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Abstract. The snow water equivalent (SWE) is an important parameter of surface hydrological and climate
systems, and it has a profound impact on Arctic amplification and climate change. However, there are great dif-
ferences among existing SWE products. In the land region above 45◦ N, the existing SWE products are associated
with a limited time span and limited spatial coverage, and the spatial resolution is coarse, which greatly limits the
application of SWE data in cryosphere change and climate change studies. In this study, utilizing the ridge regres-
sion model (RRM) of a machine learning algorithm, we integrated various existing SWE products to generate a
spatiotemporally seamless and high-precision RRM SWE product. The results show that it is feasible to utilize
a ridge regression model based on a machine learning algorithm to prepare SWE products on a global scale. We
evaluated the accuracy of the RRM SWE product using hemispheric-scale snow course (HSSC) observational
data and Russian snow survey data. The mean absolute error (MAE), RMSE, R, and R2 between the RRM SWE
products and observed SWEs are 0.21, 25.37 mm, 0.89, and 0.79, respectively. The accuracy of the RRM SWE
dataset is improved by 28 %, 22 %, 37 %, 11 %, and 11 % compared with the original AMSR-E/AMSR2 (SWE),
ERA-Interim SWE, Global Land Data Assimilation System (GLDAS) SWE, GlobSnow SWE, and ERA5-Land
SWE datasets, respectively, and it has a higher spatial resolution. The RRM SWE product production method
does not rely heavily on an independent SWE product; it takes full advantage of each SWE dataset, and it takes
into consideration the altitude factor. The MAE ranges from 0.16 for areas within < 100 m elevation to 0.29
within the 800–900 m elevation range. The MAE is best in the Russian region and worst in the Canadian region.
The RMSE ranges from 4.71 mm for areas within < 100 m elevation to 31.14 mm within the > 1000 m eleva-
tion range. The RMSE is best in the Finland region and worst in the Canadian region. This method has good
stability, is extremely suitable for the production of snow datasets with large spatial scales, and can be easily
extended to the preparation of other snow datasets. The RRM SWE product is expected to provide more accurate
SWE data for the hydrological model and climate model and provide data support for cryosphere change and
climate change studies. The RRM SWE product is available from “A Big Earth Data Platform for Three Poles”
(https://doi.org/10.11888/Snow.tpdc.271556) (Li et al., 2021).
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1 Introduction

The IPCC (Intergovernmental Panel on Climate Change)
AR6 (Sixth Assessment Report) notes that the Northern
Hemisphere spring snow cover has greatly decreased since
1950, and the feedback effect of the climate system caused
by this reduction is extremely large (Masson-Delmotte et al.,
2021). In most land areas of the Northern Hemisphere, an-
nual runoff is dominated by snowmelt, and accurately es-
timating the impacts of such a large amount of snowmelt
runoff on ecosystems and human activities is of great sig-
nificance (Barnett et al., 2005; Bintanja and Andry, 2017;
Henderson et al., 2018). Whether through hydrometeorolog-
ical simulation or global change research, the estimation of
the energy budget and mass of snow is very difficult, so a
set of highly accurate, long time series snow cover datasets
is urgently needed to drive hydrometeorological simulations
and land surface process models. Among them, snow water
equivalent (SWE) data play an irreplaceable role as an im-
portant parameter of the land surface hydrological model and
climate model.

At present, there are many forms of SWE data in the
world. According to type, these data can be divided into site
observational SWE, remote sensing SWE, reanalysis SWE,
data assimilation SWE, and model simulation SWE. The
remote sensing SWEs are mainly AMSR-E (Kelly, 2009)
and AMSR2 (Imaoka et al., 2010; Tedesco and Jeyarat-
nam, 2019). The reanalysis SWE was mainly based on the
ERA-Interim (Dee et al., 2011), MERRA2 (Gelaro et al.,
2017), MERRA land (Reichle et al., 2011), and ERA5-Land
(Muñoz Sabater, 2019; Balsamo et al., 2015) datasets. The
data assimilation SWE mainly includes GlobSnow (Luojus
et al., 2021) and the Global Land Data Assimilation Sys-
tem (GLDAS) (Rodell et al., 2004). The site observational
SWE mainly includes the GHCN dataset (Menne et al., 2016)
and HSSC data (Pulliainen et al., 2020). However, the time
ranges of AMSR-E and AMSR-E2 SWE are only from 2003
to the present, which is lacking in terms of time series. Sim-
ilarly, the GlobSnow SWE dataset is also seriously lacking
in time series. Although the reanalysis SWE data have good
spatial and temporal continuity and high data integrity, their
accuracy is poor, and the mean absolute error (MAE) is 0.65
(Snauffer et al., 2016). The SWE data from stations and me-
teorological observations cannot meet the needs of hydrome-
teorological and climate change research. This is mainly be-
cause SWE from stations is discontinuous in time series and
severely missing. Furthermore, hydrometeorological studies
often require spatiotemporally continuous grid data to be de-
rived (Pan et al., 2003). There are great differences among
remote sensing SWE, reanalysis SWE data, data assimilation
SWE, and observational SWE. For remote sensing SWE, the
spatiotemporal characteristics of different passive microwave
SWE data differ significantly due to differences in sensors or
retrieval algorithms (Mudryk et al., 2015). Data assimilation
SWE and reanalysis SWE data also tend to exhibit differ-

ent spatiotemporal characteristics due to differences in model
design, driving data, and assimilation methods (Vuyovich et
al., 2014). In summary, although there are a variety of SWE
data in the world, the data quality is uncertain.

