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Abstract. Developing a big data analytics framework for generating the Long-term Gap-free High-resolution
Air Pollutant concentration dataset (abbreviated as LGHAP) is of great significance for environmental manage-
ment and Earth system science analysis. By synergistically integrating multimodal aerosol data acquired from
diverse sources via a tensor-flow-based data fusion method, a gap-free aerosol optical depth (AOD) dataset with
a daily 1 km resolution covering the period of 2000–2020 in China was generated. Specifically, data gaps in daily
AOD imageries from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra were recon-
structed based on a set of AOD data tensors acquired from diverse satellites, numerical analysis, and in situ air
quality measurements via integrative efforts of spatial pattern recognition for high-dimensional gridded image
analysis and knowledge transfer in statistical data mining. To our knowledge, this is the first long-term gap-free
high-resolution AOD dataset in China, from which spatially contiguous PM2.5 and PM10 concentrations were
then estimated using an ensemble learning approach. Ground validation results indicate that the LGHAP AOD
data are in good agreement with in situ AOD observations from the Aerosol Robotic Network (AERONET), with
an R of 0.91 and RMSE equaling 0.21. Meanwhile, PM2.5 and PM10 estimations also agreed well with ground
measurements, with R values of 0.95 and 0.94 and RMSEs of 12.03 and 19.56 µg m−3, respectively. The LGHAP
provides a suite of long-term gap-free gridded maps with a high resolution to better examine aerosol changes
in China over the past 2 decades, from which three major variation periods of haze pollution in China were
revealed. Additionally, the proportion of the population exposed to unhealthy PM2.5 increased from 50.60 % in
2000 to 63.81 % in 2014 across China, which was then reduced drastically to 34.03 % in 2020. Overall, the gen-
erated LGHAP dataset has great potential to trigger multidisciplinary applications in Earth observations, climate
change, public health, ecosystem assessment, and environmental management. The daily resolution AOD, PM2.5,
and PM10 datasets are publicly available at https://doi.org/10.5281/zenodo.5652257 (Bai et al., 2021a), https:
//doi.org/10.5281/zenodo.5652265 (Bai et al., 2021b), and https://doi.org/10.5281/zenodo.5652263 (Bai et al.,
2021c), respectively. Monthly and annual datasets can be acquired from https://doi.org/10.5281/zenodo.5655797
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(Bai et al., 2021d) and https://doi.org/10.5281/zenodo.5655807 (Bai et al., 2021e), respectively. Python, MAT-
LAB, R, and IDL codes are also provided to help users read and visualize these data.

1 Introduction

Atmospheric aerosols not only impact regional climate by
changing the Earth radiation budget but also significantly in-
fluence air quality at the ground level (Fuzzi et al., 2015; Gao
et al., 2018; Shen et al., 2020; Sun et al., 2015; Yang et al.,
2020; Zheng et al., 2020). Monitoring aerosol loading in the
atmosphere is thus of great significance for climate change
attribution and haze pollution assessment. Aerosol optical
depth (AOD), an indicator of aerosol bulks distributed within
a column of air from the Earth’s surface to the top of the
atmosphere, has been monitored for decades to map global
aerosol loading in the atmosphere. Compared with sparsely
and unevenly distributed ground-based aerosol monitoring
stations (e.g., the Aerosol Robotic Network – AERONET),
satellite instruments can map AOD with vaster spatial cover-
age at even sub-hourly sampling frequency (e.g., geostation-
ary satellite). An overview of sensors, algorithms, and AOD
datasets that are widely used in the community can be found
in the literature such as in Sogacheva et al. (2020) and Wei et
al. (2020).

Due to negative impacts of bright surfaces (e.g., snow
cover) and clouds, as well as algorithmic restrictions, satel-
lite AOD retrievals often suffer from extensive data gaps,
significantly reducing the downstream application potential
such as mapping particulate matter (PM) concentrations at
the ground surface (e.g., Bai et al., 2019a; J. Wei et al., 2021
). Also, excessive data gaps in AOD imageries may result in
large uncertainty when assessing aerosol impacts on weather
and climate (Guo et al., 2017; Li et al., 2019; Zhao et al.,
2020; Zheng et al., 2018). Over the years, versatile gap-filling
methods have been developed (e.g., Bai et al., 2016, 2020b;
Chang et al., 2015). Nonetheless, filling data gaps in satellite-
based AOD retrievals is still challenging due to extraordi-
nary nonrandom missing values and high aerosol dynamics
in space and time.

Wei et al. (2020) provided a short review of methods that
have been frequently applied to deal with data gaps in AOD
products. In general, merging AOD data acquired from di-
verse instruments and/or platforms is the most popular ap-
proach to improve AOD spatial coverage (Sogacheva et al.,
2020). Statistical methods such as linear regression (Bai et
al., 2019a; Wang et al., 2019; Zhang et al., 2017), inversed
variance weighting (Chen et al., 2018; Ma et al., 2016; So-
gacheva et al., 2020), and maximum likelihood estimation
(Xu et al., 2015) are often applied to account for systematic
bias among different datasets. Data fusion methods such as
Bayesian maximum entropy can be applied to blend AOD
products with different resolutions (Tang et al., 2016; X. Wei

et al., 2021). Another way is to reconstruct missing AOD val-
ues using either neighboring observations in space and time
or external data sources such as AOD simulations from nu-
merical models (Li et al., 2020; Xiao et al., 2017) and even
meteorological factors (Bi et al., 2018).

Although there exist a variety of gap-filling methods, spa-
tially gap-free AOD datasets are still rare, particularly high-
resolution AOD datasets from satellites, significantly lim-
iting downstream applications such as PMx concentration
mapping. In spite of versatile PM2.5 concentration predic-
tion models (e.g., Di et al., 2019; Fang et al., 2016; Hu et
al., 2014; Li et al., 2016; Lin et al., 2016; Liu et al., 2009;
B. Wang et al., 2021), to date, there are few publicly acces-
sible PMx concentration datasets that can be used to exam-
ine haze pollution variations regionally and globally. Several
typical datasets, e.g., the one generated by Dalhousie Uni-
versity (van Donkelaar et al., 2010, 2016), CHAP (J. Wei et
al., 2021), and TAP (Geng et al., 2021), have been widely ap-
plied to advance our understanding of aerosol impacts across
China and the globe. However, these datasets more or less
still suffer from drawbacks in terms of spatial and/or tempo-
ral resolution, spatial coverage, and data accuracy. To meet
contemporary needs, Zhang et al. (2021) provided a more
comprehensive review of the widely used PMx concentra-
tion mapping approaches. With a thorough review of PM2.5
concentration mapping techniques, an optimal full-coverage
PM2.5 modeling scheme was proposed, in which diverse
aerosol datasets were fused toward a full-coverage AOD map
based on a multimodal approach (Bai et al., 2022). In parallel
with these efforts, some have attempted to improve AOD data
coverage over space with high accuracy by merging AODs
observed at adjacent times directly (Li et al., 2022).

