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Abstract. Bed-material sediment particle size data, particularly the median sediment particle size (D50), are
critical for understanding and modeling riverine sediment transport. However, sediment particle size observations
are primarily available at individual sites. Large-scale modeling and assessment of riverine sediment transport
are limited by the lack of continuous regional maps of bed-material sediment particle size. We hence present
a map of D50 over the contiguous US in a vector format that corresponds to approximately 2.7 million river
segments (i.e., flowlines) in the National Hydrography Dataset Plus (NHDPlus) dataset. We develop the map
in four steps: (1) collect and process the observed D50 data from 2577 U.S. Geological Survey stations or U.S.
Army Corps of Engineers sampling locations; (2) collocate these data with the NHDPlus flowlines based on their
geographic locations, resulting in 1691 flowlines with collocated D50 values; (3) develop a predictive model
using the eXtreme Gradient Boosting (XGBoost) machine learning method based on the observed D50 data
and the corresponding climate, hydrology, geology, and other attributes retrieved from the NHDPlus dataset;
and (4) estimate the D50 values for flowlines without observations using the XGBoost predictive model. We
expect this map to be useful for various purposes, such as research in large-scale river sediment transport using
model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing
floodplain zones, etc. The map is available at https://doi.org/10.5281/zenodo.4921987 (Li et al., 2021a).

1 Introduction

Bed-material sediment particle size information is critical for
understanding and modeling riverine sediment processes, in-
cluding sediment erosion, entrainment, deposition, and trans-
portation. Various sedimentology formulas have been pro-
posed to quantify the sediment processes, with sediment par-
ticle size being a critical parameter in those formulas (Ackers
and White, 1973; An et al., 2021; Einstein, 1950; Engelund
and Hansen, 1967; Garcia and Parker, 1991; Meyer-Peter and
Müller, 1948; Parker, 1990; Parker and Andrews, 1985; Van
Rijn, 1985; Wu et al., 2000). Moreover, sediment particle size
is a critical factor in riverine dynamics of heavy metal (Unda-
Calvo et al., 2019; Zhang et al., 2020), nutrients (Glaser et al.,

2020; Xia et al., 2017), microplastic (Corcoran et al., 2020;
He et al., 2020), and fish habitats and benthic lives (Dalu
et al., 2020; Riecki et al., 2020).

The sediment transport modes can be classified into bed-
material load and wash load (García, 2008). The bed-material
load consists of all sizes of particles existing in a river bed
regardless of whether they are being transported along the
bed (bed load) or in suspension (suspended load). Wash load
consists of very fine particles (diameter less than 0.0625 mm)
that are always in suspension in the water and rarely reside
on the bed (García, 2008). Wash load is usually controlled
only by land surface processes (soil erosion in hillslopes and
transport from hillslopes into rivers) but not much by river-
ine hydraulic conditions (García, 2008). In this study, we fo-
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cus on the bed-material sediment particle size data that are
critical in applying sediment transport formulas to estimate
bed-material load. For example, median bed-material sedi-
ment particle size (denoted as D50, i.e., the size larger than
50 % of sediment particles) is one of the most important pa-
rameters in the Engelund–Hansen equation (Engelund and
Hansen, 1967).

Despite the importance of bed-material sediment particle
size, such data have limited availability due to the expen-
sive costs of measuring and analyzing such data. As one of
the most data-rich countries in the world, the United States
(US) collects and disseminates the sediment particle size
data mainly through two federal agencies: the U.S. Geo-
logical Survey (USGS) and the U.S. Army Corps of Engi-
neers (USACE). USGS manages the most gauges and dis-
tributes the river-related measurements on the US rivers. As
of April 2021, there are 424 948 stations with field and/or
laboratory samples in the USGS water quality portal, among
which 1.2 % (3644) include bed-material sediment particle
data for rivers over the contiguous US, and 0.6 % (2277) have
complete percentiles of bed-material sediment particle data
for computing D50.

Spatial approximation, i.e., interpolation or extrapolation,
is a typical method to overcome data sparsity when there
is no universal relationship between the variable of interest
(e.g., D50) and other extensively available information. In
the case of sediment particle size, a simple spatial approx-
imation should be conducted within the same river system,
assuming similar geological and hydrological settings. Here
we denote a river system as the whole river network dis-
charging to the ocean (or inland lakes) via the same outlet.
Such a simple spatial approximation is nevertheless not fea-
sible in many river systems, where there are few or no mea-
surement data to support meaningful interpolation and ex-
trapolation. Several studies have reported empirical relation-
ships between bed-material sediment particle size with river
channel characteristics (e.g., channel slope) and flow regimes
(Niño, 2002; Zhang et al., 2017). Such relations are nonethe-
less site-specific and not universal enough to apply over var-
ious river systems.

