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Abstract. The existing medium-resolution land cover time series produced under the European Space Agency’s
Climate Change Initiative provides 29 years (1992–2020) of annual land cover maps at 300 m resolution, al-
lowing for a detailed study of land change dynamics over the contemporary era. Because models need two-
dimensional parameters rather than two-dimensional land cover information, the land cover classes must be
converted into model-appropriate plant functional types (PFTs) to apply this time series to Earth system and
land surface models. The first-generation cross-walking table that was presented with the land cover product
prescribed pixel-level PFT fractional compositions that varied by land cover class but that lacked spatial vari-
ability. Here we describe a new ready-to-use data product for climate modelling: spatially explicit annual maps of
PFT fractional composition at 300 m resolution for 1992–2020, created by fusing the 300 m medium-resolution
land cover product with several existing high-resolution datasets using a globally consistent method. In the re-
sulting data product, which has 14 layers for each of the 29 years, pixel values at 300 m resolution indicate
the percentage cover (0 %–100 %) for each of 14 PFTs, with pixel-level PFT composition exhibiting significant
intra-class spatial variability at the global scale. We additionally present an updated version of the user tool that
allows users to modify the baseline product (e.g. re-mapping, re-projection, PFT conversion, and spatial sub-
setting) to meet individual needs. Finally, these new PFT maps have been used in two land surface models –
Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and the Joint UK Land Environment
Simulator (JULES) – to demonstrate their benefit over the conventional maps based on a generic cross-walking
table. Regional changes in the fractions of trees, short vegetation, and bare-soil cover induce changes in surface
properties, such as the albedo, leading to significant changes in surface turbulent fluxes, temperature, and vege-
tation carbon stocks. The dataset is accessible at https://doi.org/10.5285/26a0f46c95ee4c29b5c650b129aab788
(Harper et al., 2023).
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1 Introduction

Terrestrial ecosystems have always been shaped by people
who depend on land for their consumption of direct (e.g. food
and materials) and indirect (e.g. land for human activities)
goods (Vitousek et al., 1986; Foley et al., 2005). Land cover
change induces significant biogeochemical and biogeophys-
ical effects on the climate by altering greenhouse gas emis-
sions (e.g. CO2) and the surface energy budget, induced by
modified albedo, evapotranspiration, and roughness (Pielke
et al., 2011; Mahmood et al., 2014; Pielke, 2005; Brovkin
et al., 2006; Dale, 1997; Liu et al., 2017). The fragmented
landscapes that result from land cover change also influence
surface temperatures, altering clouds and precipitation (Dale,
1997; Perugini et al., 2017; Sampaio et al., 2007). The phys-
ical climate changes driven by land cover change can mani-
fest far afield of the surface changes: for example, large areas
deforested at the expense of brighter land cover (e.g. crop-
land expansion) modify albedo (Loarie et al., 2011; Lambin
et al., 2001), with the altered energy balance driving changes
in monsoon patterns (Feddema et al., 2005; Devaraju et al.,
2015).

Anthropogenic activities, driven mainly by economic and
population growth (Pachauri et al., 2014), have changed the
atmosphere’s composition (IPCC, 2022). The land use, land
use change, and forestry sectors are estimated to account for
net emissions of 4.1± 2.6 Gt CO2 yr−1 (1σ uncertainty, pe-
riod 2011–2020), accounting for 10 % of total anthropogenic
CO2 emissions (Friedlingstein et al., 2022). The estimated
net CO2 emission uncertainty (±2.6 Gt CO2 yr−1) represents
more than 50 % of the 10-year mean emission estimate and is
the most uncertain emission component of the global carbon
budget (Friedlingstein et al., 2022; Houghton et al., 2012).
Various sources contribute to this uncertainty, including dif-
ferences in the processes implemented in models (Bastos et
al., 2020; Houghton et al., 2012; Pitman et al., 2009; McG-
lynn et al., 2022), including the definition of the fluxes them-
selves (Pongratz et al., 2014) and the inclusion of manage-
ment practices (Houghton et al., 2012), the estimates of veg-
etation biomass density (Houghton, 2005), and estimates of
land cover and rates of change (Houghton et al., 2012; Bastos
et al., 2021, 2020).

In support of the United Nations Framework Convention
on Climate Change (UNFCCC) needs for observations of
the climate system, the Global Climate Observing System
(GCOS) has identified 54 essential climate variables (ECVs)
that critically contribute to improved characterization of the
state of the global climate, making predictions of climate
changes and performing attribution of the causes of such
changes (GCOS, 2016). As a direct response, the European
Space Agency (ESA) launched the Climate Change Initia-
tive (CCI) to provide stable, long-term, and consistent satel-
lite climate data records (Hollmann et al., 2013). The CCI
thereby provides useful information to monitor the Paris
Agreement goal of maintaining the global temperature in-

crease above pre-industrial levels to less than 2 ◦C (UN-
FCCC, 2016).

Land cover, the observed biophysical cover of the Earth’s
surface (Di Gregorio and Jansen, 2005; Turner et al., 1993),
is an ECV (Sessa, 2008) tackled by the ESA CCI (Plummer
et al., 2017). The ESA CCI medium-resolution land cover
(MRLC) dataset, operationalized within the EU Copernicus
Climate Change Service (C3S) (2016–2020) thanks to strong
user endorsement, provides the longest consistent land cover
climate data record, with annual maps from 1992 to 2020 at
a spatial resolution of 300 m. It describes the land surface in
22 land cover classes according to the standard of the United
Nations Land Cover Classification System (UN-LCCS) (Di
Gregorio and Jansen, 2005) and 13 land cover change types
consistent with the IPCC land categories (Defourny et al.,
2023).

The land surface components of global circulation models
and global Earth system models (ESMs) play a significant
role in quantifying the historical and present-day represen-
tations of land use and land cover change impacts on cli-
mate. Most land surface models (LSMs) parameterize global
vegetation processes (e.g. photosynthesis and evapotranspi-
ration) for a reduced set of globally representative and sim-
ilarly behaving plant types, referred to as plant functional
types (PFTs). PFTs can be related to physiognomy and phe-
nology (Box, 1996), climate (which defines the geographical
ranges in which a plant type can grow and reproduce un-
der natural conditions; Box, 1981), and physiological activity
(e.g. C3/C4 photosynthetic pathways).

Spectral information acquired by remote-sensing tech-
niques does not allow direct mapping of PFTs. However, land
cover map series derived from satellite Earth observations
(EOs) are a valuable source of physiognomy (life form and
leaf type) and phenology information for inferring the spatial
distribution of PFTs. EO-derived land cover maps must be
translated (“cross-walked”) into model-specific PFTs, which
is typically accomplished using the information provided by
the land cover class legend (Jung et al., 2006). Differences
in land cover categories, spatial resolutions, and temporal
coverage between various land cover products propagate er-
rors to the cross-walked PFT maps and significantly con-
tribute to uncertainties in deriving gross primary produc-
tion (GPP) and other climate-relevant variables at the re-
gional scale (Poulter et al., 2011). To reduce uncertainty in
model ensembles, Poulter et al. (2015) proposed a standard-
ized cross-walking framework that converts each CCI MRLC
class into pre-defined PFT fractions relevant for three leading
ESMs (JULES-MOHC, ORCHIDEE-LSCE, and JSBACH-
MPI, the land component of the Max Planck Institute for
Meteorology Earth System models – MPI-M) based on ex-
pert knowledge and auxiliary data. This re-classification pro-
cedure was implemented in a flexible tool to generate other
related PFT schemes required by the modelling community.

Hartley et al. (2017) used the same three ESMs to quan-
tify the impact of uncertainties in (1) the land cover map and
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(2) the cross-walking procedure on the spatiotemporal pat-
terns of three important land surface variables: GPP, evap-
otranspiration, and albedo. To disentangle the two sources
of uncertainty, the modelling set-up translated the plausible
uncertainty ranges of the land cover and cross-walking com-
ponents into a common biomass scale. The simulations in-
dicated that the uncertainty of the cross-walking procedure
contributed slightly more than the uncertainty of the land
cover map to the inter-model uncertainty for all three vari-
ables.

In a continuation of the ESA CCI contribution to the
land cover ECV, this work aims to reduce the uncertainty
in the cross-walking component by adding spatial variabil-
ity to the PFT composition within a land cover class. This
work moves beyond fine-tuning the cross-walking approach
for specific land cover classes and/or regions and, instead,
separately quantifies the PFT fractional composition for each
300 m pixel globally for each year in the time series (1992–
2020). The new PFT product is generated by fusing the an-
nual CCI MRLC map series with existing high-resolution
auxiliary data products that individually characterize one sur-
face type with high accuracy. The resulting 300 m PFT prod-
uct is a companion time series of continuous-field PFT frac-
tions that is consistent with the existing CCI MRLC map se-
ries. The global PFT product has an annual resolution, cov-
ering 1992–2020, and indicates the specific percentage cover
of 14 PFTs for each pixel at 300 m resolution. The set of
14 PFTs represented in the product includes the full set of
13 PFTs initially developed by Poulter et al. (2015) com-
plemented with a new built-up surface type. The full set of
PFTs includes bare soil, built, water, snow and ice, natural
grasses, managed grasses (i.e. herbaceous cropland), broad-
leaved deciduous (BD) trees, broad-leaved evergreen (BE)
trees, needle-leaved deciduous (ND) trees, needle-leaved ev-
ergreen (NE) trees, broad-leaved deciduous shrubs, broad-
leaved evergreen shrubs, needle-leaved deciduous shrubs,
and needle-leaved evergreen shrubs. Thus, in this paper, the
term “plant functional type” is applied even to the abiotic
surface types to cleanly differentiate between the land types
derived from Earth observation data (i.e. land cover classes)
and the land types required by models (i.e. PFTs). Finally,
these new PFT maps have been used in two land surface mod-
els (ORCHIDEE – Organising Carbon and Hydrology in Dy-
namic Ecosystems – and JULES – the Joint UK Land Envi-
ronment Simulator) to demonstrate their benefit over the con-
ventional maps based on a generic cross-walking table. For
brevity, the new PFT product is referred to as “PFTlocal” due
to the new localized nature of the PFT fractions at the pixel
level. Products derived by using the global cross-walking ap-
proach (using the same version 2.0.8 of the CCI MRLC map
series) are referred to as “PFTglobal”.

The following sections describe the auxiliary inputs and
method used to quantitatively determine the PFT fractional
composition for each 300 m pixel globally, a description of
the new PFT data product, and modelling results from the

application of the new PFT distribution for the year 2010 to
the ORCHIDEE and JULES land surface models.

2 Methods

The PFT distribution was created by combining auxiliary
data products with the CCI MRLC map series. The land
cover classification provides the broad characteristics of the
300 m pixel, including the expected vegetation form(s) (tree,
shrub, grass) and/or abiotic land type(s) (water, bare area,
snow and ice, built-up) in the pixel. For some classes, the
class legend specifies an expected range for the fractional
covers of the contributing PFTs and broadly differentiates
between natural and cultivated vegetation. The applied aux-
iliary data products (described in Sect. 2.1; e.g. surface wa-
ter cover and tree cover) are of higher resolution than the
300 m land cover product and therefore serve as the basis
for computing the fractional covers of the contributing PFTs
at 300 m resolution. In cases of inconsistency between the
land cover product and the auxiliary datasets – for example,
if the tree cover percentage derived from the auxiliary prod-
ucts falls outside of the range suggested by the class legend
for a 300 m pixel – the characteristics from the land cover
classification are maintained. This achieves a strong coupling
between the CCI MRLC map dataset and this new CCI PFT
dataset. Deference to the class legend provides guardrails
for the temporal extrapolation of the PFT fractional covers
across the entire time series (1992–2020) given the lack of
available auxiliary inputs extending across the full era. The
approaches used to estimate the PFT fractions at 300 m reso-
lution differ for (1) pixels that did not experience a change in
land cover classification over the period 1992–2020 (termed
“static pixels”, described in Sect. 2.2.1) and (2) pixels that
did experience a change at least once in this period (termed
“change pixels”, described in Sect. 2.2.2).

2.1 Input datasets

2.1.1 CCI medium-resolution land cover time series
(300 m)

The CCI MRLC product (Defourny et al., 2023) delineates
22 primary classes and 15 additional sub-classes of land
cover at 10 arcsec (300 m) resolution (Table 1). The maps
have global coverage and an annual time step extending
from 1992 through 2020, with plans for the continued
release of maps for 2021 and future years. The classification
system used for the CCI MRLC map series is based on the
Land Cover Classification System (LCCS) of the United
Nations Food and Agriculture Organization (UN FAO) (Di
Gregorio and Jansen, 2005). The LCCS defines fundamental
landscape elements called “classifiers” (e.g. trees) forming
the class legend when combined in various proportions
(e.g. tree cover, broad-leaved, evergreen, closed to open –
> 15%). The 15 sub-classes, also called “regional classes”,
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Table 1. For each of the 22 global and 15 regional land cover classes of the CCI MRLC map series, listed is the set of contributing PFTs
with the possibility of non-zero fractional cover. The regional land cover classes with codes ending in 1, 2, or 3 are thematically richer than
the global classes but can be found only at the regional scale depending on training data availability.