With such prior knowledge, the current study developed a
big data analytics framework for generating the Long-term
Gap-free High-resolution Air Pollutant concentration dataset
(abbreviated as LGHAP hereafter), aiming at providing gap-
free AOD, PM2.5, and PM10 concentration data with a daily
1 km resolution in China for the period of 2000 to 2020.
To achieve such a goal, multimodal aerosol data acquired
from diverse sources including satellites, ground stations,
and numerical models were synergistically integrated via
high-order singular value decomposition (HOSVD) to form a
tensor-flow-based data fusion framework in the current study.
Full-coverage PM2.5 and PM10 concentration data were then
estimated on the basis of the gap-filled AOD dataset. This 21-
year-long gap-free high-resolution (daily and 1 km) aerosol
dataset was then compared against ground-based AOD and
PMx observations to validate the data accuracy of each prod-
uct, particularly their performance in spatial pattern recogni-
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tion and temporal trend assessment. These advances enabled
a better assessment of long-term variability in haze pollution
in China as well as of the corresponding population exposure
over the past 2 decades.

2 Data sources

Table 1 provides a brief summary of the multisource datasets
used in this study to generate the LGHAP dataset. As shown,
6 satellite-based AOD products, 5 numerical simulations of
AOD and aerosol components, 11 meteorological factors,
and 6 datasets of ground-based AOD and air pollutant con-
centration measurements, as well as a set of land cover, to-
pographic, and socioeconomic parameters, were employed.
Descriptions of these datasets are given in the following sub-
sections.

2.1 Gridded aerosol products

In many previous studies, coarse AOD and/or aerosol compo-
nent simulations acquired from numerical models have often-
times been used as the primary data source to help derive full-
coverage AOD and/or PM2.5 concentration maps (e.g., Park
et al., 2020; Y. Wang et al., 2021). However, due to the lack of
a high-accuracy near-real-time emission inventory, simulated
AOD and/or aerosol components are often prone to large un-
certainty, which could be inevitably introduced into the final
PM2.5 estimations if no observational data are applied for
possible bias correction. In such a research context, here we
used six satellite-based AOD products with a relatively long
temporal coverage (>5 years) to help better reconstruct his-
torical AOD variations over space and time, though geosta-
tionary satellites can provide AOD observations at even an
hourly resolution. The reasons are twofold. On the one hand,
the operational AOD product from the recent Chinese FY-
4 satellite is still unavailable. On the other hand, the AOD
product from Himawari-8 cannot provide observations in the
northwest region of China.

The latest AOD product derived from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) on board Terra
using the multiangle implementation of atmospheric correc-
tion (MAIAC) algorithm (Lyapustin et al., 2011, 2018), was
hereby used as the baseline dataset for the generation of
gap-free AOD maps. This AOD product has not only a finer
spatial resolution (1 km) but also a comparable and perhaps
even better accuracy, when comparing it with those derived
from the Dark Target and Deep Blue algorithms (Goldberg
et al., 2019; Lyapustin et al., 2018). In addition, AOD prod-
ucts derived from MODIS on board Aqua, the Multi-angle
Imaging SpectroRadiometer (MISR) on board Terra, the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) on board
Suomi NPP, the Advanced Along-Track Scanning Radiome-
ter (AATSR) on board Envisat, and POLarization and Di-
rectionality of the Earth’s Reflectances (POLDER) on board
PARASOL were also employed. The ultimate goal was to re-

duce the bias level in the final full-coverage AOD product
by providing as many observational AODs as possible. Ac-
curacies of these AOD products have been extensively vali-
dated in previous studies, e.g., de Leeuw et al. (2018), Xiao
et al. (2016), Wei et al. (2019), and Che et al. (2019), to name
a few. A brief description of these satellite-based AOD prod-
ucts can be found in Sect. S1 in the Supplement.

In addition to satellite-based AOD products, numerically
simulated aerosol diagnostics from MERRA-2, including
AOD and aerosol components such as black carbon, organic
carbon, dust, and sulfate, were also applied to help recon-
struct missing AOD information and to predict PM2.5 and
PM10 concentrations at the ground level. The aerosol com-
ponents were used here as a proxy for an emission inventory
when predicting PMx concentrations. Big data analytics pro-
cedures applied to these datasets will be described in Sect. 3.

2.2 In situ AOD and air quality measurements

AOD observations from AERONET were used as the ground
truth to evaluate the data accuracy of the generated gap-free
AOD product and also as the learning target to infer AOD
from air pollutant concentration and atmospheric visibility.
Considering few valid data were provided in the Level 2.0
dataset, here we used the Level 1.5 AOD data to guarantee
adequate in situ AOD data coverage in space and time. To
validate the gridded AOD products in this study, each in situ
AOD observation was registered with the gridded mean AOD
over a 50× 50 km window.

Near-surface air pollutant concentrations including PM2.5,
PM10, NO2, and SO2 that were sampled at state-controlled
monitoring sites were also applied, not only to help estab-
lish machine-learned regression models for PMx prediction
(PM2.5 and PM10) but also to infer AOD over air quality
monitoring sites given their dense distributions across China.
The gauged air pollutant concentration data have been re-
leased online on an hourly basis by the China National En-
vironmental Monitoring Centre since late 2013. For quality
control, outliers were first detected and removed from each
pollutant dataset by following the criteria used in our previ-
ous study (Bai et al., 2020a). The missing values were then
reconstructed using the diurnal-cycle-constrained empirical
orthogonal function (DCCEOF) method proposed in Bai et
al. (2020b).

The 3 h resolution atmospheric visibility data acquired
from 4052 weather stations, at which in situ air quality mea-
surements were not available, were employed to help gener-
ate gap-free AOD maps before 2014. Previous studies have
attempted to predict PM2.5 concentration from atmospheric
visibility data with good accuracies (Liu et al., 2017), in-
dicative of great potential for estimating AOD. Specifically,
visibility data were used as an important predictor for site-
specific AOD prediction, and the resulting AOD predictions
were then used as critical prior information for reconstruct-
ing AOD distributions over space, especially over those re-
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Table 1. Summary of the data sources used in this study to generate gap-free high-resolution AOD and PMx concentration datasets. NDVI
denotes the normalized difference vegetation index.

