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Abstract. The wet-bulb temperature (WBT; TW) comprehensively characterizes the temperature and humidity
of the thermal environment and is a relevant variable to describe the energy regulation of the human body. The
daily maximum TW can be effectively used in monitoring humid heat waves and their effects on health. Be-
cause meteorological stations differ in temporal resolution and are susceptible to non-climatic influences, it is
difficult to provide complete and homogeneous long-term series. In this study, based on the sub-daily station-
based HadISD (Met Office Hadley Centre Integrated Surface Database) dataset and integrating the NCEP-DOE
reanalysis dataset, the daily maximum TW series of 1834 stations that have passed quality control were homoge-
nized and reconstructed using the method of Climatol. These stations form a new dataset of global station-based
daily maximum TW (GSDM-WBT) from 1981 to 2020. Compared with other station-based and reanalysis-based
datasets of TW, the average bias was −0.48 and 0.34 ◦C, respectively. The GSDM-WBT dataset handles stations
with many missing values and possible inhomogeneities, and also avoids the underestimation of the TW calcu-
lated from reanalysis data. The GSDM-WBT dataset can effectively support the research on global or regional
extreme heat events and humid heat waves. The dataset is available at https://doi.org/10.5281/zenodo.7014332
(Dong et al., 2022).

1 Introduction

The trend of warming is threatening the climate system, ter-
restrial and marine ecosystems, and socio-economic develop-
ment, resulting in the increase of the frequency and intensity
of extreme climatic events, loss of biodiversity and protected
areas, and human morbidity and mortality (Sun et al., 2014;
Perkins-Kirkpatrick and Lewis, 2020). Long-term tempera-
ture datasets have become the basis for accurate assessment
of global or local warming and its impacts, especially heat
waves and their effects on health (Doutreloup et al., 2022;
Fang et al., 2022). Previous studies on extreme heat mostly
use near-surface air temperature directly based on observa-
tions from meteorological stations or numerical climate sim-

ulations (Mazdiyasni et al., 2017; Dong et al., 2021; Fischer
et al., 2021), but the intensity of air temperature is usually not
equivalent to the human body’s response to the thermal envi-
ronment. Human thermal comfort is related to many climatic
and non-climatic conditions such as air temperature, humid-
ity, air pressure, skin albedo, and heat insulation of cloth-
ing. For example, extreme humid heat combining with a low
air temperature but a high humidity might still cause lethal
and even deadly events (Mora et al., 2017; Raymond et al.,
2020). Indicators such as wet-bulb temperature (WBT; TW)
(Ahmadalipour and Moradkhani, 2018), apparent tempera-
ture (Hu and Li, 2020), humidex (Ho et al., 2017), and uni-
versal thermal climate index (UTCI; Di Napoli et al., 2018)
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were proposed to characterize the thermal comfort of human
bodies. Among them, TW has clear thermodynamic proper-
ties, and the higher TW could dampen the evaporative cool-
ing of sweating (Kang and Eltahir, 2018). The TW has been
widely applied to multi-scale research on humid heat stress
due to the mature methods (Pal and Eltahir, 2016; Raymond
et al., 2020; Zhang et al., 2021). For example, Yu et al. (2021)
found that in arid regions of Eurasia, changes of TW had
stronger dependence on relative humidity than that in humid
regions, and an increase of 1 % in relative humidity would
result in an increase of 0.2 ◦C in TW.

Near-surface air temperature and humidity are the key
variables for calculating TW (Im et al., 2017). Although re-
analysis and modeling datasets have the advantages of di-
verse parameters and complete series, studies have shown
that changes in TW might be underestimated (Freychet et al.,
2020). In comparison, station-based datasets are more diffi-
cult to provide continuous and homogeneous data, because
meteorological observations can be directly or potentially af-
fected by the damage of instruments, the relocation of sta-
tions, and also the surrounding environmental changes (Ma-
mara et al., 2013; Li et al., 2020). There is still a lack of pub-
lic, downloadable global station-based datasets of TW, espe-
cially for long-term series of daily maximum TW which can
be used for research on extreme humid heat. In addition, an-
other difficulty in generating station-based datasets of daily
maximum TW is the impact of the temporal resolution of
source data on the accuracy, because the daily maximum TW
is not necessarily corresponding to the daily maximum tem-
perature and daily maximum or minimum humidity. When
only the daily-scale data are available, they often have to use
daily average TW instead of calculating the real maximum
values (Yu et al., 2021; Guo et al., 2022). With the enhance-
ment of continuity and resolution of data sources, hourly or
sub-daily TW can be computed firstly, and then the daily max-
imum TW is obtained statistically (Im et al., 2017; Speizer et
al., 2022).

