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Abstract. The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been widely rec-
ognized in recent years. An accurate estimate of PM2.5 and O3 exposures is important for supporting health
risk analysis and environmental policy-making. The aim of our study was to construct random forest models
with high-performance and estimate daily average PM2.5 concentration and O3 daily maximum of 8 h average
concentration (O3-8 hmax) of China in 2005–2017 at a spatial resolution of 1 km× 1 km. The model variables
included meteorological variables, satellite data, chemical transport model output, geographic variables and so-
cioeconomic variables. Random forest model based on 10-fold cross-validation was established, and spatial and
temporal validations were performed to evaluate the model performance. According to our sample-based divi-
sion method, the daily, monthly and yearly estimations of PM2.5 from test datasets gave average model-fitting
R2 values of 0.85, 0.88 and 0.90, respectively; these R2 values were 0.77, 0.77 and 0.69 for O3-8 hmax, respec-
tively. The meteorological variables and their lagged values can significantly affect both PM2.5 and O3-8 hmax
estimations. During 2005–2017, PM2.5 concentration exhibited an overall downward trend, while ambient O3
concentration experienced an upward trend. Whilst the spatial patterns of PM2.5 and O3-8 hmax barely changed
between 2005 and 2017, the temporal trend had spatial characteristics. The dataset is accessible to the public
at https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021a), and the shared dataset of Chinese Environmental
Public Health Tracking (CEPHT, 2022) is available at https://cepht.niehs.cn:8282/developSDS3.html.
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1 Introduction

Air pollution is becoming a main concern of modern society
due to various health risks. According to the latest Global
Burden of Disease (GBD) report, air pollution has caused
approximately 6.67 million deaths (95 % uncertainty inter-
vals: 5.90–7.49 million) and ranked fourth on the global list
of death-related risk factors in 2019 (Health Effects Insti-
tute, 2020; Murray et al., 2020). Ambient fine particulate
matter (PM2.5) and ambient ozone (O3) have been identified
and proven to be related to many health outcomes. China is
known to be one of the countries with the most serious air
pollution in the world. Strict pollution control measures (in-
cluding the Air Pollution Prevention and Control Action Plan
and Three-Year Action Plan To Fight Air Pollution) were en-
acted by the Chinese government to control and reduce air
pollution since 2013. The implementation of these measures
has resulted in a markable drop of emissions and PM2.5 con-
centration. However, the occasional pollution events, as well
as the short development history of air quality monitoring
network, have brought many difficulties to accurately cap-
ture the temporal and spatial patterns of PM2.5 and O3 con-
centrations. Therefore, it is difficult to develop a complete
decision-making basis for handling air pollution. In addition,
there are gaps in epidemiological studies linking air pollu-
tants to health outcomes, due to the lack of accurate measure-
ments of PM2.5 and ambient O3 concentrations. To this end,
an accurate estimate of PM2.5 and O3 exposures is essen-
tial to support health risk analysis and environmental policy-
making.

Suitable model variables and advanced estimation method
are important to achieve accurate modeling. Basically, PM2.5
is jointly affected by both natural conditions and human
activities over space and time, e.g., aerosol optical depth
(AOD), meteorological conditions, geographic factors and
human-related features (Wei et al., 2021), while O3 is a sec-
ondary pollutant, which is produced by a series of com-
plex photochemical reactions on the basis of precursors in-
cluding nitrogen oxides (NOx) and volatile organic com-
pounds (VOCs) under the action of high temperature and
strong radiation. These complex characteristic puts forward
higher requirements on the ability of the modeling method
to handle multi-variable and capture the non-linear relation-
ships between variables and air pollutants. Many models
have been developed to estimate the spatiotemporal distri-
bution of PM2.5 and O3 concentrations in China. Machine-
learning approaches (e.g., random forest (RF), extreme gra-
dient boosting and deep belief network models) can mine
useful information from a large amount of input data and
explore the nonlinear relationship as well as bring a better
performance in modeling work (Chen et al., 2018, 2019; Di
et al., 2017; Li et al., 2017; Wei et al., 2019; Zhan et al.,
2018). However, most of these estimation datasets cannot
balance long time series and high spatiotemporal resolution.
Besides, there is no long-term estimation dataset for both

PM2.5 and O3 concentrations with high temporal and spatial
resolution for supporting epidemiological research. There-
fore, by incorporating multi-source data into random forest
models, this study makes an attempt to estimate the high-
resolution (1 km× 1 km) ambient PM2.5 and O3 concentra-
tions of China in 2005–2017.