Category Source product Time range Temporal
resolution

Spatial resolution

Terra MODIS 2000–2020 daily 1 km
Aqua MODIS 2002–2020 daily 1 km
Terra MISR 2000–2020 daily 4.4 km

AOD Suomi NPP VIIRS 2012–2020 daily 5 km
Envisat AATSR 2000–2012 daily 10 km
PARASOL POLDER 2005–2013 daily 10 km
MERRA-2 2000–2020 hourly 0.5◦× 0.625◦

AERONET 2000–2020 hourly point

Air temperature hourly 0.25◦

U and V components of wind hourly 0.25◦

Relative humidity hourly 0.25◦

Surface pressure hourly 0.25◦

Meteorology Boundary layer height 2000–2020 hourly 0.25◦

Total column water vapor hourly 0.25◦

Surface solar radiation downward hourly 0.25◦

Instantaneous moisture flux hourly 0.25◦

Visibility 2000–2013 3 h point

Air quality PM2.5, PM10, SO2, NO2 2014–2020 hourly point

Population WorldPop 2000–2020 annual 1 km

Elevation SRTM DEM 2000 – 30 m

Land cover
CLCD 2000–2019 annual 30 m
GlobeLand 2020 annual 30 m

NDVI Terra MODIS 2000–2020 monthly 1 km

Aerosol component MERRA-2 2000–2020 hourly 0.5◦× 0.625◦

gions without satellite AOD observations. Given the avail-
ability of abundant air quality measurements and the fact that
automatic visibility sensors have been widely used across
China since 2014, atmospheric visibility data after 2014 were
thereby excluded to guarantee data consistency (Li et al.,
2018). For quality control, the consistency of visibility data
was examined using an outlier detection method; i.e., the an-
nual mean should not exceed 3 times the standard deviation
of data over a 5-year time window (Zhang et al., 2020). Those
data with apparent jumps and drifts in visibility time series
were excluded. Meanwhile, visibility data on rainstorms and
foggy days were eliminated as well.

2.3 Auxiliary data

As shown in Table 1, 11 meteorological factors, including
air temperature at the near surface, wind speed and direction,
relative humidity, surface pressure, boundary layer height, to-
tal column water vapor, downward solar radiation, and in-
stantaneous moisture flux, were used to help resolve non-
linear relationships between PMx and AOD, as well as to
downscale AOD from MERRA-2. These data were acquired

from the fifth-generation ECMWF atmospheric reanalysis
(ERA5), and the first three factors were extracted at the lev-
els of not only the ground surface but also 850 and 500 hPa
so as to indicate the vertical structure of the atmosphere. Ad-
ditionally, population data from WorldPop, land cover from
CLCD during 2000 to 2019 (Yang and Huang, 2021) and
GlobeLand 30 in 2020 (Chen et al., 2014), and elevation data
from the Global Digital Elevation Model (GDEM) version 2,
as well as the monthly composited 1 km normalized differ-
ence vegetation index (NDVI) from MODIS were employed
to resolve the socioeconomic and ecological contributions to
haze pollution. Properties of these datasets can be found in
Table 1, and datasets with a finer resolution were upscaled to
0.01◦ via a cubic interpolation method.

3 Methodology

With the aim of the generation of LGHAP aerosol datasets
to advance environment management and Earth system sci-
ence analysis, here we developed a big data analytics frame-
work via a seamless integration of tensor-flow-based multi-
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Figure 1. Flowchart of the proposed big data analytics framework for generating the long-term gap-free high-resolution air pollutant concen-
tration dataset (LGHAP), taking aerosol optical depth (AOD) and PMx (PM2.5 and PM10) concentration in China as illustration. HOSVD is
an abbreviation of high-order singular value decomposition. MET, LULC, DEM, and POP denote variables of the meteorology, land use/land
cover, digit elevation model, and population, respectively.

modal data fusion with ensemble-learning-based PMx con-
centration estimation. The proposed method transformed a
set of data tensors of AOD and other related datasets such
as air pollutant concentration and atmospheric visibility,
which were acquired from diverse sensors or platforms via
integrative efforts of spatial pattern recognition for high-
dimensional gridded data analysis to achieve data fusion and
multiresolution image analysis, as well as knowledge trans-
fer in statistical data mining. The proposed method con-
sists of three major procedures in general, including multi-
sensory data homogenization, tensor-flow-based AOD recon-
struction, and ensemble learning for PMx concentration es-

timation. The analytical framework of the big data analytics
is depicted in Fig. 1 and described in detail in the following
subsections.

3.1 Multisensory data homogenization

Since a set of aerosol products with different types, reso-
lutions, and accuracies were applied to support the recon-
struction of gap-free AOD imageries, harmonizing cross-
platform biases and scale differences between these diverse
datasets is crucial to multisensory data integration. In this
study, machine-learned regression models were established
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to harmonize these heterogeneous aerosol datasets. A base-
line dataset was first selected to be used as the learning tar-
get, and other datasets were calibrated to the level of baseline
dataset to make them comparable. Given the finer resolution
and higher proportion of data coverage in space and time, the
MAIAC AOD product from Terra (AODTerra) was selected
as the baseline dataset. Consequently, six machine-learned
regression models were established between AODTerra and
each gridded AOD product (i.e., five satellite-based AOD
products plus MERRA-2 AOD simulations) using the ran-
dom forest method. Meteorological factors (MET), land
cover types (LULC), topography (DEM), and population
(POP) were used as covariates to help downscale these mul-
timodal AOD products to have a resolution the same as
AODTerra while accounting for cross-mission biases arising
from temporal and algorithmic differences.

Considering data gaps are extensive in satellite AOD prod-
ucts, especially over regions with vast cloud cover, provid-
ing prior AOD information over such regions is thus of great
value in support of the reconstruction of missing AOD val-
ues. As indicated in our recent studies, AOD can be accu-
rately predicted from ground-measured air pollutant concen-
tration, showing an accuracy even higher than some satellite
AOD retrievals (Li et al., 2022; Bai et al., 2022). To support
AOD reconstruction over regions with fewer or even with-
out valid satellite AOD observations, we attempted to infer
AOD over air quality monitoring sites from in situ air pollu-
tant concentration measurements via a machine learning ap-
proach. Similarly, machine-learned regression models were
established using random forest by taking AODTerra as the
learning target while ground-measured air pollutant concen-
trations, meteorological factors, land cover, and terrain infor-
mation were used conjunctively as predictors.

The transformation of ground-measured air pollutant con-
centration data to AOD allows for providing external obser-
vational AOD data to supplement satellite observations, es-
pecially over regions suffering from significant data gaps.
Since air pollutant concentration data were not available
before 2013, atmospheric visibility data sampled at dense
weather stations were used as an alternative for site-based
AOD prediction, by applying a similar prediction model to
that described above and used for air pollutant concentration.
Figure S1 show the ground-based validation results of AOD
inferred from atmospheric visibility and air pollutant con-
centrations, indicative of a generally good accuracy of these
inferred AOD values. All efforts led to aggregating a set of
multimodal aerosol data with different properties for multi-
sensory data fusion to achieve gap-free AOD mapping as the
next step.

