0 % of the total building footprint area in the CAZ and 1.3 % in Inner London. There is a relatively higher
concentration of green roofs in the City of London, covering 3.9 % of the total building footprint area. Test set
accuracy was 0.99, with an F score of 0.58. When tested against imagery and labels from a different year (2019),
the model performed just as well as a model trained on the imagery and labels from that year, showing that the
model generalised well between different imagery. We improve on previous studies by including more negative
examples in the training data and by requiring coincidence between vector building footprints and green roof
patches. We experimented with different data augmentation methods and found a small improvement in per-
formance when applying random elastic deformations, colour shifts, gamma adjustments, and rotations to the
imagery. The survey covers 1558 km2 of Greater London, making this the largest open automatic survey of green
roofs in any city. The geospatial dataset is at the single-building level, providing a higher level of detail over the
larger area compared to what was already available. This dataset will enable future work exploring the potential
of green roofs in London and on urban climate modelling.

1 Introduction

In urban areas, green roofs (i.e. roofs deliberately covered
in a growing substrate and living vegetation) can provide
some of the benefits of ground-level green space to health,
well-being, and the environment. Studies have examined the
extent to which green roofs can directly reduce cooling en-
ergy demand and the risk of overheating in buildings (e.g.
Castleton et al., 2010; Sailor et al., 2012; Sproul et al., 2014;
Virk et al., 2015) or can provide indirect benefits by decreas-

ing the outdoor air temperature in hot weather with mixed
results (e.g. Peng and Jim, 2013; Virk et al., 2015; Cuth-
bert et al., 2022). Green roofs have the potential to provide
a range of benefits to humans and to the wider ecological
system in cities by providing habitats for wildlife (Filazzola
et al., 2019; Hoeben and Posch, 2021), and they can act as
a carbon sink (Getter et al., 2009). Furthermore, green roofs
may be able to contribute to the removal of air pollutants
(Baik et al., 2012) and storm water retention (Mentens et al.,
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2006). Thus, green roofs are increasingly seen as an opportu-
nity to improve health and well-being in urban environments
and as a part of climate mitigation and adaptation strategy.
On the other hand, green roofs impose additional structural
loads and costs and so are not always appropriate (Losken
et al., 2018); in other cases, solar panels or high-albedo roofs
may be more appropriate. Cities worldwide have policies that
encourage the use of green roofs through quantitative plan-
ning tools (The Ecology Consultancy, 2017).

Previous technical reports commissioned by the Greater
London Authority (GLA) have investigated the area of green
roofs in London (Table 1). The 2019 Living Roofs and Walls
report (hereafter LRW2019) surveyed existing green roofs
for the years 2016 and 2017 (Grant and Gedge, 2019; Liv-
ingroofs Enterprises Ltd, 2019), although the methods are
not publicly documented. The survey reports estimates for
Greater London by local authority district (LAD) and for the
Central Activities Zone (CAZ: a central area in London de-
fined for planning purposes; see Sect. 2.1 and Fig. 1). In the
London Plan Annual Monitoring Report (AMR), another re-
port for the GLA, green roof areas in the CAZ were estimated
based on aerial imagery for the years 2013, 2015, and 2017
(Greater London Authority, 2021, p. 70) to be ranging from
1.75×105 m2 in 2013 to over 2.9×105 m2 in 2015. Lastly, an
interactive map of green roofs in the CAZ is publicly avail-
able on the GLA website (Greater London Authority, 2014);
it was produced in 2013/14 and is consistent with a green
roof area in the CAZ of 1.75× 105 m2. Although these dif-
ferent estimates (Table 1) offer valuable information on re-
cent green roof coverage in London, they lack transparency
about the methods used; there is a wide disagreement about
the area of green roofs in the CAZ, and the full data are not
publicly available for analysis.

Accurate, comprehensive, and open data documenting the
location and area of green roofs can directly inform research
into city-scale heat mitigation strategy and are useful for
stakeholders such as urban planners, policy makers, and re-
search communities looking at urban heat mitigation and the
added value of green spaces. However, there is a general lack
of open data documenting the area and coverage of green
roofs. In order to address this, Wu and Biljecki (2021) ap-
plied a machine learning algorithm to high-resolution satel-
lite imagery to identify green roofs and solar panels in a num-
ber of cities around the world, producing a ranking for which
of the surveyed cities have the greatest coverage of green
roofs and solar panels. London was not included in their sur-
vey.

In this study, we identify green roofs from aerial imagery:
this is a binary segmentation problem, as a single class needs
to be identified from a background. Such algorithms process
an image to output a binary mask identifying areas belonging
to the target class. We used a fully convolutional neural net-
work known as U-Net to segment the imagery: this type of
neural network was originally designed for biomedical im-
age segmentation (Ronneberger et al., 2015), but it has since

been applied in other research fields including remote sens-
ing, e.g. to map roads (Ozturk et al., 2020), car parks (Ng and
Hofmann, 2018), and green roofs (Wu and Biljecki, 2021)
from imagery.

Green roofs cover only a small proportion of the planar
area of London, so in aerial imagery most pixels are not part
of a green roof. This means that the classification problem is
imbalanced, with the negative class being many times more
numerous than the positive class. This can create problems
with model training if gradient descent batches often do not
contain any positive examples. In Wu and Biljecki (2021),
the training polygons were restricted to areas with relatively
higher concentrations of green roofs, and image tiles with
no green roofs were excluded (1–5 km2 of each of the 17
cities covered). Furthermore, the total number of examples
for training is relatively low compared to many computer vi-
sion tasks, meaning that a computer vision model may be
unable to generalise the appearance of green roofs; as such,
data augmentation is thought to be key for achieving good
segmentation performance. In the original U-Net paper, elas-
tic deformations are applied to the training images, which
makes the network learn to be invariant to these deformations
without the need for all possible deformations to be present
in the data (Ronneberger et al., 2015); this is justified as soft
tissues in medical images are often deformed in this way. In
Ng and Hofmann (2018) (on which Wu and Biljecki, 2021, is
based), random rotations in units of 90◦ and horizontal flips
were applied to the images, in order enforce rotational inde-
pendence to the classifier and reduce overtraining.

In this study, we build on the machine-learning-based
method used by Wu and Biljecki (2021) for the segmenta-
tion of green roofs from remotely sensed imagery, improve
the segmentation performance by including more negative
examples, and experiment with data augmentation methods.
We thus provide a robust, open, and documented dataset of
the location and area of green roofs in London at the level
of individual buildings (Simpson et al., 2023), filling a gap
in publicly available data. This dataset has the greatest extent
of its kind for any single city.