The HadISD (Met Office Hadley Centre Integrated Sur-
face Database) dataset is a sub-daily climatic dataset widely
used in recent years; it contains a set of basic meteorolog-
ical variables and has also developed one humidity dataset
and one heat stress dataset (Dunn et al., 2016). The humid-
ity dataset of HadISD (HadISD-Humidity) includes TW data
calculated from empirical formulas. Many studies used an al-
gorithm proposed by Davies-Jones to calculate TW (Davies-
Jones, 2008), which allows the use of such climatic variables
as near-surface air temperature, humidity, and air pressure
in HadISD. However, TW calculated in this way cannot deal
with missing values and inhomogeneities. Although produc-
ers of HadISD provide a homogeneity assessment for tem-
perature, dew point temperature, sea level pressure and wind
speed (Dunn et al., 2014), the results are mostly used for
quality control to assess their suitability for different research
objectives. To our knowledge, there is no dataset that con-

tains long-term complete series of daily maximum TW based
on global stations.

To this end, we used the HadISD sub-daily data and in-
tegrated reanalysis data to produce a global station-based
daily maximum TW (GSDM-WBT) dataset, which spans
40 years (1981–2020) for 1834 stations (Dong et al., 2022).
The GSDM-WBT dataset solved the problems of many miss-
ing values and prominent inhomogeneity through data qual-
ity control and homogenization. We also evaluated the se-
ries of GSDM-WBT by comparing it with the HadISD-
Humidity dataset as well as another reanalysis-based dataset.
The GSDM-WBT could provide data support for global or
regional analysis (especially in the middle and high latitudes
of the Northern Hemisphere) on long-term humid heat.

2 Methods

The production of GSDM-WBT includes four procedures:
the calculation of TW, data quality control, homogenization,
and comparison and evaluation (Fig. 1). Specifically, based
on the initial data of near-surface air temperature, specific
humidity and station-level air pressure from HadISD, the al-
gorithm proposed by Davies-Jones was used to calculate the
sub-daily TW. Furthermore, by defining the valid days and
valid months for the long-term series of TW, the data quality
was controlled and the daily maximum TW was obtained for
valid stations. The homogenization was carried out in dif-
ferent station zones divided by the Köppen–Geiger climate
classification, and reanalysis data were integrated to comple-
ment the series. In this part, the method of Climatol was used
to correct inhomogeneous series and infill all missing values.
Finally, we compared the differences between the GSDM-
WBT dataset and other station-based and reanalysis-based
datasets for a better validation of the accuracy.

2.1 Data sources

The HadISD dataset was used to provide basic data of differ-
ent climatic variables for GSDM-WBT. Launched by the Met
Office Hadley Centre, HadISD uses a station-based dataset
from the Integrated Surface Database (ISD) (Smith et al.,
2011) and is quality-controlled, with particular preservation
of historical extreme values for meteorological variables. At
present, the dataset has covered the observed data of more
than 9000 meteorological stations around the world. The
time series can be traced back to 1931, and the temporal
resolution is from hourly to daily scale (Dunn et al., 2016).
Based on the algorithm of calculating TW, the near-surface
(2 m) air temperature (◦C), specific humidity (g kg−1), and
station-level air pressure (hPa) from the period 1981–2020
were imported. The used version of HadISD is v3.2.0.2021f.
Considering the dependence of the occurrence of maximum
TW at sub-daily scale in local climate, we converted Coordi-
nated Universal Time (UTC) to the local time zone of each
station.
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Figure 1. Procedures of producing the global station-based daily maximum wet-bulb temperature (GSDM-WBT) dataset. The numbers in
the parentheses indicate the number of stations that remained after each procedure.

Köppen–Geiger climate classification data were used for
dividing station zones before homogenization. The “present-
day” climate classification was derived based on the monthly
temperature and precipitation from 1980 to 2016, which
included three levels and was produced to three resolu-
tions (Beck et al., 2018). Considering the density of sta-
tions in this study, the second-level with moderate-resolution
(0.083◦) climate classification was selected, including 13
classes: tropical rainforest, tropical monsoon, tropical sa-
vannah, arid desert, arid steppe, temperate-dry summer,
temperate-dry winter, temperate-without-dry season, cold-
dry summer, cold-dry winter, cold-without-dry season, polar
tundra, and polar frost.