An alternative approach is to establish complex correla-
tions between sediment particle size and other data that are
extensively available over the contiguous US. Such correla-
tions can then be applied across the US for predicting sed-
iment particle size. Conventional linear or nonlinear regres-
sion methods usually require good prior knowledge of the
mechanisms controlling sediment size distribution, and thus
they are not suitable for use to establish complex correlations
when understanding of factors that control sediment size is
somewhat limited. Machine learning offers an effective way
forward because of its ability to establish nonlinear, com-
plex predictive models without the prerequisite of sufficient
process-based knowledge (Afan et al., 2016).

Therefore, our objective is to develop a spatial map of D50
over the contiguous US rivers by establishing a predictive

model between D50 and other extensively available hydro-
climatological and geological data using state-of-the-art ma-
chine learning techniques. In the following, we describe the
data in Sect. 2, introduce the machine learning model devel-
opment in Sect. 3, and present our results in Sect. 4. We also
explain the limitations of our method in Sect. 5, potential us-
age of the D50 map in Sect. 6, and data availability in Sect. 7.
We finally conclude with Sect. 8.

2 Data

2.1 Bed-material sediment particle size observations

The USGS sediment data are available to the public through
the National Water Information System (NWIS) water qual-
ity data portal. There are 3644 USGS stations with at least
one sample of bed-material sediment particle size, but only
2277 stations have complete data to allow meaningful com-
putation of D50, as shown in Fig. 1a. There are 1367 USGS
stations with incomplete percentiles of bed-material sedi-
ment particle data, which can be divided into three groups:
(1) 1183 stations have no effective percentiles provided,
(2) 147 stations have only percentiles above the 50th per-
centile, and (3) 37 stations have only percentiles below the
50th percentile. Therefore, we neglect these data in further
analysis.

The USACE sediment particle size data are available in a
technical report by Gaines and Priestas (2016). Gaines and
Priestas (2016) include the bed-material sediment particle
size samples taken at 442 locations along the Mississippi
River main stem between Head of Passes, Louisiana, and
Grafton, Illinois. We exclude the locations without exact ge-
ographic coordinates and eventually obtain 300 locations, as
shown in Fig. 1a. In total, we have 2577 locations with com-
plete bed-material sediment particle size percentiles to allow
for the D50 calculation. At each location, the sediment par-
ticle size might have been sampled more than once at dif-
ferent times, although almost half of the locations are sam-
pled only once (see Fig. 1b for the histogram and Fig. S1a in
the Supplement for the spatial map). For about 94 % of these
stations, the latest samples were taken after the 1970s (see
Fig. 1c for the histogram and Fig. S1b in the Supplement
for the spatial map). We calculated the coefficient of varia-
tion (CV) for the 760 stations that have at least five samples
over time. For the rest of the stations, the number of samples
is too small for meaningful calculation of CV. For most of
these 760 stations, the CV values range between 0.3 and 1.2,
with a median of approximately 0.6 (see Fig. S2 in the Sup-
plement). The small CV values indicate the good stability of
D50 (at the same location) over time.

We compute the D50 values from the measured sediment
particle size distributions in three steps: (1) the cumula-
tive sediment size distribution curve is drawn with log-2-
transformed sediment size (in mm) following the concept of
the 9 scale (Parker and Andrews, 1985), (2) a linear inter-
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Figure 1. Sediment sample stations. (a) Locations of 2277 USGS stations and 300 USACE sampling locations. (b) Number of samples at
each station/location. (c) Histogram of latest sample years. (d) Histogram of D50 values on the 9 scale (log2D50, D50 in mm).

polation is performed between the percentiles smaller and
larger than the 50th percentile to obtain the D50 value, and
(3) for the stations with multiple sampling times, a represen-
tative D50 value is computed as the mean D50 value from all
the sampling times. We take the mean as a representative D50
to simply account for possible uncertainties in sampling and
measurement. Although the sampling and measurement pro-
cedures are carefully designed (Edwards and Glysson, 1999),
it is practically impossible to avoid uncertainties in such sam-
pling and measurement procedures. Thus, we believe a rep-
resentative D50 can be better estimated by taking a mean.
The D50 values calculated following this procedure are de-
noted as “observed D50 values” to differentiate them from
the predicted D50 values using machine learning techniques
described later. Figure 1d shows the histogram of the com-
puted D50 values on the 9 scale. About 75 % of these D50
values are between 0.0625 and 2.0 mm. It is suggested that a
river can be a sand-bed or gravel-bed river if the D50 value is
below or above 2.0 mm (García, 2008). The D50 values com-
puted from the observed sediment particle size distributions
thus mostly reflect sand-bed river conditions, while only ap-
proximately 25 % are gravel-bed rivers.