Class code Class description PFTs for which non-zero fractions are permitted
in the PFT product

10 Rain-fed cropland Trees, water, managed grass
11 Rain-fed cropland – herbaceous cover Trees, water, managed grass
12 Rain-fed cropland – tree or shrub cover Trees, water, managed grass
20 Irrigated or post-flooding cropland Trees, water, managed grass
30 Mosaic: > 50% cropland/< 50% natural tree, shrub, herbaceous cover Trees, water, managed grass
40 Mosaic: > 50% natural tree, shrub, herbaceous cover/< 50% cropland Trees, water, natural grass, managed grass
50 > 15% broad-leaved evergreen tree cover Broad-leaved evergreen trees, water, natural grass
60 > 15% broad-leaved deciduous tree cover Broad-leaved deciduous trees, water, natural grass
61 > 40% broad-leaved deciduous tree cover Broad-leaved deciduous trees, water, natural grass
62 15 %–40 % broad-leaved deciduous tree cover Broad-leaved deciduous trees, water, natural grass
70 > 15% needle-leaved evergreen tree cover Needle-leaved evergreen trees, water, natural grass
71 > 40% needle-leaved evergreen tree cover Needle-leaved evergreen trees, water, natural grass
72 15 %–40 % needle-leaved evergreen tree cover Needle-leaved evergreen trees, water, natural grass
80 > 15% needle-leaved deciduous tree cover Needle-leaved deciduous trees, water, natural grass
81 > 40% needle-leaved deciduous tree cover Needle-leaved deciduous trees, water, natural grass
82 15 %–40 % needle-leaved deciduous tree cover Needle-leaved deciduous trees, water, natural grass
90 Mixed leaf-type (broad-leaved and needle-leaved) tree cover Trees, water, natural grass
100 Mosaic: > 50% tree and shrub cover/< 50% herbaceous cover Trees, water, natural grass
110 Mosaic: > 50% herbaceous cover/< 50% tree and shrub cover Trees, water, natural grass
120 Shrubland Trees, water, natural grass, shrubs
121 Evergreen shrubland Trees, water, natural grass, shrubs
122 Deciduous shrubland Trees, water, natural grass, shrubs
130 Grassland Trees, water, natural grass
140 Lichens and mosses Water, natural grass
150 Sparse vegetation: < 15% tree, shrub, herbaceous cover Trees, water, natural grass, bare soil
151 Sparse vegetation: < 15% tree cover Trees, water, natural grass, bare soil
152 Sparse vegetation: < 15% shrub cover Trees, water, natural grass, bare soil
153 Sparse vegetation: < 15% herbaceous cover Trees, water, natural grass, bare soil
160 Flooded tree cover – fresh or brackish water Trees, water, natural grass
170 Flooded tree cover – saline water Trees, water, natural grass
180 Flooded shrub or herbaceous cover – fresh, saline, or brackish water Trees, water, natural grass, shrubs
190 Urban areas Trees, water, natural grass, built
200 Bare areas (total vegetative cover < 4%) Trees, water, bare soil
201 Consolidated bare areas Trees, water, bare soil
202 Unconsolidated bare areas Trees, water, bare soil
210 Water body Trees, water, natural grass
220 Permanent snow and ice Snow and ice

are defined only in geographic regions where appropriate
training data are available and are those with a numeric
classification code that has a final digit of 1, 2, or 3 (Table 1).
The 22 primary classes and 15 sub-classes are collectively
referred to here as simply “classes”. For each year of the
time series, each 300 m pixel in the dataset is assigned a
single land cover class. The change detection algorithm
monitors 13 possible land cover transitions through time. For
a pixel to register a change in its assigned land cover class,
the algorithm must identify the change for 2 consecutive
years in the workflow. A lack of change in a pixel’s assigned
class does not necessarily indicate an absence of change in
the land surface over the time series; rather, it indicates that

any change that has occurred in the pixel was limited enough
in scale or duration that the assigned class did not change.
The full time series and an associated set of quality flags are
freely available at https://maps.elie.ucl.ac.be/CCI/viewer/
(last access: 20 March 2023) in GeoTiff and
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
satellite-land-cover?tab=overview (last access:
20 March 2023) in netCDF. This CCI PFT product is
based on v2.0.8 of the CCI MRLC time series, which in-
cludes corrections for the known overestimation of cropland
relative to grassland in South America (Defourny et al.,
2023).
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2.1.2 Surface water product (30 m)

The Landsat-based surface water product developed by the
Joint Research Centre (Pekel et al., 2016) is used to derive the
permanent inland-water fractions at 300 m resolution (cal-
culation details in Sect. 2.2). The surface water occurrence
layer (obtained at https://global-surface-water.appspot.com,
last access: 20 March 2023) indicates the frequency of water
occurrence in each 30 m pixel (80◦ N–60◦ S) over the period
March 1984 to December 2019. The frequency occurrence
data are reported as integer values of 1 %–100 %, where a
value of 100 % occurrence indicates a permanent water sur-
face that existed over the entire analysis period, which en-
compasses all but the most recent year (2020) of the time
series of the MRLC product.

2.1.3 Tree canopy cover product (30 m)

A Landsat-based tree canopy cover product (Hansen et al.,
2013) is used to derive the tree cover fractions for 300 m pix-
els belonging to vegetated classes (except where otherwise
noted in Sect. 2.2). The product (obtained at https://glad.
umd.edu/Potapov/TCC_2010/, last access: 20 March 2023)
is based on the application of a regression tree model
to growing-season Landsat 7 ETM+ data (https://glad.
umd.edu/dataset/global-2010-tree-cover-30-m, last access:
20 March 2023). The dataset indicates the maximum tree
canopy cover percentage (integer values of 1 %–100 %) at
30 m resolution (80◦ N–60◦ S) and is approximately repre-
sentative of 2010.

2.1.4 Tree canopy height product (30 m)

The global forest canopy height product from Potapov et
al. (2021) is used to derive the fractional covers of trees
and shrubs in 300 m pixels classified as shrubland. The
30 m product (obtained at https://glad.umd.edu/dataset/gedi/,
last access: 20 March 2023) was created by combining
the footprint-level lidar forest height measurements (us-
ing the 95th percentile relative height metric) for April–
October 2019 from the Global Ecosystem Dynamics Inves-
tigation with wall-to-wall Landsat optical data to perform
spatiotemporal extrapolation. The resulting dataset indicates
the canopy height (0–60 m) at 30 m resolution (52◦ N–52◦ S),
where canopy heights < 3 m were set to 0 m under the as-
sumption that the pixel lacks woody vegetation.

2.1.5 Built-up product (38 m)

The Landsat-based Global Human Settlement Layer (GHSL)
dataset produced by the Joint Research Centre (Pesaresi et
al., 2013) is used to derive the built-up fraction for 300 m pix-
els classified as urban land cover by the Global Urban Foot-
print (GUF) dataset (Esch et al., 2017). The built-up fraction
of the PFT dataset is defined as buildings, roads, and artificial
structures. The GHSL (alpha version dated November 2014)

consists of globally consistent built-up maps for 4 consecu-
tive years (1975, 1992, 2000, and 2014) at 38 m resolution.
Built-up areas include both permanent and temporary above-
ground buildings.

2.1.6 Zonation products

In addition, three zonation products are used complemen-
tarily to consolidate the assignment of the phenology type
(deciduous or evergreen) and leaf type (broad-leaved or
needle-leaved) to shrubs and, in a very small number of
pixels, to trees belonging to a class legend of mixed trees.
The Köppen–Geiger climate zone product from Beck et
al. (2018) divides the Earth’s land surface into 30 distinct
climate zones at 0.0083◦ resolution (about 1 km) based
on present-day (1980–2016) temperature and precipitation
records. Data were obtained at https://figshare.com/articles/
dataset/Present_and_future_K_ppen-Geiger_climate_
classification_maps_at_1-km_resolution/6396959/2 (last
access: 20 March 2023). The landform dataset from Sayre
et al. (2014) identifies landforms – surface water, plains,
hills, or mountains – at 250 m resolution for 83.6◦ N–56◦ S
and is derived from a digital elevation model (USGS
GMTED2010: Danielson and Gesch, 2011). The data
product was obtained at https://www.usgs.gov/centers/
geosciences-and-environmental-change-science-center/
science/global-ecosystems-global-data (last access:
20 March 2023). Finally, world regions follow the def-
initions used in the Integrated Model to Assess the Global
Environment 3.0 (IMAGE03) (Stehfest et al., 2014). The
IMAGE03 regional classification framework has been
harmonized with the CCI MRLC grid by reconstructing the
original dataset using the IMAGE-based list of countries
per region (available at https://models.pbl.nl/image/index.
php/Region_classification_map, last access: 20 March 2023)
along with country boundaries from the FAO Global Admin-
istrative Unit Layers (available at https://data.apps.fao.org/,
last access: 20 March 2023), expanding the list to include
Antarctica, Greenland, and additional small islands. The
resulting raster dataset divides Earth’s surface into 28
regions on the CCI MRLC grid.

2.1.7 CCI medium-resolution water body product

The CCI MRLC water body product (Lamarche et al., 2017)
is used to distinguish between inland water and ocean. The
dataset (available at http://maps.elie.ucl.ac.be/CCI/viewer/
download.php, last access: 20 March 2023) designates all
pixels at 150 m resolution as either ocean or non-ocean, the
latter of which includes both land and inland water. The
dataset is consistent with the water body class (code 210)
of the land cover maps of the CCI MRLC. An updated ver-
sion 4.1 of the product was used here, in which the North
American Great Lakes are now considered to be inland wa-
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ter rather than ocean. It is available at http://maps.elie.ucl.ac.
be/CCI/viewer/download.php (last access: 20 March 2023).

2.2 PFT dataset development

The overall approach assumes that the definition of the
MRLC class is the basis for harmonizing the four existing
high-resolution land cover datasets. It proceeds through a
systematic sequence of estimating water fraction and tree
cover fraction, using tree height to assign life form, and fi-
nally deriving phenology. This step-by-step approach is first
applied to static pixels before extending it to pixels that un-
dergo changes over time, as identified in the CCI MRLC map
series.

2.2.1 Static pixels

For static pixels – that is, pixels that have not experienced a
class change over the era covered by the CCI MRLC time
series (1992–2020) – the derived PFT fractions are treated
as temporally invariant for the entire period. Therefore, any
intra-pixel change in the fractions of a static pixel is not cap-
tured in the PFT map series due to a lack of temporally re-
solved auxiliary inputs extending over the full time series.
Such a change is expected to be so limited in scale and/or
duration that it did not prompt a change in class assignment,
underscoring the appropriateness of treating the fractional
composition of the static pixels as consistent over time.

The same set of auxiliary inputs and the same calculation
method are applied to the widest possible set of land cover
classes to ensure spatial consistency in the derived PFT frac-
tions. Nonetheless, inherent differences between the classes
necessitate the use of different input datasets and methods in
some cases. For each class, only a sub-set of the 14 PFTs
is permitted non-zero fractions (Table 1). Because the PFT
fractional composition is estimated independently for each
300 m pixel of a class, in some cases, an individual pixel of
the class can have zero fractional cover even for a PFT that is
allowed non-zero cover for that class. For all pixels, the sum
of PFT fractions is 100 %. The vegetation thresholds used
to define whether pixels are predominantly vegetated or abi-
otic are based on the definitions of the CCI MRLC classes,
which are based on the concepts and definitions of the FAO
LCCS (Di Gregorio and Jansen, 2005). Table 2 is a high-
level overview of the method used to derive the PFT frac-
tional composition for the static pixels.

The 30 m water frequency occurrence dataset of Pekel et
al. (2016) is used to estimate the permanent inland-water
fraction of the 300 m pixels for all but the permanent snow-
and-ice class, which has no liquid surface water cover. A
threshold of 90 % frequency occurrence is applied to assign
30 m pixels as either water (frequency occurrence ≥ 90%)
or non-water (frequency occurrence < 90%). The resulting
binary representation of water/non-water is aggregated to

300 m to estimate the percentage of the 300 m pixel that is
a permanent inland-water PFT.