The NCEP-DOE reanalysis dataset was used for com-
plementing series in homogenization. It is the second-
generation assimilated historical dataset produced by the Na-
tional Oceanic and Atmospheric Administration (NOAA) of
USA (Kanamitsu et al., 2002). The NCEP-DOE reanalysis
dataset dates back to 1979 and provides 4 times daily val-
ues of various climate variables as well as daily and monthly
means. The series of 2 m air temperature (K), 2 m specific
humidity (kg kg−1), and surface pressure (Pa) from 1981 to
2020 were used to calculate the sub-daily TW and daily max-
imum TW, and linear scaling was used to correct the reanal-
ysis series (Shrestha et al., 2017).

2.2 Calculate the TW

The algorithm of calculating TW proposed by Davies-Jones
has low error and is widely used (Raymond et al., 2020;
Rogers et al., 2021). Based on the empirical formula for ac-
curate calculation of equivalent potential temperature pro-
posed by Bolton in 1980, Davies-Jones put forward the re-
lationship among TW, saturated mixing ratio, saturated vapor
pressure and equivalent temperature. When an initial TW is
given, the converged TW could be obtained by iterative cal-

culation. The core formula is as follows:(
C

TE
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where k3 and v are the empirical parameters proposed by
Bolton (Bolton, 1980), which are 0 and 0.2854, respectively.
Equivalent temperature and wet-bulb temperature are de-
noted as TE and TW; es, rs, and π are saturation vapor pres-
sure, saturation mixing ratio, and nondimensional pressure;
C, λ, and p0 are constants which are 273.15 K, 3.504 and
1000 mb, respectively. After the nth and n+1th iterations, τn
and τn+1 are the TW, and τn is set as the initial TW at the first
iteration. Davies-Jones also showed the calculation of initial
TW (Davies-Jones, 2008). When the equivalent temperature
is in the ranges of high values or low values, the relationship
between TW and ( C

TE
)λ is non-linear, and otherwise there is a

linear relationship.
We referred to Buzan’s implementation and Kopp’s Mat-

lab code to calculate TW, and the threshold of convergence
or the maximum number of iterations were set to 0.001 K
and 100, respectively (Buzan et al., 2015; Kopp, 2020). Air
temperature (◦C), specific humidity (kg kg−1) or relative hu-
midity (%), and air pressure (hPa) are input variables, and TW
(◦C) is the output variable. Specifically, long-term series of
air temperature and humidity at sub-daily scale were directly
imported, and the long-term average air pressure was used
as a substitute because many observations of station level air
pressure were missing. We performed the sensitivity analysis
on the comparison of the differences in TW calculated us-
ing sub-daily air pressure and long-term average air pressure
(Sect. 3.1 for details).
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2.3 Data quality control

Due to the differences in temporal resolutions and the num-
ber of missing values among stations, it is necessary to con-
duct quality control of the original series in order to avoid ex-
treme distribution of sub-daily TW and few valid data when
calculating daily maximum TW (Zhang et al., 2021). Several
criteria for data quality control were defined for a better se-
lection of valid stations:

i. Valid day: at least 1 TW every 6 h (00:00–06:00, 06:00–
12:00, 12:00–18:00, 18:00–24:00 LT) per day. Gener-
ally, the highest TW occurs in the daytime. However,
because of the different temporal resolutions among
stations or the inconsistent number of observations on
different days at one station for HadISD, observations
might only refer to extreme low values at night, thus
resulting in an underestimation of the daily maximum
TW.

ii. Valid month: at least 21 valid days (3 weeks) per month.
Due to the high variability of daily data for long-term
series, monthly series are often used as the basic data to
correct daily series. For example, in the homogenization
of daily temperature, it is first necessary to detect break
points for the monthly series. If many valid days are
missing in a month, it might cause a higher statistical
deviation at the monthly scale.

iii. Valid station: at least 400 valid months (of a total of
480 months during 1981–2020) per station. Consider-
ing the time span of 40 years, and hoping that the dataset
could be useful for long-term research on extreme hu-
mid heat, we selected the stations which contain more
valid months. It should be noted that here we do not
require the selected stations to meet the definition of a
valid month in all 480 months, which is limited by the
quality of data source. But further complementing se-
ries and infilling missing data could make up for this
problem to a certain extent.

According to the above criteria, we screened out 2248 valid
stations (Fig. S1 in the Supplement), and computed the series
of daily maximum TW for each station.

2.4 Homogenization

Homogenization is the key procedure which first detects the
break points of long-term series caused by the influences
of non-climatic factors (e.g., relocation of stations and sur-
rounding environmental changes), and then corrects the data
before and after the break points to improve the homogene-
ity of whole series (Brugnara et al., 2019; Fioravanti et al.,
2019). The generally recognized process of correcting daily
series was adopted, i.e., firstly detecting break points at the
monthly scale (480 time steps in this study), and then correct-
ing the daily series (14 610 time steps). Since it is difficult to

obtain accurate historical information of stations, a relatively
homogeneous reference series are often constructed from the
data of stations surrounding the candidate station. The break
points could be identified by comparing whether there are
significant differences between reference and candidate se-
ries.