3.2 Tensor-flow-based AOD reconstruction

The core of generating full-coverage AOD imageries is to fill
in data gaps in AODTerra. Previous studies have demonstrated
that merging satellite AOD retrievals at adjacent time steps

can help improve the observational AOD coverage at each
single snapshot, while the involvement of numerical AOD
simulations can help bridge AOD data gaps (Li et al., 2022;
Bai et al., 2022). In this study, a tensor completion method
was particularly designed and applied to fulfill the gap fill-
ing in AODTerra. Specifically, the incomplete AODTerra im-
ageries were deemed the hard data (true AOD state), while
other AOD datasets (e.g., the downscaled AOD datasets and
site-specific AOD predictions inferred from air pollutant con-
centration and atmospheric visibility) were used as the soft
data (complementary data) to help reconstruct AOD distribu-
tion in AODTerra via tensor-flow-based pattern recognition.
Detailed procedures for gap filling are outlined as follows.

3.2.1 Initial AOD tensor construction

Due to extensive data gaps in satellite-based AOD retrievals,
it is insufficient to reconstruct all missing AOD information
in AODTerra for a given date by simply merging the har-
monized satellite-based AOD data synchronously. To fulfill
AOD gap filling, the tensor completion method was thus ap-
plied to synergistically integrate AOD acquired from diverse
sources. Consequently, creating the data tensor of AOD is of
critical importance. In this study, the data tensor of AOD was
constructed by incorporating not only observational AOD
from both satellites and those inferred from in situ air quality
indicators on the same date but also historical AOD retrievals
from MODIS instruments (AODTerra and AODAqua) and part
of data from the downscaled MERRA-2 AOD (denoted as
AODM2 hereafter). The latter two were applied to provide
knowledge of AOD distributions over space to guide the re-
construction of missing values in AODTerra.

For the screening of historical observations resembling
AODTerra distribution on the given date to be reconstructed,
AODM2 was used in concert with AODTerra and site-based
AOD estimations to identify similar imageries. Toward this
goal, site-specific AOD estimations and 5 % randomly se-
lected downscaled AODM2 data were merged directly with
valid AODTerra to form a new image on each date. Sub-
sequently, correlations and biases were estimated between
AODTerra on the given date to be reconstructed and each
newly merged historical AODTerra image. To avoid the inclu-
sion of imageries with distinct variation patterns, only those
closely resembling AODTerra on the date to be reconstructed
were finally retained in terms of their correlations and bi-
ases subject to thresholds of R>0.7 and RMSE <0.2. Once
sufficient historical imageries were obtained, the data tensor
of AOD was constructed by compiling the observed AOD
imageries on the given date with historical imageries into
a three-dimensional data array A ∈ RN1×N2×N3 (composed
of N3 images with a size of N1×N2). Considering satellite
AOD retrievals suffer from extensive data gaps, we injected
data values of site-specific AOD estimations and 1 % ran-
domly selected downscaled AODM2 data directly onto grids
where AODTerra values were missing on each specific date
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as prior knowledge. This not only accelerates convergence
speed during the reconstruction process but also avoids large
reconstruction errors over regions with tremendous data gaps
in satellite-observed AOD imageries.

3.2.2 Gap filling via tensor completion

Previous studies have well demonstrated the good perfor-
mance of matrix decomposition methods such as empiri-
cal orthogonal functions and singular value decomposition
(SVD) for missing value imputation (Bai et al., 2020b; Beck-
ers and Rixen, 2003). However, these methods can only work
on a two-dimensional matrix mathematically, namely the ma-
trix domain. To integrate spatial features of AOD revealed by
datasets to generate a smooth AOD distribution with com-
plete coverage, in this study, the HOSVD, a specific orthog-
onal Tucker decomposition, was applied. More detailed de-
scriptions of HOSVD can be found in the literature such as
in Sun et al. (2021), Tucker (1966), Kolda and Bader (2009),
and Sidiropoulos et al. (2017).

In Algorithm 1, we provided a stepwise description of the
algorithm used to fill data gaps in AODTerra by integrating
AOD features recognized in different imageries as the data
tensor of AOD via HOSVD. To initiate the tensor decompo-
sition, grids with missing values in the original AOD tensor
were first filled with the spatial average of valid AOD data
in each individual image. Then, the AOD tensor was decom-
posed along each of the three dimensions, while the dominant
features in each dimension determined by the corresponding
rank values were applied to reconstruct the data tensor. By
gradually increasing the rank values and iteratively updat-
ing the initial filled values, the tensor can be reconstructed
to better delineate AOD distribution over space after several
iterations.

To confirm the convergence, a small portion of observa-
tional AOD values were randomly held out in advance, and
the reconstructed values over these grids in each iteration
were compared with these held-out data till the difference
between them was lower than 0.01 (a threshold to deter-
mine convergence, a.k.a ε1 in Algorithm 1). Meanwhile, to
make the computational burden manageable, the study re-
gion (China in this study) was divided into 40 subregions
(refer to Fig. S2 for the spatial distribution of these subre-
gions), and the tensor completion was then performed over
each individual region. Finally, the reconstructed imageries
were mosaicked to attain a national gap-free AOD map on
each specific date. During this step, a smooth filter was ap-
plied to solve the boundary effect when mosaicking two ad-
jacent maps. Specifically, the data value on each overlapped
grid at the boundary (50 km on the edge of a subregion) was
averaged via an inverse distance (the distance to the edge)
weighting scheme. In the end, the mosaic AODTerra image
was retained as the final gap-free AOD product.

3.3 PMx concentration estimation

In this study, the widely used random forest method was ap-
plied to establish regression models for PM2.5 and PM10 con-
centration estimation. Ground-measured PM2.5 (or PM10)
concentration data were used as the learning target, and gap-
filled AOD, aerosol components (AERcomp), meteorologi-
cal factors (MET), the digital elevation model (DEM), the
NDVI, land cover information (LC), and population were
used as regressors. The random forest (RF) regression model
can be generally formulated as

PMx = RF(AOD,AERcomp,MET,DEM,NDVI,POP,

LC,month), (1)

where month is a categorical variable that was used to ac-
count for monthly varying relationships between AOD and
PMx . For validation, PM2.5 and PM10 measurements from
10 % of monitoring sites were randomly held out to evaluate
the predictive performance of each regression model. During
the training process, 500 regression trees were used in each
RF model, and each tree was grown on a bootstrap sample.
The learning dataset was randomly divided into two parts
during the training process, with 80 % used as the training
set and the remaining 20 % for testing. In order to guarantee
a larger value of PM10 than PM2.5, PM2.5 estimations from
Eq. (1) were used as one predictor in addition to factors used
to predict PM2.5 when estimating PM10 concentration. Such
a model can also significantly improve the prediction accu-
racy of PM10 given the prior PM2.5 information.