One might wonder how the sites with observed D50 val-
ues are distributed between small and large streams (e.g.,
whether or not smaller streams have more observed D50 data
than larger streams). We use stream order (Fig. S3a and b in
the Supplement) and upstream drainage area (Fig. S3c and d)
as the indicators of stream size and examine the distributions
of flowline lengths (Fig. S3a, c) and D50 samples (Fig. S3b

and d), respectively. The total flowline length increases with
the stream size (i.e., stream order or drainage area), which
is expected since overall larger rivers have longer lengths.
Interestingly, the number of D50 stations follows a bell dis-
tribution except for the largest stream order or drainage area,
which is primarily due to the USACE measurements on the
lower Mississippi River (198 sample locations). Therefore,
there is no clear indication that larger or smaller streams
dominate the D50 data points.

2.2 Predictive variables

The predictive variables are retrieved from the National
Hydrography Dataset Plus (NHDPlus) database (McKay
et al., 2012) and additional attributes for the NHDPlus
catchments from the ScienceBase dataset (Wieczorek et al.,
2018). ScienceBase is a comprehensive scientific data and
information management platform hosted by USGS (https:
//www.sciencebase.gov, last access: 6 February 2022). In
the medium-resolution NHDPlus, there are about 2.7 mil-
lion stream segments (average length of 1.93 km, denoted as
flowlines from now on). NHDPlus directly provides 138 at-
tributes of flowlines, most of which are descriptive instead
of quantitative. We select eight quantitative attributes rele-
vant to the channel geometry and hydrology, such as up-
stream drainage area, channel bed slope, mean annual flow
velocity, sinuosity, etc. ScienceBase provides additional at-
tributes related to the NHDPlus watersheds (local drainage
area corresponding to a single flowline) and associated up-
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Figure 2. The 1691 flowlines with measured D50.

stream drainage areas in 13 themes (Wieczorek et al., 2018).
We select 68 hydroclimatological and geological attributes
from ScienceBase, such as climate, hydrologic, topographic,
soil, and geologic conditions. In total, 76 attributes are se-
lected as potential predictive variables for input to the ma-
chine learning algorithm. We provide a detailed list of these
predictive variables in Table S1 in the Supplement and four
illustrative maps in Fig. S4 in the Supplement.

We then establish the spatial correspondence between the
observed D50 values and the 76 predictive variables. In
NHDPlus, there are ∼ 26 000 USGS stations associated with
a portion of the flowlines through the common identifiers.
This common identifier is unique for every flowline, but sev-
eral USGS stations may be located on the same flowline and
have the same common identifier. We match the 2277 USGS
stations that have observed D50 values with stations in NHD-
Plus. Some of the 2277 USGS stations are not included in
NHDPlus, so we obtain 1530 matching stations. The 300 US-
ACE sampling locations are collocated with the flowlines
via their geographic coordinates. There are 12 flowlines with
2 sampling locations and 2 flowlines with 3 sampling loca-
tions. In those cases, we assign the average of the D50 values
of these USGS stations to the flowline. The mean length of
the 14 flowlines is 6.63 km. In such a length, only two or
three sampling locations cannot capture the spatial variabil-
ity in a meaningful way. Therefore, we simply calculate the
average without making further assumptions. We further ex-
clude a few flowlines with missing attribute values. Finally,
we have a total of 1691 flowlines corresponding to the ob-
served D50 values, as shown in Fig. 2. As such, in each of
these 1691 flowlines, we have established a good correspon-
dence between the observed D50 values and the 76 predictive
attributes.

3 Model development

Among various machine learning methods, eXtreme Gradi-
ent Boosting (XGBoost) is a version of the gradient tree
boosting algorithm known for its high efficiency and superior
performance in recent years (Chen and Guestrin, 2016; Fan
et al., 2021; Zheng et al., 2019). The relations between the
input predictors (e.g., watershed characteristics) and D50 are
too complex to be established with traditional linear regres-
sion or dimensionless analysis methods. Therefore, we adopt
XGBoost to develop a predictive model with the Optuna op-
timization framework (Akiba et al., 2019) for tuning hyper-
parameters and the SHapley Additive exPlanations (SHAP)
(Lundberg and Lee, 2017) for feature importance analysis
and thus feature selection. We also consider the represen-
tativeness of input predictors in the feature selection. More
details are explained as follows.

3.1 XGBoost: eXtreme Gradient Boosting

Tree boosting is a machine learning framework that com-
bines weak learners to develop a strong learner, in which the
base learners are decision trees that are trained sequentially,
with the latter focusing on mistakes made by the preceding
one. Gradient boosting machines are a family of tree boost-
ing techniques. One of the most recent offspring of gradient
boosting techniques is the XGBoost, a scalable end-to-end
tree boosting system (Chen and Guestrin, 2016). It has been
successfully utilized across a wide array of applications, such
as snowpack estimation (Zheng et al., 2019) and water stor-
age change in a large lake (Fan et al., 2021). XGBoost dataset
is represented as D= {(Xi,Yi), i = 1,2, . . .,N}, where Xi =
[Xi1,Xi2,Xi3, . . .,Xip] is a row vector with input features
with real value elements and Yi ∈ R. The tree ensemble
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model employs M additive functions to predict the output
of interest as

Ŷi = φ(Xi)=
M∑
m=1

fm(Xi), fm ∈ F, (1)

where F is the space of regression trees. The model is trained
in an additive manner by minimizing a regularized objective
to learn the set of functions employed in the model. At each
iteration, a differentiable convex loss function that measures
the difference between the prediction Ŷi and the target Yi is
computed, and the model is also penalized for the complexity
of the regression tree functions.