2.4.1 Dividing station zones

The surrounding stations used to construct the reference se-
ries should have similar climatic backgrounds to the candi-
date station (Gubler et al., 2017) so as to ensure that the con-
structed reference series could be effectively used for detect-
ing break points, especially in the context of a large num-
ber of stations at the large scale. According to the second-
level Köppen–Geiger climate classification at moderate reso-
lution, there are 13 climate classifications in the world. As for
2248 valid stations selected after quality control, we divided
them into several station zones based on climate classifica-
tions in ArcGIS 10.4, and then the homogenization was per-
formed in each station zone. Additionally, in order to ensure
that there were sufficient surrounding stations used to con-
struct reference series, we required that there were at least 5
stations in each station zone, and finally got 41 station zones
containing 1834 meteorological stations (Fig. S2).

2.4.2 Complementing series

Whether the reference value could be estimated for each time
step of the candidate station depends on how much data of
surrounding stations are missing at this step. When all sur-
rounding stations lack data, the estimation cannot be com-
pleted. Therefore, when the above situation arose, we in-
troduced the reanalysis series as the complementary series
to achieve homogenization for the candidate station. The
NCEP-DOE reanalysis dataset also includes air temperature,
specific humidity, and surface pressure every 6 h from 1980
to 2020, but it might be affected by systematic and random
errors, leading to the deviations from actual observations
(Yan et al., 2020). A total of 36 station zones (except for
Z13, Z19, Z25, Z26, and Z29) needed to be supplemented
by reanalysis series in this study. Firstly, the air temperature,
specific humidity, and surface pressure of the grid point near-
est to each station were extracted, and the sub-daily (6 h in-
terval) TW was calculated (see Sect. 2.2). Then, the initial
series of daily maximum TW and monthly mean were com-
puted before bias correction. Furthermore, the linear scaling
(Shrestha et al., 2017) was used to calculate the bias of the
average monthly mean series between each station and the
nearest grid point from January to December. Finally, the
bias was used to correct the daily maximum TW of the nearest
grid point for each month. Equations are as follows:

TWmax(r)∗ = TWmax (r)+[Monmean (s)−Monmean (r)], (3)
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where, TWmax (r) and TWmax(r)∗ are the original and cor-
rected series of daily maximum TW based on reanalysis data,
respectively; Monmean (s) and Monmean (r) are the long-term
average monthly mean series from station-based data and
reanalysis-based data, respectively.

Due to the relatively coarse resolution of the reanalysis
dataset, one grid might involve two or more stations spatially.
We deleted the duplicate series and paired it with the station-
based series with the highest correlation coefficients for fur-
ther bias correction. Besides, the number of complemented
series is equal to the number of stations in such zones that
should be supplemented theoretically, but too many comple-
mentary reanalysis data would reduce the reliability of con-
structing reference series. After removing the duplicating se-
ries, reanalysis series which had the top 10 % correlation co-
efficients (p < 0.05) with station-based series were selected
as the complementary series for the corresponding station
zone.

2.4.3 Infilling missing data and homogenization

Many algorithms of identifying inhomogeneity and homog-
enization have been proposed, such as MASH (Mamara et
al., 2013), RHtests (Brugnara et al., 2020), HOMER (Coll
et al., 2020), and Climatol (Dumitrescu et al., 2020). These
algorithms differ in methods of detecting break points, appli-
cable variables and their resolutions, the number of series to
be processed, and the ability of automation. Climatol has the
advantages of high tolerance for missing data, unlimited vari-
ables, and unlimited sample size. Climatol selects the refer-
ence stations according to the distance to candidate stations,
estimates the reference series based on the reduced major
axis regression, and then applies the Standard Normal Homo-
geneity Test (SNHT) to the series of anomalies between the
actual values and the reference values to identify the break
points (Alexandersson, 1986). Since the SNHT is a method
of detecting single break point, Climatol conducts the detec-
tions on the stepped overlapping temporal windows and on
the complete series, respectively, in order to avoid ignoring
the multiple break points in the series. One inhomogeneous
series can be divided into several homogenous sub-series. Fi-
nally, all missing data were infilled by averaging neighboring
values. Infilling missing data and constructing reference se-
ries both rely on data normalization, which might have high
uncertainty when the series is incomplete. Climatol itera-
tively infills missing data multiple times until the mean of
series becomes stable (Paulhus and Kohler, 1952). The pro-
cedures of Climatol are shown in Fig. S3.