Previous studies have shown that all kinds of SWE data
in the Northern Hemisphere have advantages and disadvan-
tages, and none of these data perform well in all aspects
(Mortimer et al., 2020). An effective method was used in
a study by Pulliainen et al. (2020), who applied a bias cor-
rection to GlobSnow and reanalysis data products based on
SWE snow course measurements to obtain improved esti-
mates on annual peak snow mass and SWE in the Northern
Hemisphere. Another effective method is to fuse all kinds of
SWE data in time and space, integrate the advantages of all
kinds of data, and then generate a relatively complete SWE
dataset. Many scholars have conducted in-depth studies on
SWE data fusion. The main fusion methods can be classi-
fied into the following categories: multiproduct direct aver-
aging (Mudryk et al., 2015), linear regression (Snauffer et al.,
2016), data assimilation (Pulliainen, 2006), “multiple” col-
location (Pan et al., 2015), and machine learning (Snauffer
et al., 2018; Xiao et al., 2018; Wang et al., 2020). Studies
have shown that even the simplest multisource data average
is more accurate than a single SWE product (Snauffer et al.,
2018). However, the simple multisource data average cannot
highlight the advantages of high-precision data, and it is eas-
ily affected by the weight ratio of low-precision data, which
reduces the accuracy of fused data (Mudryk et al., 2015). Al-
though the linear regression method can make good use of
the actual observational data to correct the original data, it
is easy to overfit which causes the overall deviation (Snauf-
fer et al., 2016). The “multiple” collocation method changes
the size of the original SWE data before fusion, which easily
causes data errors. The data assimilation method is sensitive
to the accuracy of input data, and it is difficult to fuse multi-
source data (Pan et al., 2015). In recent years, machine learn-
ing methods have been widely used in data fusion (Santi et
al., 2021; Ntokas et al., 2021). Machine learning methods can
not only integrate the advantages of multisource data but also
make full use of site observational data to train the sample
data, which easily generates SWE data products with large
spatial scales and long time series (Broxton et al., 2019; Bair
et al., 2018).

In summary, based on the existing SWE data products,
combining a machine learning algorithm to fuse multisource
SWE data is an effective method to prepare SWE products
with long time series and large spatial scales and retain the
advantages of single SWE data products. The ridge regres-
sion model is a biased estimation method specifically de-
signed to address the problem of multicollinear data (Duzan
and Shariff, 2015; Saleh et al., 2019). It has good toler-
ance to “ill-conditioned” data and has a good effect in us-
ing SWE data to address the multicollinearity problem (Ho-
erl and Kennard, 1970b; Guilkey and Murphy, 1975). In this
study, we integrated multisource SWE data products of the
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ridge regression model (RRM) SWE based on the ridge re-
gression model of the machine learning algorithm. We se-
lected ERA-Interim SWE, GLDAS SWE, GlobSnow SWE,
AMSR-E/AMSR2 SWE, and ERA5-Land SWE data with
relatively complete time series as the original data for the
production of the RRM SWE product. The missing parts of
the ERA-Interim SWE, AMSR-E/AMSR2 SWE, and Glob-
Snow SWE data were filled by the spatiotemporal interpo-
lation method. The HSSC dataset (Pulliainen et al., 2020)
and Russian snow survey data (Bulygina et al., 2011) were
used as training sample data of “true SWE”, and the effect of
altitude on the algorithm was also considered. Thus, we pre-
pared a set of spatiotemporal seamless SWE datasets (RRM
SWE) covering the land region above 45◦ N from 1979 to
2019. The spatial coverage of the RRM SWE product covers
all land regions north of 45◦ N.

2 Data and methods

2.1 Research region

The research region of the RRM SWE product is located in
the land region north of 45◦ N (Fig. 1). This region consists
of Asia, Europe, and North America. The land region covers
Russia, the United States, Canada, Denmark, Norway, Ice-
land, Sweden, and Finland. This region has a cold climate
and a wide area of snow cover.

2.2 Grid SWE data description

In this study, we utilized ERA-Interim SWE data (Dee et al.,
2011), GLDAS SWE data (Rodell et al., 2004), GlobSnow
SWE data (Luojus et al., 2021), AMSR-E/AMSR2 SWE data
(Tedesco and Jeyaratnam, 2019), and ERA5-Land SWE data
(Muñoz Sabater, 2019) as the original input datasets for the
fusion data (Table 1).

GlobSnow is a dataset of global snow cover and SWEs for
the Northern Hemisphere released by the European Space
Agency (ESA) (http://www.globsnow.info/swe/,last access:
17 February 2022) (Luojus et al., 2021; Pulliainen et al.,
2020). The SWE products in this dataset combine the Cana-
dian Meteorological Center (CMC) daily snow depth analy-
sis data (Walker et al., 2011), ground weather site observa-
tional data, and satellite microwave radiometer data. We ob-
tained the L3A_daily_SWE product of this dataset. The tem-
poral resolution of the L3A_daily_SWE product is daily, the
spatial resolution is 0.25◦, and the data format is netCDF4.

ERA-Interim is the fourth generation reanalysis data of
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Dee et al., 2011). The data pro-
vide a global assimilated numerical product of vari-
ous surface and top atmospheric parameters from Jan-
uary 1979 to the present (https://apps.ecmwf.int/datasets/
data/interim-full-daily/levtype=sfc/, last access: 17 February
2022). We obtained the SWE dataset with a daily temporal

resolution, a spatial resolution of 0.25◦, and netCDF4 data
format. The spatial range of the data is the land region above
45◦ N.