The percentage of the 300 m pixel that is vegetated is cal-
culated as 100 % minus the inland-water percentage; that is,
for all vegetation-containing classes except for the sparse-
vegetation classes, which have bare-soil PFT cover, all non-
inland-water area in the 300 m pixel is entirely vegetated
(0 % bare-soil PFT) in the PFT product. Pixels belonging
to the shrubland classes (codes 120–122 and 180) can have
a mixture of trees, shrubs, and herbaceous cover. For pix-
els of non-shrubland vegetation-containing classes, the veg-
etated portion of the pixel is composed of trees and herba-
ceous cover (i.e. cropland and/or natural grass). The percent-
age of the 300 m pixel that is tree cover is estimated using the
30 m tree cover dataset for 2010 from Hansen et al. (2013).
This Landsat-based dataset provides the percentage of tree
canopy cover (integers 1 %–100 %) based on growing-season
observations. The tree cover percentage of the vegetated (i.e.
non-water) portion of the 300 m pixel is obtained from the
median of the tree canopy cover fractions of the non-water
30 m pixels, where the 30 m non-water pixels are identified
using the binary water/non-water representation derived us-
ing the surface water occurrence dataset. The tree cover per-
centage of the entire 300 m pixel is calculated as the product
of this value (the tree cover fraction of the non-water part of
the grid cell) and the non-water fraction of the grid cell. This
approach harmonizes the Landsat-based surface water occur-
rence and tree canopy cover datasets such that the combined
tree and water percentages never exceed 100 %.

For the tree cover classes 50–82, the class legend speci-
fies an expected range for the tree cover percentage (Table 1,
class description column). For the tree cover classes 90, 160,
and 170, a tree cover fraction of > 15% is implicit from the
UN LCCS. Based on the spatial and temporal consistency of
the map series, deference is made to the class legend for pix-
els in which the estimated tree cover fraction derived from
the auxiliary datasets disagrees with the class legend. This
allows the PFT product to retain the advantages of the CCI
MRLC map series while improving the translation of the land
cover dataset into PFT maps. For tree cover class pixels in
which the estimated tree cover fraction derived from the aux-
iliary datasets disagrees with the class legend, the mean tree
cover among all static 300 m pixels of its class is calculated
over the 0.25◦ longitude ×0.25◦ latitude window overlap-
ping the pixel – that is, a window with a width and height
of 0.25◦ with the pixel of interest at the centre. The mean is
based on the initially calculated tree cover fractions derived
from the auxiliary data products (i.e. the tree cover fraction
harmonized with the surface water occurrence dataset). The
window is expanded to 0.5◦ longitude ×0.5◦ latitude if no
static pixels of the class exist in the smaller window. (Be-
cause class 82 has so few pixels globally, class-72 pixels
are additionally applied in the window mean calculation for
class-82 pixels.)
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Table 2. Summary of the method applied to derive pixel-level functional type composition by land cover class. See Table 1 for more
comprehensive class descriptions. PEA16: surface water data product of Pekel et al. (2016). HEA13: tree canopy cover product of Hansen et
al. (2013). PEA13: Global Human Settlement Layer from Pesaresi et al. (2013). PEA21: tree canopy height dataset of Potapov et al. (2021).
For the calculation of tree percentage, “Method 1” indicates that, in cases of disagreement in tree cover percentage between the ancillary
dataset and the class legend, a window of up to 0.5◦×0.5◦ is used to estimate the final tree cover percentage based on neighbourhood pixels
of the same class, and “Method 3” indicates that an upper limit of 14 % tree cover is applied based on the class definition. See the text for
additional details on the processing and use of the ancillary data products, the method used to align the derived PFT percentages with the
class legend, the scaling method applied in cases where the sum of PFT percentages from the ancillary data exceeds 100 % in a pixel, and the
method used to derive the PFT fractional composition for pixels falling outside of the extents of the ancillary datasets. n/a – not applicable

Class description Inland-
water %

Tree % Tree type Grass % Grass type Shrub % Bare-
soil %

Built % Snow/ice %

Rain-fed cropland
(10–12)

PEA16 HEA13 Neighbourhood
majority

100 % –
water %
– tree %

Managed 0 % 0 % 0 % 0 %

Irrigated or post-
flooding cropland
(20)

Mosaic of crop-
land and natural
vegetation (30)

Mosaic of crop-
land and natural
vegetation (40)

Managed and
natural mix-
ture

Mosaic of
tree/shrub and
herbaceous (100
& 110)

Natural

Grassland (130)

Broad-leaved
evergreen
tree cover (50)

HEA13,
Method
1

Class legend

Broad-leaved
deciduous tree
cover (60–62)

Needle-leaved
evergreen tree
cover (70–72)

Needle-leaved
deciduous tree
cover (80–82)

Mixed leaf-type
tree cover (90)

Neighbourhood
majority

Flooded tree
cover (160–170)
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Table 2. Continued.

Class description Inland-
water %

Tree % Tree type Grass % Grass type Shrub % Bare-
soil %

Built % Snow/ice %

Lichens and
mosses (140)

0 % n/a 100 % –
water %

Sparse vegetation
(150–153)

HEA13,
Method
2

Neighbourhood
majority

Tree %
+

grass %
must be
in range
4 %–
14 %

100 %
– wa-
ter % –
tree % –
grass %

Shrubland
(120–122)

PEA21 Biogeographical
approach

100 %
– wa-
ter % –
tree % –
shrub %

PEA21 0 %

Flooded shrub or
herbaceous cover
(180)

Urban areas (190) HEA13 Neighbourhood
majority

100 %
– wa-
ter % –
tree % –
built %

0 % PEA16

Bare areas
(200–202)

0 % n/a 100 % –
water %
– tree %

0 %

Inland
water bodies
(210)

100 % –
water %
– tree %

Natural 0 %

Ocean (210) 100 % 0 % n/a 0 % n/a

Permanent snow
and ice (220)

0 % 100 %

One of five cases is possible.

1. If the mean tree fraction for the window falls within the
expected range based on the class legend, then the tree
cover fraction of the pixel of interest is assigned as the
mean tree fraction for the window.

2. If the mean tree fraction for the window is higher than
the upper limit specified by the class legend, then the
tree cover fraction of the pixel of interest is assigned as
the upper limit from the legend. For classes 62, 72, and
82, the legend upper limit is 40 %. For classes 50, 60,
61, 70, 71, 80, 81, 90, 160, and 170, the legend upper
limit is 100 %, and the initial mean tree fraction for the
window can never exceed this threshold.

3. If the mean tree fraction for the window is lower than
the lower limit specified by the class legend, then the
tree cover fraction of the pixel of interest is assigned as
the lower limit from the legend. For classes 50, 60, 62,
70, 72, 80, 82, 90, 160, and 170, the legend lower limit
is 16 %. For classes 61, 71, and 81, the legend lower
limit is 41 %.

4. If a window of 0.5◦× 0.5◦ does not have any pixels
of the class of interest and the tree cover fraction de-
rived from the auxiliary products exceeds the upper
limit specified by the class legend, then the tree cover
fraction for the pixel is assigned as the upper limit of
the class legend.

5. If a window of 0.5◦× 0.5◦ does not have any pixels of
the class of interest and the tree cover fraction derived
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from the auxiliary products is lower than the lower limit
specified by the class legend, then the tree cover fraction
for the pixel is assigned as the lower limit of the class
legend.

For pixels that belong to a tree cover class and had tree cover
percentages assigned using the neighbourhood mean, the re-
sulting sum of the inland-water and tree cover percentages
can exceed 100 %. In such cases, the tree cover percentage is
calculated as 100 % minus the inland-water percentage. If the
resulting tree cover percentage is lower than the legend mini-
mum for that class, then the tree cover percentage is set as the
legend minimum and the water percentage is set as the resid-
ual area in the pixel (100 % minus tree cover percentage). For
all tree-cover-class pixels, the grass cover percentage is cal-
culated as 100 % minus the final tree cover percentage minus
the inland-water percentage, and the grass type is assigned as
natural grasses. No minimum water percentage is defined for
the flooded tree cover classes (codes 160 and 170).

For the biotic classes rain-fed cropland (codes 10, 11,
and 12), irrigated or post-flooding cropland (code 20), mo-
saic of cropland–natural vegetation (codes 30 and 40), mo-
saic of woody–herbaceous vegetation (codes 100 and 110),
and grassland (code 130), the tree cover percentage derived
from the auxiliary products is used directly since the legend
does not specifically define the expected tree cover; there-
fore, modification of the PFT fractions based on the class
legend is not applied for these classes as it is for some other
classes. The percentage of the 300 m pixel that is grass cover
is calculated as 100 % minus the sum of the inland-water and
tree cover percentages. The grass type – managed (i.e. crops)
or natural – is defined by the class legend. For most mixed
classes, the assigned grass type reflects the majority type as
indicated by the legend. All grass in the pixel is assigned as
managed grass for classes 10, 11, 12, 20, and 30. Pixels be-
longing to mosaic class 40 have a mix of herbaceous crops
(up to 49 % of the pixel area) and natural grasses (for excess
grass cover beyond 49 % of the pixel area). All grass cover is
assigned as natural grass for all other classes.

In some of the classes in this set, an expected percentage
cover is given for total woody vegetation (trees and shrubs)
or for the shares of cropland and natural vegetation, where
the two categories differentiate by management status rather
than life form. In the PFT product, shrub cover is estimated
only for the shrubland classes due to a lack of appropriate
auxiliary inputs to discriminate between trees and shrubs for
all classes, so modification of the life form shares in such
pixels based on the legend description may introduce addi-
tional bias into the PFT product and is therefore avoided.
Management status (cropland vs. natural) is assigned in the
PFT product only for grasses and is based on the class de-
scriptions, so an independent assessment of the shares by
management status is not possible.

Pixels belonging to the sparse-vegetation classes (codes
150, 151, 152, and 153) can have non-zero fractions of bare

soil, trees, natural grass, and inland water. The class def-
inition requires a vegetation fraction of 4 %–14 %. Since
shrub cover is not estimated for the sparse-vegetation classes,
the vegetation component is composed of trees and natural
grasses; therefore, the total vegetation fraction is enforced
for sparse-vegetation pixels, but the resulting life form may
differ from that indicated by the legend for the sub-classes
with codes 151–153. If the tree cover derived from the aux-
iliary inputs is ≥ 15%, then the tree PFT is reduced to 14 %
in deference to the legend of the CCI MRLC map series,
the natural-grass PFT is assigned as 0 % since tree cover
accounts for the maximum total vegetation fraction (trees
+ grass), and the bare-soil PFT percentage is calculated as
100 % minus the inland-water percentage minus 14 % tree
PFT. If the tree cover derived from the auxiliary inputs is
< 15%, then this input tree percentage value is assigned
as the final tree PFT percentage in the pixel and additional
legend-consistency steps are applied to assign the grass and
bare fractions. (1) If the non-water area of the pixel is 4 %–
14 %, then the natural-grass PFT accounts for the residual
portion of the pixel (14 % minus tree PFT percentage minus
inland-water percentage). (2) If the non-water percentage of
the pixel is < 4%, then the natural-grass PFT percentage is
calculated as 4 % minus the tree PFT percentage (since the
lower bound on total vegetation is 4 %) and the water PFT
percentage is scaled down to 96 %. (3) If the non-water per-
centage of the grid cell exceeds 14 %, then the natural-grass
percentage is calculated as 14 % minus the tree PFT percent-
age (that is, the upper bound of 14 % is assumed for total veg-
etation cover) and the residual pixel area is assigned as bare-
soil PFT (100 % minus water PFT percentage minus 14 %
vegetation cover).

A mixture of the tree and shrub woody vegetation types
is assigned to pixels of the shrubland classes (codes 120,
121, 122, and 180). The 30 m resolution tree canopy height
dataset from Potapov et al. (2021) is applied to discriminate
between shrubs and trees in pixels that are covered by this
data product (52◦ N–52◦ S). Potapov et al. (2021) re-assign
pixel values of ≤ 2 to 0 m height. Here, the 30 m resolution
pixels are assigned to three broad height classes: 0, 3–5, and
> 5 m. Mean re-sampling to the 300 m resolution of the land
cover dataset results in pixel values that indicate the percent-
age cover of the three height classes. The percentage cover
of the 3–5 m height class is taken to be the percentage shrub
cover in the 300 m pixel, and the percentage cover of the
> 5 m height class is taken to be the percentage tree cover
in the 300 m pixel, recognizing that there may be some bias
introduced by 30 m pixels in the input dataset that contain
both shrubs and trees. In deference to the class legend, 300 m
pixels with shrub cover < 16% are assigned as having 16 %
shrub cover and those with tree cover> 15% are assigned as
having 16 % tree cover. For shrubland pixels that occur out-
side of the extent of the Potapov et al. (2021) data product
(52◦ N–52◦ S), the tree cover percentage is assigned accord-
ing to the tree cover input derived from Hansen et al. (2013)
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and the shrub cover percentage is assigned following the
most recent version of the global cross-walking table (CWT)
(60 % shrub cover for classes 120–122 and 40 % shrub cover
for class 180). For all shrubland pixels, in cases where the
sum of water, tree, and shrub cover exceeds 100 %, the three
PFTs are scaled down proportionally so that the sum is 100 %
while retaining the legend expectations for the tree and shrub
cover. Natural-grass cover is assigned as the residual area of
the pixel in cases where the sum of water, tree, and shrub
cover is < 100%. No minimum water percentage is defined
for the flooded-shrubland class (code 180).