2 Method

The model variables of this study include meteorological
variables, geographical variables, socioeconomic variables,
satellite data and chemical transport model output in 2013–
2017. Daily average PM2.5 and O3 daily maximum of 8 h
average concentration (O3-8 hmax) monitoring data of 1479
sites in 2013–2017 were obtained (Figs. 1; S1 and S2 in
the Supplement). A 1 km× 1 km standard grid is created
across the country (35.55◦ N to 43.12◦ N, and 112.95◦ E to
120.35◦ E) with a total of 9495025 grid cells. The coordi-
nate system of the grid is WGS-84, and the projection of
the grid is the Albers conical equal-area projection. We con-
struct high-performance random forest models (temporal res-
olution: daily; spatial resolution: 1 km× 1 km) and estimate
the grid daily average PM2.5 concentration and O3-8 hmax
concentration of China in 2005–2017.

2.1 Dataset

The model variables used in this study mainly include Aqua
AOD for PM2.5 modeling, GEOS-Chem chemical transport
model output for O3 modeling and some variables shared by
PM2.5 and O3: 13 meteorological variables (includes bound-
ary layer height, surface pressure, 2 m dew point temperature,
evaporation, albedo, low cloud cover, medium cloud cover,
high cloud cover, total precipitation, 10 m U wind compo-
nent, 10 m V wind component, 2 m surface temperature and
surface solar radiation downwards) and their lag 1 and lag
2, geographic and socioeconomic variables, such as the digi-
tal elevation model (DEM), normalized difference vegetation
index (NDVI), population, gross domestic product (GDP),
road network and dummy variables (includes season, month,
and province). A more detailed description of the model vari-
ables is given in Table S1 in the Supplement. The processing
method has been described in detail in our earlier studies (Ma
et al., 2021b; Zhao et al., 2019). Briefly, most of the model
variables are processed into 1 km× 1 km resolution based on
the standard grid using interpolation methods (such as in-
verse distance weighted and bilinear algorithm) in ArcGIS
10.2 and Python 2.7. AOD is processed by ENVI 5.3+IDL
and extracted into standard grid using ArcPy, and then the
inverse-distance-weighted interpolation is carried out to ob-
tain the 1 km× 1 km resolution data. For the long-term vari-
ables, the corresponding monthly and annual level value is
assigned to each day. Subsequent modeling work was car-
ried out based on the dataset covering monitoring data and
all variables.
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Figure 1. Station distribution in China and average ground monitoring concentration based on the available data of PM2.5 (a) and O3-
8 hmax (b) from 2013 to 2017.

2.2 Random forest model

Random forest is an ensemble machine learning method
consisting of many individual decision trees growing from
bagged data, and its prediction is the result of the voting pro-
cess (Breiman, 2001). The RF algorithm primarily integrates
learning principles, trains several individual learners and fi-
nally forms a strong learner through a certain combination
strategy; through multiple rounds of training, multiple pre-

diction results are obtained, and the final results are obtained
after average aggregation.

The random forest models are established using the 10-
fold cross-validation method. First, this method randomly di-
vides the modeling dataset into 10 parts, then nine of them
are used for modeling, and the remaining one is used for es-
timation and is compared with observations. The verification
is repeated until every part is predicted. In this way, the mod-
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eling and verification of estimation are repeated 10 times in
total, and the average values of the 10 runs are taken as the
final result, i.e., the CV-R2. The formulae of the models are
as follows:

PM2.5i,j = f (METEi,j , lag1METEij , lag2METEi,j ,

AODi,j ,LDj ,ROADj ,NDVIj ,ELEj ,GDPj ,

POPj ,SEASONi,MONi,PROj ), (1)