2 Data and methods

2.1 Geographic context and data

Greater London is a region of England with an area of
1570 km2, which is divided into local authority districts
(LADs), which are the 32 boroughs and the City of London.
Inner London, with an area of 319 km2, is defined by the Of-
fice for National Statistics; it comprises 14 LADs in the cen-
tre of London, roughly corresponding to the historic county
of London (Office for National Statistics, 2022b). The Cen-
tral Activities Zone (CAZ) is the historic, governmental, and
business centre of London defined by the GLA for planning
purposes (Pipe et al., 2021, “Policy SD4”). The CAZ is con-
tained within Inner London but does not align with the LAD
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Table 1. Previous estimates of green roof area in London. CAZ refers to a central area of London; see Sect. 2.1. Data are from Grant and
Gedge (2019) and Greater London Authority (2021).

Survey area Source Survey year Green roof Percent of
area (105 m2) built area (%)

CAZ London Plan AMR 16 2013 1.75 1.5
CAZ London Plan AMR 16 2015 2.2 1.9
CAZ London Plan AMR 16 2017 over 2.9 2.5
CAZ LRW2019 2016 1.5 1.3
CAZ LRW2019 2017 2.1 1.8
Greater London LRW2019 2016 11.0 0.43
Greater London LRW2019 2017 15.0 0.59

boundaries; it intersects with 10 LADs and has an area of
33.5 km2. Lower super output areas (LSOAs) are areas with
1000–3000 residents defined for the purpose of census statis-
tics: each LSOA is within exactly one LAD, and each LAD
contains multiple LSOAs. In this article we use the LSOAs
defined for the 2011 census (Office for National Statistics,
2022a).

Using the “local climate zone” (LCZ) typology (Stewart
and Oke, 2012; Demuzere et al., 2019) as a reference, the
built form of Greater London is mostly classified as open
low-rise. Inner London covers most of the area classified
as open mid-rise and compact mid-rise, but also contains
a large number of open low-rise. The CAZ mainly cov-
ers the area of compact mid-rise in the centre and is there-
fore the most densely built part of London. Buildings in the
CAZ, especially in the City of London, are more likely to be
non-residential buildings. Figure 1 shows the outlines of the
LADs in Greater London and Inner London, as well as the
outline of the CAZ.

Datasets described in this section are summarised in Ta-
ble 2.

The imagery used for segmentation comprised raster im-
ages with red, green, and blue bands from cloud-free mo-
saics of aerial imagery at 25 cm horizontal resolution (from
Getmapping Plc., 2020, accessed under an academic li-
cence). Two sets of imagery were used, from 2019 and 2021.
The imagery from 2021 was used as the primary dataset,
with the imagery from 2019 providing an alternative dataset
to test generalisation. The collection dates for the imagery
mosaic covering Greater London are shown in Fig. 2. The
2021 imagery covers 1706 km2 of which 1558 km2 was in-
side the Greater London boundary, while the 2019 imagery
covers 1527 km2 of which 1422 km2 was inside the Greater
London boundary.

Two geographic information system (GIS) datasets were
used for building footprints. Ordnance Survey (OS) Vec-
torMap Local (VML) (Ordnance Survey (GB), 2021) build-
ing footprints dated April 2019 were used for post-processing
the segmentation, as inspection showed that outlines were
more consistent with the aerial imagery, especially in cases of

buildings with internal courtyards. UKBuildings (Verisk An-
alytics, Inc., 2022) building footprints were used for building
counts, as it divides buildings into individual properties.

2.2 Segmentation pipeline

Our segmentation pipeline was based on that of Wu and Bil-
jecki (2021), which is in turn based on Ng and Hofmann
(2018). The key differences are as follows:

1. We used aerial imagery rather than satellite imagery.

2. Our hand-labelled areas are distributed around the city
rather than concentrated in a central area.

3. We focussed on fully surveying a single city rather than
trying to cover many.

4. We experimented with additional data augmentation
methods.

5. We implemented early stopping rather than training for
a fixed number of epochs.

6. We tested different loss functions to handle the imbal-
anced nature of the problem.

7. We experimented with freezing the pre-trained layers of
the model.

8. We did not use morphological opening or closing to ad-
just the prediction raster.

9. We used building footprints provided by the Ordnance
Survey rather than OpenStreetMap for post-processing.

10. We included tiles containing no positive examples in
training.

All analysis and data management were performed using
Python (Van Rossum and Drake, 2009). A general outline of
the workflow is shown in Fig. 3. The method is covered in
more detail in the following subsections.
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Figure 1. (a) Local authority districts in Greater London, identified by the first three consonants of their names. Inner London is shaded
green, Outer London is in grey, and the outline of the CAZ is shown in red. Zoomed-in maps of (b) Inner London and (c) the CAZ.

Table 2. Input geospatial dataset summary.

Dataset Type Source Explanation

Imagery 2019 and 2021 25 cm RGB raster Getmapping Inc. Cloud-free vertical aerial imagery mosaic
OS VML Vector Ordnance Survey Large-scale building outlines, dated July 2021
UKBuildings Vector Verisk Ltd Building footprints, Version 12, dated March 2022
LSOA outlines Vector Office of National Statistics Lower super output areas from 2011 census
LAD outlines Vector Office of National Statistics Local authority district boundaries

2.3 Imagery and labelling

To identify the locations of green roofs and estimate their
covered area, we trained our U-Net with training polygons
from a sample area. The encoder layers of the U-Net produce
compressed abstract representations of the image at different
scales by repeatedly using convolution blocks followed by
max-pool downsampling. The decoder layers apply upsam-
pling and concatenation with convolution to produce a pre-
diction with the same dimensions as the input image, com-
bining information from the different scales provided by each
encoder layer. The relationship between the image and the
classification is learnt from a set of labelled examples, here-
after referred to as training polygons. To produce training
data, green roofs in the imagery were labelled by hand to
provide input for model training. The training polygons and
geospatial results are included in the data repository asso-
ciated with this article for reproducibility (Simpson et al.,
2023). We selected areas for labelling based on the OS 1 km
grid reference system, so each grid square is 1 km2. Firstly,
a 4 km2 area in the CAZ was selected, known to have a rel-
atively higher concentration of green roofs: this was to en-
sure that there is sufficient representation of green roofs in
the data. Secondly, to increase the diversity of the data, we
selected a further 21 km2 distributed around Inner London
without prior knowledge of the concentration of green roofs,
aiming to represent each LAD and a variety of building forms

(based on an LCZ map); these areas had a much lower ex-
tent of green roofs. All grid references that were included are
listed in Table A2 and mapped in Fig. 4. Within the selected
grid squares, every building in the imagery was inspected,
and green roofs were labelled by hand. Labelling was per-
formed by drawing polygons using QGIS (QGIS Associa-
tion, 2022); some examples of training polygons are shown
in Fig. 5. Labels were initially produced with reference to the
2019 imagery, and then they were modified with reference to
the 2021 imagery; the labels are different for the two datasets.
In total, sample areas covered 7.8 % of Inner London, re-
sulting in 4.9× 104 m2 (in 2019) and 5.7× 104 m2 (in 2021)
of green roofs labelled inside the CAZ and 2.3× 104 m2 (in
2019) and 3.3× 104 m2 (in 2021) outside the CAZ.