In this study, Climatol (version 3.1.2) with an R script was
used to perform homogenization in each station zone. Since
Climatol selects the reference station based on the distances
between stations and ignores the correlations of series, we
calculated the average correlation coefficients of the candi-
date and the surrounding series with the increase of the num-
ber of reference stations in each station zone, and then se-

lected the maximum number of reference stations as the im-
ported parameter in Climatol (Sect. 3.2 for details). In addi-
tion, in the stage of infilling missing values, Climatol allows
setting weights to surrounding stations, i.e., the weights de-
cay as the distances to the candidate station increase. In each
station zone, the average distance between the candidate sta-
tions and the nearest stations was set as the distance param-
eter for half weight. In the stage of detecting break points,
we firstly conducted exploratory experiments to obtain the
standard deviation of the series and the frequency distribu-
tion of SNHT values, and then determined the thresholds for
deleted outliers and break points (Table S1 in the Supple-
ment for details on parameters). Higher standard deviations
and SNHT values mean higher probability of such stations
to be detected as the outliers and break points. Through set-
ting the above parameters, we detected the break points for
the monthly series of average daily maximum TW, i.e., set it
as the known meta-data information, and then split the daily
series and reconstructed series.

2.5 Sensitivity analysis

There are two potential uncertainties in the procedures of cal-
culating TW and homogenization when producing GSDM-
WBT. Firstly, due to the missing observations of station-level
air pressure, we assumed that the influence of air pressure
on TW was much lower than that of air temperature and hu-
midity in the long-term state, and thus the long-term average
air pressure was used instead of the sub-daily air pressure.
We assessed the average bias of the daily maximum TW to
check the effect of long-term average air pressure. Secondly,
the important difference between the Climatol and other al-
gorithms of homogenization is that the reference stations are
selected based on their distances from the candidate stations
rather than the correlation of series. Therefore, when setting
the maximum number of reference stations, we also consid-
ered the changes of correlation between different numbers of
reference stations and candidate stations.

3 Results

3.1 Effect of long-term average air pressure

To evaluate the effect of long-term average air pressure on
the daily maximum TW, we applied the same algorithm to
calculate TW based on sub-daily air pressure, and also used
the same criteria of data quality control to select 398 valid
stations. The average bias of the daily maximum TW based
on the long-term average and sub-daily air pressure for such
398 stations was 0.12 ◦C. In view of spatial patterns (Fig. 2),
arid and semi-arid regions had the clustering of high bias,
and other mid-latitude regions had lower bias which was
mostly concentrated at 0–0.15 ◦C, whereas the bias increased
in high-latitude regions. Sensitivity analysis of previous stud-
ies also showed that the effect of surface pressure on TW was
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about 0.1 ◦C (Raymond et al., 2020). When targeting the sta-
tions with average daily maximum TW of more than 20 ◦C,
where humid heat conditions were highly relevant to human
health, the average bias was also maintained at 0–0.11 ◦C.

3.2 Correlation between candidate and reference
stations

Before the homogenization, we calculated the changes of av-
erage correlation coefficients between the candidate series
and surrounding series with the increase of the number of
reference stations (Fig. 3). Stations that were closer to the
candidate stations were preferentially selected. Except for the
Z32, Z33, Z35, Z36, and Z41 station zones, no matter how
many reference stations are selected, the average correlation
coefficients always remained above 0.9 (1789 stations in to-
tal). Ensuring a certain number of reference stations, the av-
erage correlation coefficients of Z32, Z33, and Z41 could be
stable above 0.8, while Z35 and Z36 located near the Equa-
tor have lower regional average coefficients. Therefore, it is
emphasized that the GSDM-WBT dataset might have higher
reliability in mid-to-high latitudes.