O3-8hmaxi,j = f (METEi,j , lag1METEij ,

lag2METEi,j ,GEOSi,j ,LDj ,ROADj ,

NDVIj ,ELEj ,GDPj ,POPj ,

SEASONi,MONi,PROj ), (2)

where PM2.5 i,j and O3-8 hmaxi,j are the PM2.5 and O3-
8 hmax concentrations on day i in grid cell j ; METEi,j rep-
resents 13 meteorological variables on day i in grid cell j ,
and lag 1 METEi,j and lag 2 METEi,j represent the corre-
sponding 1 d lag and 2 d lag values, respectively; GEOSi,j

and AODi,j are the GEOS-Chem model output and AOD
value on day i in grid cell j ; LDj , ROADj , NDVIj , ELEj ,
GDPj and POPj are the land use coverage, length of a va-
riety of roads, NDVI, elevation, GDP and population in grid
cell j , respectively; and SEASONi , MONi and PROj are the
season and month of day i and the province of grid cell j ,
respectively.

In general, the random forest parameters that need to be
adjusted include n_estimators (number of decision trees) and
the max_depth (maximum depth of the trees). Unlike the pre-
vious methods of manually adjusting parameters, the param-
eters of random forest were optimized using GridSearchCV,
which can realize a cross-validated grid search over a pa-
rameter grid. After GridSearchCV, we set max_depth as 36
and n_estimators as 200 for PM2.5 modeling. For O3-8 hmax
modeling, we set max_depth as 54 and n_estimators as 200.

2.3 Validation method

To comprehensively verify the model performance, we con-
struct the main models using sample-based division method.
Models using spatial-based and temporal-based division
method are further constructed to test the model performance
on a spatial and temporal scale.

The dataset was randomly divided into the training set
(90 % of the records) and test set (10 % of the records) by us-
ing the sample-based division method. We construct the main
model using the training set with a 10-fold cross-validation.
Since the data in the test set are not used in the main model,
true model performance can be verified. The coefficient of
determination (R2) of the main model on the test set (test-R2)
and the verification indicators of model uncertainty, the root
mean square error (RMSE) and mean absolute error (MAE)
are calculated for the PM2.5 and O3-8 hmax model, respec-
tively. The monthly and yearly test-R2 values are also calcu-
lated.

For the spatial verification, 90 % of the monitoring stations
are randomly selected. The monitoring data of these stations
are used as the training set, and the monitoring data of re-
maining stations are used as the testing set. For the temporal
verification, 90 % of dates in 2013–2017 are randomly se-
lected, and the data in theses dates are used as the training
set; the data in the remaining 10 % of the dates in 2013–2017
are used as the testing set. After that, the test-R2, RMSE and
MAE are calculated.

2.4 Estimation of daily PM2.5 and ambient O3 of China
from 2005 to 2017

Based on the final models of PM2.5 and O3-8 hmax, we es-
timate the gridded daily average PM2.5 concentration and
O3-8 hmax concentration of China in 2005–2017. The spa-
tial pattern and temporal trend of PM2.5 and O3-8 hmax con-
centrations are analyzed and compared with other modeling
products.

The modeling and estimations are performed in Python
2.7.13 using the scikit-learn 0.20.3 and GridSearchCV pack-
ages. The workflow of this study is displayed in Fig. 2.

3 Results and discussion

A total of 981 744 monitoring data records were used in the
final model-fitting dataset. The mean ± standard deviation
of PM2.5 and ambient O3 concentrations in 2013–2017 were
59.60± 45.85 and 86.72± 47.73 µgm−3, respectively. The
results of descriptive analysis for variables included in PM2.5
and O3-8 hmax model are shown in Table S2.