3.2 Tuning hyperparameters

Tuning hyperparameters is a cumbersome task and is often
performed by reducing the parameter search space through
randomized search and applying a grid search on the reduced
space. Alternatively, hyperparameter optimization frame-
works like Hyperopt (Bergstra et al., 2015) and Optuna (Ak-
iba et al., 2019) are commonly preferred since they can con-
tinually narrow down the bulky hyperparameter search space
to an optimal space based on the preceding results. This study
implements Optuna with a tree-structured Parzen estimator
(TPE) parameter sampling framework to obtain the optimal
hyperparameter sets.

The procedure for tuning hyperparameters relies on two
major components: cross-validation and evaluation metrics.
Cross-validation measures the model’s predictive power with
a given hyperparameter set by dividing a dataset into folds.
In k-fold cross-validation, the dataset is randomly split into
k mutually exclusive subsets of approximately equal size as
D= {D1,D2,D3, . . .,Dk}. In each iteration, k−1 folds ofD
are used for training, and the remaining one is used for val-
idation. The predictions resulting from a given set of hy-
perparameters are made by iterating through the folds, so
the model is trained and validated k times. Hence, k model
performance values and the mean value are reported as the
model performance for this set of hyperparameters. Optuna
allows the use of user-defined metrics for model evaluation
during the k-fold cross-validation. Taking advantage of this
structure, we use the Kling–Gupta efficiency (KGE) (Gupta
et al., 2009) as the model performance metric.

KGE= 1−

√
(1− r)2+

(
1−

σsim

σobs

)2

+

(
1−

µsim

µobs

)2

, (2)

where σ is the standard deviation, µ is the mean, and r is
the linear correlation between the observed and simulated
series. A perfect agreement between observation and simu-
lation gives the theoretical maximum KGE value at 1.0. The
higher the KGE value is, the closer the match between the ob-
served and simulated series is. KGE offers some advantages
over commonly used metrics like root mean squared errors

(RMSEs) or the coefficient of determination (R2) because
(1) it is not dominated by relatively large values, and (2) it
simultaneously captures both the magnitude and phase dif-
ferences between the observed and simulated series (Gupta
et al., 2009).

3.3 Feature selection

Feature selection is also an essential step in developing a
simpler model that is still capable of reasonably predicting
the target variable with fewer attributes. Feature importance
is a technique of computing each predictive variable’s de-
gree of contribution towards the optimal prediction model,
which can be used for determining feature selection. The
approaches of computing feature importance scores include
correlation coefficient, the coefficients calculated as part of
decision trees, or advanced approaches like SHAP (Lund-
berg and Lee, 2017). In this study, we use the mean abso-
lute SHAP values as feature importance measures. Initially,
we begin with 76 predictive variables. For feature selection
purposes, we add a new “predictor” of randomly generated
real number values. We train the model and compare the fea-
ture importance scores (i.e., the mean absolute SHAP values)
of all predictors. Then, all attributes with scores less than
the random number attribute are dropped out. The procedure
is repeated using the new set of predictors until the random
number attribute is the least important feature.

Then, we further examine the representativeness of the
data by comparing the ranges of the selected features be-
tween the D50-available data and the nationwide data. We
use percentiles 2.5 and 97.5 to represent the lower and higher
ends of ranges in the available data. We do not directly use
the absolute min and max values to avoid the impacts of out-
liers. We then calculate the percentage of the nationwide data
below the percentile 2.5 of the available data. A percentage
value of no more than 10 % indicates a good match of lower
ends between the available and nationwide data. Similarly,
we calculate the percentage of the nationwide data above the
percentile 97.5 of the available data. A percentage value of
no more than 10 % indicates a good match of upper ends be-
tween the available and nationwide data. Taken together, for
any feature, if more than 80 % of the nationwide data are lo-
cated within the percentiles 2.5 and 97.5 of the available data,
we consider that the available data are sufficiently represen-
tative of the nationwide data for this specific feature. Oth-
erwise, a feature is considered non-representative and thus
is removed from model development. Lastly, the remaining
features are utilized for tuning the final optimal set of hyper-
parameter values.

3.4 General steps

The general steps of the model development procedure are as
follows and illustrated in Fig. 3:
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Figure 3. Flowchart for XGBoost training and prediction.