3.4 Point–surface data fusion

Ground-measured PM2.5 and PM10 concentration data were
further fused with their gridded estimations to enhance the
data accuracy of PMx data after 2014. Here, the well-known
optimal interpolation (OI) method was applied to perform
point–surface fusions between two different types of dataset.
Please refer to Bai et al. (2022) and Li et al. (2022) for
a more detailed description of the OI method used to fuse
PMx concentration data. In this study, a modified scheme
was developed to select neighboring observations. To avoid
an isotropic interpolation effect, here we only used 30 ground
observations with land cover, terrain, and atmospheric condi-
tions similar to those at the analyzed grid cell to estimate the
innovation that should be assigned to the background value at
the given grid. In other words, a similarity measure was first
estimated between the analyzed grid cell and neighboring
sites in terms of land cover, the DEM, and atmospheric con-
ditions. The 30 observations with similar background fields
were then used in the OI procedure to correct possible bias
in gridded PMx estimations. Such a treatment can help ex-
clude those observations with different ambient background,
e.g., one site not far from the given grid but separated by a
high mountain, thereby avoiding the possible propagation of
antiphase corrections to data over adjacent grids.
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Figure 2. Scatterplots between ground-observed and satellite-based AOD data in different regions of China. (a–e) Original Terra MODIS
AOD, (f–j) reconstructed AOD, and (k–o) combined AOD between original and reconstructed data. BTH, YRD, SC, and WC refer to the
regions of Beijing–Tianjin–Hebei, Yangtze River Delta, South China, and West China, respectively.

4 Results and discussion

4.1 Data accuracy of gap-free AOD in LGHAP

Table 2 summarizes the data accuracy of the gap-free AOD
dataset generated in this study. For comparison, the data ac-
curacy of each original AOD dataset was also assessed. Since
in situ AOD measurements were not used as data input when
reconstructing missing AOD information, the gap-free AOD
can be directly compared with in situ AOD measurements
from AERONET. As indicated, all these AOD datasets are

in good agreement with in situ AOD measurements. Gen-
erally, AODs from MODIS on board Terra and Aqua have
an almost identical data accuracy, which is also among the
highest when comparing with other datasets (R = 0.95, and
RMSE= 0.14). AODs from AATSR show a comparable ac-
curacy to that of MODIS but with a relatively low corre-
lation with ground-based AOD measurements. AODs from
MISR, POLDER, and VIIRS exhibit a similar bias level,
with R varying from 0.80 to 0.92 and RMSE ranging from
0.22 to 0.29. In contrast, AODM2 data have the poorest accu-
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racy among these eight gridded AOD datasets (R = 0.77, and
RMSE= 0.36), even though AOD data from AERONET and
satellite observations like MODIS had been already assimi-
lated. This indicates the presence of large biases in AODM2,
and thus these AODM2 data cannot solely be used to delin-
eate AOD distributions over space.

Compared to the first seven gridded AOD datasets, the
LGHAP AOD dataset has an accuracy slightly worse than the
original MODIS AOD product but comparable to AODs from
MISR, POLDER, and MERRA-2, with an R of 0.91 and
RMSE equaling 0.21 compared to ground-based AOD obser-
vations. Nevertheless, the gap-filled AOD appeared to over-
estimate ground-based AOD observations, and this could be
due to the involvement of AODs from VIIRS and POLDER
as these two products significantly overestimated ground
AOD observations, which can be indicated by the propor-
tion of data pairs above the expected error (EE). On the other
hand, significant underestimations in AODM2 were not in-
troduced into the LGHAP AOD as the below-EE ratio was
32.97 % in the former and was only 12.27 % in the latter.
These results indicate that the LGHAP AOD data are more
likely to resemble AOD distributions revealed by satellite
observations rather than AODM2, endorsing the advantages
of involving multisensory satellite AOD observations to sup-
port missing AOD reconstruction. Figure 2 further compares
the data accuracy of original AODTerra and the reconstructed
data over different regions of China. It is indicative that the
purely reconstructed data have an accuracy (R = 0.88, and
RMSE= 0.26) lower than the original AODTerra (R = 0.95,
and RMSE= 0.13) across China, especially in South China
where the reconstructed data significantly underestimated the
ground-based AOD observations. Possible reasons for this
effect could be attributed to extensive data gaps in satellite
AOD retrievals due to frequent and extensive cloud cover
there (refer to Fig. S3 for the distribution of the mean data in-
tegrity of AODTerra during 2000–2020), and the scarce AOD
observations significantly limit the learning capacity in space
and temporal domain during the tensor completion process.
In other words, limited observations in satellite imageries
greatly reduced the learning performance from the sparse
tensor. Nevertheless, the purely reconstructed data exhibit a
bias level comparable to AOD retrievals from several satellite
instruments, e.g., MISR, VIIRS, and POLDER. This demon-
strates the good performance of the proposed tensor comple-
tion method in reconstructing missing AOD information. By
combining the reconstructed data with original AODTerra, we
obtained a 21-year-long gap-free high-resolution (daily and
1 km) AOD dataset with satisfying accuracy (R = 0.91, and
RMSE= 0.21).

In Fig. 3 we present a comparison of AOD time series
between the LGHAP dataset and ground observations at
three AERONET sites under different air pollution levels. As
shown, the AOD time series from LGHAP are temporally
continuous, whereas data gaps are common in AERONET
observations. Generally, AODs from LGHAP are well re-

constructed with respect to the temporal variations in aerosol
loading at these three sites, with R ranging from 0.77 to 0.90
and RMSE varying between 0.11 and 0.21. For illustration,
Fig. 4 compares the spatial distribution of original and gap-
filled AOD on four dates with different AODTerra coverage
over space. As shown, the missing AOD values were well
reconstructed after gap filling, resembling a smooth and rea-
sonable AOD distribution over space, even over regions with
very limited prior AOD observations from Terra MODIS
(e.g., Fig. 4d). As indicated in Fig. 4a and c, the high AOD
loading was also properly reconstructed even though no prior
information was provided by AODTerra. Since AERONET
AOD observations were not used as a data input when gener-
ating the LGHAP AOD dataset, these independent validation
results clearly demonstrated the high accuracy of the LGHAP
AOD product as well as a good performance of the proposed
AOD gap-filling approach.

Since the final gap-free AOD product was generated
mainly by integrating a set of data tensors of gridded AOD
with AOD estimations from in situ air quality measure-
ments, the relative contribution of each product to the fi-
nal gap-free dataset is worth investigating. In this study,
a data-coverage-ratio-weighted nonlinear correlation coeffi-
cient was proposed to examine the relative contribution of
each gridded product to the LGHAP AOD dataset. The non-
linear correlation coefficient was used to assess the mutual
information between two variables (Sun et al., 2021; Wang
et al., 2005), while the data coverage ratio was multiplied
to indicate the overall contribution of one product to the fi-
nal fused dataset (refer to Sect. S2 for the definition of this
indicator). As shown in Fig. 5, the relative contribution of
each gridded product varied with time and the input data
sources. In the 2 early years (2000–2001), the AOD dis-
tribution in gap-free imageries was determined largely by
AODTerra (81 %), whereas this ratio decreased to about 30 %
when many other products were involved, especially AOD
from Aqua and PARASOL. With the advent of VIIRS and
the loss of PARASOL after 2012, the relative contribution
changed drastically as AOD from MODIS and VIIRS played
the dominant roles in reconstructing AOD distribution. Note
the relative contribution of AODM2 remained lower than
10 %, indicative of the greater importance of satellite obser-
vations in generating the LGHAP AOD product.