3.1 Model fitting and validation

The cross-validation results indicate that the estimated PM2.5
and O3-8 hmax concentrations matched reasonably with the
observed PM2.5 and O3-8 hmax concentrations, with high
fitted test-R2 values. According to our sample-based di-
vision method, the test-R2 values of the estimated daily,
monthly and yearly PM2.5 concentrations were 0.85, 0.88
and 0.90, respectively (Fig. 3). Likewise, the test-R2 values
of the estimated daily, monthly and yearly O3-8 hmax con-
centrations were 0.77, 0.77 and 0.69, respectively (Fig. 4).
The RMSE and MAE for PM2.5 in daily level were 17.72
and 9.37 µgm−3; for O3-8 hmax, the values were 23.10 and
15.43 µgm−3. The model performance is comparable to pre-
vious studies (Di et al., 2017; Li and Cheng, 2021; Liu et al.,
2020; Wei et al., 2021, 2020, 2019). At the provincial/city
level, the model performance of PM2.5 estimations of Shang-
hai, Beijing, Hubei, Hebei and Sichuan ranked in the top
five with relatively high test-R2 (≥ 0.90), while those of Ti-
bet, Qinghai, Gansu, Anhui and Yunnan were less accurate
with relatively low test-R2 values (< 0.70). The model per-
formance of O3-8 hmax estimations of Beijing, Chongqing,
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Figure 2. The workflow of modeling process in the study.

Shanghai, Tianjin and Henan ranked in the top five with rel-
atively high test-R2 values (≥ 0.83), while those of Gansu,
Anhui, Heilongjiang, Guizhou and Tibet were poorer with
relatively low test-R2 values (< 0.62) (Table S3).

The spatial and temporal test-R2 of our models explained
the uncertainty to some content (Figs. 3 and 4). The spatial
test-R2 values for daily, monthly and yearly PM2.5 estima-
tion were 0.83, 0.87 and 0.85, respectively, while those of
daily, monthly and yearly O3-8 hmax estimations were 0.74,
0.77 and 0.68, respectively. The relatively high spatial test-
R2 demonstrates the reasonable performance of our mod-
els in areas without monitoring stations. The temporal test-
R2 values of daily, monthly and yearly PM2.5 estimations
were 0.49, 0.65 and 0.76, respectively, while those of daily,
monthly and yearly O3-8 hmax estimations were 0.58, 0.63
and 0.56, respectively. These results indicate the uncertainty
of our models when modeling data in the historical period,
although the performance is among the best compared with
previous studies. The simulation accuracy is a universal is-
sue in the present studies of air pollutant concentrations in
the historical period without monitoring data. Further efforts

are need to improve the model performance of historical es-
timations.

3.2 Feature importance

The feature importance of the variables in our random for-
est models is presented in Tables S4-1 and S4-2. Similar to
previous studies (Chen et al., 2018; Zhan et al., 2018), the
meteorological factors and their lagged values can signifi-
cantly affect both PM2.5 and O3-8 hmax modeling. More-
over, the specific features for PM2.5 and O3, AOD and
GEOS-Chem output, also demonstrated high importance in
modeling work.

For PM2.5 modeling work (Table S4-1), the meteorolog-
ical variables (boundary layer height, evaporation, 2 m dew
point temperature) and their lagged effect were among the
top 10 important factors, totaling 33.6 % in modeling work.
The lagged effects greatly contributed to PM2.5 modeling.
For example, the lag 1 boundary layer height ranked first
(17.2 %) in our study, which is similar to previous studies
(Zhao et al., 2019). The interpolated AOD (5.6 %), DEM
(4.9 %) and season (3.7 %) also demonstrated high impor-
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Figure 3. The density plot of PM2.5 model. From left to right are the different temporal scales: daily, monthly and yearly; from top to bottom
are the different validation methods: sample-based, spatial-based and temporal-based.

tance, which showed crucial effects of satellite data, terrain
distribution characteristics in the study area and study period
on PM2.5 modeling. The relative contributions of land use,
NDVI, population density, road length and GDP are negligi-
ble (the importance scores less than 1 %). Unlike DEM, these
factors are subjected to the influence of socioeconomic sta-
tus in study area. In the future study, the integration of these
factors with a higher temporal resolution might change its
contribution to the estimation.