1. The predictors are scaled using the minimum–
maximum scaler method, i.e., all features will be trans-
formed into a range of [0,1]. The main advantage of
having this bounded range normalization is that it can
suppress the effect of outliers.

2. The dataset is randomly split into training (70 %) and
testing (30 %) sets. Only the training data are used in
Steps 3 and 4, while the testing data are reserved for
Step 5.

3. Optuna and k-fold (k = 5) cross-validation are used for
tuning hyperparameters, with a maximum tree of 5000
and an early stopping value of 50. The objective func-
tion for the hyperparameter optimization procedure is
to maximize the mean Kling–Gupta efficiency (KGE)
value returned from the k-fold cross-validation.

4. Feature selection is performed as described in Sect. 3.3,
so Step 3 is repeated with the new and smaller set of
predictors. Steps 3 and 4 are repeated until no more pre-
dictors can be excluded.

5. The final model is developed by fitting on the whole
training data using the optimal hyperparameters and
evaluated using the testing data reserved in Step 2.

6. The model from Step 5 is used to predict the D50 values
for the contiguous US river flowlines.

4 Results

We discuss our results in three steps: the subset of flowlines
as the basis to formulate our predictive model, the develop-

ment and validation of our predictive model, and the national
D50 map derived based on the predictive model.

4.1 Measured D50

Figure 2 shows the 1691 flowlines with the associated ob-
served D50 values. The Mississippi River has relatively
denser measurements attributed to the USACE database,
while the southwest (e.g., the Rio Grande) and the Great
Basin have fewer measurements. Overall, the 1691 flowlines
are distributed throughout the contiguous United States, pro-
viding a good spatial representation of the NHDPlus flow-
lines. Similar to all observed D50 values in Fig. 1b, most of
the D50 values associated with the flowlines represent sand-
bed rivers (D50< 2.0 mm). Larger D50 (> 2.0 mm) flowlines
are mainly located in the basins of California, Upper Col-
orado, Missouri, Ohio, and Upper Mississippi.

4.2 Predictive model

4.2.1 Feature selection

After iterations of feature selection (procedure described in
Sect. 3.3 and 3.4), 12 out of 76 predictive variables, or
predictors, are eventually selected. Firstly, 13 variables are
identified as more significant than a random-number input
vector based on the mean absolute SHAP value, as shown
in Table 1. A total of 2 out of 8 channel characteristics
and 11 out of 68 basin characteristics remain as the sig-
nificant predictors (see Table 1 for description). The most
important predictor is found to be the soil erodibility fac-
tor (Soil_erod_factor), followed by average annual wet day
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Table 1. Most important predictors according to the feature selection.

Predictor Description Mean absolute SHAP Mean absolute SHAP

Name used in this study Name in NHDPlus value (with slope) value (without slope)

Basin_slope TOT_Basin_slope Average topographic slope within the upstream
drainage area

0.30 0.42

Ann_runoff TOT_RUN Average annual runoff within the upstream
drainage area

0.23 0.41

Chan_length Pathlength Distance from the downstream end of a flowline
to the end of the network (river mouth)

0.34 0.39

Ann_snow_perc TOT_PRSNOW Mean annual snow as a percent of total precipi-
tation

0.37 0.37

Aridity_index AI Aridity index defined as the ratio of annual
mean potential evaporation to annual mean
precipitation

0.29 0.37

Ann_wet_days TOT_WDANN Average annual number of wet days 0.46 0.36

Mean_temp TOT_WBM_TAV Average mean annual temperature within the
upstream drainage area

0.29 0.35

R_factor TOT_RFACT R factor of Universal Soil Loss Equation 0.34 0.35

T_Qsub TOT_CONTACT Time it takes for water to drain along subsurface
flow paths to the stream

0.31 0.34

Mean_elev TOT_ELEV_MEAN Average surface elevation within the upstream
drainage area

0.29 0.31

Qsat_to_Qtotal TOT_SATOF Annual saturation overland flow as a percent of
total runoff

0.33 0.27

Soil_erod_factor TOT_KFACT Soil erodibility factor of Universal Soil Loss
Equation

0.51 0.22

Channel_mean_slope Slope Channel slope 0.36

Note: here we use the same names as those in the NHDPlus attribute tables but moderately revise the description using terminologies that can be understood by a broader audience.

(Ann_wet_days) and mean annual snow as a percent of total
precipitation (Ann_snow_perc).