3.3 Effect of homogenization

Detection of inhomogeneity could identify the break points
caused by non-climatic factors for long-term series. After
homogenization, in theory, the corrected series of candidate
stations should have a better correlation with the surround-
ing series. We paired 1834 stations and calculated the mu-
tual correlation coefficients before and after homogenization
(Fig. 4a). Overall, the correlation coefficients after correction
were higher and the maximum increment of coefficients was
0.28. It was also notable that there was a significant increase
in correlation between stations that were closer together as
shown in the blue dots. In the sub-plot of Fig. 4a, about
80.23 % of paired stations had larger coefficients after ho-
mogenization. To further demonstrate the effect of homog-
enization, we selected one typical station from each station
zone that either had the most break points, had higher SNHT
values, or had more missing data (Table S2 for details). The
changes of annual average daily maximum TW before and
after the homogenization and the number of infilled and cor-
rected data were shown in Z1–Z41 of Fig. 4. On the one hand,
before the break points, some stations showed a significant
increase or decrease in the average daily maximum TW be-
fore and after homogenization (e.g., Z2, Z8, Z18, and Z41).
The overestimation or underestimation of the original series
is mainly related to the equipment, environment, and statisti-
cal methods of monitoring stations in different countries. On
the other hand, many missing data directly lead to discontin-
uous series and abnormal statistical values. For example, a
large number of missing values in the Z25 and Z29 station
zones around 1995 caused abnormal fluctuations.

In addition, complementing series was an essential pro-
cess to achieve all homogenization, and the reanalysis dataset
was introduced in this study. To reduce the impact of uncer-
tainty in the reanalysis data, we selected complementary se-
ries based on the correlation coefficients (Sect. 2.4) and also
demonstrated the effect in different station zones as shown in
Table S3. The number of complementary series was limited
to no more than 10 % of the number of all stations (at least
one complementary series). The reanalysis-based dataset was
mainly used to provide reference daily maximum TW when
the values in each time step of all candidate stations were
missing. However, such a situation was not universal since
the percentages of void time steps in series (0.03 %–2.59 %)
relative to 14 610 total time steps were quite low.

3.4 Evaluations

3.4.1 Comparison with station-based data

In addition to the basic meteorological variables, HadISD-
Humidity also includes TW calculated by the simple empiri-
cal formulas. Since HadISD-Humidity directly uses the orig-
inal dataset to calculate TW without further post-processing,
it still has the shortcomings of many missing values and pos-
sible heterogeneity. We used the same definition to calcu-
late the valid days for HadISD-Humidity, and counted the
number of missing days in January–December during 1981–
2020 for all 1834 stations. The median number of missing
days in each month over past 40 years in the Northern Hemi-
sphere was less than 100 d, much lower than the correspond-
ing months in the Southern Hemisphere (Fig. 5). In terms of
seasonality, there were evidently more missing days during
the warm season (May–September) in the Northern Hemi-
sphere, especially in summer (June–August). Because the
extremely humid heat events are generally identified based
on daily TW and the daily thresholds in the historical base-
lines, more missing values could cause inaccurate thresholds
or insufficient events to be detected. Therefore, the potential
uncertainties should be noticed when directly using HadISD-
Humidity to characterize humid heat.

The bias of daily maximum TW between GSDM-WBT and
HadISD-Humidity was further calculated. Because the se-
ries of TW from HadISD-Humidity were not corrected for
homogeneity, the 1834 stations could not be fully matched.
However, HadISD provides the test values for detecting in-
homogeneity based on the pairwise homogenization algo-
rithm (Menne and Williams, 2009) for the monthly mean di-
urnal range of air temperature and dew point temperature.
Based on the detected results, 245 completely homogenous
stations were screened out in this study from 1981 to 2020,
which were concentrated in the middle latitudes (Fig. 6), al-
though it is notable that the existing missing values might
increase the potential inhomogeneity of daily maximum TW
series in HadISD-Humidity. Overall, the daily maximum TW
of GSDM-WBT is lower than that of HadISD-Humidity. The
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Figure 2. Sensitivity of TW to air pressure. Sensitivity, i.e., average bias, was calculated by subtracting the daily maximum TW calculated
by sub-daily pressure from the daily maximum TW based on long-term average pressure. The sub-plot shows the histogram of the number
of stations with corresponding average bias when average daily maximum TW was more than 20 ◦C, where the dashed red line indicates the
mean (0.04 ◦C).

Figure 3. Average correlation coefficients between series of candidate and reference stations in different station zones. The red box highlights
the number of maximum reference stations which was used for homogenization.

mean of average bias for all stations was −0.48 ◦C, and the
average root mean square error (RMSE) was 0.72 ◦C. In view
of spatial patterns, western Europe had high consistency for
these two datasets, and part stations in arid and semi-arid re-
gions of central Asia and western North America had poor
consistency.

3.4.2 Comparison with reanalysis-based data

The ERA5 (Hersbach et al., 2020) dataset has also been
widely used in calculating various heat stress indices and
producing the corresponding dataset in recent years. Yan et
al. (2021) launched a high-resolution thermal stress dataset
(HiTiSEA) covering South and East Asia. The dataset with
a spatial resolution of 0.1◦× 0.1◦ and a time span of 1981–

2019, includes daily maximum TW. There are 587 stations
of GSDM-WBT located in the spatial range of HiTiSEA.
We extracted the HiTiSEA series of daily maximum TW in
the nearest grid points to all 587 stations, and compared the
average bias with GSDM-WBT (Fig. 7). Overall, compared
with HiTiSEA, the mean of average bias and RMSE for all
stations were 0.34 and 1.61 ◦C, respectively. High inconsis-
tency between the two datasets existed in the northeastern
and southern regions.