The feature importance of ambient O3 is consistent with
its formation and dissipation mechanism: surface solar radi-
ation downwards and its lagged effect according for 39.2 %
in modeling work (Table S4-2). Other meteorological factors
(2 m temperature, boundary layer height, 10 m V wind com-
ponent and low cloud cover) according for totaling 9.54 %
importance scores. Our analysis also suggests the high im-

portance of GEOS-Chem model (7.2 %), altitude (1.9 %),
and dummy factors including year (2.2 %) and province
(1.6 %) in O3 modeling. By contrast, the relative contribu-
tions of land use, NDVI and road length are negligible (the
importance scores less than 1 %). The high importance rank
of population and GDP might be attributed to the relatively
high sensitivity of O3 to anthropogenic emission sources
(compared to PM2.5).

3.3 The spatial characteristics and temporal trend of
PM2.5 and ambient O3 of China from 2005 to 2017

During 2005–2017, PM2.5 showed an overall downward
trend, while ambient O3 showed an upward trend in recent
years (Figs. 5, S3–S6). Relative to 2005, PM2.5 concentration
has increased by 2.60 µgm−3 in 2013. Nevertheless, after the
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Figure 4. The density plot of O3-8 hmax model. From left to right are the different temporal scales: daily, monthly and yearly; from top to
bottom are the different validation methods: sample-based, spatial-based and temporal-based.

implementation of the Air Pollution Prevention and Control
Action Plan, a strict pollution control measure, PM2.5 con-
centration has declined by 11.041 µgm−3 in 2017 (relative to
2013). This has resulted in a downward trend of PM2.5 con-
centration in 2005–2017: PM2.5 concentration in 2017 has
decreased by 8.44 µgm−3 relative to 2005 (Figs. 5 and S3).
In key pollution areas, with the implementation of various air
pollution prevention and control policies, PM2.5 levels in the
Beijing–Tianjin–Hebei region have dropped the most, but the
overall concentration levels are still higher than those in the
Yangtze River Delta and Pearl River Delta (Fig. S4). For O3-
8 hmax, the upward trend barely changed. Relative to 2005,
O3-8 hmax concentrations in 2013 and 2017 have increased
by 0.39 and 7.83 µg m−3, respectively. The upward trend dur-
ing 2005–2017 was mostly due to the significant changes be-

tween 2013 and 2017: relative to 2013, the O3-8 hmax con-
centration has increased by 7.44 µgm−3 in 2017 (Figs. 5 and
S5). The Beijing–Tianjin–Hebei region has shown an obvi-
ous upward trend since 2013, while the Pearl River Delta re-
gion change trend is not obvious (Fig. S6). During the strict
pollution control period, VOC emissions were not effectively
controlled, which could be one of the main reasons. There-
fore, integrated management of VOCs and NOx in key indus-
tries and areas is important.

The seasonal distributions of PM2.5 and O3-8 hmax
concentrations were obvious during 2005–2017 (Figs. S7
and S8). The lowest seasonal PM2.5 concentration oc-
curred in summer, with an average concentration of
33.6± 11.39 µgm−3, and the highest seasonal PM2.5 con-
centration occurred in winter, with an average concentration
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Figure 5. The temporal trend of PM2.5 and O3-8 hmax concentration in China from 2005–2017. The black dots represent the monthly
average PM2.5 and O3-8 hmax concentration from 2005 to 2017, the blue color band represents the range of the monthly average PM2.5 and
O3-8 hmax concentration plus or minus the RMSE value from 2013–2017 (period with monitoring data), and the green color band represents
the range of the monthly average PM2.5 and O3-8 hmax concentration plus or minus the MAE value from 2013–2017 years.

of 57.4± 21.76 µg m−3. In winter, temperature inversion oc-
curs frequently, and the thickness of the mixed layer is low,
which is not conducive to the diffusion of pollutants, which
leads to the accumulation of PM2.5 near the ground (Sun et
al., 2014). In contrast, the lowest seasonal O3-8 hmax con-
centration was in winter, with an average concentration of
72.65± 6.28 µgm−3; the highest seasonal O3-8 hmax con-
centration was in summer, with an average concentration of
97.44± 13.58 µgm−3. Temperatures and solar radiation con-
ditions in summer increase the incidence of severe O3 pollu-
tion events, which is consistent with its formation and dissi-
pation mechanism.