These three basin-related predictors rank higher than
the two channel-related characteristics. Channel slope
(Slope) and distance between flowline and the river mouth
(Chan_length) are found to be the most important channel
characteristics for predicting D50, which agrees with the
downstream fining phenomena and sediment transport mech-
anisms (Niño, 2002). It is somewhat surprising that some hy-
draulic channel characteristics such as mean annual flow ve-
locity are not included in the final feature selection. Studies
on river hydraulics show relations between channel flow (i.e.,
velocity and water depth) and channel bed characteristics
(i.e., slope and roughness), such as the Manning’s equation,
Chezy’s law, etc., and channel bed roughness can be related
to bed sediment size (García, 2008). However, the feature se-
lection with the XGBoost model and SHAP value indicates
that mean annual flow velocity may not be a good predictor
for D50 in this case. A possible reason is that mean annual
flow velocity is dependent on some of the selected features

such as Ann_wet_days, Slope, etc., so excluding this variable
avoids overfitting the data.

It should be noted that the ranking of feature impor-
tance according to the mean absolute SHAP values is quite
different from the correlation coefficients between D50
and predictors, as shown in Fig. 4. Soil_erod_factor and
Ann_wet_days, the two most important features in Table 1,
have correlation coefficients of only 0.08 and 0.06, respec-
tively. Ann_snow_perc has the strongest correlation with
D50, with a correlation coefficient of 0.29. The individual
scatter plots between D50 and each of the selected features
do not show any apparent relationship between D50 and any
single feature (see Fig. S5 in the Supplement), indicating that
there might exist some higher-order interactions among the
predictors which the traditional regression analysis cannot
reveal.

We further examine the representativeness of the 1691
flowlines with observed D50 values of the rest of the flow-
lines included in the NHDPlus database in terms of the
ranges of the 13 features. For convenience, we denote the
subset of NHDPlus data associated with the 1691 flowlines
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Table 2. Comparison of the ranges and percentiles of 13 input features between the D50-available and nationwide datasets.

Attributes Percent of nationwide data that is Relative difference in percentiles between
the D50-available and nationwide data

below percentile 2.5 of above percentile 97.5 of 25th 50th 75th
the D50-available data the D50-available data

Soil_erod_factor 5.1 3.4 0.07 0.03 0.03
R_factor 6.9 10.2 0.22 0.09 0.44
Ann_wet_days 2.8 3.1 0.01 0.07 0.03
Ann_snow_perc 0.0 3.9 0.71 0.20 0.12
Channel_mean_slope 0.0 19.9 1.72 1.44 1.43
Chan_length 2.3 5.2 0.07 0.21 0.04
Ann_runoff 4.3 1.6 0.00 0.28 0.23
Qsat_to_Qtotal 0.0 7.1 2.00 0.13 0.38
T_Qsub 6.2 3.1 0.68 0.59 0.37
Basin_slope 9.3 4.8 0.17 0.04 0.10
Mean_elev 9.9 2.5 0.35 0.27 0.22
Aridity_index 2.6 6.5 0.07 0.14 0.03
Mean_temp 4.5 8.6 0.02 0.12 0.18

Figure 4. Correlation coefficients among D50 and the 12 selected
predictors.

as D50-available and the whole NHDPlus database as na-
tionwide. For most of the 13 features, the percentages of the
nationwide data that are beyond the lower or higher ends of
the D50-available are no more than 10 %, except for chan-
nel slope, i.e., “Channel_mean_slope”. Table 2 also lists the
relative difference in the 25th, 50th, and 75th percentiles be-
tween the D50-available and nationwide data. For instance,
for the 25th percentile, we calculated the relative difference
as the ratio of the difference between the 25th percentile of

the D50-available data and that of the nationwide data over
the average between the 25th percentile of the D50-available
data and that of the nationwide data. This relative differ-
ence is less than 0.5 for most of the features, again except
for “Channel_mean_slope”. For a better visual illustration,
Fig. 5 shows the cumulative distribution functions (CDFs)
and corresponding 5th, 25th, 50th, 75th, and 95th percentiles.
The CDFs are close between the D50-available and nation-
wide data, except for “Channel_mean_slope”. A similar mes-
sage can be seen from the box plots in Fig. S6 in the Supple-
ment. In addition, we would like to point out that the 1691
sampling stations we use to train and test our model are lo-
cated across the whole contiguous US and are hence geo-
graphically representative. Therefore, we conclude that the
1691 flowlines with observed D50 values are representative
enough of all the flowlines nationwide in terms of the 12 in-
put predictors, except for “Channel_mean_slope”.

We remove “Channel_mean_slope” and use the remain-
ing 12 predictors to develop the final model, following the
same model training and testing procedures as before. Fig-
ure 6 shows the comparison of model performances between
the previous and new models. The model performance met-
rics are similar. Actually, R2 became slightly better in both
training (0.834 vs. 0.830) and testing (0.405 vs. 0.367), while
KGE became slightly worse in training (0.775 vs. 0.794) but
better in testing (0.527 vs. 0.513). The slight decrease in
KGE in training data is reasonable since the model hyper-
parameter tuning was based on the objective of maximizing
KGE, and losing one predictor will slightly reduce the space
of parameter tuning. Nevertheless, now the KGE value in the
testing phase is closer to that in the training phase.