Once trained, we applied U-Net to a larger area (the whole
of Greater London) to map existing green roofs.

2.4 Performance metrics

Standard metrics were calculated to assess the validity of the
segmentation model. Metrics were calculated from the final
vector layers, after all processing steps. The metrics are listed
in Table 3. Accuracy, intersection over union (IoU), preci-
sion, recall, and F score all range from 0 to 1, where 1 repre-
sents an ideal classifier. F score is a more appropriate mea-
sure of the overall validity of a model for imbalanced classi-
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Figure 2. Collection dates for the aerial imagery mosaic covering
Greater London. The primary imagery dataset used was that from
2021, while the 2019 data were used for comparison.

Table 3. Classification performance metrics calculated in this study.

Metric Definition

Accuracy Proportion of area correctly classified
True positive (TP) Area correctly classified as positive
False positive (FP) Area incorrectly classified as positive
True negative (TN) Area correctly classified as negative
False negative (FN) Area incorrectly classified as negative
Intersection over union (IoU) TP/(TP+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
F score Harmonic mean of precision and recall

fication than accuracy. As well as calculating these metrics,
we examined examples of poor segmentation performance to
understand the failure modes of our segmentation method.

2.5 Segmentation algorithm

The imagery was broken into 256× 256 pixel tiles at a scale
of 0.25 m per pixel in the OSGB36 coordinate reference sys-
tem. Pixel values were normalised to match ImageNet (Deng
et al., 2009) during training and prediction. We refer to areas
labelled with no green roof as negative and those labelled
with any green roof as positive. All tiles within the hand-
labelled areas were used. Negative pixels (i.e. those without
green roof) were more numerous than positive pixels, and
fully negative tiles were more numerous than positive tiles.

To include negative-only tiles (which are far more numer-
ous) while ensuring that enough batches would contain pos-
itive examples, we experimented with two resampling meth-
ods during training: oversampling positive tiles by repetition
or random sampling with replacement of the negative-only
tiles.

Transfer learning refers to the practice of transferring
models or parts of models between different learning tasks
– in this case from a well-known image classification task to
our segmentation task. Ng and Hofmann (2018) used trans-
fer learning to mitigate the small number of training exam-
ples; the U-Net encoder is replaced with ResNet50 trained
on the ImageNet dataset (He et al., 2015; Deng et al., 2009),
an example which we follow. Transfer learning can improve
performance and reduce the required training resources as
the model will have already learnt to extract features from
images that are generally informative. Freezing refers to the
choice to not update the pre-trained part of the model during
training, which can be beneficial as it can massively reduce
the compute time required for training: we experimented
with freezing pre-trained layers.

The algorithm was implemented in PyTorch (Paszke et al.,
2019). The model was trained using the Adam optimiser
(Kingma and Ba, 2014), an optimiser that dynamically ad-
justs learning rates for each model parameter, making train-
ing less dependent on the global learning rate and therefore
reducing required training resources.

Rather than training the model for a fixed number of
epochs, we implemented early stopping. Early stopping
refers to stopping training when validation performance
ceases to improve. This reduces the required training re-
sources and can be effective at reducing overfitting. Train-
ing was stopped if the mean validation loss in the past five
epochs was greater than that of the five epochs before.

It was not practical to test all combinations of hyperparam-
eters, loss functions, augmentations, etc. in a grid search. We
therefore optimised each choice one by one: first loss func-
tion, then learning rate, augmentations, and freezing. Testing
data were not used for training method tuning and were only
processed after the hyperparameters were finalised.

Four-fold cross-validation was performed; as required
computational resources grow with the number of folds, we
decided four was a good compromise between testing per-
formance thoroughly and limiting resource usage. The hand-
labelled tiles were split into five sets, of which one was re-
served as the test dataset. The random split was performed
separately for positive and fully negative tiles to ensure all
splits contained both positive and negative examples. For
each fold, training was performed with three of these sets and
validation with one set. This is to demonstrate that good per-
formance is not unique to a particular random split of training
and validation data and therefore tests the ability of the model
to generalise. To reduce resource requirements, optimisation
of the training method was performed by maximising vali-
dation F score using the first fold only, with only the final
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Figure 3. Workflow diagram of the overall segmentation pipeline.

Figure 4. Map of hand-labelled areas.

selected configuration being cross-validated. The test dataset
remained unseen to all models during training, and it was not
used for choosing the optimal configuration, allowing for a
good estimate of out-of-sample performance.

Cross-entropy loss, Lovász loss, F -score loss, and focal
loss functions were tested: Lovász is intended as a surro-

gate for the intersection-over-union measure (Berman et al.,
2017), whereas focal loss is intended to give greater weight to
hard-to-classify examples during training (Lin et al., 2017).
The cross-entropy and focal loss functions were weighted by
the inverse frequency of the classes to account for class im-
balance. In the final selected model configuration, this re-
sulted in the positive class having a weight of 102 times that
of and the negative class. Focal loss has a parameter γ which
adjusts the importance of different parts of the loss distribu-
tion, and different values were tested. The F -score loss ap-
proximates the F score in a way that is differentiable, and
it leads to training that balances precision and recall without
the need for weighting (Pastor-Pellicer et al., 2013). Learn-
ing rate, loss function, and data augmentation methods were
tested. The hyperparameters that were tuned, as well as the
hyperparameter values used for the final classification, are
listed in Table A1.

A key part of the U-Net methodology is data augmentation
(Ronneberger et al., 2015) – a process wherein distortions or
transformations are applied to the training data to increase
robustness when training data are scarce. Augmentation can
reduce overfitting, a process wherein a model memorises cer-
tain features of the training dataset that do not generalise out
of sample (Shorten and Khoshgoftaar, 2019). During train-
ing, augmentations were applied to the imagery tiles, and
correspondingly to the label masks. Augmentation was ap-
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Figure 5. Example of training polygons. The area outlined in green
was manually identified as being a green roof in this aerial imagery.
Imagery © Getmapping Plc. Image location is shown in Fig. A3.

plied randomly and independently of each training epoch,
with equal probability for positive and negative tiles. We ex-
perimented with flipping images in both planes, applying 90◦

rotation, applying random cropping steps, randomly shifting
the colours, randomly applying gamma adjustment, and ran-
domly adjusting the sharpness of the imagery. We also exper-
imented with applying elastic distortions. All augmentations
used the Albumentations library (Buslaev et al., 2020).

2.6 Post-processing

Predicted segmentation masks were generated from the
trained model using the same tiling method as used for train-
ing. The same prediction probability threshold of 0.5 was ap-
plied across the whole domain.