With respect to the temporally averaged contribution in
each subregion, it shows that the relative contribution of
each product also varied significantly across regions. Gen-
erally, AOD from MODIS aboard Terra and Aqua played
the most important role (>60 %) in generating the LGHAP
AOD product, except over the southwest part of the coun-
try (Tibetan Plateau) where AODM2 contributed most. This
is largely associated with the fact that data gaps are abnor-
mally high in satellite observations over this region because
of the vast and long-lasting snow cover (refer to Fig. S3 for
the data integrity distribution). Consequently, AODM2 would
play an important role in reconstructing AOD distribution
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Table 2. Data accuracy of original and gap-free AOD datasets used and/or generated in this study. The expected error (EE) was defined as
±0.05+ 0.15×AODsite. MAE denotes the mean absolute error and was calculated as the absolute value of bias.

Dataset N R RMSE MAE Below EE Within EE Above EE
(%) (%) (%)

Terra MODIS 6731 0.95 0.13 0.07 8.94 78.73 12.33
Aqua MODIS 6079 0.95 0.14 0.08 8.24 79.45 12.30
Terra MISR 638 0.90 0.29 0.13 21.63 73.51 4.86
NPP VIIRS 3839 0.80 0.22 0.16 7.03 44.93 48.03
Envisat AATSR 434 0.92 0.11 0.07 17.74 73.96 8.29
PARASOL POLDER 1733 0.92 0.24 0.17 5.14 40.22 54.65
MERRA-2 22 067 0.77 0.36 0.20 32.97 51.76 15.27
LGHAP 24 861 0.91 0.21 0.13 12.27 59.00 28.73

Figure 3. Comparison of monthly AOD time series from LGHAP and AERONET at three different stations in China. Latitude and longitude
information of each site is given in parentheses.

over such regions. Note that the relative contribution of AOD
estimations from in situ air quality measurements was not ac-
counted for in the current analysis because of incomparable
spatial coverage of in situ data in contrast to gridded AOD
products, and this does not imply the contribution of in situ
AOD estimations was negligible. Overall, the results shown
here clearly highlight the success of big data analytics in gen-
erating the LGHAP AOD dataset via integrative efforts from
diverse data sources.

4.2 Data accuracy of PM2.5 and PM10 estimations

By taking advantage of the gap-filled AOD, daily 1 km res-
olution PM2.5 and PM10 concentration data in China were
then estimated via an ensemble learning approach. Figure S4
shows the sample-based cross-validation accuracy of two
prediction models. It shows that the original daily PM2.5
prediction model had a sample-based cross-validation R2 of
0.79 and RMSE of 20.04 µg m−3. This accuracy is compa-
rable to that of our previous study (Bai et al., 2019a) but
slightly worse than those reported in some recent studies (Ta-
ble 3). In contrast, PM10 had a much higher prediction accu-

racy, with an R2 of 0.90 and RMSE of 21.06 µg m−3 for the
daily product. This good performance should be attributed
to the involvement of PM2.5 estimations as a predictor in
the PM10 prediction model. Figure 6 shows the site-specific
(held-out in advance) validation accuracy of daily, monthly,
and annual mean PM2.5 and PM10 concentration in LGHAP.
As shown, the site-specific validation results indicated that
the final full-coverage (gap-free) daily PM2.5 and PM10 con-
centration data are in good agreement with ground-based
measurements, with an R of 0.95 and RMSE of 12.03 µg m−3

for PM2.5 and an R of 0.94 and RMSE of 19.56 µg m−3 for
PM10. Overall, PMx data in LGHAP not only are spatially
complete with a finer resolution but also have a comparable
accuracy with previous studies.

Figure 7 presents a 2-year-long comparison of PM2.5 con-
centration time series from LGHAP and two other open-
access datasets with PM2.5 measurements sampled at four
United States embassies in China. Since this ground-based
dataset has been seldom noticed and used, it can be ap-
plied as an independent dataset to fairly evaluate the accu-
racy of these three machine-learned PM2.5 estimations. As
shown, all these three datasets well reconstructed temporal
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Figure 4. Spatial patterns of the reconstructed AOD under different baseline AOD coverage ratios. In each panel, the upper part presents the
original AOD distribution from Terra MODIS and the gap-filled imagery is shown below. The zoomed-in views of the outlined regions are
shown on the right. Dates are given in the format year/month/day.

Table 3. Comparison of the data quality of PM2.5 from LGHAP with other related studies.

Source Gap-free Resolution Time range R2 RMSE ( µg m−3)

J. Wei et al. (2021) No 1 km 2000–2018 0.86–0.90 10.09–18.39
Geng et al. (2021) Yes 10 km 2000–2021 0.80–0.88 13.90–22.10
Xue et al. (2019) Yes 10 km 2000–2016 0.61 27.80
Chen et al. (2018) No 10 km 2005–2016 0.83 28.10
Lyu et al. (2019) Yes 12 km 2014–2017 0.64 24.80
Ma et al. (2016) No 10 km 2004–2013 0.79 27.42
Huang et al. (2021) No 1 km 2013–2019 0.88 15.73
Xiao et al. (2018) Yes 10 km 2013–2017 0.79 21.00
LGHAP PM2.5 Yes 1 km 2000–2020 0.90 12.03

variations in PM2.5 from 2019 to 2020. Temporally, LGHAP
and TAP are continuous, while CHAP suffers from signifi-
cant data gaps because no gap filling was applied when gen-
erating the dataset. Compared with the other two datasets,
LGHAP PM2.5 data had a better agreement with ground-
based PM2.5 measurements. This high accuracy could be par-
tially due to the fusion of in situ PM2.5 data measured at ad-
jacent sites via the OI method. Figure S5 compares PM2.5
time series from LGHAP with PM2.5 measurements sampled
at five United States embassies in China. It is indicative that
historical PM2.5 variations over these five cities were well re-

constructed in LGHAP, even over years before 2014 during
which PM2.5 measurements from state-control monitoring
sites were not available. Note PM2.5 estimations appeared to
significantly underestimate PM2.5 concentration sampled at
the embassy in Beijing before 2013. Considering the recon-
structed AOD time series agreed well with AERONET AOD
in Beijing (Fig. 3a) and the model performed well in predict-
ing historical PM2.5 in Shanghai during the synchronous time
period (Fig. S5b), we are more willing to attribute this issue
to significant PM2.5 overestimations by the US Embassy dur-
ing that period. Overall, these independent validation results
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Figure 5. Spatiotemporal variations in the relative contribution of each gridded AOD product to the generation of the LGHAP AOD dataset.
The relative contribution was estimated as the data-coverage-ratio-weighted nonlinear correlation coefficient (please refer to Sect. S2 in the
Supplement for the arithmetic theory to calculate this measure). The annual mean shown outside is the national averaged contribution in each
individual year, while the regional mean shown on the map was averaged over the past 21 years in each subregion.

collectively indicate a good accuracy of PM2.5 in the LGHAP
dataset.