The verification of HiTiSEA showed that its average bias
of the daily maximum TW from the meteorological stations
was −0.4 ◦C (Yan et al., 2021), which was consistent with
our study. It should also be noted that HiTiSEA was pro-
duced from the sub-daily data of UTC, and thus we checked
the correlation between the longitudes of stations and the av-
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Figure 4. Correlation coefficients (p < 0.05) between paired series before and after homogenization (a), and annual average daily maximum
TW (◦C) and the number of infilled or corrected data for one typical station in each station zone (Z1–Z41). Sub-plot of the figure (a) showed
the correlation coefficients between paired stations of which distances lower than the first quarter. When the coefficients were more than
0, the dots in the upper areas of black diagonal indicated the higher coefficients after homogenization. Detailed information of all typical
stations was shown in Table S2.
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Figure 5. Number of missing days in different months during 1981–2020 for the HadISD-Humidity dataset. The lower and upper hinges
correspond to the 25th and 75th percentiles, and the horizontal lines in the boxes show the medians. The lower and upper whiskers are the
minimum and maximum values.

Figure 6. Average bias between daily maximum TW of GSDM-WBT and HadISD-Humidity.

erage bias. The extremely low correlation coefficients indi-
cated that the average bias was not dependent on longitude
(local time zone) (Fig. S4).

3.4.3 Year-to-year comparison

The annual average daily maximum TW was further calcu-
lated in 245 stations for the comparative analysis of GSDM-
WBT and HadISD-Humidity, and in 587 stations for the
comparative analysis of GSDM-WBT and HiTiSEA (Fig. 8).
Overall, whether focusing on all months or only the warm
season, the annual average daily maximum TW of GSDM-
WBT was lower than that of the station-based HadISD-
Humidity, but higher than that of the reanalysis-based Hi-
TiSEA. In view of the relative accuracy, the former incon-
sistency may be caused by the existing missing values of
HadISD-Humidity and the homogenization of GSDM-WBT.

The latter differences have reached a similar conclusion in
previous studies, i.e., the TW and other heat stress indices
calculated from reanalysis-based data are underestimated.

4 Discussion

4.1 Advantages of GSDM-WBT in climate change
research

The wet-bulb temperature (TW), a characteristic tempera-
ture that integrates temperature and humidity, reflects the re-
sponse of human bodies to the thermal environment and has
been widely used in the fields of heat waves, climate and
health, and social vulnerability (Coffel et al., 2018; Kang
and Eltahir, 2018). Although TW is suitable for large-scale
applications, there is still a lack of long-term datasets based
on meteorological stations. Based on the observed data of
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Figure 7. Average bias between station-based daily maximum TW of GSDM-WBT and that of the nearest grid points in HiTiSEA.

Figure 8. Annual average daily maximum TW between HadISD-Humidity, HiTiSEA, and GSDM-WBT in all months and warm season
(May, June, July, August, and September in the Northern Hemisphere).

HadISD and integrating reanalysis data, we have produced a
dataset of daily maximum TW from 1981 to 2020 for 1834
stations around the world, which can effectively support
global or regional research on climate change and its impact.
Two main advantages of GSDM-WBT should be empha-
sized. Firstly, compared with other thermal comfort indices,
the algorithm of computing TW is relatively mature, and the
required data sources are not complicated. The UTCI is also
one typical thermal comfort indicator that has been gradu-
ally recognized in recent years, because it not only considers
more climatic variables such as temperature, wind speed, and
humidity, but also considers the parameters of skin albedo

and clothing conditions (Wang and Yi, 2021). However, the
complete model of UTCI has high complexity, and the ex-
isting research mainly uses the approximate polynomial fit-
ting method. In addition, UTCI is mostly performed at small
scales (Dong et al., 2020), while the localized parameters of
UTCI are still difficult to obtain.