From the binary masks produced by the segmentation al-
gorithm, we extracted green roof candidate polygons. Tiling
resulted in zero-width gaps between polygons where a green
roof straddled two tiles; this was closed by simply taking
the union of these polygons. The intersection was then taken
between the candidate polygons and the OS VML building
footprints, to remove any candidate polygons that did not in-
tersect with a building footprint. This process helped to re-
duce the false positive rate, because the segmentation algo-
rithm can incorrectly identify ground-level green cover as a
green roof. We found it convenient to apply a simplification

of the prediction polygons using the iterative end-point fit al-
gorithm and a threshold of 0.25 m and then to remove poly-
gons smaller than 10 m2, which had little impact on segmen-
tation performance but reduced the file size (simplify routine
implemented in Gillies et al., 2022). In previous work (Ng
and Hofmann, 2018; Wu and Biljecki, 2021), morphologi-
cal opening and closing were used on the raster classification
masks as a post-processing step: these are filters that remove
small, isolated, positive areas and fill in small negative areas,
respectively. But we found that these morphological opera-
tions decreased segmentation performance, so we did not use
them. The post-processed segmentation results were spatially
joined with the UKBuildings layer in order to identify which
individual buildings have green roofs and so to calculate the
number of buildings covered.

2.7 Testing generalisation

As an additional test of out-of-sample performance, we in-
cluded a second imagery dataset from a different year; the
primary imagery was for the year 2021, whereas the al-
ternative dataset was for the year 2019. First, training was
performed using the 2021 imagery and labels, using k-fold
cross-validation to test the sensitivity of the performance to
the training–test split. This model was tested against imagery
and labels from the same year (2021) but also from an earlier
year (2019). We compared the pixel-value distributions of the
roof selected between these datasets. Further, we trained a
single model using the 2019 imagery and labels, with ex-
actly the same data split (i.e. the same geographic locations
of tiles) as the first fold of the primary model; this model
was used to provide a benchmark for the performance of the
primary model by testing it against both 2021 and 2019 test
data. Model design optimisation was performed only with the
2021 imagery and labels.

2.8 Area estimates

To estimate area of green roof in each geographic area, the
polygons of green roof area identified by the segmentation
are spatially intersected with the polygons of the geographic
area. The same process is used with the building footprints
to estimate building footprint area. All area calculations were
applied in the OSGB36/EPSG:27700 coordinate projection.
Area projections are scaled up by the recall of the model,
based on the assumption that a fixed proportion of each green
roof is missed by the model. Not doing so would lead to an
underestimation of the green roof area.

To estimate the change in green roof area between 2019
and 2021, we performed the geometric set difference be-
tween the 2021 and 2019 prediction polygons, with the 2019
prediction polygons buffered by 5 m to allow for errors in
segmentation.
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3 Results

3.1 Segmentation performance

The performance statistics averaged across folds for green
roof identification are given in Table 4; performance statis-
tics for all folds are given in Table A4, and the full confusion
matrix is given in Table A3. Table 5 gives the same statis-
tics calculated in terms of building counts rather than area;
with performance statistics for all folds in Table A3 and the
full confusion matrix in Table A5. Table 6 compares the per-
formance of models trained on 2019 and 2021 imagery and
labels, as well as those tested against both 2019 and 2021
imagery and labels.

Results of the hyperparameter search are shown in Ta-
ble A1. The best performance was found with the F -score
loss (F -score improvement of 0.3), which may be because
the class imbalance is large. We found that the augmen-
tations that provided the greatest improvements in perfor-
mance were the non-destructive transformations (flips and
rotations), which provided an F -score improvement of 0.10
versus no augmentations; the effects of the other augmen-
tations (elastic transformation, colour shift, random gamma
adjustment) were smaller, improving F score by only a fur-
ther 0.03. We found that oversampling the positive tiles was
more effective than not including any negative-only tiles, in-
cluding all tiles without resampling, or undersampling neg-
ative tiles. We experimented with the proportion of positive
tiles to be achieved by resampling, and we found the best
results when 50 % of tiles contained positive pixels. Training
was roughly 2 times faster per epoch with the pre-trained part
of the model frozen, so augmentation experiments were per-
formed with it frozen; when the best combination was found
training was repeated with the model un-frozen but this did
not lead to an increase in F score. We found that the building
intersection step increased testing precision by 0.05 on aver-
age across the folds for the 2021 testing dataset and 0.11 for
the 2019 testing dataset with no effect on recall, showing that
across the building intersection step plays an important role
in suppressing false positives. Figure 6 shows the distribution
of colours in the predictions for the two imagery sets: gener-
ally true positives, false positives, and false negatives have
strongly overlapping colour distributions which are similar
between the two imagery sets.

3.2 Distribution of green roofs

Table 7 gives estimates for LADs in Inner London, Table 8
for Outer London, and Table 9 for aggregated areas. Propor-
tion of total building footprint area means the total green roof
area divided by the total building footprint area including all
buildings not only those with green roofs. Proportion of area
means the total green roof area divided by the area of the ge-
ography (LAD, CAZ, or Inner London). Proportion of build-
ings means the count of buildings with any green roof divided

by the count of all buildings. Proportion of buildings by area
means the building footprint area of buildings that has any
green roof divided by the total building footprint area. Mean
coverage means the total area of green roof divided by the
total footprint area of buildings that have any green roof.

We estimate that the CAZ contained 2.27× 105 m2 of
green roof on the dates of imagery collection (Sum-
mer 2021). Green roof area estimates for each LAD in
Greater London, as well as LSOAs in Inner London, are
mapped in Fig. 7. Most (58 %) LSOAs contain no green
roofs, and the maximum proportion of building footprint area
covered by green roofs in any LSOA is 38 %. We estimate
that, between 2019 and 2021, green roof area increased by
1.6×104 m2 in the CAZ, 6.7×104 m2 in Inner London, and
1.5× 105 m2 in Greater London.

4 Discussion

4.1 Segmentation performance

The segmentation model achieves a high level of accuracy
(0.99). Precision and recall based on area for the 2021 test-
ing dataset are 0.65 and 0.50 respectively, with an F score of
0.57 (Table 4). Based on counts of buildings instead, preci-
sion is lower (0.57) and recall is higher (0.60). This indicates
that the model is effective at identifying green roofs and that
many of the false positives are small areas on buildings with
no green roof.

Given that the survey covers such a large and diverse area
and that the green roof fraction is low in many areas, it is
important to consider the false positive rate. Tables A3 and
A5 suggest that we expect 0.3 % of the built area to be in-
correctly identified as green roof, which is comparable to the
green roof area in some districts that have very little green
roof, e.g. Waltham Forest, but small in areas with more green
roof.

Inspection of false negatives in the results showed that
many pixels classified as false positives and false negatives
are at the edges of green roofs. In the k = 1 validation dataset,
31 % of the false positive area is within a 1 m buffer of the
hand-labelled polygons, and 34 % of false negative area is
within a 1 m buffer of the predictions. This indicates that the
dataset is good at identifying green roofs, but there are often
inconsistencies at the edge of the green roof between the hu-
man labeller and the model. A similar observation was made
by Wu and Biljecki (2021) when discussing the relative dif-
ficulty of segmenting green roofs compared to solar panels,
which have more well-defined edges in imagery. It may be
that performance is limited by the consistency of the human
labelling rather than the efficacy of the machine learning al-
gorithm.