Pixels classified as urban (code 190) can have non-zero
fractions of inland-water, tree, natural-grass, and urban im-
pervious (built-up) PFTs. In the land cover classification,
pixels are assigned as an urban class when a minimum
threshold of 50 % built was exceeded based on the GUF
dataset (Esch et al., 2017). In the PFT product, the tree and
surface water fractions are derived using the same proto-
col as the one applied to the vegetated classes. The urban
impervious fraction is derived from the GHSL dataset (Pe-
saresi et al., 2013) by aggregating the built-up pixels from
the four epochs into a binary built-up/non-built-up distribu-
tion at 38 m. Re-sampling to 300 m provides the percentage
of the 300 m pixel that is built PFT, introducing local variabil-
ity which at the global scale ranges from 0 % to 100 % built.
Only pixels classed as urban by GUF are assigned a non-zero
urban impervious fraction in the PFT dataset. Non-urban pix-
els (i.e. those with less than 50 % urban land cover accord-
ing to GUF) are not refined with GHSL data or assigned a
built-up percentage. The GHSL appears to capture urban im-
pervious areas more consistently, whereas GUF misses road
fractions in the built fractions. This is most notable in rural
areas and a few selected locations in city centres. If the sum
of the urban impervious, tree, and water fractions exceeds
100 %, then the urban impervious percentage is retained and
the water and tree percentages are scaled down proportion-
ally to a total sum of 100 %; otherwise, the residual of the
urban impervious, tree, and water percentages is assigned as
the natural-grass percentage.

Water-body-class (code 210) pixels that are ocean are as-
signed as a 100 % water PFT, while those that are inland can
additionally have a non-zero cover of tree and natural-grass
PFTs. The designation of ocean vs. inland at 300 m is deter-
mined using the 150 m water body product. The ocean des-
ignation is applied to water-body-class pixels in which all
four of the overlapping 150 m pixels of the water body prod-
uct are classified as ocean; all other water-body-class pix-
els are designated as inland water. The water and tree PFT
fractions for inland water-body-class pixels are assigned us-
ing the same 300 m harmonized surface water and tree cover
auxiliary inputs that are used for the other classes; however,
a minimum of 86 % water PFT is enforced following the leg-
end definition for this class. If the sum of the tree fraction
and the adjusted water PFT fraction exceeds 100 %, then the
tree percentage is scaled down as 100 % minus the adjusted

water PFT percentage. Any residual area is assigned as the
natural-grass PFT.

The bare-area classes (codes 200, 201, and 202) can have
up to 3 % vegetation cover (by definition of the abiotic class
in the FAO LCCS; Di Gregorio and Jansen, 2005), so bare-
area pixels can have non-zero fractions of bare-soil, tree,
and water PFTs. The auxiliary products define the tree and
inland-water fractions, but tree cover exceeding 3 % is scaled
down to the class maximum of 3 %. Bare-soil PFT percent-
age is calculated as 100 % minus the inland-water percentage
minus the tree percentage. Pixels of the moss and lichen class
(code 140) can have non-zero fractions of surface water and
natural grasses, the latter of which are estimated as 100 %
minus the inland-water percentage.

The permanent snow-and-ice class (code 220) is assigned
as a 100 % snow-and-ice PFT. All other classes are assigned
as a 0 % snow-and-ice PFT. Nearly all pixels classified as the
permanent snow-and-ice class in the CCI MRLC time series
are static pixels; that is, such pixels are snow-and-ice cover
for every year of the land cover map series. This is due to a
lack of temporally resolved input data available at the global
scale to track the evolution of this surface type. Therefore,
neither the CCI MRLC classification nor the associated PFT
product should be used to track changes in glaciers over time.

For all pixels – of any class – that have a non-zero tree
fraction, the total tree fraction is assigned as a single tree type
(broad-leaved or needle-leaved leaf type, deciduous or ever-
green phenology). For the tree cover classes coded 50–82,
the specific tree type follows the class legend. For example,
class 50 is defined as “Tree cover – broad-leaved evergreen
> 15%”, so the tree component of this class is assigned as
the broad-leaved evergreen tree type. Tree cover is assigned
as broad-leaved deciduous in pixels of classes 60–62, needle-
leaved evergreen in pixels of classes 70–72, and needle-
leaved deciduous in pixels of classes 80–82. For pixels of
the tree cover classes coded 90, 160, and 170 and all other
vegetation-containing classes except the shrubland classes,
the specific tree type is assigned by pixel based on the ma-
jority tree type in the surrounding 0.25◦× 0.25◦ neighbour-
hood window, where the majority calculation is performed on
static pixels of the tree cover classes with legend-defined tree
types (classes 50–82). If the 0.25◦× 0.25◦ window does not
contain any static pixels of the well-defined tree types, then
the window is incrementally expanded by 0.25◦ in each di-
rection (longitude and latitude) to a maximum window size
of 2◦× 2◦ until such a pixel is contained within the search
window. The same tree type is assigned to all pixels in a class
for tree cover classes 50–82, while the assigned tree type can
vary between pixels within a class for the other classes. The
vast majority (75 %) of pixels with a non-zero tree fraction
were assigned a tree type directly using the class legend; an
additional 24 % had tree type assigned using a surrounding
window of 0.25◦×0.25◦, < 1% using a larger window up to
a size of 1◦× 1◦, and < 0.1% using an even larger window
up to a size of 2◦× 2◦.
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For a very small number of pixels, static pixels of the type-
defined tree cover classes are absent from the surrounding
2◦×2◦ window, so a climatological approach is instead used
to assign the tree type to such pixels. This approach uses
three auxiliary inputs: (1) the present-day Köppen–Geiger
climate zone map from Beck et al. (2018), downscaled from
1 km resolution to the 300 m CCI MRLC grid using mode
resampling, (2) the map of world regions derived for use
with the IMAGE03 model, expanded to include Greenland,
Antarctica, and additional small islands, and (3) the landform
map from Sayre et al. (2014), resampled from 250 m resolu-
tion to the 300 m CCI MRLC grid using mode resampling. A
nearest-neighbour analysis is used to gap-fill missing data at
300 m resolution for each of the three auxiliary inputs. Pix-
els requiring data are those with< 100% water PFT cover in
the PFT product. Pixels that are designated as surface water
in the landform dataset and have< 100% water PFT cover in
the PFT product are additionally filled with one of the terres-
trial landforms (plains, hills, and mountains). Missing data
generally occur along coastlines due to mismatches in the
land–sea masks of the auxiliary datasets and the CCI MRLC
data. The gap-filled datasets are combined to create a dataset
of 1531 unique combinations of landform, region, and cli-
mate zone. For each of the unique combinations, the areal
cover of each of the tree cover classes with well-defined tree
types (codes 50–82) is calculated using static pixels of those
classes, and the majority tree type by area is identified for
each unique combination. There are very few static pixels of
the type-defined tree cover classes in the Middle East and Sa-
hara regions, so the dominant tree type in these regions is set
as broad-leaved deciduous. For pixels in which the tree type
– broad-leaved or needle-leaved, deciduous, or evergreen –
cannot be assigned based on the neighbourhood window, the
majority tree type of the pixel’s unique zone is assigned. This
method is also applied to assign the types of both shrubs and
trees in all shrubland-class pixels. Thus, there may be incon-
sistencies between the shrub type indicated by the class leg-
end and that assigned using this biogeographical approach.

Most of the auxiliary inputs are based on Landsat images
and therefore have an extent of 80◦ N–60◦ S. The main pro-
cessing algorithm for the PFT product, explained above for
the static pixels, therefore operates on this extent. Less than
0.5 % of the area outside of this extent is composed of pixels
belonging to a class other than water bodies (code 210) or
permanent snow and ice (code 220). The largest contributors
to this small area are the sparse-vegetation classes, followed
by the bare-area classes, with negligible contributions from
the shrubland (including flooded shrubland), grassland, and
lichen and moss classes. To extend the PFT product to global
extent, the following assumptions are applied to the pixels
north of 80◦ N and south of 60◦ S: (1) 100 % snow-and-ice
PFT assigned to pixels of the permanent snow-and-ice class;
(2) 100 % water PFT assigned to pixels of the water body
class; (3) 100 % bare-soil PFT assigned to pixels of the bare-
area classes; (4) 100 % natural-grass PFT assigned to pix-

els of the grassland and lichen and moss classes; (5) 96 %
bare-soil PFT and 4 % natural-grass PFT (to meet the leg-
end minimum of vegetation cover) assigned to pixels of the
sparse-vegetation classes; (6) 84 % natural-grass PFT and
16 % needle-leaved deciduous shrub PFT (matching the leg-
end minimum shrub cover) assigned to pixels of the shrub-
land classes. For the shrubland classes, the shrub type of
needle-leaved deciduous is assigned because the shrubland-
class pixels needing assignment (northern–central Russia)
occur nearest pixels of needle-leaved deciduous shrubs that
had their shrub type assigned using the standard method.

2.2.2 Pixels experiencing land cover change

Dynamic pixels – that is, pixels that have experienced at least
one land cover class change over the 1992–2020 era – cor-
respond to 5.88 % of the ice-free land surface (Defourny et
al., 2023). For such pixels, the derived PFT fractions are de-
rived for each of the classes assigned to that pixel over the
era. For example, if a pixel changed from forest to cropland,
PFT fractions associated with the forest class are estimated
and PFT fractions associated with the cropland class are also
estimated for the pixel. The method used to assign the PFT
fractions depends on the time stamp of the class in relation to
the time stamp (2010) of the auxiliary dataset (Hansen et al.,
2013) from which the tree cover fractions are derived. The
PFT fraction of a pixel in 2010 was derived using the fol-
lowing class-specific methods described in Sect. 2.2.1. Any
change in class occurring before or after 2010 leads to deriva-
tion of new PFT fractions as the mean PFT fractions of all
300 m pixels of the same class of pixels within the overlap-
ping 0.25◦× 0.25◦ window centred on the pixel of interest.
The input pixels over which the mean is calculated are the
300 m pixels that did not experience land cover class change
over the 1992–2020 era. If no pixels of the relevant class are
within the 0.25◦× 0.25◦ window, then the window is incre-
mentally expanded by 0.25◦ in both the latitudinal and longi-
tudinal directions until at least one pixel of the relevant class
is contained in the window. A pixel can experience up to
seven land cover changes in the 1992–2020 era (Defourny
et al., 2023), which leads to derivation of new PFT fractions
for each new land cover class encountered.

2.3 Modelling assessment

The impact of the updated PFT distribution on land surface
fluxes is evaluated using global simulations of two land sur-
face models: ORCHIDEE (Krinner et al., 2005, and later re-
visions) and JULES (Best et al., 2011; Clark et al., 2011).
The simulations with ORCHIDEE focus on evaluating the
impact of the updated PFT distributions on a selected set
of climate-relevant variables. The ORCHIDEE model ap-
plies the Climatic Research Unit (CRU)–Japanese reanalysis
(JRA55) v2.0 6 h atmospheric driving data for 1901–2018
(Harris et al., 2014; Kobayashi et al., 2015; UEA CRU and
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Harris, 2019) and the CCI PFT distribution maps for 2010.
Two PFT distributions are applied: (1) the new PFT map
(PFTlocal) described above and (2) the PFT distribution based
on the application of the global standard CWT to the CCI
MRLC product for 2010 (PFTglobal) (Table C1) (Hartley et
al., 2017; Lurton et al., 2020). The 2010 PFT map is used (re-
cycled) for each year of the simulation. ORCHIDEE is run at
a horizontal resolution of 0.5◦ latitude ×0.5◦ longitude over
the period 1900–2018, and all simulated data before 1980 are
discarded as spin-up, with analysis based on the years 1980–
2018. The impact of the updated distribution relative to that
based on the global CWT is compared with ORCHIDEE for
an ensemble of climate-related variables, including albedo,
surface fluxes (latent and sensible heat and their ratio), gross
primary productivity, surface temperature, tree fraction, leaf
area index (LAI), and above-ground biomass (Sect. 4).

In a separate assessment of the implications of the up-
dated PFT distributions for model evaluation, JULES sim-
ulations of PFT distributions, created for the Inter-Sectoral
Impacts Model Inter-comparison Project (ISIMIP; Frieler et
al., 2017), were used. This was done to compare evalua-
tion results using both the CWT-derived PFT distributions
(PFTglobal) and the updated PFT distributions (PFTlocal). The
2010 PFT distributions are used to evaluate the JULES dy-
namic vegetation results. JULES was driven by the ISIMIP2b
protocol described in Frieler et al. (2017) and applied to
JULES as described in Mathison et al. (2022). Section 4.2
describes the dynamic global vegetation model (DGVM) re-
sults for 2010 from the JULES offline simulations driven by
HADGEM2-ES climate for the period 1850 to 2100.