In Fig. 8 we compared the spatial distribution of PM2.5
that was reconstructed by different datasets. Compared to
LGHAP and TAP, PM2.5 data from CHAP are not gap-free
since the spatial coverage is determined by the AOD data
coverage in the MAIAC product. Compared to TAP, LGHAP
PM2.5 data have a finer resolution (1 km versus 10 km), en-
abling us to examine PM2.5 variations in space with more
details. Overall, LGHAP performs better in reconstructing
PM2.5 spatial distributions than the other two datasets. Rea-
sons could be attributed to the following two aspects. Firstly,
in situ PM2.5 measurements were fused with gridded PM2.5
estimations using the OI method when generating the fi-
nal PM2.5 product in LGHAP. This can help correct mod-
eling biases in original PM2.5 estimations. Secondly, a set of
satellite-based AOD retrievals were incorporated when gen-
erating the full-coverage AOD product, which greatly helps
reduce large biases in numerical AOD simulations, yielding
more accurate PM2.5 estimations in turn. This also highlights

the great advantages of using big data analytics methods to
advance air pollution assessment.

To illustrate the fine resolution of the LGHAP dataset,
we compared the annual mean PM10 concentration in 2019
with the proportion of impervious surface that was derived
from 30 m resolution land cover data in eastern China. As
shown in Fig. 9, the finer resolution of the LGHAP dataset
enables us to easily recognize the “hot spot” regions with
high PM10 loading. By referring to the impervious surface
distribution on the right, we found that these hot spots are
mainly over cities and towns, indicative of the presence of
pollution islands in urban regions. Owing to the involvement
of such high-resolution datasets, the spatial details of PM2.5
and PM10 can be well recognized in LGHAP. The finer-
spatial-resolution advantage of the LGHAP dataset can also
be demonstrated by comparisons of the spatial distribution of
annual mean PM2.5 concentration that was revealed by four
different datasets shown in Fig. S6.
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Figure 6. Scatterplots between observed and estimated PM2.5 and PM10 concentration. Panels (a)–(c) denote daily, monthly, and annual
mean PM2.5 validation results, respectively, while panels (d)–(f) are for PM10 concentration. The ground measurements were acquired from
30 independent air quality monitoring sites that were randomly held out before the model training.

Figure 7. Comparison of PM2.5 concentration time series be-
tween LGHAP (red line) and two open datasets (blue: TAP; green:
CHAP). Here, hourly PM2.5 concentrations measured by four
United States embassies in China from 2019 to 2020 (grey bar) were
used as an independent PM2.5 dataset to validate these three daily
products. CHAP and TAP are two open-access datasets providing
PM2.5 concentration that were created by J. Wei et al. (2021) and
Geng et al. (2021), respectively.

4.3 Long-term trends of haze pollution in China from
2000 to 2020

The aerosol pollution trends in China can be better examined
by taking advantage of the LGHAP dataset given its long-
temporal-coverage, gap-free, and high-resolution superiority.
Severe haze pollution such as PM2.5 is oftentimes observed
during the winter half year (September–February). In this
study, we first calculated mean PM2.5 concentration in China
during the winter half year from 2000 to 2020. As shown in
Fig. 10, severe haze pollution events were mainly observed
in North China during the wintertime, especially over the ad-
jacent region in Hebei–Shandong–Henan provinces. In ad-
dition, the Sichuan Basin and Fenwei Plain also suffered
from severe haze pollution. Temporally, severe haze pollu-
tion events occurred mainly from late 2002 to early 2017
and were significantly reduced after 2017. Similar pattern
can also be inferred from PM10 concentration distributions
shown in Fig. S7.

Figure 11 shows the temporal variations in the propor-
tion of land areas covered by PM2.5 concentration exceed-
ing 35 µg m−3 (the national ambient air quality standard for
24 h PM2.5 concentration given in GB 3095-2012). As shown
in Fig. 11a, severe PM2.5 pollution occurred mainly during
the wintertime in China, as more than one-third of land ar-
eas (indicated by the blue lines) were exposed to unhealthy
PM2.5 pollutants. Meanwhile, an apparent inflection was ob-
served in 2007, after which the number of episode days de-
creased drastically for more than one-third of the land area
covered by PM2.5 concentration exceeding 35 µg m−3. Ac-
cording to the proportion of land area covered with annual
mean PM2.5 concentration greater than 35 µg m−3, the varia-
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Figure 8. Comparison of PM2.5 distribution reconstructed by different PM2.5 concentration datasets. From the left to right, it shows in situ
PM2.5 concentration measurements, CHAP, TAP, and LGHAP, respectively. Dates are given in the format year/month/day.

Figure 9. Comparison of annual mean PM10 concentration with the proportion of areas coved by impervious surface in eastern China.

tion in haze pollution in China can be generally divided into
three different periods during the past 2 decades (Fig. 11b).
As indicated, an increasing trend was observed from 2000
to 2007, during which land areas covered by PM2.5 concen-
tration greater than 35 µg m−3 increased to nearly 40 % at
a pace of 1.04 % a−1. The second period was from 2008 to
2013, during which the land area coverage ratio decreased at
a rate of −0.21 % a−1. The third period started from 2014,
after which the land area covered with PM2.5 concentra-
tion more than 35 µg m−3 decreased drastically, at a pace of
−2.23 % a−1.

Figure 11c–e present the linear trend of PM2.5 concen-
tration during these three specific periods, from which we
observed that significant PM2.5 variations occurred mainly

over the eastern part of the country where two-thirds of the
population resides. A near-ubiquitous PM2.5 increasing trend
was observed during 2000–2007, with significant increase
(>1.0 µg m−3 a−1) mainly observed in eastern China. Dur-
ing the second period, PM2.5 concentration over most re-
gions showed a small decreasing trend except in the Hebei–
Shandong–Henan region where an increasing trend was still
observed. An apparent decreasing trend was observed over
most parts of the country after 2014, indicative of significant
reductions in PM2.5 loading across China. This trend distri-
bution is in line with our previous finding that was derived
using the annual mean PM2.5 concentration dataset generated
by Dalhousie University (Bai et al., 2019b). However, differ-
ences were still observed in terms of the regions where sig-

Earth Syst. Sci. Data, 14, 907–927, 2022 https://doi.org/10.5194/essd-14-907-2022



K. Bai et al.: The Long-term Gap-free High-resolution Air Pollutant concentration dataset 921

Figure 10. Spatial distribution of mean PM2.5 concentration from LGHAP during the winter half year (September–February) from 2000 to
2020 in China.