The Advanced Microwave Scanning Radiometer-Earth
Observation System (AMSR-E) is a microwave scanning ra-
diometer on the Aqua satellite of the National Aeronautics
and Space Administration (NASA) Earth Observation Sys-
tem (EOS) (Tedesco and Jeyaratnam, 2019). The AMSR-
E provides a global daily SWE dataset from 19 June 2002
to 3 October 2011 (https://nsidc.org/data/ae_dysno, last ac-
cess: 17 February 2022). AMSR2 is a microwave scan-
ning radiometer on the GCOM-W1 satellite launched by the
Japan Aerospace Exploration Agency (JAXA) in May 2012.
AMSR2 provides a global SWE dataset from 2 July 2012
to the present (https://nsidc.org/data/AU_DySno/versions/1,
last access: 17 February 2022). The spatial resolution of the
AMSR-E SWE and AMSR2 SWE datasets is 25km×25 km,
the temporal resolution is daily, and the data formats are
HDF-EOS and HDF-EOS5, respectively.

The GLDAS is a model used to describe global land infor-
mation; it contains data, such as global rainfall, water evap-
oration, surface runoff, underground runoff, soil moisture,
surface snow cover distribution, temperature, and heat flow
distribution (Rodell et al., 2004). This assimilation system
includes data with spatial resolutions of 1◦× 1◦ and 0.25◦×
0.25◦ and temporal resolutions of 3 h, 1 d, and 1 month. The
GLDAS data are available for download from the Goddard
Earth Sciences Data and Information Services Center (GES
DISC). We obtain an SWE dataset with a daily temporal res-
olution, 0.25◦ spatial resolution, and netCDF4 data format.

ERA5-Land is a reanalysis dataset that provides the evo-
lution of global land parameter data from 1981 onwards
(Muñoz Sabater, 2019). The dataset provides eight types of
snow parameter data, including snow albedo, snow cover,
snow depth, snowfall, the temperature of the snow layer,
snowmelt, snow density, and SWE. This dataset provides a
global SWE dataset with an hourly spatial resolution, a tem-
poral resolution of 0.1◦× 0.1◦, a temporal coverage of Jan-
uary 1981 to the present, and data formats of GRIB (Gen-
eral Regularly-distributed Information in Binary form) and
netCDF4.

To maintain consistency in the spatial and temporal reso-
lutions of the fused data, we unified the ERA-Interim SWE
data, GLDAS SWE data, GlobSnow SWE data, AMSR-
E/AMSR2 SWE data, and ERA5-Land SWE data into a daily
temporal resolution, with a spatial resolution of 0.25◦ and
geographic projection of the North Pole Lambert azimuthal
equal area.

2.3 Ridge regression machine learning algorithm for
preparing the SWE

In this study, we utilize the ridge regression model of
a machine learning algorithm to fuse ERA-Interim SWE
data (Dee et al., 2011), GLDAS SWE data (Rodell et al.,
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Figure 1. The DEM and snow survey stations of the research region. The right panel (b) shows the DEM, and the left panel (a) shows the
SWE observational stations. HSSC, hemispheric-scale snow course; RSSD, the Russian snow survey station. The spatial range of the RRM
SWE product is consistent with that of the DEM.

Table 1. Introduction to the SWE data.

Data type Data name Time series Temporal Spatial Spatial coverage File format
resolution resolution

Remote sensing data AMSR-E/ 2002–2011/ Daily 25km× 25 km Global HDF5
AMSR2 2012–2020 (no Greenland)

Data assimilation dataset GLDAS 1979–2020 Daily 0.25◦× 0.25◦ Global netCDF4

Reanalysis dataset GlobSnow 1979–2018 Daily 0.25◦× 0.25◦ Northern Hemisphere netCDF4
(no Greenland)

ERA-Interim 1979–2019 Daily 0.25◦× 0.25◦ Global netCDF4
ERA5-Land 1981–present Hourly 0.1◦× 0.1◦ Global netCDF4

2004), GlobSnow SWE data (Luojus et al., 2021), AMSR-
E/AMSR2 SWE data (Tedesco and Jeyaratnam, 2019), and
ERA5-Land SWE data (Muñoz Sabater, 2019) to generate
a set of new RRM SWE datasets. The target reference data
in this study are the HSSC dataset and Russian snow sur-
vey data. The digital elevation model (DEM) was used as
an important environmental feature input to the ridge re-
gression model and was included in the model training. The
DEM is an auxiliary terrain feature variable in addition to
the five SWE prediction feature variables: AMSR-E/AMSR2
SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow SWE,
and ERA5-Land SWE.