Differences in precision and recall in the test datasets be-
tween folds are small (see Table A7), showing that the per-
formance is not unique to a particular training–test split and
demonstrating the appropriateness of the model. It is possible

Earth Syst. Sci. Data, 15, 1521–1541, 2023 https://doi.org/10.5194/essd-15-1521-2023



C. H. Simpson et al.: Open-source automatic survey of green roofs in London 1529

Table 4. Performance metrics for the green roof identification method, calculated based on area. For the full set of statistics for all folds, see
the Appendix Table A4.

Dataset Accuracy IoU Precision Recall F score

Testing 2021 0.9925 0.3970 0.6505 0.5046 0.5683
Testing 2019 0.9921 0.3707 0.5072 0.5793 0.5408
Validation 0.9923 0.4666 0.7148 0.5733 0.6363
Training 0.9941 0.5773 0.7374 0.7266 0.7320

Table 5. Performance metrics for the green roof identification method, calculated based on building counts. For the full set of statistics for
all folds, see the Appendix Table A6.

Dataset Accuracy IoU Precision Recall F score

Testing 2021 0.9924 0.4128 0.5721 0.5972 0.5844
Testing 2019 0.9892 0.3256 0.3934 0.6536 0.4912
Validation 0.9920 0.4516 0.6024 0.6433 0.6222
Training 0.9925 0.4444 0.5404 0.7146 0.6154

that performance might be improved generally by labelling
more data, thus increasing the size of the training dataset, or
through another method of data augmentation that was not
explored.

Comparing the performance of the same model (trained on
2021 imagery and labels) for the two testing datasets (2021
versus 2019), precision was lower for the 2019 dataset (from
0.57 to 0.39), but recall was higher (from 0.59 to 0.65) (Ta-
ble 4). This means that with the alternative imagery dataset
the model tends to include a higher proportion of spurious
green roofs. The difference in precision is greater when cal-
culated in terms of building counts rather than area (0.59 to
0.39) (Table 5), suggesting that the additional false positives
take the form of small areas on buildings without real green
roofs. Imagery in the alternative set was completely unseen
during training and optimisation. However, as Table 6 shows,
performance is just as good or better than a model trained on
the 2019 images and labels. This demonstrates that the model
can generalise to unseen imagery, although with some loss of
precision.

The IoU score for the testing dataset averaged across folds
(0.397, Table 5) of our segmentation model is similar than
that reported in Wu and Biljecki (2021) (0.396; see their
Sect. 3.2.2). However, Wu and Biljecki (2021) did not in-
clude fully negative tiles in their training or validation; ex-
cluding fully negative tiles from our validation would in-
crease the IoU by reducing false positives. Wu and Biljecki
(2021) covered a total of 2217 km2 across 12 cities, with the
largest being 302 km2 in Las Vegas, Nevada; our survey cov-
ered 1558 km2, making ours the largest survey of green roofs
in a single city.

While performance was generally good as measured by the
performance metrics, we collected some examples of poor
classification performance: Fig. 8 shows some examples of
false positives and Fig. 9 false negatives. Shadows in the

aerial imagery were a cause of both false positives and false
negatives, e.g. Fig. 8a as well as Fig. 9a and b. This could
be because the shapes and colours are simply less distinct
in shadow, but there are also few examples of this to learn
from in the training data. The visual texture of roofs may be
a source of false positives, e.g. Fig. 8b, c, and d have a sim-
ilar rough texture to the green roof in Fig. 9d. Sedum-based
green roofs often have a red-brown hue, meaning that another
source of false positives is roofs with a similar red-brown
hue as seen in Fig. 8e and f; Fig. 6 shows that true positives
and false positives have strongly overlapping colour distri-
butions, so it would not be possible to improve performance
simply by selecting certain colours. It could be that relatively
small variations in colour lead to the misclassification, but we
found that augmentations in gamma and colour only slightly
improved performance. Multi-spectral imagery could help
deal with variations in vegetation colour. However, multi-
spectral aerial imagery is collected more rarely and is less
available; satellite multi-spectral imagery is available but res-
olution is poorer. Therefore, visible-spectrum aerial imagery
has some practical advantages over multi-spectral imagery.
Combining layers of multi-spectral imagery at lower resolu-
tion with aerial imagery is technically challenging but could
be effective for this task. Sometimes part of a green roof is
correctly identified, but patches are missed, as in Fig. 9c and
d.

This method can be applied to other cities, and we have
explored how the segmentation methods can be improved.
While previous similar studies had included in training only
tiles which contain positive examples, we found that includ-
ing a large number of negative examples was very effec-
tive at suppressing the false positive rate in unseen areas de-
spite increasing the class imbalance, and we would recom-
mend this approach in general. We observed improvement
in segmentation performance by application of data augmen-

https://doi.org/10.5194/essd-15-1521-2023 Earth Syst. Sci. Data, 15, 1521–1541, 2023



1530 C. H. Simpson et al.: Open-source automatic survey of green roofs in London

Table 6. Comparison of test dataset performance model trained on 2019 imagery and labels with the model trained on 2021 imagery and
labels.

Dataset k fold Accuracy IoU Precision Recall F score

Trained on 2019
Testing 2021 1 0.9921 0.3682 0.6379 0.4655 0.5382
Testing 2019 1 0.9909 0.3580 0.4580 0.6212 0.5273

Trained on 2021
Testing 2021 1 0.9929 0.4134 0.6801 0.5131 0.5849
Testing 2019 1 0.9923 0.3782 0.5216 0.5790 0.5488

Figure 6. Colour and brightness of pixels in false positive (FP), true positive (TP), and false negative (FN) groups for (a) 2021 imagery and
labels and (b) 2019 imagery and labels. The model was trained on 2021 imagery and labels.

tations, which we can recommend for similar future studies.
The F -score loss was also particularly effective for this prob-
lem as the segmentation classes are so imbalanced.

4.2 Limitations

As is clear from this study, automatic methods are scalable,
allowing large areas to be surveyed and monitored; however,
they have limitations. Green roofs can only be identified by
this method if they are visible in the imagery, and small areas
of vegetation (that is, not visible at 25 cm pixel size) are nec-
essarily left out. Labelling by hand also has limitations; there
are edge cases where it is difficult for a human to determine
visually from the imagery whether a building has a green roof
or where the edge of the green roof is due to shadows or poor
conditions of the green roof.