3 CCI PFT dataset description

3.1 General description

The CCI PFT dataset (hereafter called PFTlocal) provides the
percentage cover as discrete values of 0 %–100 % of 14 PFTs
at 10 arcsec resolution (300 m at the Equator; 64 800 pixels
in the latitudinal dimension ×129600 pixels in the longitu-
dinal dimension). The global continuous field maps are pro-
duced at an annual resolution covering the years 1992–2020.
The PFT distributions are consistent with the CCI MRLC
data product and eliminate the need to use a CWT to trans-
late land cover classes into PFTs. The 14 PFTs encompass
the following. (1) Permanent inland-water bodies; (2) per-
manent snow-and-ice cover; (3) bare soil; (4) built-up ar-
eas, which include artificial impervious area such as build-
ings and, frequently but not exhaustively, other paved sur-
faces such as roads; (5) managed grasses (i.e. herbaceous
crops); (6) natural grasses (i.e. non-cultivated herbaceous
vegetation); (7) broad-leaved deciduous shrubs; (8) broad-
leaved evergreen shrubs; (9) needle-leaved deciduous shrubs;
(10) needle-leaved evergreen shrubs; (11) broad-leaved de-
ciduous trees; (12) broad-leaved evergreen trees; (13) needle-
leaved deciduous trees; (14) needle-leaved evergreen trees

(Fig. 1). Following the auxiliary inputs, trees are woody veg-
etation with a height of > 5 m, while shrubs are woody veg-
etation with a height of 3–5 m inclusive. An updated water
body product (version 4.1) at 150 m resolution, used here to
delineate between inland water and ocean, likewise replaces
the older version and can be downloaded from the same data
repository as the PFT maps.

The PFTlocal dataset indicates that herbaceous vegetation
covers 44.8 % of the Earth’s land surface, with around one-
third of that area devoted to herbaceous crops. Tree cover
accounts for 21.3 % of the land surface, which is much larger
than that of shrubs (3.2 %). The abiotic surface types cumu-
latively cover 30.8 % of the land surface: 18.4 % bare soil,
10.0 % snow and ice, 2.1 % inland water, and 0.3 % built.

The CCI PFT dataset is provided as a companion prod-
uct to the ESA CCI LC map series products with similar
specifications with a global extent, a pixel size of 300 m,
and a plate carrée projection. However, climate models may
need products associated with a coarser spatial resolution,
over specific areas (e.g. for regional climate models), and/or
in another projection. To tackle the variety of requirements,
a user tool has been developed that allows users to adjust
the products in a way which is suitable to their models. A
minimum list of possibilities in terms of spatial resolution
and projection has been established, and the conversion of
CCI-Land Cover classes to other user-defined classes is also
foreseen. The CCI PFT product and the user tool are freely
available at http://maps.elie.ucl.ac.be/CCI/viewer/ (last ac-
cess: 20 March 2023) and https://climate.esa.int/en/projects/
land-cover/data/ (last access: 20 March 2023).

3.2 PFT-layer description considering the CCI MRLC
categories and the PFTglobal dataset

Table 3 shows the global areal coverage of each PFT by
class for 2010 for the PFTlocal product, and Table A1 shows
the equivalent data corresponding to the application of the
most recent version of the CCI MRLC global CWT (Lurton
et al., 2020; Table A2) to the v2.0.8 CCI MRLC map for
2010 (hereafter called PFTglobal). Figure A2 complements
Table A1 by illustrating the differences between the PFTlocal
and PFTglobal products globally at a spatial resolution of
0.25× 0.25◦. For each class of PFTglobal, the global CWT
specifies the fractional composition of contributing PFTs. In
this approach, each pixel of a class is assigned the same frac-
tional PFT composition regardless of its location on Earth.
Table 4 indicates the percentage PFT composition by class
for 2010 for PFTlocal, calculated as an area-weighted mean
taken over all pixels of the class globally. Figure A3 provides
a spatialized summary of the largest differences between the
PFTlocal and PFTglobal products. (a) PFTs with the largest in-
crease, (b) corresponding fraction gained, (c) PFT loss, and
(d) corresponding fractions lost are illustrated globally with
0.25◦× 0.25◦ pixels.
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Figure 1.
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Figure 1. Percentage cover in 2010 for the 14 PFTs included in the PFTlocal data product at a spatial resolution of 0.25◦×0.25◦. (a) Broad-
leaved evergreen trees, (b) broad-leaved deciduous trees, (c) needle-leaved evergreen trees, (d) needle-leaved deciduous trees, (e) broad-
leaved evergreen shrubs, (f) broad-leaved deciduous shrubs, (g) needle-leaved evergreen shrubs, (h) needle-leaved deciduous shrubs, (i) man-
aged grasses, (j) natural grasses, (k) built-up areas, (l) permanent inland-water bodies, (m) bare soil, and (n) permanent snow-and-ice cover.

3.2.1 Tree cover

The PFTlocal product indicates a global areal tree cover
of 31.4× 106 km2 (Fig. 1): 45.2 % broad-leaved evergreen;
24.3 % needle-leaved evergreen; 23.0 % broad-leaved decid-
uous; 7.5 % needle-leaved deciduous. The PFTlocal product
indicates a global areal tree cover that is 4.6 % higher than in
the PFTglobal distribution. Globally, tree coverage is higher
in the PFTlocal product relative to the PFTglobal distribution
for all tree types except needle-leaved deciduous trees. Com-
pared to the global CWT, in which every pixel belonging to

a given class is assigned the same PFT fractions, the updated
method for estimating PFT fractions locally results in greater
variability of tree fractions among 300 m pixels within a sin-
gle class. For example, the global CWT suggests that all
class-10 (rain-fed cropland) pixels are 0 % tree cover, but the
PFTlocal product based on auxiliary inputs suggests a much
wider range of tree cover at the pixel level, ranging from 0 %
to 100 % tree cover at the 300 m pixel level. The distribution
for Africa is shown in Fig. A1, where tree crops in the Sa-
hel are readily apparent. Globally, class-10 pixels have 5.1 %
tree cover on average (Table 4). On average, class-12 pix-
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Table 3. Global areal cover (1000 km2) of each PFT by land cover class for 2010 in the PFTlocal product.

Class Bare Built Managed Natural Snow/ Water1
∗ BD BE ND NE BD BE ND NE

soil grasses grasses ice trees trees trees trees shrubs shrubs shrubs shrubs

10 0 0 7729.7 0 0 2.3 175.1 199.5 0.7 36 0 0 0 0
11 0 0 6774.9 0 0 1.5 110.4 112.9 4.1 19.7 0 0 0 0
12 0 0 155.1 0 0 0.1 4.6 29.8 0 0.6 0 0 0 0
20 0 0 2415.5 0 0 1.2 19 7.4 0.2 1.8 0 0 0 0
30 0 0 2803 0 0 1.1 123.2 467.2 0.8 39 0 0 0 0
40 0 0 1557.4 1247.9 0 1.2 195.1 493.2 4.7 65.1 0 0 0 0
50 0 0 0 1262.6 0 4.3 0 11 476.1 0 0 0 0 0 0
60 0 0 0 2237.9 0 1.7 3599.6 0 0 0 0 0 0 0
61 0 0 0 337 0 0.2 538.6 0 0 0 0 0 0 0
62 0 0 0 2673.9 0 0.2 1000 0 0 0 0 0 0 0
70 0 0 0 2411.4 0 21.9 0 0 0 4060.4 0 0 0 0
71 0 0 0 710.7 0 18 0 0 0 1720.3 0 0 0 0
72 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 0
80 0 0 0 2977.6 0 4 0.1 0 2143.5 0 0 0 0 0
81 0 0 0 0.7 0 0 0 0 4.1 0 0 0 0 0
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 441 0 1.6 674.1 63.7 77.8 918.5 0 0 0 0
100 0 0 0 2443.7 0 2.6 233.8 329.3 43.4 354 0 0 0 0
110 0 0 0 977.3 0 0.5 66.1 26.1 3.5 11.1 0 0 0 0
120 0 0 0 7246.3 0 4 176.3 125.5 3.9 80.7 1746.8 632.9 164.7 724.5
121 0 0 0 142.5 0 0 1.6 26.3 5.3 0.6 2.7 31.2 26.8 1.5
122 0 0 0 1294.6 0 1.1 41 68.5 10.4 4.2 211 154.6 293.8 86.8
130 0 0 0 13 338.8 0 5.8 144 159 8.5 47.4 0 0 0 0
140 0 0 0 1476.9 0 14.2 0 0 0 0 0 0 0 0
150 7254.8 0 0 1157.7 0 20.4 0.5 1.3 0.6 12 0 0 0 0
151 0 0 0 0 0 0 0 0 0 0 0 0 0 0
152 63 0 0 8.9 0 0.2 0.1 0 0.2 1.1 0 0 0 0
153 323.8 0 0 52.7 0 0.1 0 0 0 0 0 0 0 0
160 0 0 0 200.4 0 2.3 71.7 442.6 27.4 151.4 0 0 0 0
170 0 0 0 86.1 0 5 12.3 110 4.6 0.8 0 0 0 0
180 0 0 0 1231.9 0 11.7 12.7 15.1 5.5 51.8 122.3 56.6 47.7 362.7
190 0 476.7 0 162.5 0 1.9 2.5 1.3 0.2 2.1 0 0 0 0
200 19 156.9 0 0 0 0 12.2 0.4 0 0.2 0.5 0 0 0 0
201 108.8 0 0 0 0 0.3 0 0 0 0 0 0 0 0
202 97.2 0 0 0 0 0.1 0 0 0 0 0 0 0 0
210 0 0 0 182.6 0 365 991.8 7.2 8.9 3.1 31.3 0 0 0 0
220 0 0 0 0 14 694.2 0 0 0 0 0 0 0 0 0

∗ For the water body class (code 210), the water PFT area includes 2 877 500 km2 of inland water. For all other classes, all water PFT area is inland water.

els (rain-fed cropland – tree or shrub cover) have 18.4 % tree
cover. The auxiliary dataset used to derive tree cover for most
classes in the PFTlocal product is based on Landsat 7 im-
ages (Hansen et al., 2013); the artifacts associated with the
failure of the Landsat 7 Scan Line Corrector (Andrefouet et
al., 2003) are visible in the 300 m PFTlocal dataset in some
regions, particularly in western–central Africa. Because the
PFT product is harmonized with the CCI MRLC class prod-
uct, potential classification errors can impact the PFT prod-
uct. For example, recent high-resolution mapping in the cir-
cumpolar Arctic (Bartsch et al., 2019) suggests that the CCI
MRLC classification may overestimate needle-leaved ever-
green tree cover in this region, resulting in a possible over-
estimate of the tree PFT percentage in such pixels. Future
improvements to the land cover classification will likewise
flow through to the PFT product.

3.2.2 Shrub cover

The PFTlocal product indicates 4.7× 106 km2 of global shrub
cover. The largest contributors to total shrub cover are
broad-leaved deciduous (44.6 %) and needle-leaved ever-
green (25.2 %) shrubs. Shrub cover is 74 % lower in the
PFTlocal product than in the PFTglobal dataset. Some of this
difference arises because the PFTlocal product estimates a
lower shrub PFT in shrubland-class pixels (codes 120–122
and 180) compared to the PFTglobal dataset, which estimates
8.8× 106 km2 of the shrub PFT in shrubland classes. The
area-weighted mean percentage composition of shrubs in
shrubland-class pixels is 30.0 % for class 120 in the PFTlocal
product, 26.1 % for class 121, 34.4 % for class 122, and
30.7 % for class 180. The CWT suggests 60 % shrub cover
for classes 120–122 and 40 % for class 180. The CWT esti-
mates 0 km2 of tree PFT cumulatively in these classes com-
pared to 630 000 km2 in the PFT product. The uncertainty
associated with the height estimation in the global canopy
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Table 4. Percentage PFT composition by class for 2010 calculated as an area-weighted mean over all pixels of the class globally.