The ridge regression model is a biased estimate regression
method for collinear data analysis (Friedman et al., 2010;
Hoerl and Kennard, 1970b, a). By abandoning the unbiased-
ness of the ordinary least squares, this algorithm can obtain
the regression method in which the regression coefficient is
more practical and reliable at the cost of losing part of the

information and reducing the accuracy. The ridge regression
model is flexible in the choice of predictor variables and does
not require the predictor and target variables to be indepen-
dent of each other. It can effectively solve the multicollinear-
ity problem of predictor and target variables, as well as re-
duce the impact of this problem on the training model (Duzan
and Shariff, 2015; Saleh et al., 2019). Generally, reanaly-
sis data based on SWE products cannot make the products
and models independent of each other; i.e., they are prone to
multicollinearity, which leads to distorted model estimation
or difficulty in performing accurate estimations. In contrast,
the ridge regression model can successfully solve the multi-
collinearity problem, i.e., the independence of training prod-
ucts and models. In addition, when integrating multiple SWE
products, the accuracy of each SWE dataset is likely to differ.
A small change in one of the SWE products involved in the
training will cause a significant error in the final calculation
results, while the ridge regression model has high accuracy
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and stability for these “ill-conditioned” SWE data. In addi-
tion, the main advantage of this model is that SWE products
with long time series and large spatial scales are easy to pre-
pare. The principle equation of the ridge regression model is
defined as follows:

β̂ridge
= argminβ

 N∑
i=1

(
yi −β0−

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j

 , (1)

where β̂ridge is the extremum solution function of ridge re-
gression; p is the number of gridded SWE product vari-
ables involved in training; xi are the prediction feature vari-
ables, which contain two parts: one set contains the main fea-
ture variables of the gridded SWE products, and the other
part consists of the DEM auxiliary feature variables; yi is
the observed SWE; λ, β, βj , and β0 are the parameters to
be solved; 1, . . .,N is the sample of the training dataset;
and λ

∑p

j=1β
2
j is the penalty function term. The total num-

ber of samples N in the training dataset is 271 651. The
sample sizes of the training dataset, validation dataset, and
test dataset are divided according to the ratio of 7 : 2 : 1,
where the numbers of training set, validation set and test set
samples are 271 651, 77 614, and 38 807, respectively. The
model is developed in Python3, and the model framework is
based on the “scikit-learn” machine learning library (https:
//scikit-learn.org/stable/index.html, last access: 17 February
2022). The code is available upon request.

The integration process of the RRM SWE product (Fig. 2)
is described as follows:

1. The original ERA-Interim SWE data, GLDAS SWE
data, GlobSnow SWE data, AMSR-E/AMSR2 SWE
data, ERA5-Land SWE data, DEM data, unified tem-
poral resolution, spatial resolution, projection, spatial
range, and unit are preprocessed.

2. The spatiotemporal interpolation method is used to fill
in the missing data of AMSR-E/AMSR2 SWE, ERA-
Interim SWE, and GlobSnow SWE in space and time.
Based on this method, the missing AMSR-E/AMSR2
SWE data at low latitudes and the missing ERA-Interim
SWE and GlobSnow SWE data in the time series are
added.

3. The SWE data observed at stations from 1979 to 2014
are used as sample training data, and the AMSR-
E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE,
GlobSnow SWE, ERA5-Land SWE data, and DEM
data are input into the ridge regression model of a ma-
chine learning algorithm for training. During the RRM
model training process, we reconstructed the training
data to try to extract training samples that are uniformly
distributed spatially as much as possible. First, a scan
window of 250km× 250 km (10× 10 pixels) was cre-
ated. Then, each gridded SWE data point participating
in training is scanned, and the sample numbers in each

scan window are counted. Finally, the mean value n of
the sample numbers in all scan windows is taken as the
number of training samples to be selected in each scan
window. For the scan window with sample numbers
higher than n, n samples are randomly selected from the
scan window. For the scan window with sample num-
bers lower than n, all samples in the scan window are
selected as training samples.

4. When the model was trained, ERA-Interim SWE,
GLDAS SWE, GlobSnow SWE, and ERA5-Land SWE
were used as the training data between 1979 and 2002
(AMSR-E/AMSR2 SWE data were not available be-
fore 2002), and AMSR-E/AMSR2 SWE, ERA-Interim
SWE, GLDAS SWE, GlobSnow SWE, and ERA5-Land
SWE were used as the training data after 2002.

5. Based on the S-fold cross-validation method, the SWE
data are continuously trained and validated, and the
optimal model and parameters are finally selected and
evaluated by the loss function.

6. Based on the trained optimal model, multiple SWE data
products are integrated into the time series, missing data
are predicted, and a set of spatiotemporally seamless
SWE datasets is generated.

7. SWE data observed at stations from 2015 to 2018 are
used to evaluate the accuracy of the RRM SWE product.

2.4 Site data and evaluation metrics

2.4.1 Site SWE data for training, validation, and testing

Russian snow survey data (http://aisori.meteo.ru, last access:
17 February 2022) include the average snow depth data and
the average snow density data of the station, and the SWE is
the product of the measured average snow depth and average
snow density (Bulygina et al., 2011). We obtained SWE data
from 19 493 stations from 1979 to 2016 from this dataset.

Hemispheric-scale snow course (hereafter referred to as
HSSC) observational data are contained in a hemispheric-
scale SWE database based on SWE observational datasets
from the former Soviet Union/Russia (FSU), Finland, and
Canada developed by Pulliainen et al. (2020) (Bronnimann
et al., 2018; Brown et al., 2019). This dataset is from the
website of the Finnish Meteorological Institute (FMI) (https:
//www.globsnow.info/swe/archive_v3.0/auxiliary_data/, last
access: 17 February 2022). The dataset provides data from
2687 distributed regional snow course observations and con-
tains 343 241 SWE observational data points from 1979 to
2018. The snow courses of the HSSC dataset are transects in
which SWE is sampled manually at multiple locations with
typical conditions to eliminate uncertainty in the regional-
scale spatial variability in SWE due to the influence of snow-
pack characteristics and land cover type (Pulliainen et al.,
2020).
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Figure 2. Flow chart of the RRM SWE data preparation (preparation of spatiotemporal seamless SWE datasets mainly includes three
processes: model training, model reasoning, and SWE data preparation).