We compared performance between two sets of imagery
collected in different years by the same company. However,
these two sets of imagery are quite similar as they were col-

lected by the same company, both in summer, and presum-
ably with the same or similar instruments; it may be that the
model would not generalise to a model from a completely
different source of imagery, e.g. from satellite observations.
Summer collection of optical aerial imagery is preferred be-
cause a high solar angle means better light conditions. When
a model trained on 2021 imagery is tested against 2019 im-
agery, recall holds up well, but there is a substantial dif-
ference in precision. More broadly, generalisation to com-
pletely different imagery sets (for example satellite imagery)
would be best achieved by including examples from those
sets during training. The trained model would not be ex-
pected to perform well on a completely unseen source of
imagery without further training, as a diversity of imagery
sources was not present during training. While relatively high
resolution satellite imagery is available, covering most cities
in the world, this imagery is generally not as high quality as
the aerial imagery available in London; therefore, the same
method applied to other cities may yield worse performance.
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Table 7. Table of estimated green roof area for each LAD in Inner London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean
roof total building geographic of of buildings coverage
area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

City of London 6.1 3.9 2.1 7.8 25.6 15.3
Tower Hamlets 15.6 3.1 0.8 1.7 11.4 27.7
Islington 10.0 2.2 0.7 1.0 6.7 33.2
Hackney 9.8 2.0 0.5 1.0 7.3 27.9
Newham 12.4 1.6 0.3 0.3 6.2 25.8
Camden 7.0 1.3 0.3 1.1 7.9 16.0
Southwark 8.4 1.2 0.3 0.7 6.0 20.7
Hammersmith and Fulham 5.4 1.2 0.3 0.5 9.2 12.7
Lewisham 7.9 1.1 0.2 0.4 3.8 29.8
Wandsworth 6.9 0.9 0.2 0.3 4.9 18.2
Lambeth 6.1 0.9 0.2 0.4 3.8 22.9
Westminster 5.3 0.8 0.2 1.1 7.7 10.0
Haringey 4.2 0.6 0.1 0.2 1.9 34.1
Kensington and Chelsea 1.8 0.5 0.1 0.4 2.8 17.2

Table 8. Table of estimated green roof area for each LAD in Outer London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean
roof total building geographic of of buildings coverage
area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

Greenwich 12.3 1.6 0.3 0.3 5.3 30.3
Barking and Dagenham 6.9 1.1 0.2 0.3 6.1 17.4
Brent 7.3 0.8 0.2 0.3 3.4 22.8
Barnet 7.9 0.7 0.1 0.2 3.0 21.9
Ealing 6.6 0.6 0.1 0.2 2.5 23.7
Richmond upon Thames 3.1 0.4 0.1 0.2 2.1 20.8
Hounslow 4.0 0.4 0.1 0.2 2.9 14.9
Hillingdon 5.4 0.4 0.0 0.2 4.5 9.5
Waltham Forest 2.8 0.4 0.1 0.1 2.5 16.1
Kingston upon Thames 2.1 0.4 0.1 0.2 2.9 12.6
Harrow 2.7 0.3 0.1 0.2 1.5 22.3
Sutton 2.4 0.3 0.1 0.1 1.9 17.9
Enfield 3.7 0.3 0.0 0.1 1.8 18.8
Merton 2.1 0.3 0.1 0.2 1.3 23.8
Croydon 3.8 0.3 0.0 0.1 1.9 16.4
Havering 3.0 0.3 0.0 0.1 2.2 13.2
Bexley 2.2 0.2 0.0 0.1 1.4 16.0
Bromley 2.9 0.2 0.0 0.1 1.7 13.3
Redbridge 0.8 0.1 0.0 0.1 1.2 7.8

We have not attempted to separate different types of green
roof (e.g. intensive, extensive, roof gardens). While types of
plants may be differentiated to some extent in aerial imagery,
important features like depth of substrate cannot. Some green
roofs may be in poor condition from lack of water, and there
may be cases of fake turf or other imitation vegetation being
detected as green roofs: both of these could be better identi-
fied using multi-spectral imagery.

Performance of the building intersection step is reliant on
the alignment of the building footprints with the imagery.
The OS building footprints are very accurate, especially for
identifying courtyards within building footprints. We found
that alignment between other imagery sets, as well as with
other building footprint sources, was not as reliable. How-
ever, OS maps are only available in Great Britain, as opposed
to OpenStreetMap, which has a more global coverage.
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Table 9. Table of estimated green roof area for the CAZ, Inner London, and Greater London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean
roof total building geographic of of buildings coverage
area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

CAZ 22.7 2.0 0.7 2.5 14.7 13.8
Inner London 106.8 1.3 0.3 0.6 6.3 21.2
Greater London 188.8 0.7 0.1 0.3 3.8 19.7

Figure 7. Area of green roof identified in (a) LADs and (b) LSOAs
as a fraction of total building footprint area.

4.3 Comparison to other estimates

Our estimate of green roof area in the CAZ in 2021 (2.3×
105 m2) is higher than the LRW2019 estimates, as well as
the AMR estimate for 2013 and 2015, but lower than the
AMR estimates for 2017. For Greater London, the identified
area is higher than the 2016 and 2017 estimated areas from
LRW2019. While individual-building data from previous
studies are not available for comparison, local-authority dis-
trict (LAD)-level data are available for 2017 from LRW2019
(Livingroofs Enterprises Ltd, 2019; Grant and Gedge, 2019)
In Fig. 10, we compare our results for 2019 with the esti-

mates for each LAD in 2017 from LRW2019: the results
are strongly correlated, but some LADs have quite differ-
ent results. According to this, most LADs have gained some
green roofs between 2017 and 2019, with a few losing some.
Newham (Nwm) and Hillingdon (Hdn) appear to have gained
the most green roofs between 2017 and 2019. Our estimate
for Havering (Hvg) is close to zero, because the 2019 im-
agery does not cover Havering (see Fig. 2). Where estimates
differ by a small amount, it may be due to differences in
methodology or errors rather than a real change.

Examining the GLA’s geospatial data (which is only pub-
lic for the CAZ) (Greater London Authority, 2014) and
infographics (Livingroofs Enterprises Ltd, 2019), we see
multiple instances of ground-level parks being incorrectly
identified as green roofs (e.g. Finsbury Square in Islington,
Fig. A1). Making use of the building footprint data enables us
to avoid such misclassifications. There is also disagreement
for the Barbican Centre (Fig. A2), of which the full area is
counted as a roof by the GLA results: this is a difficult edge
case, as the OS building footprints do not include the full area
of the complex as a building. Over the CAZ, we find that 4 %
of the area of the Greater London Authority (2014) dataset
does not intersect with OS building footprints. It also ap-
pears that in the GLA’s geospatial data an area slightly larger
than the vegetation is usually selected, which may be due to
the resolution of the input data. This demonstrates the utility
of ensuring the coincidence of identified green roof patches
with building footprints.