Class Bare Built Managed Natural Snow/ Water∗ BD BE ND NE BD BE ND NE
code soil grasses grasses ice trees trees trees trees shrubs shrubs shrubs shrubs

10 0.0 0.0 94.9 0.0 0.0 0.0 2.1 2.5 0.0 0.4 0.0 0.0 0 0.0
11 0.0 0.0 96.5 0.0 0.0 0.0 1.6 1.6 0.1 0.3 0.0 0.0 0 0.0
12 0.0 0.0 81.6 0.0 0.0 0.0 2.4 15.7 0.0 0.3 0.0 0.0 0 0.0
20 0.0 0.0 98.8 0.0 0.0 0.1 0.8 0.3 0.0 0.1 0.0 0.0 0 0.0
30 0.0 0.0 81.6 0.0 0.0 0.0 3.6 13.6 0.0 1.1 0.0 0.0 0 0.0
40 0.0 0.0 43.7 35.0 0.0 0.0 5.5 13.8 0.1 1.8 0.0 0.0 0 0.0
50 0.0 0.0 0.0 9.9 0.0 0.0 0.0 90.1 0.0 0.0 0.0 0.0 0 0.0
60 0.0 0.0 0.0 38.3 0.0 0.0 61.6 0.0 0.0 0.0 0.0 0.0 0 0.0
61 0.0 0.0 0.0 38.5 0.0 0.0 61.5 0.0 0.0 0.0 0.0 0.0 0 0.0
62 0.0 0.0 0.0 72.8 0.0 0.0 27.2 0.0 0.0 0.0 0.0 0.0 0 0.0
70 0.0 0.0 0.0 37.1 0.0 0.3 0.0 0.0 0.0 62.5 0.0 0.0 0 0.0
71 0.0 0.0 0.0 29.0 0.0 0.7 0.0 0.0 0.0 70.2 0.0 0.0 0 0.0
72 0.0 0.0 0.0 72.6 0.0 1.3 0.0 0.0 0.0 26.1 0.0 0.0 0 0.0
80 0.0 0.0 0.0 58.1 0.0 0.1 0.0 0.0 41.8 0.0 0.0 0.0 0 0.0
81 0.0 0.0 0.0 15.4 0.0 0.5 0.0 0.0 84.1 0.0 0.0 0.0 0 0.0
82 0.0 0.0 0.0 82.9 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0 0 0.0
90 0.0 0.0 0.0 20.3 0.0 0.1 31.0 2.9 3.6 42.2 0.0 0.0 0 0.0
100 0.0 0.0 0.0 71.7 0.0 0.1 6.9 9.7 1.3 10.4 0.0 0.0 0 0.0
110 0.0 0.0 0.0 90.1 0.0 0.0 6.1 2.4 0.3 1.0 0.0 0.0 0 0.0
120 0.0 0.0 0.0 66.4 0.0 0.0 1.6 1.2 0.0 0.7 16.0 5.8 1.5 6.6
121 0.0 0.0 0.0 59.7 0.0 0.0 0.7 11.0 2.2 0.3 1.1 13.1 11.3 0.6
122 0.0 0.0 0.0 59.8 0.0 0.1 1.9 3.2 0.5 0.2 9.7 7.1 13.6 4.0
130 0.0 0.0 0.0 97.3 0.0 0.0 1.1 1.2 0.1 0.3 0.0 0.0 0 0.0
140 0.0 0.0 0.0 99.1 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
150 85.9 0.0 0.0 13.7 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0 0.0
151 86.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
152 85.8 0.0 0.0 12.1 0.0 0.2 0.1 0.0 0.3 1.5 0.0 0.0 0 0.0
153 86.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
160 0.0 0.0 0.0 22.4 0.0 0.3 8.0 49.4 3.1 16.9 0.0 0.0 0 0.0
170 0.0 0.0 0.0 39.3 0.0 2.3 5.6 50.3 2.1 0.4 0.0 0.0 0 0.0
180 0.0 0.0 0.0 64.2 0.0 0.6 0.7 0.8 0.3 2.7 6.4 3.0 2.5 18.9
190 0.0 73.7 0.0 25.1 0.0 0.3 0.4 0.2 0.0 0.3 0.0 0.0 0 0.0
200 99.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
201 99.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
202 99.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
210 0.0 0.0 0.0 0.0 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
220 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
∗ For the water body class (code 210), the water PFT percentage includes inland water. The area-weighted mean percentage composition of the inland-water PFT in
water-body-class pixels is 0.8 %. For all other classes, all water is inland water.

height product of Potapov et al. (2021) may contribute to the
confusion of shrubs and trees in some cases. Nonetheless,
the evidence-based PFTlocal product indicates a significantly
lower estimate for global woody vegetation cover in pixels
of the shrubland classes compared to the PFTglobal dataset,
which was largely based on expert knowledge.

In addition to the differences in the shrubland-class pixels,
a large part of the difference in total shrub cover between the
PFTlocal product and the PFTglobal dataset can be ascribed to
the fact that the PFTlocal product estimates shrub PFTs only
in pixels belonging to the shrubland classes (codes 120–122
and 180) due to a lack of appropriate datasets to apply to
the other classes. The CWT estimates 9.5× 106 km2 of shrub

cover in non-shrubland PFTs, and some of this shrub cover
may indeed be missing from the PFTlocal product. However,
because the PFTlocal product, which is based on quantita-
tive estimation using auxiliary inputs, and the CWT, which
is largely based on expert input, differed so strongly in the
estimates of shrub PFTs in the shrubland-class pixels, some
of the differences in the non-shrubland-class pixels may like-
wise be due to bias in the CWT.

3.2.3 Natural and managed grasses

Global grass PFT cover in the PFTlocal product is
65.7× 106 km2, two-thirds of which is natural grass. Total
grass cover is 29.6 % higher in the PFTlocal product than in
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the PFTglobal map (38.3 % higher for natural grass and 14.7 %
higher for managed grass). In the PFTlocal product algorithm,
for the vegetated classes except for sparse vegetation, the en-
tire non-water fraction of the 300 m pixel is assigned as veg-
etation; typically, water, trees, and other PFTs are estimated
based on auxiliary inputs and the CCI MRLC class legend,
and then the residual area is assigned as grass cover. Thus,
grass vegetation may be assigned in some cases that might
otherwise be a temporary bare area.

3.2.4 Water

In the PFTlocal product, the per-pixel fraction of surface wa-
ter PFT is estimated for pixels of all classes except the per-
manent snow-and-ice class (Table 1). The PFTlocal prod-
uct indicates around 142 000 km2 of water cover globally
among pixels of all classes except the water body class
(code 210). Only two classes – a sparse-vegetation sub-class
(code 151) and a needle-leaved deciduous tree cover sub-
class (code 82) – have no pixels with inland-water cover (Ta-
ble 3), but both classes have extremely limited total areal
coverage, each accounting for only a few square kilome-
tres of area globally. Classes with significant water cover-
age include the needle-leaved evergreen tree cover classes
70 and 71 (40 000 km2 combined), sparse-vegetation class
150 (20 000 km2), lichen and moss class 140 (14 000 km2),
flooded-shrub/herbaceous-cover class 180 (12 000 km2), and
bare-area class 200 (12 000 km2). Coverage of the water
PFT in pixels of the non-water-body classes is especially
prevalent in the boreal region. Classes with the highest frac-
tional composition of inland water – calculated as the area-
weighted mean among all pixels of the class globally (Ta-
ble 4) – include the flooded tree cover class 170 (2.3 %), the
needle-leaved evergreen tree cover class 72 (1.3 %), and the
lichen and moss class 140 (0.9 %).

The PFTlocal product indicates 3 % (91 000 km2) lower
inland-water fractional cover than the PFTglobal product dis-
tribution. While the non-water-body classes have a total
inland-water PFT cover of 142 000 km2 in the PFTlocal prod-
uct (compared to 0 km2 from PFTglobal), the PFTlocal prod-
uct indicates a lower inland-water PFT area in the wa-
ter body class than the CWT (difference of 233 000 km2).
The difference in the water body class occurs because the
PFTlocal product allows up to 14 % vegetation cover in this
class, whereas the CWT assumes a 100 % water PFT. PFTs
with significant global coverage in water-body-class pixels
in the PFTlocal product include natural grasses (183 000 km2)
and needle-leaved evergreen trees (31 000 km2), with smaller
contributions from the other tree types.

3.2.5 Bare

In the PFTlocal product, the bare-soil PFT occurs in
the bare-area classes (codes 200–202) and the sparse-
vegetation classes (codes 150–153), accounting for 19.4 and

7.6× 106 km2 of bare-soil area, respectively, at the global
scale (Table 3). The global area-weighted mean bare-soil
percentages are 85.9 % in sparse-vegetation-class pixels and
99.9 % in bare-area-class pixels, which are nearly identical
to the compositions suggested by the global CWT (85 % for
sparse-vegetation classes and 100 % for bare-area classes).
Cumulatively for these classes, the PFTlocal product suggests
only 0.2 % lower bare-soil PFT coverage at the global scale
relative to the assumed distribution in the PFTglobal dataset
(difference of 65 000 km2). In the PFTlocal product, the bare-
area classes contain, in addition to the bare-soil PFT, an
inland-water PFT (13 000 km2) and tree cover (1000 km2).

The PFTlocal product does not include the bare-soil PFT
in the shrubland classes, while the PFTglobal dataset assumes
20 % bare soil for non-flooded-shrubland classes 120–122.
Because the non-flooded shrubland-class pixels have such a
large extent globally (13.3× 106 km2), the PFTglobal dataset
suggests 2.7× 106 km2 of additional bare soil in such pixels
relative to the PFT product. Differences in the distribution
of bare area between the PFTlocal product and the PFTglobal
product are especially pronounced in the US inter-mountain
west, parts of southern and eastern Africa, the northern coast
of Australia, and the highlands of Argentina and Brazil, as
these are regions with significant shrubland-class cover. In
the PFTlocal product, all residual area in the shrubland-class
pixels that is not assigned as surface water or woody vegeta-
tion (trees and/or shrubs) based on the auxiliary input data is
assigned as natural-grass cover rather than bare soil.

In the PFT local product, the bare-soil PFT represents ar-
eas that are not expected to support vegetation regardless
of environmental conditions. For shrubland-class pixels, we
assume that vegetation growth can be supported given the
appropriate environmental conditions; therefore, the residual
pixel area (after accounting for inland water, tree, and shrub
cover) is assigned as the natural-grass PFT. Since the PFTlocal
product is built mainly for application to land surface mod-
els, the actual presence of grass vegetation vs. bare soil for
such pixels (of the shrubland class, but also of the other veg-
etated classes) will be determined by the model given sim-
ulated or prescribed local climate conditions. Users should
consider the definition of the bare-soil PFT to determine the
suitability of the data product for their use case.

3.2.6 Built fraction

Both the PFTlocal product and the PFTglobal product assign a
built PFT only to pixels of the urban class (code 190). The
presence of a built PFT is not universal in land surface or
Earth system models; for example, the current version of the
ORCHIDEE land surface model considers built areas to be
80 % bare soil and 20 % grasslands. The cross-walking of
land cover classes to PFTs for the urban class strongly de-
pends on the framework used to calculate surface fluxes in
the urban environment, and therefore inter-model variation in
the global CWT may be stronger for the urban class than for
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the vegetated classes. The global CWT used for this analysis
assigns 100 % of the urban class as the built PFT. For com-
parison, the JULES land surface model assigns urban-class
pixels as 75 % built and 25 % bare soil.

The PFTlocal product suggests 477 000 km2 of built area
globally (Table 3), which corresponds to an area-weighted
mean composition of 73.7 % built PFT in urban-class pix-
els (Table 4). The auxiliary inputs suggest that about 1.6 %
of urban-class pixels have 0 % built-PFT coverage. This sug-
gests a mismatch between the land cover classification and
the auxiliary inputs for a small number of pixels, which could
be related to a mismatch in the time stamp of the auxiliary
inputs (2014) relative to the land cover dataset. Consider-
ing all urban-class pixels, 6.2 % have a built PFT of 0 %–
25 %, 7.8 % have a built PFT of 26 %–50 %, 31.9 % have
a built PFT of 51 %–75 %, and 54.1 % have a built PFT of
76 %–100 %. As area-weighted means, the non-built portion
of urban-class pixels is 25.1 % natural-grass cover, 0.3 % in-
land water, and 0.9 % tree cover. The increased spatial het-
erogeneity in urban-class pixels due to the PFTlocal product is
readily apparent in Fig. 2, which shows the PFT distribution
for Amsterdam, the Netherlands. The more realistic charac-
terization of the urban environment in the PFTlocal product
that gives more variability of built-PFT coverage within a
city should allow a more faithful representation of urban sur-
face fluxes in land surface models.

3.2.7 Permanent snow and ice

The permanent snow and ice in PFTlocal account for
14.7× 106 km2 in area globally, largely in Greenland and
Antarctica, but also in the Arctic and mountainous regions
of Asia. The PFTlocal product and the PFTglobal dataset indi-
cate identical coverage for this PFT since both datasets as-
sign a 100 % snow-and-ice PFT to the permanent snow-and-
ice class (code 220) and a 0 % snow-and-ice PFT to all other
classes.

4 Modelling results

4.1 ORCHIDEE simulations: new PFT product
(PFTlocal) vs. PFT maps based on global CWT
(PFTglobal)

In this section, we compare the results of two ORCHIDEE
simulations performed, respectively, by applying the old
standard PFT maps (PFTglobal) and the new PFT product de-
rived in this study (PFTlocal). The results are shown for the
year 2010.