We carefully screened the Russian snow survey data and
HSSC data and eliminated some abnormal observational data
to ensure the high quality of the training, validation, and test
sets. The null and zero values are removed during the HSSC
data screening process. The null values, negative numbers,
and extreme SWE values greater than 2000 mm are removed
during the Russian snow survey data screening process.

2.4.2 Accuracy evaluation method for datasets

Mean absolute error (MAE), root mean square error (RMSE),
Pearson’s correlation coefficient (R), and coefficient of deter-
mination (R2) are used to evaluate the accuracies of AMSR-
E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, Glob-
Snow SWE, ERA5-Land SWE, multisource data-averaged
SWE, and the RRM SWE product. The specific equations
of accuracy evaluation error are described as follows:

MAE=
1
n

n∑
i=1

|fi − yi | , (2)

RMSE=

[∑n
i=1(fi − yi)2

n

] 1
2

, (3)

R =
1

n− 1

n∑
i=1

(
fi − f

σf

)(
yi − y

σy

)
, (4)

R2
=

∑n
i=1(fi − y)2∑n
i=1(yi − y)2 , (5)

where n is the number of samples in the validation dataset,
fi is the SWE dataset product, yi is the measured SWE at the
station, f and y are the averages of SWE products and mea-
sured SWEs, respectively, and σf and σy are the standard de-
viation of SWE products and measured SWEs, respectively.

To further evaluate the accuracy of the RRM SWE dataset
at the spatial scale, we compared it with AMSR-E/AMSR2
SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow SWE,
and ERA5-Land SWE at different altitude gradients. We also
evaluated MAE, RMSE, R, and R2 separately for 11 ele-
vation intervals: < 100, 100–200, 200–300, 300–400, 400–
500, 500–600, 600–700, 700–800, 800–900, 900–1000, and
> 1000 m. In addition, we evaluated the performances of the
RRM SWE product in three representative regions: Russia,
Canada, and Finland.

We used the Mann–Kendall trend test (Mann, 1945;
Kendall, 1990) method to evaluate the variation trend in the
RRM SWE dataset from 1979 to 2019 and analyzed its re-
liability in terms of time series. Since the AMSR-E/AMSR2
SWE product and the GlobSnow SWE product lack SWE
data for Greenland, we removed the Greenland data to main-
tain consistency in the spatial extent of the comparison data.
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Table 2. Error list for the station data and grid snow water equiva-
lent products.

Error type MAE RMSE (mm) R R2

ERA-Interim 0.43 46.81 0.69 0.48
AMSR-E/AMSR2 0.49 52.39 0.47 0.22
GLDAS 0.58 65.25 0.52 0.27
GlobSnow 0.32 40.99 0.70 0.49
ERA5-Land 0.32 37.02 0.84 0.71
Multisource data average 0.44 52.00 0.51 0.26
RRM SWE 0.21 25.37 0.89 0.79

3 Results and discussion

3.1 Overall accuracy evaluation of the RRM SWE
product

In this study, the accuracies of the RRM SWE, AMSR-
E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, Glob-
Snow SWE, and ERA5-Land SWE were compared using test
datasets from 2015 to 2018. MAE, RMSE, R, and R2 were
used to reflect the data quality of each SWE product. In ad-
dition, we compared the RRM SWE product with the SWE
dataset obtained by the multisource data average method.

According to the verification results in Fig. 3 and Table 2,
the RRM SWE data have the best overall accuracy, and the
MAE, RMSE, R, and R2 between the observed SWEs are
0.21, 25.37 mm, 0.89, and 0.79, respectively. The overall ac-
curacy of the GlobSnow SWE and ERA5-Land SWE prod-
ucts is higher than that of other SWE products. The overall
deviation of the ERA5-Land SWE products is the smallest
except for the RRM SWE data, with MAE and RMSE val-
ues of 0.32 and 37.02 mm, respectively. The correlation be-
tween the ERA5-Land SWE and observed SWE is the high-
est except for the RRM SWE data, with R and R2 values
of 0.84 and 0.71, respectively. Although the overall devia-
tion between the GlobSnow SWE dataset and the measured
SWE is small, its correlation with the measured value is low.
The overall deviation between the ERA5-Land SWE dataset
and the measured SWE is higher than that of the GlobSnow
SWE dataset, but its estimation accuracy for the high-value
region of the SWE is low. In addition, the overall accuracy
of the ERA-Interim SWE dataset and GLDAS SWE dataset
is relatively low, but their integrities are higher than those
of the GlobSnow SWE dataset and AMSR-E/AMSR2 SWE
dataset in terms of temporal and spatial series. The AMSR-
E/AMSR2 SWE dataset has a higher estimation accuracy
for the low-value SWE region. Moreover, in the land region
above 45◦ N, most of the existing SWE data products with
regard to temporal and spatial degrees are missing to vari-
ous degrees. Obviously, the accuracies of the existing SWE
products were uneven as no type of SWE dataset is perfect.

The verification results also indicate the following ranking
orders.

Figure 3. Accuracy comparison of various SWE products. Sector
(a) represents the MAE, sector (b) represents the RMSE, sector (c)
represents R, and sector (d) represents R2. The sector axis repre-
sents the size of the error, and the color represents different SWE
datasets.