The PM2.5 concentrations in the Beijing–Tianjin–Hebei,
Chengdu–Chongqing and Xinjiang regions are higher than
other regions, followed by the central China. The PM2.5 con-
centrations in the southwestern regions (Yunnan and Tibet)
and western part of Sichuan Province are the lowest, fol-
lowed by the inner-north regions and the south and southeast-
ern regions (Figs. 6, S3 and S4; Table S5). The O3-8 hmax
concentrations in the Bohai Rim, Yangtze River Delta, Pearl
River Delta, and other economically developed regions like
southern Xinjiang, Inner Mongolia, and northeastern Gansu
are relatively high (Figs. 6, S5 and 6; Table S5). This spatial
pattern barely changed during 2005–2017 (Figs. S3 and S5),

but the temporal trend showed spatial characteristics (Figs. 6;
S4 and S6). For PM2.5 concentration, the key pollution ar-
eas were severely polluted during 2005–2013. The air pol-
lution control measures of these regions were strict during
2013–2017; thus, the decline was obvious, especially for the
Beijing–Tianjin–Hebei region. For O3-8 hmax concentration,
the growth rate was not obvious (except for the eastern part
of Hubei Province) during 2005–2013. However, after 2013,
there was a clear upward trend across the country, especially
in the northern China.

3.4 Evaluation of the PM2.5 and O3 concentration
products with comparison with other products

Our estimation datasets include the PM2.5 and O3-8 hmax
concentration data of China in 2005–2017 with a spatial res-
olution of 1 km× 1 km resolution. With high spatial and tem-
poral resolutions, our validation results are comparable with
other modeling work (see Table S6). Considering the fu-
ture application in epidemiological research, our estimation
datasets would be useful: for acute effects studies, the high
spatial resolution would effectively reduce exposure errors;
for chronic effects studies, long-term exposure data are es-
sential for the development of cohort studies.
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Figure 6. Estimated annual mean and difference of PM2.5 and O3-8 hmax concentration in China during 2005 to 2017. The first row
shows maps of PM2.5-related indicators, and the second row shows maps of O3-8 hmax related indicators. From left to right are the average
concentrations during 2005–2017, the difference between 2017 and 2005, the difference between 2013 and 2005, and the difference between
2017 and 2013.

Nevertheless, our estimation datasets also contain some
limitations. First, we did not use emission data in our
model limited by coarse resolution. However, the newly pub-
lished high-resolution emission inventory of China (http:
//meicmodel.org/, last access: 18 February 2022) may be uti-
lized in future estimation studies to improve accuracy. Sec-
ond, our modeling still has spatial and temporal uncertain-
ties. In areas where monitoring sites are sparsely distributed,
such as western China, it may be difficult to accurately cap-
ture the association between air pollution concentrations and
variables. The model validation of the historical period is also
limited. Third, the interpolation process of model features in-
evitably introduces systematic errors. Therefore, more high-
quality and high-resolution basic data would be needed in the
future.

4 Data availability

The estimated PM2.5 and O3 data are freely accessible at
https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021a),
and the shared dataset of Chinese Environmental Public

Health Tracking (CEPHT, 2022) is available at https://cepht.
niehs.cn:8282/developSDS3.html.

5 Conclusions

We constructed random forest models for simulating of daily
average PM2.5 and O3-8 hmax concentrations of China dur-
ing 2005–2017, with a feature list and comparable model per-
formance. The estimation dataset would be useful for sup-
porting both long-term and short-term epidemiological stud-
ies. The model can be further used for simulating daily con-
centrations of longer time period. The key findings are sum-
marized as follows. First, the RF model proved its superiority
in our study and can be further used in the future estima-
tion of air pollutant concentration. Second, meteorological
data are the most sensitive to PM2.5 and O3 modeling. For
PM2.5 modeling work, boundary layer height, evaporation,
2 m dew point temperature and its lagged effects showed the
highest sensitivity. For O3 modeling work, surface solar ra-
diation downwards and its lagged effect were the most sen-
sitive. Third, PM2.5 concentration has trended downward in
China, and the key polluted areas during 2005–2013 were ef-
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fectively controlled during 2013–2017. O3 concentration has
trended upward in China, especially in the northern China
during 2013–2017.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-943-2022-supplement.
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