Although feature selection sheds light on the contribution
of input variables to model outputs, a drawback of the ma-
chine learning technique is that it cannot explain mechanis-
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Figure 5. Comparison of the cumulative distribution function (CDF) of 13 features between training data and all flowlines (i.e., NHDPlus).
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Figure 6. XGBoost model performance with the training (a, c) and testing (b, d) datasets. Comparison of model performances using
13 features (a, b) and 12 features (c, d; after removing “Channel_Mean_Slope”).

tically why selected features are more important than unse-
lected ones. Therefore, the goal of feature selection is to find
the best (i.e., most robust) input variables to feed the best
model for D50 predictions. If a different machine learning
algorithm from XGBoost is used, the selected features, espe-
cially their rankings, can be different. Feature selection is de-
pendent on the selection of the algorithm, so the selected fea-
tures in this study should not be directly used in other models
or studies. In the 12 selected predictors, only one is directly
related to the channel processes. The remaining 11 are all
land features, and their mechanistic connections with D50
are rather mysterious at this stage, which could be considered
as empirical evidence of the likely causal, yet highly compli-
cated, relationships between D50 and the land features and
which could hopefully inspire future studies to shed light on
the underlying mechanisms.

Table 3. Optimal value of the XGBoost model hyperparameters.

Hyperparameter Optimal value Tuning range

learning_rate 0.442 [0,1]
min_split_loss 11 [0,∞]
max_depth 7 [0,∞]
min_child_weight 21 [0,∞]
max_delta_step 41 [0,∞]
subsample 0.408 [0,1]
colsample_bytree 0.741 [0,1]
reg_lambda 0.311 [0,∞]
reg_alpha 4.054 [0,∞]
n_estimators 178 [1,∞]
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4.2.2 Model hyperparameters and performance

Table 3 shows the tuned hyperparameters of the best XG-
Boost model that is trained using the 12 selected predictors
and 70 % of the training dataset. For a detailed explanation
of the hyperparameters please refer to Chen and Guestrin
(2016). Figure 6 shows the performance of the optimal XG-
Boost model on the respective training and testing datasets.
Here we consider an optimal model based on two criteria:
(1) the model performance is satisfactory in both the training
and testing phases, indicated by good metrics values (e.g.,
KGE in this study), and (2) the model performance is rel-
atively consistent between the training and testing phases.
Here the optimal XGBoost model gives the KGE value 0.75
for training and 0.528 for testing. The testing value is above
0.5, suggesting satisfactory model performance (Gupta et al.,
2009; Knoben et al., 2019). The performance of the testing
data is noticeably worse than that of the training data, as ex-
pected. This difference is nevertheless acceptable given the
complexity of the prediction problem. The relatively con-
sistent model performance between the training and test-
ing phase suggests that the model validation (via the testing
phase) is successful.

4.2.3 Model sensitivity analysis

We carry out further analysis to shed light on how the mod-
eling results may be sensitive to some of the key steps as
outlined in Sect. 3.4. We focus on Steps 2 to 4 only because
Steps 1 and 5 are standard practice, and Step 6 utilizes the
modeling results.

For Step 2, the 2/3 (train) and 1/3 (test) split is typical
in machine learning for splitting training and testing data.
This can be readjusted up to 4/5 (train) and 1/5 (test) if
the total sample size is sufficiently large, which is nonethe-
less not the case here. For Step 3, we test the sensitivity of
the choices of model performance metrics and k value. For
the model performance metrics, we have also tried Nash–
Sutcliffe efficiency (NSE) and R2 and found that using KGE
gave better model performance (Fig. S7 in the Supplement)
due to two reasons: (1) a much smaller percentage of bias
(PBIAS) and (2) visually better alignment between the sim-
ulated and observed D50 values along the 1 : 1 line. The
choice of k value is usually 5 or 10 depending on the training
sample size. We use 5 since using 10 significantly reduces
the number of samples per fold, and the left-out sample will
be too small for validation during cross-validation. Increas-
ing k-fold to 6 or decreasing it to 4 still gives a similar satis-
factory performance in both the training and testing phases,
with training/testing KGE of 0.759/0.505 and 0.795/0.512,
respectively. For Step 4, we evaluate the model sensitivity
to each selected feature by dropping 1 of the 12 variables
at a time and repeating the same modeling procedure for
the remaining 12 variables. Figure 7 shows that dropping
the variables leads to the model performance dropping be-

Figure 7. Sensitivity of the XGBoost model to the selected features.
The result shown in blue bars are obtained by dropping the corre-
sponding labeled feature from the 13 selected features. The dashed
red line represents the model performance with all variables.

low KGE 0.5 during the testing phase in most cases. The
change in testing-phase KGE ranges between 4 % and 22 %.
The largest changes are observed when dropping R_factor
and Mean_elev. Even with those two, the KGE difference be-
tween the training and testing phases increases from 0.28 to
0.36 by including them as predictors. Thus, all the variables
remaining after feature selections play a significant role in
the final model.