Figure 11. Temporal variations in the proportion of land areas covered with PM2.5 concentration exceeding 35 µg m−3 and PM2.5 trends
during three different periods. (a) Temporal variations in the land coverage ratio with daily PM2.5 concentration exceeding 35 µg m−3 from
2000 to 2020. (b) Same as (a) but for annual mean PM2.5 concentration. (c–e) PM2.5 trends during the periods of 2000–2007, 2008–2013,
and 2014–2020. The dotted regions imply trend estimations are statistically insignificant at the 95 % confidence interval.
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nificant decreasing trends were present. The most significant
decreasing trends were mainly observed in the Sichuan Basin
and Pearl River Delta in the previous study. However, regions
with drastic PM2.5 decreases were found mainly in North
China where severe haze pollution events were oftentimes
reported. Similar variation patterns can also be inferred from
PM10 (Fig. S8) and AOD (Fig. S9). Overall, the LGHAP
dataset provides us with a gridded perspective to better ex-
amine long-term variations in haze pollution in China during
the past 2 decades.

4.4 Population exposure to PM2.5 pollution in China

By taking advantage of fine-resolution LGHAP PM2.5 con-
centration and gridded population data, population exposure
to PM2.5 pollution across China over the past 2 decades
was estimated. Figure 12 shows the spatial distribution of
population-weighted PM2.5 concentration and the proportion
of population exposed to PM2.5 concentration greater than
35 µg m−3. As shown, the spatial distribution of population-
weighted PM2.5 concentration resembles the spatial pattern
of annual mean PM2.5 concentration, with high values ob-
served mainly in eastern and central China as well as north-
west China. Nonetheless, PM2.5 sources in these two areas
could be different. In northwest China, natural emissions
could be the dominant source since a very limited number
of people reside there. In contrast, most of the population
lives in eastern and central China with a highly developed
economy, and anthropogenic emissions thus might play more
important roles in PM2.5 formation (Xin et al., 2015; Yang
et al., 2011). In regard to the proportion of the population
exposed to the ambient environment with PM2.5 concentra-
tion greater than 35 µg m−3, we observed that the annual
mean population ratio exposure to unhealthy PM2.5 increased
gradually from 50.60 % in 2000 to 65.72 % in 2007. Dur-
ing 2007–2014, the ratio varied with small changes (<5 %),
whereas a drastic decline was observed after 2014, when the
annual mean proportion of population exposed to unhealthy
PM2.5 was reduced from 63.81 % in 2014 to 34.03 % in 2020,
even though the total population increased from 1.37 billion
to 1.41 billion during the synchronous period. Nonetheless,
more than one-third of the population was still exposed to un-
healthy PM2.5, highlighting the requirement for further emis-
sion reduction actions to manage haze pollution in China.

5 Data availability

The LGHAP dataset, consisting of gap-free AOD, PM2.5,
and PM10 concentration with a daily 1 km resolution from
2000 to 2020, is publicly accessible. All data are provided
in the NetCDF format, and data in each individual year
are archived in a zip file. For AOD, the dataset has a disk
storage size of nearly 27 GB in total, which is available at
https://doi.org/10.5281/zenodo.5652257 (Bai et al., 2021a).
PM2.5 (38 GB) and PM10 (48 GB) concentration data can be

acquired from https://doi.org/10.5281/zenodo.5652265 (Bai
et al., 2021b) and https://doi.org/10.5281/zenodo.5652263
(Bai et al., 2021c), respectively. Additionally, monthly and
annual mean datasets are also provided, which are publicly
available at https://doi.org/10.5281/zenodo.5655797 (Bai et
al., 2021d) and https://doi.org/10.5281/zenodo.5655807 (Bai
et al., 2021e), respectively. In addition to these datasets,
Python, MATLAB, R, and IDL codes that can be used to
read and visualize these data are provided as well.

6 Conclusion

In this study, a big data analytics method was developed for
generating the LGHAP dataset to advance research in Earth
system science and environment management. With integra-
tive efforts to fuse AOD features extracted from a set of AOD
data tensors and knowledge transfer in statistical data min-
ing from diverse air quality indicators, the LGHAP aerosol
dataset providing 21-year-long (2000–2020) gap-free AOD,
PM2.5, and PM10 concentration data with a daily 1 km res-
olution in China was generated. Gap-filled AOD imageries
were firstly generated by reconstructing AOD distribution in
AODTerra via synergistically fusing AOD features recognized
from diverse satellites and numerical models as well as in situ
data through tensor completion. Compared to ground-based
AOD measurements, the gap-filled AOD data exhibit a sat-
isfying prediction accuracy and good performance in delin-
eating AOD variations over space and time. To our knowl-
edge, this is the first attempt to generate a long-term high-
resolution AOD dataset with a gap-free nature in China.

PM2.5 and PM10 concentration data were then estimated
using an ensemble learning approach by taking advantage of
the generated gap-free AOD imageries. Ground validation
results also indicate good accuracies of these two gridded
products, showing a bias level comparable with many pre-
vious studies. Compared with other open-access daily PM2.5
concentration datasets, the LGHAP PM2.5 dataset performs
well due to the vantage of having gap-free and fine resolution
products. With this gap-free and high-resolution dataset, the
long-term variation trend of haze pollution in China over the
past 2 decades was examined, and apparent inflections were
observed in 2007 and 2014, when PM2.5 concentration was
found to turn from an increasing path to decreasing in 2007
with a more drastic decline observed starting from 2014.
Moreover, the LGHAP dataset provides us with a gridded
perspective to assess 2-decade-long population exposure to
PM2.5 pollution in China. In spite of a drastic decline in pop-
ulation exposure, there is still more than one-third of the pop-
ulation exposed to unhealthy PM2.5 pollutants, highlighting
the requirement of long-lasting actions to continue PM2.5-
related emission reduction.

Overall, these three gridded LGHAP aerosol products pro-
vide a long-term perspective on aerosol changes over differ-
ent regions of China, and users are encouraged to use the
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Figure 12. Spatial distribution of population-weighted PM2.5 concentration and the proportion of the population exposed to PM2.5 concen-
tration greater than 35 µg m−3. Annual and daily LGHAP PM2.5 concentration data were used for the calculation of weighted PM2.5 and
the proportion of population exposure, respectively. The diamond and red line indicate the annual mean and median population proportion,
respectively.

LGHAP dataset to assess aerosol impacts on public health,
air quality, climate, and ecosystems. The dataset has been
publicly released online and is freely accessible via the links
provided in Sect. 5. A global-scale dataset is on track and
will be released to the public soon.
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