Wu and Biljecki (2021) report that the proportion of build-
ings by area which have a green roof is 41.6 % in Zurich,
24.8 % in Berlin, and 17.2 % in New York (London was not
included in their survey). Comparing this with the results in
Tables 7, 8, and 9, we see that the district in London with the
highest proportion of green roofs (City of London district)
ranks between Berlin and New York at 21.0 %. This method
of ranking is sensitive to the geographic area included in
the calculation if the concentration of green roofs varies be-
tween districts within a city. Furthermore, given our interest
in rooftop vegetation as a climate adaptation strategy, the ac-
tual amount of vegetation seems more relevant than the total
area of the building.
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Figure 8. Examples of false positive classification in the 2021 imagery. The green outline shows the area identified as green roof by the
model. Imagery © GetMapping Plc. Image location is shown in Fig. A3.

Figure 9. Examples of false negative classification in the 2021 imagery. The green outline shows the area identified as green roof by the
model. Imagery © GetMapping Plc. Image location is shown in Fig. A3.
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Figure 10. Scatter plot showing estimated green roof area in LADs
of Greater London, estimated from Livingroofs Enterprises Ltd
(2019) with 2017 imagery to our estimates with 2019 imagery.

4.4 Distribution of green roof areas

As shown in Table 7, although larger total areas of green roof
are present in some LADs, the City of London has the high-
est concentration of green roofs in London. Especially high
concentrations of green roofs are also seen in Tower Hamlets.

The distribution of green roof buildings within LADs is
heterogeneous (see Fig. 7). When LSOAs stand out as having
relatively high green roof coverage, it is often due to a single
large building or a cluster of buildings with green roofs.

Despite having the highest green roof coverage out of the
LADs, only 3.9 % of the building footprint of the City of
London is covered by green roofs. The City of London has
very low amounts of green cover generally, so it is consistent
with policy (e.g. Pipe et al., 2021, “Policy G5”) that green
roofs would be adopted there. However, the Living Roofs and
Walls 2008 report (Design for London et al., 2008) found that
32 % of roof area in the City of London could be suitable for
retrofitting with green roofs, so the current status is a long
way from that proposed. As the dataset identifies individual
buildings, in future work we will explore what kinds of build-
ings, and what areas, have adopted green roofs. Given that
the area of vegetation in the City of London is overall quite
low, it is possible that existing green roof coverage is making
a difference to the thermal environment: a possibility that we
will explore in an urban climate modelling study enabled by
this data.

4.5 Use of the dataset

The dataset provides far greater detail than is available pub-
licly from previous work in London. Green roof polygons are
provided for individual areas of green roof and are identifi-
able for individual buildings. This will enable new insights
into the distribution of green roofs in London which were not
possible before. For example, using the building use classi-
fications given by the UKBuildings dataset, we can calcu-

late the distribution of green roofs between building uses. As
shown by Fig. 11, non-residential buildings make up most
of the buildings with green roofs (56 %), with around 1.2 %
of non-residential building footprint area covered by green
roofs compared to 0.3 % of residential buildings. While a
large fraction of green roofs occur for residential buildings,
only a small proportion of residential buildings have a green
roof. This illustrates the utility that this level of detail brings.
Future work will extend this analysis to look in detail at the
characteristics of buildings that have green roofs in London.

5 Code and data availability

Code and data generated by this project are available for
download at https://doi.org/10.5281/zenodo.7603123 (Simp-
son et al., 2023). The geospatial data are stored in GeoJSON
format, and they can be read with GIS applications such as
QGIS, ArcMap, or Fiona.

Aerial imagery was used under licence from GetMapping
Plc. Ordnance Survey data were used under licence. These
licensed data are available under an educational licence:
https://digimap.edina.ac.uk (last access: 19 January 2023).

6 Conclusions

In this study, we produced a survey of green roofs in Lon-
don using automatic segmentation of aerial imagery. The seg-
mentation model shows strong generalisation to unseen im-
agery. The resulting geospatial dataset is made available for
further research. We identified areas which have a high preva-
lence of green roofs; especially the City of London and parts
of Tower Hamlets. We highlighted some of the difficulties of
producing such a dataset: especially that a low prevalence of
green roofs means that the classification problem is highly
imbalanced, which can create problems for machine learn-
ing algorithms. Furthermore, we demonstrate the importance
of excluding ground-level vegetation from surveys of green
roofs by ensuring that areas classified as green roofs are co-
incident with building footprints.

This dataset covers the whole of Greater London and pro-
vides data at the single-building level, which other publicly
available datasets cannot. We demonstrated how the resulting
dataset can be used to extract information about the distribu-
tion of green roofs between districts, as well as using single-
building-level data to cross-reference green roof coverage
with building use. In future work, we will use this geospa-
tial dataset to further explore the characteristics and uses of
buildings and neighbourhoods which have green roofs, as
well as those with potential for more green infrastructure,
and to quantify the thermal effects of green roofs on Lon-
don’s micro-climate through urban climate modelling.
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Figure 11. Share and proportion of green roofs for different building uses. Most green roofs are on non-residential buildings. Mixed use
refers to buildings comprising both residential and non-residential uses.

Appendix A

Table A1. Table listing the hyperparameters that were tuned, which values were tested, and the final value used for classification.

Parameter Tested values Final value

Loss function Cross entropy, Lovász, focal, F score F score

Learning rate 5× 10−3, 5× 10−4, 5× 10−5, 5× 10−6 5× 10−5

Random augmentations None; flips and 90◦ rotations; crops and flips
and 90◦ rotations; flips and fully random rota-
tions; 90 % crops and flips and 90◦ rotations;
flips and 90◦ rotations and sharpness; flips and
90◦ rotations and sharpness; elastic distortion;
alterations to gamma and colour

Flips, rotations, elastic distortions, alterations to
gamma and colour

Max epochs 100 100

Pre-trained model frozen True, False True

Table A2. Grid references of hand-labelled areas. Grid references are in the OSGB 1936 system.

TQ2280 TQ2474 TQ2481 TQ2678 TQ2781 TQ2784
TQ2872 TQ3073 TQ3176 TQ3181 TQ3184 TQ3280
TQ3281 TQ3282 TQ3290 TQ3373 TQ3478 TQ3486
TQ3681 TQ3775 TQ3783 TQ3872 TQ4084 TQ4180
TQ4283
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Table A3. Full confusion matrix for the green roof identification method, calculated based on area. TP, TN, FP, and FN are as a proportion
of total building footprint area in the hand-labelled areas.