The MAE ranking order is RRM SWE< GlobSnow SWE
= ERA5-Land SWE < ERA-Interim SWE < multisource
data average SWE < AMSR-E/AMSR2 SWE < GLDAS
SWE.

The RMSE ranking order is RRM SWE < ERA5-Land
SWE < GlobSnow SWE < ERA-Interim SWE < mul-
tisource data average SWE < AMSR-E/AMSR2 SWE <

GLDAS SWE.
The R ranking order is RRM SWE> ERA5-Land SWE>

GlobSnow SWE > ERA-Interim SWE > GLDAS SWE >

multisource data average SWE > AMSR-E/AMSR2 SWE.
The R2 ranking order is RRM SWE > ERA5-Land SWE

>GlobSnow SWE> ERA-Interim SWE>GLDAS SWE>
multisource data average SWE > AMSR-E/AMSR2 SWE.

Compared with the ERA-Interim SWE, AMSR-E/AMSR2
SWE, GLDAS SWE, GlobSnow SWE, ERA5-Land SWE,
and multisource data average SWE, the MAE of the RRM
SWE and observed SWE is reduced by 0.22, 0.28, 0.37, 0.11,
0.11, and 0.23, respectively. The RMSE of the RRM SWE
and observed SWE is reduced by 21.44, 27.02, 39.88, 15.62,
11.65, and 26.63 mm, respectively. The correlation coeffi-
cients of the RRM SWE and observed SWE are improved
by 0.20, 0.42, 0.37, 0.19, 0.05, and 0.38, respectively. The
coefficient of determination of the RRM SWE and observed
SWE is improved by 0.31, 0.57, 0.52, 0.30, 0.08, and 0.53,
respectively. Although the multisource data average method
can improve the accuracy of SWE products to some extent
(better than AMSR-E/AMSR2 SWE and GLDAS SWE), the
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improvement of this method is still very limited. The RRM
SWE product has a significant advantage over the multi-
source data average method, and its accuracy is much higher
than that of the simple multisource data average method (Ta-
ble 2). Based on the above verification results, the accuracy
of the RRM SWE is significantly improved; the RRM SWE
dataset has higher accuracy than that of any single grid SWE
dataset, and it also fills the gap in the original SWE data in
terms of spatial and temporal resolutions.

Based on the kernel density estimation method, we an-
alyzed the density distribution of different SWE datasets
(Fig. 4). The results show that the RRM SWE dataset is
closer to the 1 : 1 line and has the highest accuracy. The
RRM SWE dataset is particularly accurate for SWE estima-
tion in the low-value region, and the test data are concen-
trated near the 1 : 1 line in the high-density region (kernel
density estimation > 0.00015) (Fig. 4). In contrast, the high-
density regions of the GLDAS SWE dataset, ERA-Interim
SWE dataset, and AMSR-E/AMSR2 SWE dataset deviate
significantly from the 1 : 1 line, resulting in poor accuracy.
The AMSR-E/AMSR2 SWE, GLDAS SWE, and GlobSnow
SWE are underestimated relative to the SWE measured at
the site, among which GLDAS SWE underestimated the ob-
served SWE the most seriously, while ERA5-Land SWE
overestimated the observed SWE. Although the accuracies
of GlobSnow SWE and ERA5-Land SWE are relatively high,
their dispersion degrees are large (the kernel density estima-
tion for most test data is less than 0.0001). Overall, the RRM
SWE data have a higher overall estimation accuracy, espe-
cially for the low-value area of SWE. For an SWE above
400 mm, the MAE and RMSE of the RRM SWE product and
the measured SWE are 0.35 and 43.57 mm, respectively. The
estimation accuracy of the RRM SWE product for the high-
value range of SWE (SWE> 400 mm) is lower than that for
the low-value range of SWE (SWE< 400 mm) (Fig. 4). The
main reason for this is that the training accuracy of the RRM
model for the high-value range of SWE is affected by the
small number of stations that observe the high-value range
of SWE.

However, in this study, there are still some uncertainties
in the ridge regression machine learning algorithm that in-
tegrates SWE products. First, this model is strongly depen-
dent on on-site observational data, and the fusion precision
of SWE is poor in some areas with sparse observational sta-
tions. The fusion accuracy of SWE products will be affected
to a certain extent without considering the prior snow cover
information. The RRM SWE product is still underestimated
in cases of high SWE. Then, in addition to the DEM, meteo-
rological elements, Normalized Difference Vegetation Index
(NDVI), land type, and other factors will affect the SWE esti-
mation. Unfortunately, our current RRM presented here does
not consider these factors as predictors, which is a limitation
of the current RRM SWE product. Finally, in complex terrain
with an elevation interval > 1000 m, the RRM SWE product
performed poorly, with an RMSE of 31.14 mm (Fig. 5), and

Table 3. Error list for the station data and RRM SWE product in
different regions.

Region MAE RMSE (mm) R R2

Russia 0.20 26.39 0.89 0.79
Canada 0.23 29.31 0.87 0.76
Finland 0.21 25.29 0.89 0.79

the integration of SWE products remains challenging (Mor-
timer et al., 2020).

3.2 Accuracy evaluation of the RRM SWE product at
different altitudes and regions

The accuracy of each SWE product is not absolute at
different altitude gradients based on evaluations of the
AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE,
GlobSnow SWE, and ERA5-Land SWE product accuracies
(Fig. 5). The accuracy of a single SWE product is different
from its overall accuracy. We consider the influence of alti-
tude in the algorithm and make full use of the accuracy ad-
vantage of each SWE data for different altitude gradients.