The impacts of the changes in the land surface represen-
tation between the local and global PFT maps on the surface
albedo, latent and sensible heat fluxes, evaporative fraction
(ratio of latent heat flux to the sum of latent and sensible
heat fluxes), surface temperature, and the LAI are shown in
Fig. 3. Averaged differences (local vs. global) for the North-

ern Hemisphere summer period (June–July–August, JJA)
were plotted here to highlight the main changes, but the plots
at the annual scale are also given in Appendix B. The results
show that the energy, water, and carbon fluxes are mainly
(and significantly) impacted in the regions where woody veg-
etation was replaced by grasslands or where the bare-soil
fraction has changed. Since, in ORCHIDEE, the shrub PFTs
are assigned to tree PFTs, the regions highlighted in Sect. 3
with significant fractions of shrub losses or gains in profit
of grasses show the largest changes. Given that tree PFTs
present a lower albedo, higher roughness (linked to vegeta-
tion height) and maximum transpiration capacity, and higher
LAI and biomass, the simulated differences between the two
simulations show coherent features across the different vari-
ables. In summer, surface albedo increases by up to 4 % (ab-
solute deviation) in the northern boreal regions because of
the decrease in shrubs and the increase in grasslands and,
in some regions (like in the Taymyr Peninsula), the increase
in bare soils. South of this boreal zone, both in Eurasia and
North America, the increase in trees and decrease in shrubs
show opposite variations. In the tropical region (between 0
and 30◦ S), the PFT changes principally concern differences
in the shrub–grass partition to the benefit of grasslands. In
these regions, the tree fraction decrease results in a slight
increase in the albedo around 2 % (absolute deviation). At
the annual scale (Fig. B1), the larger impact of the PFT dif-
ferences at the high latitudes is explained by the cumula-
tive impact of changes in snow cover. Indeed, snowmelt is
more rapid on tree cover compared to grasslands, inducing a
shorter duration of the snow cover with high albedo values,
leading to even more differences between short- and high-
vegetation albedo values.

Surface albedo differences (impacting surface net radia-
tion) combined with roughness changes (impacting turbulent
exchanges) explain generally the surface flux variations. The
balance between the two effects varies according to the lati-
tude following the amount of solar radiation: at the northern
latitudes, the impact of surface roughness is larger than at
more southerly ones. In the tropics, we observe a decrease
in the turbulent fluxes where the albedo is larger, explaining
the lower evapotranspiration and lower GPP, with different
partitions when comparing arid and humid zones. For exam-
ple, the consequences of a decrease in shrubs to the benefit
of grasses do not have the same effects on the heat flux parti-
tion according to the water availability. In regions where soil
moisture limits evapotranspiration, like central Africa (south
of the Democratic Republic of the Congo) or the Sahel, fewer
trees lead to less evapotranspiration of up to 6 Wm−2 in the
annual mean and larger sensible heat flux at the same level,
whereas at the northern latitudes like in eastern Siberia, fewer
shrubs lead to higher evapotranspiration and lower sensi-
ble heat flux. This is summarized in the representation of
the evaporative fraction, which shows opposite variations in
these regions.
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Figure 2. Percentage cover in 2010 for the built, total tree, grass, and inland-water PFTs in Amsterdam, the Netherlands, in the PFTlocal
product.

The surface temperature, as the result of the energy and
water budgets, shows differences in line with the sensible
heat flux variations, with larger temperatures where the sensi-
ble heat flux has decreased. The differences in summer and in
annual mean are significant and can reach 1 K but can show
differences of up to 3 K on a daily scale.

LAI differences are in coherence with the PFT differ-
ences: lower values where woody vegetation was replaced
by grasses, except in eastern Siberia and northern Aus-
tralia, where the increase in net radiation favoured transpi-
ration, GPP, and, finally, LAI. The LAI variations may reach
1 m2 m−2 in some regions like south-eastern Canada or cen-
tral Europe, where the broad-leaved deciduous trees have in-
creased in the PFTlocal map.

Figure 4 illustrates the impacts on the above-ground
biomass (AGB) with the tree cover variations. To see whether
the biomass changes are more realistic, they have been com-
pared to the ESA CCI Biomass product, version 3 (ESACCI
Biomass, Santoro and Cartus, 2019; Santoro et al., 2021),
aggregated at 0.5◦ resolution. Note that, unlike for the tur-
bulent fluxes discussed above, the change in AGB between
low- and high-vegetation covers should be large enough and
thus easier to evaluate. In Fig. 4a and b, we first compare
the simulated AGB with the new PFTs (PFTlocal) to the
ESACCI Biomass product, which highlights some issues re-
lated to ORCHIDEE model deficiencies and also, in part, to

relatively large errors in the ESACCI Biomass product, es-
pecially for high AGB. The model simulates too low AGB
on average, with a large underestimation over the tropical
forests, which cannot be due to the PFT cover (above 90 %
forest cover). Over temperate and high latitudes, we also
find significant model AGB underestimation. The improve-
ments/degradations with respect to changing the PFT dis-
tribution (Fig. 4d, where the mean errors between the two
simulations performed with PFTlocal and PFTglobal are rep-
resented) provide contrasting results between regions. The
benefits of the new PFTlocal maps (blue colour in Fig. 4d)
are visible in north-eastern Europe, the eastern USA, and
the Democratic Republic of the Congo, where the increase
in tree fraction (Fig. 4c) and biomass seems to be in bet-
ter agreement with the remote-sensing AGB product. In the
other regions, where the tree fractions decreased (northern
Canada and Europe, Sahel, Angola, Zambia, and southern
China, Fig. 4c), the associated decrease in biomass leads to
larger errors compared to the AGB satellite product. In the
western USA (California), the losses of tree PFTs to the ben-
efit of grasslands did not impact the simulated biomass since,
in these arid regions, the trees have a very low productivity
comparable to grasses and thus similar low-biomass values
(less than 1 kgC m−2).

Overall, these results highlight the importance and impact
of land surface PFT distribution on simulated energy, water,
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Figure 3. Differences in (a) albedo, (b) latent heat flux, (c) sensible heat flux, (d) evaporative fraction – latent heat flux/(latent + sensible
heat fluxes) –, (e) soil surface temperature, and (f) leaf area index (LAI) simulated by the ORCHIDEE model between the new PFT (PFTlocal)
and old PFT (PFTglobal) distributions for the summer (June–July–August, Northern Hemisphere) of the year 2010.

and carbon fluxes as well as carbon stocks in global land sur-
face models.

4.2 Evaluation of DGVM Joint UK Land Environment
Simulator (JULES) – Switch for dynamic vegetation
model (TRIFFID) using PFT fractions

The impact of using the new PFT distributions (PFTlocal)
as a benchmark for JULES-TRIFFID dynamic vegetation is
shown in Fig. 5. In contrast to the results shown in Sect. 4.1,
differences found here indicate the value of the new PFT dis-
tributions as a product for model evaluation rather than a
direct improvement in model predictions. When compared
to PFTglobal (“CWT”), JULES-TRIFFID indicates signifi-
cant overestimation of tree cover in tropical savannas and
underestimation of tree cover in boreal north-eastern Rus-
sia. Additionally, comparison with the global CWT product

(PFTglobal) indicates that JULES-TRIFFID underestimates
shrub cover in tropical savannas in South America, Africa,
and Australia as well as many semi-arid regions such as west-
ern North America. Biases in grass cover are more spatially
heterogeneous, but comparison with the global CWT indi-
cates that JULES-TRIFFID strongly overestimates in north-
eastern Russia and northern Australia.

When using the new PFT distributions as a benchmark,
many of these biases are reduced, as indicated by green areas
in column “c” of Fig. 5. In particular, north-eastern boreal
Russia shows reduced biases in tree, shrub, and grass cover.
Globally, using the new PFT distributions results in a reduc-
tion in biases in shrub cover in JULES-TRIFFID in almost
every part of the world, particularly savannas and semi-arid
regions (Fig. 4d). Whilst no large areas showed a large in-
crease in bias, some areas did show increases in bias of up to
25 %, such as tropical forests (10 % increase), grass cover in
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Figure 4. Above-ground biomass (AGB) (a) simulated by the ORCHIDEE model with the PFTlocal dataset and (b) observed by the ESACCI
Biomass product version v3, for the year 2010 (Santoro and Cartus, 2019). (c) Differences in the tree PFT fraction prescribed. (d) Difference
between the mean bias of simulated vs. ESACCI Biomass AGB between the new (PFTlocal) and former (PFTglobal) distributions of PFTs.
Negative values indicate a decrease in the bias from PFTglobal to PFTlocal.

tropical savannas (15 % to 25 %) and northern high latitudes
(10 % to 20 %), and bare cover in arid regions (up to 10 %
increase).

5 Data availability

The CCI PFT dataset 1992–2020 is freely, perma-
nently, and publicly available on a web viewer:
https://doi.org/10.5285/26a0f46c95ee4c29b5c650b129aab788
(Harper et al., 2023) (http://maps.elie.ucl.ac.be/CCI/viewer/
download.php, last access: 20 March 2023).

6 Conclusion and perspectives

The new PFT product (PFTlocal) was generated to reduce the
cross-walking component of uncertainty by adding spatial
variability to the PFT composition within a LC class. This
work moved beyond fine-tuning the cross-walking approach
for specific LC classes or regions and, instead, separately
quantifies the PFT fractional composition for each 300 m
pixel globally. The result is a dataset representing the cover
fractions of 14 PFTs at 300 m for each year in the 1992–2020
era, consistent with the CCI MRLC map for the correspond-
ing year. The PFTlocal dataset exhibits intra-class spatial vari-
ability in PFT fractional cover at the 300 m pixel level and is
complementary to the CCI medium-resolution multi-mission

LC map series since the derived PFT fractions maintain con-
sistency with the original LC class legend.

The PFTlocal dataset provides a more faithful representa-
tion of PFT distributions because it draws on high-resolution
peer-reviewed mapping of specific vegetation classes to re-
fine global assumptions about PFT fractions. In many cases,
the global CWT presented a reasonable approximation for
estimating PFT fractions within many land cover classes, as
shown by the fractions estimated from the auxiliary products
falling close to those suggested by the global CWT.

Note that a recent study by Marie et al. (2022) followed the
same objective of refining the global CWT (used to map the
ESA land cover classes onto PFTs) but with a different ap-
proach. Instead of using the tree cover dataset from Hansen
et al. (2013), they valorized a map of above-ground biomass
over Africa (Bouvet et al., 2018) to define local CWTs, using
the information from AGB to better constrain the partition
between tree and short-vegetation PFTs, for each LC class.
As shown in our study, they found that LC class 10 (rain-fed
cropland) in the Sahel should contain tree PFTs which corre-
spond to tree crops (Fig. A1). Overall, these efforts highlight
the benefits of using additional high-resolution products, like
tree cover or AGB, when translating land cover into PFT dis-
tributions for land surface models. Merging all sources of in-
formation into a coherent PFT product remained however a
difficult task. This study demonstrated that using the consis-
tent CCI MRLC time series and maintaining deference to the
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Figure 5. Comparison of JULES PFT distributions to both the CWT (PFTglobal) and PFT (PFTlocal) products for major vegetation types.
Rows show each major surface type (tree, shrub, grass, bare), whilst the rows show (a) the JULES vegetation distribution compared to
the global CWT, (b) the same compared to new PFTlocal distributions, (c) the difference between panels (a) and (b), where green (pink)
indicates positive or negative anomalies evaluated closer to 0 (further away from 0) using new PFTlocal distributions, and (d) absolute
latitudinal average fractions for each major vegetation type from CWT, PFT, and JULES.

original LCCS class in the combination rules allowed these
auxiliary data to be brought into consistency.

Changing the PFT distribution in the ORCHIDEE model
(PFTlocal vs. PFTglobal) induces significant impacts on the
simulated water, energy, and carbon fluxes as well as on
the modelled carbon stocks. These differences are coherent
with changes in surface properties (albedo, roughness, type
of cover) induced by changes in PFT types (mainly tree vs.
short-vegetation and bare-soil covers). However, it is not pos-
sible and is beyond the scope of the paper to evaluate glob-
ally and quantitatively model improvements due to changes
in PFTs given (i) existing model biases that have been partly
compensated by previous model parameter tuning with the
old PFT maps (PFTglobal) and (ii) the large uncertainty still
associated with data-driven products at a global scale. We
initiated an evaluation with AGB; however, the new simu-
lated biomass (induced by PFT changes) is not always closer
to the satellite ESACCI AGB product. In addition, the fact
that ORCHIDEE does not differentiate between shrubs and
trees limits such biomass evaluation. Additional simulation-
s/tests with more models and a more comprehensive eval-
uation with a larger ensemble of variables and data-driven
products are therefore needed to quantify the benefits of the
PFTlocal maps.

Using the PFTlocal as a benchmark improves the evaluation
of every major surface type in the JULES-TRIFFID dynamic

vegetation model, particularly shrub cover. This allows a new
perspective on priorities for dynamic vegetation model devel-
opment.

The user tool described in Poulter et al. (2015) has been
reformatted such that it can be applied directly to the new
PFT map series to create user-specific ready-to-use inputs
for LSMs. The user tool creates model-ready inputs at user
specification, which greatly expands the ease of use of the
product both within and beyond the modelling community.
The PFT dataset is designed primarily for use in land sur-
face and Earth system models. For the vegetated classes ex-
cept for sparse vegetation, the entire non-water fraction of
the 300 m pixel is assigned as vegetation, allowing the actual
presence of grass vegetation to be determined by the land sur-
face models. For use outside of modelling, this could intro-
duce some bias (e.g. underestimating bare-soil cover in some
pixels and overestimating grass cover), but the fractions of
the high-biomass vegetation types (trees and shrubs) can be
used for non-modelling use cases.