Dataset k fold Land Built TP TN FP FN
area area

(km2) (km2)

Testing 2021 1 3.9 1.282 0.0050 0.9879 0.0024 0.0048
2 3.9 1.282 0.0047 0.9876 0.0026 0.0051
3 3.9 1.282 0.0047 0.9872 0.0030 0.0051
4 3.9 1.282 0.0054 0.9876 0.0026 0.0044

Average 3.9 1.282 0.0049 0.9876 0.0027 0.0048

Testing 2019 1 3.9 1.282 0.0047 0.9877 0.0043 0.0034
2 3.9 1.282 0.0041 0.9878 0.0042 0.0040
3 3.9 1.282 0.0048 0.9861 0.0058 0.0033
4 3.9 1.282 0.0052 0.9880 0.0039 0.0029

Average 3.9 1.282 0.0047 0.9874 0.0045 0.0034

Validation 1 4.0 1.333 0.0060 0.9887 0.0021 0.0033
2 4.0 1.278 0.0070 0.9851 0.0032 0.0047
3 3.9 1.255 0.0060 0.9839 0.0030 0.0071
4 4.0 1.261 0.0079 0.9844 0.0026 0.0052

Average 4.0 1.282 0.0067 0.9856 0.0027 0.0050

Training 1 12.0 3.798 0.0089 0.9851 0.0029 0.0031
2 12.0 3.853 0.0075 0.9863 0.0025 0.0036
3 12.1 3.875 0.0077 0.9860 0.0033 0.0030
4 12.0 3.870 0.0084 0.9863 0.0028 0.0025

Average 12.0 3.849 0.0081 0.9859 0.0029 0.0031

Table A4. Full performance metrics for the green roof identification method, calculated based on area.

Dataset k fold Accuracy IoU Precision Recall F score

Testing 2021 1 0.9929 0.4134 0.6801 0.5131 0.5849
2 0.9923 0.3774 0.6423 0.4778 0.5480
3 0.9919 0.3659 0.6075 0.4792 0.5358
4 0.9930 0.4325 0.6720 0.5482 0.6038

Average 0.9925 0.3970 0.6505 0.5046 0.5683

Testing 2019 1 0.9923 0.3782 0.5216 0.5790 0.5488
2 0.9918 0.3329 0.4946 0.5044 0.4995
3 0.9909 0.3436 0.4509 0.5907 0.5114
4 0.9932 0.4328 0.5697 0.6431 0.6042

Average 0.9921 0.3707 0.5072 0.5793 0.5408

Validation 1 0.9947 0.5298 0.7454 0.6468 0.6926
2 0.9922 0.4735 0.6893 0.6020 0.6427
3 0.9899 0.3754 0.6696 0.4607 0.5459
4 0.9923 0.5048 0.7538 0.6045 0.6709

Average 0.9923 0.4666 0.7148 0.5733 0.6363

Training 1 0.9940 0.5957 0.7514 0.7419 0.7466
2 0.9938 0.5497 0.7487 0.6741 0.7094
3 0.9937 0.5510 0.7018 0.7194 0.7105
4 0.9947 0.6120 0.7479 0.7710 0.7593

Average 0.9941 0.5773 0.7374 0.7266 0.7320
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Table A5. Full confusion matrix for the green roof identification method, calculated based on counts of buildings. TP, TN, FP, and FN are as
a proportion of total building footprint area.

Building

Dataset k fold count TP TN FP FN

Testing 2021 1 12026 0.0063 0.9835 0.0075 0.0027
2 12026 0.0067 0.9742 0.0168 0.0022
3 12026 0.0068 0.9727 0.0183 0.0022
4 12026 0.0070 0.9791 0.0119 0.0020

Average 12026 0.0067 0.9774 0.0136 0.0023

Testing 2019 1 12026 0.0067 0.9739 0.0181 0.0013
2 12026 0.0064 0.9617 0.0304 0.0016
3 12026 0.0067 0.9543 0.0378 0.0012
4 12026 0.0068 0.9618 0.0302 0.0012

Average 12026 0.0067 0.9629 0.0291 0.0013

Validation 1 11505 0.0077 0.9832 0.0066 0.0024
2 11724 0.0078 0.9701 0.0195 0.0026
3 11167 0.0081 0.9684 0.0215 0.0021
4 11820 0.0085 0.9767 0.0132 0.0016

Average 11554 0.0080 0.9746 0.0152 0.0022

Training 1 30932 0.0065 0.9820 0.0100 0.0016
2 30717 0.0072 0.9705 0.0209 0.0015
3 31069 0.0070 0.9674 0.0242 0.0014
4 30731 0.0071 0.9758 0.0159 0.0012

Average 30862 0.0069 0.9739 0.0177 0.0014

Table A6. Full performance metrics for the green roof identification method, calculated based on building counts.

Dataset k fold Accuracy IoU Precision Recall F score

Testing 2021 1 0.9932 0.4266 0.6354 0.5648 0.5980
2 0.9919 0.3938 0.5478 0.5833 0.5650
3 0.9916 0.3952 0.5280 0.6111 0.5665
4 0.9928 0.4387 0.5913 0.6296 0.6099

Average 0.9924 0.4128 0.5721 0.5972 0.5844

Testing 2019 1 0.9919 0.3718 0.4915 0.6042 0.5421
2 0.9899 0.3260 0.4097 0.6146 0.4917
3 0.9854 0.2798 0.3163 0.7083 0.4373
4 0.9896 0.3455 0.4099 0.6875 0.5136

Average 0.9892 0.3256 0.3934 0.6536 0.4912

Validation 1 0.9937 0.5000 0.7157 0.6239 0.6667
2 0.9902 0.3883 0.5252 0.5984 0.5594
3 0.9909 0.4171 0.5407 0.6460 0.5887
4 0.9934 0.5185 0.6614 0.7059 0.6829

Average 0.9920 0.4516 0.6024 0.6433 0.6222

Training 1 0.9937 0.4771 0.5920 0.7108 0.6460
2 0.9923 0.4381 0.5428 0.6943 0.6093
3 0.9914 0.4145 0.4922 0.7241 0.5860
4 0.9927 0.4548 0.5471 0.7294 0.6252

Average 0.9925 0.4444 0.5404 0.7146 0.6154
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Table A7. Standard deviation of performance metrics between folds, calculated using area.

Dataset Accuracy IoU Precision Recall F score

Testing 2021 0.0005 0.0310 0.0330 0.0333 0.0317
Testing 2019 0.0010 0.0450 0.0497 0.0572 0.0471
Validation 0.0019 0.0677 0.0414 0.0812 0.0647
Training 0.0004 0.0316 0.0238 0.0409 0.0254

Figure A1. Example of ground-level green space misclassified as green roof in the GLA dataset (in blue) (Greater London Authority, 2014).
Building outlines according to OS VML are shown in orange; our results are shown in green. Image location is shown in Fig. A3. Imagery
© GetMapping Plc. Building polygons are OS data © Crown copyright and database rights 2022.

Figure A2. Example of disagreement between our result and the GLA dataset (Greater London Authority, 2014) (in blue) due to building
outlines. Building outlines according to OS VML are shown in orange. The green areas of the Barbican Centre are excluded in our analysis,
as the OS VML does not identify them as within a building footprint. Image location is shown in Fig. A3. Imagery © GetMapping Plc.
Building polygons are OS data © Crown copyright and database rights 2022.

Earth Syst. Sci. Data, 15, 1521–1541, 2023 https://doi.org/10.5194/essd-15-1521-2023
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Figure A3. Locations of images in this paper.
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