The above verification results show that the MAE, RMSE,
R, and R2 between the RRM SWE product and measured
SWE perform well at altitude gradients of < 100, 100–200,
200–300, 300–400, 400–500, 500–600, 600–700, 700–800,
800–900, 900–1000, and > 1000 m (Fig. 5). Overall, the
RRM SWE product has the highest accuracy in the eleva-
tion intervals of < 100, 100–200, 200–300, 400–500, 500–
600, 600–700, 700–800, 800–900, and > 1000 m. The RRM
SWE product itself has the best performance in the eleva-
tion interval < 100 m. The ERA5-Land product has the best
performance in the elevation interval 300–400 m. The Glob-
Snow product has the best performance in the elevation in-
terval 900–1000 m.

The RRM SWE product has good performance in different
regions, and its RMSEs in Russia, Canada, and Finland are
26.39, 29.31, and 25.29 mm, respectively; additionally, the
performance of the RRM SWE product in different regions
is basically similar (Table 3). The RRM SWE product per-
forms well not only at different altitudes but also in different
regions, and it has good stability.

3.3 Comparison of spatial distribution patterns between
the RRM SWE product and traditional SWE
products

A comparison of the spatially distributed annual average
SWE distributions is made between the RRM SWE and
AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE,
GlobSnow SWE, and ERA5-Land SWE in 2014, 2015, 2016,
and 2017, and their spatial distribution patterns are shown in
Fig. 6.
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Figure 4. Error verification density diagram (a total of 38 807 sample points were used for verification). The color bar represents the value
of kernel density estimation. The closer the high-density area is to the 1 : 1 line, the higher the verification accuracy of the dataset is at most
of the measuring stations.

Overall, the RRM SWE dataset, AMSR-E/AMSR2 SWE
dataset, ERA-Interim SWE dataset, GLDAS SWE dataset,
GlobSnow SWE dataset, and ERA5-Land SWE dataset have
similar spatial distribution patterns in the land region above
45◦ N, showing a trend of lower SWE at low latitudes and
higher SWE at high latitudes. The AMSR-E/AMSR2 SWE
dataset covers a limited extent in the land region above 45◦ N,
many data points are missing, and low SWE values exist
at low latitudes. In northern Siberia, the ERA-Interim SWE
product has a higher SWE, and there are many abnormal,
extreme SWE values (SWE> 500 mm) in this dataset. In
low-latitude regions, such as Alaska, northern Siberia, and
the easternmost region of Russia, the SWE of GLDAS SWE
products is significantly lower. The GlobSnow SWE prod-
uct lacks SWE data for Greenland, and this dataset has low
SWEs in the regions of Baffin Island, Koryak Mountains,
Kamchatka Peninsula, and Alaska. The ERA5-Land SWE
products have low SWEs in northeastern Russia, Scandi-
navia, and northeastern Canada. The RRM SWE dataset is
more reasonable for estimating the spatial distribution of

SWE in the land region above 45◦ N, and the data integrity is
higher. Moreover, based on the new machine learning algo-
rithm, a variety of SWE data products in different time series
are fused, which makes the RRM SWE dataset completely
temporally and spatially continuous.

The relative difference between the RRM SWE data and
GLDAS SWE data is the highest, and the relative difference
is greater than 80 % in most low altitude regions (Fig. 7).
The relative difference between the RRM SWE data and the
GlobSnow SWE data is relatively small overall, especially
in most high-latitude areas where the relative difference is
less than 10 % (Fig. 7). Overall, the annual average relative
differences in the RRM SWE data and AMSR2 SWE, ERA-
Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-
Land SWE are 37 %, 41 %, 54 %, 25 %, and 29 %, respec-
tively (Fig. 7). Previous studies have shown that the accuracy
of the SWE in the Northern Hemisphere estimated by Glob-
Snow SWE data is higher (Pulliainen et al., 2020), while the
spatial distribution pattern of the RRM SWE data is close
to the estimation result of GlobSnow SWE. In addition, the
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Figure 5. Comparison of the error between the RRM SWE and AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow
SWE, and ERA5-Land SWE at different altitudes (the abscissa represents the altitude gradient, and the ordinate represents different SWE
datasets). The color bar indicates the error in each SWE dataset. The closer to red the color is, the higher the accuracy is. MAE: mean absolute
error; RMSE: root mean square error; R: Pearson’s correlation coefficient; R2: coefficient of determination.

single point verification results based on the measured SWE
data of meteorological stations in Sect. 3.1 show that the
RRM SWE dataset has higher accuracy than the GlobSnow
SWE dataset. The RRM SWE dataset has good accuracy.

3.4 Comparison of the annual variation tendencies of
AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS
SWE, GlobSnow SWE, and ERA5-Land SWE and
the RRM SWE in the land region above 45◦ N

Based on the Mann–Kendall trend test, we analyzed the
changing trend in the region-wide annual average SWE of the
AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE,
GlobSnow SWE, ERA5-Land SWE, and RRM SWE in the
land region above 45◦ N from 1979 to 2019.