4.3 National map

Using the developed machine learning model and NHDPlus
channel/basin characteristics data, we are able to produce a
national map of bed sediment D50 values (Fig. 8). The spa-
tial pattern of D50 in Fig. 8 is generally consistent with the
observed D50 in Fig. 2. High D50 values are mostly dis-
tributed on the west coast, upper Missouri, and Ohio regions,
and low D50 values are concentrated on the east coast. The
consistency between Figs. 2 and 8 suggests that the observed
D50 data are reasonably representative of the whole contigu-
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Figure 8. Predicted D50 in ∼ 2.7 million flowlines across the contiguous US using the XGBoost model.

ous US, despite the sparse distribution. Given that the test-
ing dataset is independent of the training dataset, we expect
that the error statistics derived for the testing data should be
relatively consistent with the error statistics in applying the
model to derive the national map of D50. To our best knowl-
edge, it is the first-of-its-kind D50 data for the whole con-
tiguous US. Such a D50 map is mostly valuable to support
the parameterization of large-scale sediment modeling at the
regional or national scale, which has been very challenging,
if not impossible, before this map.

5 Limitations of the method

The predicted D50 values may be subject to several limi-
tations despite using state-of-the-art machine learning tech-
niques to develop the predictive model. These limitations
include (1) limited data availability. Although the 1691 ob-
served D50 values are adequately representative of the con-
tiguous US (i.e., consistent spatial patterns between Figs. 3
and 8), limited data availability prevents us from establishing
a separate predictive model for each river basin. For exam-
ple, there is little observed D50 data in the Rio Grande and
Great Basin, so the predicted D50 values over these basins
should be used cautiously. (2) Our methodology is statisti-
cal in nature and lacks explicit process-based understanding.
For example, Fig. 6 shows the model tends to overestimate
D50 for smaller D50 values (particularly< 0.25 mm) and un-
derestimate D50 for larger D50 values (particularly> 1 mm).
However, in various trials we have performed, the current re-
sult is closest to the 1 : 1 relationship based on both the KGE
metric and visual check. Further process-based understand-
ing of this systematic bias is beyond the scope of this study
because it would require (a) a highly integrated, process-

based model that considers at least sediment erosion, depo-
sition, and transport processes in both hillslopes and chan-
nels, and (b) well-designed numerical experiments to iso-
late the dominant processes and controlling factors. (3) We
have not explicitly incorporated the effects of lakes and reser-
voirs but rather assumed these effects have been indirectly re-
flected in the NHDPlus hydrologic attributes adopted in the
predictive model. (4) The bed sediment at the gauge station
may not always be representative of the reach. Edwards and
Glysson (1999) characterized how most of the bed sediment
samples were collected and composited at a cross-section by
the USGS over the years. Gauge stations are established at
cross-sections in the stream where flow measurements are
convenient and with conditions conducive to high-quality
flow measurements – the issue of whether the bed sediment
composition represents the reach is generally not taken into
account when the gauge station location is established. As
such, our predictive results are certainly not free from uncer-
tainties. Therefore, we recommend using our D50 map for
sediment modeling and assessment at the regional or national
scales instead of local studies at the individual river segment.

6 Potential usage

The D50 map might be used for large-scale sediment trans-
port modeling over the whole contiguous US or a major
river basin such as the Mississippi River basin. For exam-
ple, we have tested the usage of the new D50 dataset within
a large-scale suspended sediment modeling framework (Li
et al., 2021b), and our successful model validation against
the USGS-observed suspended sediment load over multiple
stations suggests the good value of such a national-scale D50
dataset. There is inevitably some uncertainty embedded in
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this map sourced from the original D50 observations and
NHDPlus attributes, the XGBoost modeling, and the spa-
tial extrapolation process. This uncertainty should be taken
into account when utilizing this map for regional-scale as-
sessment or modeling.

7 Data availability

The national D50 map is freely available at https://doi.org/
10.5281/zenodo.4921987 (Li et al., 2021a). The input data
are obtained from the USGS water quality portal (https:
//nwis.waterdata.usgs.gov/usa/nwis/qwdata, U.S. Geological
Survey, 2016), NHDPlus (https://www.epa.gov/waterdata/
nhdplus-national-data, U.S. Geological Survey and U.S. En-
vironmental Protection Agency, 2020), and ScienceBase
(https://doi.org/10.5066/F7765D7V, Wieczorek et al., 2018).

8 Conclusions

We develop a new national map of the median bed sedi-
ment particle size by combining the USGS sediment observa-
tions, the channel and watershed characteristics from NHD-
Plus and ScienceBase, and state-of-the-art machine learning
techniques. Despite the limitations, the map is highly valu-
able for sediment modeling and assessment at the regional
and larger scales, which had not been feasible previously.
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