Production of the PFTlocal product is dependent on the
availability and quality of the auxiliary datasets at a spa-
tial resolution higher than 300 m; this is especially critical
for mapping the shrubland class. With the combined infor-
mation of the phenological attribute of the ESA CCI LC
classes, the percentage of tree canopy cover from Hansen
et al. (2013), and the Global Ecosystem Dynamics Investi-
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gation (GEDI) product (Potapov et al., 2021), it was possi-
ble, for the first time, to map four shrubland classes at the
global scale: broad-leaved evergreen, broad-leaved decidu-
ous, needle-leaved evergreen, and needle-leaved deciduous.
However, further research is still needed to improve the esti-
mation of shrubland-class pixels north of 52◦ N (i.e. outside
of the extent of the GEDI product). The urban PFT would
benefit from separating impervious surfaces from buildings.
Finally, the current workflow should further be tested against
annual ancillary product updates as operational production of
very-high-resolution datasets becomes the norm.

The proposed methodology is automated so that the PFT
dataset will be updated annually as new annual land cover
maps are produced in C3S. Because the PFT product is har-
monized with the CCI MRLC map series, future improve-
ments in the land cover product will flow through to the PFT
product.

Appendix A: Complementary information about the
CCI PFT dataset description

Figure A1. Distribution of tree cover percentage in rain-fed cropland-class pixels in Africa. Grey pixels belong to other classes.
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Figure A2.
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Figure A2. Absolute differences (percentage of pixels) between the 2010 PFTlocal dataset and the corresponding PFTglobal maps (i.e.
applying the global cross-walking scheme) for the 14 PFT types. The spatial resolution is 0.25× 0.25◦.
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Figure A3. PFT with the largest increase (a) and largest loss (c) in coverage within 0.25◦×0.25◦ pixels in the PFTlocal dataset compared to
the PFTglobal and corresponding fractions gained (b) and lost (d). White areas remained stable in both PFT datasets.
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Table A1. Global areal cover (1000 km2) of each PFT by land cover class for 2010 based on the most recent version of the global CWT
applied to v2.0.8 of the CCI MRLC map.

Class Bare Built Managed Natural Snow/ Water∗ BD BE ND NE BD BE ND NE
soil grass grass ice trees trees trees trees shrubs shrubs shrubs shrubs

10 0 0 7328.9 814.3 0 0 0 0 0 0 0 0 0 0
11 0 0 6321.2 702.4 0 0 0 0 0 0 0 0 0 0
12 0 0 57.1 0 0 0 0 0 0 0 133.2 0 0 0
20 0 0 2200.6 244.5 0 0 0 0 0 0 0 0 0 0
30 0 0 2060.5 515.1 0 0 171.7 171.7 0 0 171.7 171.7 0 171.7
40 0 0 712.9 1069.4 0 0 267.4 267.4 0 0 534.7 356.5 0 356.5
50 0 0 0 0 0 0 0 11 468.7 0 0 637.1 637.1 0 0
60 0 0 0 1751.8 0 0 2919.6 0 0 0 1167.9 0 0 0
61 0 0 0 131.4 0 0 613.1 0 0 0 131.4 0 0 0
62 0 0 0 1653.3 0 0 1102.2 0 0 0 918.5 0 0 0
70 0 0 0 974 0 0 0 0 0 4545.6 324.7 324.7 0 324.7
71 0 0 0 367.4 0 0 0 0 0 1714.4 122.5 122.5 0 122.5
72 0 0 0 0.5 0 0 0 0 0 0.3 0 0 0 0.3
80 0 0 0 1537.6 0 0 0 0 2562.6 0 128.1 128.1 640.7 128.1
81 0 0 0 0.7 0 0 0 0 3.4 0 0.2 0.2 0 0.2
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 544.2 0 0 653 0 217.7 435.3 108.8 108.8 0 108.8
100 0 0 0 1362.7 0 0 681.4 340.7 170.3 170.3 340.7 170.3 0 170.3
110 0 0 0 650.8 0 0 108.5 54.2 0 54.2 108.5 54.2 0 54.2
120 2181.1 0 0 2181.1 0 0 0 0 0 0 2181.1 2181.1 0 2181.1
121 47.7 0 0 47.7 0 0 0 0 0 0 0 71.6 0 71.6
122 433.2 0 0 433.2 0 0 0 0 0 0 1299.7 0 0 0
130 0 0 0 13 703.6 0 0 0 0 0 0 0 0 0 0
140 0 0 0 1491 0 0 0 0 0 0 0 0 0 0
150 7180.2 0 0 422.4 0 0 253.4 84.5 0 84.5 253.4 84.5 0 84.5
151 0 0 0 0 0 0 0 0 0 0 0 0 0 0
152 62.4 0 0 3.7 0 0 0 0 0 0 4.4 1.5 0 1.5
153 320.1 0 0 56.5 0 0 0 0 0 0 0 0 0 0
160 0 0 0 224 0 0 335.9 335.9 0 0 0 0 0 0
170 0 0 0 0 0 0 0 164.1 0 0 0 54.7 0 0
180 0 0 0 1150.8 0 0 0 0 0 0 479.5 0 0 287.7
190 0 647.1 0 0 0 0 0 0 0 0 0 0 0 0
200 19 170.2 0 0 0 0 0 0 0 0 0 0 0 0 0
201 109.1 0 0 0 0 0 0 0 0 0 0 0 0 0
202 97.3 0 0 0 0 0 0 0 0 0 0 0 0 0
210 0 0 0 0 0 366 225 0 0 0 0 0 0 0 0
220 0 0 0 0 14 694.2 0 0 0 0 0 0 0 0 0

∗ For the water body class (code 210), the water PFT area includes 3 110 600 km2 of inland water.
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Table A2. Percentage PFT composition by class based on the most recent update to the global cross-walking table.

Class Bare Built Managed Natural Snow/ Water BD BE ND NE BD BE ND NE
code soil grasses grasses ice trees trees trees trees shrubs shrubs shrubs shrubs

10 0 0 90 10 0 0 0 0 0 0 0 0 0 0
11 0 0 90 10 0 0 0 0 0 0 0 0 0 0
12 0 0 30 0 0 0 0 0 0 0 70 0 0 0
20 0 0 90 10 0 0 0 0 0 0 0 0 0 0
30 0 0 60 15 0 0 5 5 0 0 5 5 0 5
40 0 0 20 30 0 0 7.5 7.5 0 0 15 10 0 10
50 0 0 0 0 0 0 0 90 0 0 5 5 0 0
60 0 0 0 30 0 0 50 0 0 0 20 0 0 0
61 0 0 0 15 0 0 70 0 0 0 15 0 0 0
62 0 0 0 45 0 0 30 0 0 0 25 0 0 0
70 0 0 0 15 0 0 0 0 0 70 5 5 0 5
71 0 0 0 15 0 0 0 0 0 70 5 5 0 5
72 0 0 0 45 0 0 0 0 0 30 0 0 0 25
80 0 0 0 30 0 0 0 0 50 0 2.5 2.5 12.5 2.5
81 0 0 0 15 0 0 0 0 70 0 5 5 0 5
82 0 0 0 45 0 0 0 0 30 0 0 0 25 0
90 0 0 0 25 0 0 30 0 10 20 5 5 0 5
100 0 0 0 40 0 0 20 10 5 5 10 5 0 5
110 0 0 0 60 0 0 20 10 5 5 10 5 0 5
120 20 0 0 20 0 0 0 0 0 0 20 20 0 20
121 20 0 0 20 0 0 0 0 0 0 0 30 0 30
122 20 0 0 20 0 0 0 0 0 0 60 0 0 0
130 0 0 0 100 0 0 0 0 0 0 0 0 0 0
140 0 0 0 100 0 0 0 0 0 0 0 0 0 0
150 85 0 0 5 0 0 3 1 0 1 3 1 0 1
151 85 0 0 5 0 0 2 0 2 6 0 0 0 0
152 85 0 0 5 0 0 0 0 0 0 6 2 0 2
153 85 0 0 15 0 0 0 0 0 0 0 0 0 0
160 0 0 0 25 0 0 37.5 37.5 0 0 0 0 0 0
170 0 0 0 0 0 0 0 75 0 0 0 25 0 0
180 0 0 0 60 0 0 0 0 0 0 25 0 0 15
190 0 100 0 0 0 0 0 0 0 0 0 0 0 0
200 100 0 0 0 0 0 0 0 0 0 0 0 0 0
201 100 0 0 0 0 0 0 0 0 0 0 0 0 0
202 100 0 0 0 0 0 0 0 0 0 0 0 0 0
210 0 0 0 0 0 100 0 0 0 0 0 0 0 0
220 0 0 0 0 100 0 0 0 0 0 0 0 0 0
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Appendix B: Complementary information about the
modelling results

Figure B1. Differences in albedo (a), latent heat flux (b), sensible heat flux (c), evaporative fraction d – latent heat flux/latent + sensible
heat fluxes, soil surface temperature (e) and leaf area index (LAI, f) simulated by the ORCHIDEE model between the new PFT and old PFT
distributions for the annual mean of the year 2010 (same as Fig. 4 but for the annual mean).
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Appendix C: The original default land cover to plant
functional type cross-walking table

Table C1. Default land cover to plant functional type cross-walking table provided by the conversion tool with the level-1 UN LCCS classes
and level-2 UN LCCS sub-classes in italics. The units are percentage coverage of each PFT per UN LCCS class (from Poulter et al., 2015).

Code UN LCCS land
cover class descrip-
tion

Trees Shrubs Grasses Non-vegetated

Br
Ev

Br
De

Ne
Ev

Ne
De

Br
Ev

Br
De

Ne
Ev

Ne
De

Nat
Gr

Crops Bare
soil

Water Snow/ice

10 Cropland, rain-fed 100

11 Herbaceous cover 100

12 Tree or shrub cover 50 50

20 Cropland, irrigated
or post-flooding

100

30 Mosaic cropland
(> 50%)/natural
vegetation (tree,
shrub, herbaceous
cover) (< 50%)

5 5 5 5 5 15 60

40 Mosaic natural
vegetation (tree,
shrub, herba-
ceous cover)
(> 50%)/cropland
(< 50%)

5 5 7.5 10 7.5 25 40

50 Tree cover,
broad-leaved, ever-
green, closed
to open (> 15%)

90 5 5

60 Tree cover,
broad-leaved, de-
ciduous, closed
to open (> 15%)

70 15 15

61 Tree cover,
broad-leaved,
deciduous, closed
(> 40 %)

70 15 15

62 Tree cover,
broad-leaved,
deciduous, open
(15 %–40 %)

30 25 35 10

70 Tree cover,
needle-leaved,
evergreen, closed
to open (> 15%)

70 5 5 5 15

71 Tree cover, needle-
leaved, evergreen,
closed (> 40 %)

70 5 5 5 15

72 Tree cover, needle-
leaved, evergreen,
open (15 %–40 %)

30 5 5 30 30

80 Tree cover, needle-
leaved, deciduous,
closed to open (>
15%)

70 5 5 5 0 15
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Table C1. Continued.

Code UN LCCS land
cover class descrip-
tion

Trees Shrubs Grasses Non-vegetated

Br
Ev

Br
De

Ne
Ev

Ne
De

Br
Ev

Br
De

Ne
Ev

Ne
De

Nat
Gr

Crops Bare
soil

Water Snow/ice

81 Tree cover, needle-
leaved, deciduous,
closed (> 40 %)

70 5 5 5 15

82 Tree cover, needle-
leaved, deciduous,
open (15 %–40 %)

30 5 5 0 30 30

90 Tree cover,
mixed leaf type
(broad-leaved and
needle-leaved)

30 20 10 5 5 5 15 10

100 Mosaic tree
and shrub
(>
50%)/herbaceous
cover (< 50 %)

10 20 5 5 5 10 5 40

110 Mosaic herbaceous
cover (> 50%)/tree
and shrub (< 50%)

5 10 5 5 10 5 60

120 Shrubland 20 20 20 20 20

121 Shrubland evergreen 30 30 20 20

122 Shrubland decidu-
ous

60 20 20

130 Grassland 60 40

140 Lichens and mosses 60 40

150 Sparse vegeta-
tion (tree, shrub,
herbaceous cover)
(< 15%)

1 3 1 1 3 1 5 85

151 Sparse tree (< 15 %) 2 6 2 5 85

152 Sparse shrub
(< 15 %)

2 6 2 5 85

153 Sparse herbaceous
cover (< 15 %)

15 85

160 Tree cover, flooded,
fresh or brackish wa-
ter

30 30 20 20

170 Tree cover, flooded,
saline water

60 20 20

180 Shrub or herbaceous
cover, flooded,
fresh/saline/brackish
water

5 10 10 5 40 30

190 Urban areas 2.5 2.5 15 75 5

200 Bare areas 100

201 Consolidated bare
areas

100

202 Unconsolidated bare
areas

100

210 Water bodies 100

220 Permanent snow and
ice

100
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