Based on the Mann–Kendall trend test (see Fig. 8 and Ta-
ble 4), from 1979 to 2019, the test value of the ERA-Interim
region-wide annual average SWE is 1.08, and there is no
significant change trend under the significance test level of
0.05. The test value of the GLDAS region-wide annual aver-
age SWE was 4.95 and showed a significant increasing trend
at the significance test level of 0.05. The test values of the
AMSR-E/AMSR2 annual average SWE, GlobSnow annual
average SWE, ERA5-Land annual average SWE, and RRM
annual average SWE are −3.26, −2.54, −3.43, and −3.00,
respectively, and these four SWEs showed a significant de-
creasing trend at the significance test level of 0.05. Based
on the analysis of the RRM SWE product, between 1979 and
2019, the region-wide annual average SWE in the land region
above 45◦ N decreased by 15.1 %. In the Northern Hemi-
sphere, spring snow cover extent has decreased significantly,

Table 4. Results of the Mann–Kendall trend test performed for var-
ious snow water equivalent products from 1979 to 2019.

Data P value Test value Trend

AMSR-E/AMSR2 0.00 −3.26∗ Decreasing
ERA-Interim 0.27 1.08∗ No trend
GLDAS 7.29× 10−7 4.95∗ Increasing
GlobSnow 0.01 −2.54∗ Decreasing
ERA5-Land 0.00 −3.43∗ Decreasing
RRM SWE 0.00 −3.00∗ Decreasing

∗ Significance level alpha= 0.05.

according to the Fifth Assessment Report (AR5) of the IPCC.
Between 1967 and 2010, the spring snow cover extent de-
creased by an average of 1.6 % per decade, while the June
snow cover extent decreased by 11.7 % per decade (Stocker,
2014). Most studies have shown that the annual variation ten-
dency of snow depth and snow cover extent showed a signif-
icant decreasing trend in the Northern Hemisphere (Brutel-
Vuilmet et al., 2013), which is consistent with the annual
variation tendency of the RRM SWE dataset. This dataset
can reflect the characteristics of snow cover change in the
land region above 45◦ N in light of climate change and can
be used as the driving data for climate models to support
climate-change-related research. In addition, this dataset is
expected to provide a snow data basis for the study of “Arc-
tic amplification”.
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Figure 6. Comparison of the spatial distribution characteristics between the RRM SWE and AMSR-E/AMSR2 SWE, ERA-Interim SWE,
GLDAS SWE, GlobSnow SWE, and ERA5-Land SWE (the four columns of images represent the comparison results in 2014, 2015, 2016,
and 2017).

4 Data availability

The RRM SWE product is available for free down-
load from “A Big Earth Data Platform for Three Poles”
(https://doi.org/10.11888/Snow.tpdc.271556, Li et al., 2021).
The temporal resolution of the RRM SWE product is daily,

and the spatial resolution is 10 km. It spans latitudes of 45–
90◦ N and longitudes of 180◦W–180◦ E. A brief summary
and data description document (including data details, spa-
tial range, and usage method) are also provided.
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Figure 7. Temporal and spatial distributions of relative differences (RD%) between the RRM SWE and AMSR-E/AMSR2 SWE, ERA-
Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-Land SWE. Lower-right panel: comparison of annual average relative differences
between the RRM SWE and AMSR2 SWE (A), ERA-Interim SWE (B), GLDAS SWE (C), GlobSnow SWE (D), and ERA5-Land SWE (E).

Figure 8. Annual variation tendency of the AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow SWE, ERA5-Land SWE,
and RRM SWE products from 1979 to 2019 (the dotted line is the trend line calculated based on the Mann–Kendall method).

5 Conclusions

In this study, we propose a method to fuse multisource SWE
data by a ridge regression model based on machine learn-
ing. A new method was utilized to prepare a set of spa-
tiotemporally seamless SWE datasets of the RRM SWE,
combined with the original AMSR-E/AMSR2 SWE, ERA-
Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-
Land SWE datasets. In the RRM SWE dataset, the time series

of the data is 1979–2019, the temporal resolution is daily, the
spatial resolution is 10 km, and the spatial range is the land
region above 45◦ N.

The RRM SWE data product has the best accuracy, espe-
cially for the estimation of low SWE. The accuracy ranking
of the SWE dataset verified by the test dataset is described as
follows: RRM SWE> ERA5-Land SWE>GlobSnow SWE
> ERA-Interim SWE > multisource data average SWE >

AMSR-E/AMSR2 SWE > GLDAS SWE. The accuracy of
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the RRM SWE dataset is higher than that of the existing SWE
products at most elevation intervals. The RRM SWE prod-
uct has good performance and stability in different regions.
Moreover, the RRM SWE dataset spatiotemporally fills in
the missing data of the original SWE dataset.

Compared with traditional fusion methods, machine learn-
ing methods have a strong advantage. We find that the sim-
ple machine learning algorithm has not only high efficiency
but also good accuracy in the preparation of SWE products
on a global scale. Without losing the advantages of existing
SWE products, this method can also make full use of sta-
tion observational data to integrate the advantages of various
SWE products. The model training process does not rely too
much on a specific sample, and this model has a strong gen-
eralization ability. In addition, the influence of altitude on
the preparation scheme is considered in detail in the model.
Compared with the SWE dataset prepared by the traditional
method, the spatial resolution is only 25 km, while this new
method obtains an SWE dataset with a higher spatial resolu-
tion of 10 km.

We propose that the RRM SWE dataset preparation
scheme has good continuity and can prepare real-time and
high-quality SWE datasets in the land region above 45◦ N. In
addition, the new method proposed in this paper has the ad-
vantages of simplicity and high precision in preparing large-
scale SWE datasets and can be easily extended to the prepa-
ration of other snow datasets. This dataset is an important
supplement to the land region above the 45◦ N SWE database
and is expected to provide data support for Arctic cryosphere
studies and global climate change studies.
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