Another advantage of GSDM-WBT is that Climatol was
applied to achieve homogenization for daily maximum TW,
thereby eliminating the possible break points affected by
non-climatic factors, and reconstructing the series without
missing values. Although the HadISD dataset has been used
to compute TW in a previous analysis of humid heat, such re-

Earth Syst. Sci. Data, 14, 5651–5664, 2022 https://doi.org/10.5194/essd-14-5651-2022



J. Dong et al.: GSDM-WBT 5661

search either usually ignored the inhomogeneity and missing
values, or selected fewer stations by improving quality con-
trol (Zhang et al., 2021). Therefore, the complete series re-
constructed by GSDM-WBT can better serve the daily-scale
research on thermal environment. For example, if there are
many missing days, a continuous heat wave event would be
divided into multiple independent events, and the cumulative
intensity and duration of the heat wave might be underesti-
mated. In addition, more accurate extreme values at the daily
scale can be obtained based on sub-daily data sources. Pre-
vious research showed that the differences of extreme humid
heat between using monthly and sub-daily temperature and
humidity could be up to more than 4 ◦C at regional scale, and
lead to substantial uncertainty of future predictions (Buzan
and Huber, 2020). Different from the evaluations of extreme
heat events in view of the average temperature, the daily
maximum TW of GSDM-WBT better shows the real extreme
thermal situation for 1 d.

4.2 Limitations and future improvements of dataset

Homogenization is an important procedure in the production
of GSDM-WBT. Generally, detection of inhomogeneity is
often applied to observed climate variables such as tempera-
ture, humidity, and wind speed (Azorin-Molina et al., 2016;
Li et al., 2020). Furthermore, it has also been applied in re-
cent years for non-traditional meteorological variables such
as plant phenology (Brugnara et al., 2020). We adopted the
idea of calculating the TW first and then performing homog-
enization, but inevitably, the calculation of TW might smooth
the break points of original series. The ideal process is to first
perform homogenization on several single variables (i.e., air
temperature, humidity, and air pressure) for TW, and then to
combine all homogeneous series to calculate the TW. How-
ever, the complexity and uncertainty of such ideal process are
difficult to estimate. On the one hand, the temporal resolution
of univariates is at hourly or sub-daily scale. The resolution is
higher, the operation time increases, and more missing values
may lead to lower accuracy of interpolation. Besides, the de-
tected break points of different univariates do not correspond
completely. When the historical meta-data is lacking, it is
difficult to judge whether there is a conflict in break points
between all variables and ensure how to determine the thresh-
olds used for homogenization. Therefore, we conducted the
procedures of calculating the TW firstly and then completing
the homogenization. In the future, with the improvement of
data availability, mature algorithms, and complete records,
homogenous series of univariates could be obtained firstly,
followed by the calculation of daily maximum TW.

Recent studies have also attempted to use existing algo-
rithms to perform homogenization on sub-daily or hourly se-
ries, although they are still carried out at small scale (Du-
mitrescu et al., 2020). This is mainly because high-resolution
meteorological datasets with good quality always need multi-
sectoral cooperation within countries or cities. In the future,

with the enhancement of the global meteorological station
networks and data records, the TW dataset with higher tem-
poral resolution could be constructed, which could not only
improve the accuracy of daily statistics, but also promote the
research on the differences between daytime and nighttime
for better characterizing humid heat and exploring potential
mitigations. Meanwhile, the complex changes in the relation-
ship, but not the simply fixed joint, between temperature and
humidity, were investigated around different regions based
on the multivariate analysis (McKinnon and Poppick, 2020).
Then, the historical dataset of TW could be expanded to fu-
ture longer periods based on the observation-based relation-
ship between temperature and humidity (Poppick and Mck-
innon, 2020).

5 Data availability

The GSDM-WBT dataset is freely available at
https://doi.org/10.5281/zenodo.7014332 (Dong et al.,
2022). We provide the NetCDF files of GSDM-WBT for
each station and one compressed file containing all data.

6 Conclusions

Based on HadISD station-based observations and integrating
with the NCEP-DOE reanalysis data, the daily maximum TW
of 1834 stations around the world was produced through the
calculation of TW, data quality control, infilling missing val-
ues, and homogenization. The GSDM-WBT dataset covers
the complete daily series of 40 years from 1981 to 2020. The
production with the application of Climatol successfully cor-
rected the inhomogeneities of series caused by non-climatic
factors, and also infilled all missing data to reconstruct com-
plete series for each station. Compared with the existing
publicly downloaded station-based and reanalysis-based TW
datasets, the overall average bias of GSDM-WBT was−0.48
and 0.34 ◦C, with the average RMSE of 0.72 and 1.61 ◦C,
respectively. This new dataset can better support the stud-
ies on global or regional humid heat events. We also hope
that with the improvement of observations and reconstructed
algorithms, the uncertainty of producing the dataset can be
further reduced and a global station-based TW dataset with
hourly resolution can be produced in the future.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-5651-2022-supplement.
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