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Abstract. This study proposes a comprehensive benchmark dataset for streamflow forecasting, WaterBench-
Iowa, that follows FAIR (findability, accessibility, interoperability, and reuse) data principles and is prepared
with a focus on convenience for utilizing in data-driven and machine learning studies, and provides benchmark
performance for state of art deep learning architectures on the dataset for comparative analysis. By aggregating
the datasets of streamflow, precipitation, watershed area, slope, soil types, and evapotranspiration from fed-
eral agencies and state organizations (i.e., NASA, NOAA, USGS, and Iowa Flood Center), we provided the
WaterBench-Iowa for hourly streamflow forecast studies. This dataset has a high temporal and spatial resolution
with rich metadata and relational information, which can be used for a variety of deep learning and machine
learning research. We defined a sample benchmark task of predicting the hourly streamflow for the next 5 d
for future comparative studies, and provided benchmark results on this task with sample linear regression and
deep learning models, including long short-term memory (LSTM), gated recurrent units (GRU), and sequence-
to-sequence (S2S). Our benchmark model results show a median Nash-Sutcliffe efficiency (NSE) of 0.74 and
a median Kling-Gupta efficiency (KGE) of 0.79 among 125 watersheds for the 120 h ahead streamflow predic-
tion task. WaterBench-Iowa makes up for the lack of unified benchmarks in earth science research and can be
accessed at Zenodo https://doi.org/10.5281/zenodo.7087806 (Demir et al., 2022a).

1 Introduction

Deep learning, a set of algorithms based on artificial neural
networks (ANN) for supervised and unsupervised modeling,
has been widely used and recognized as a powerful approach
within many scientific disciplines for technological and pre-
dictive progress (Goodfellow et al., 2016). As conventional
machine learning techniques were deemed limited in learn-
ing the representations of high-dimensional datasets from
their raw form, by providing universal approximator models
(Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993),
deep neural networks increased scientists’ ability to model
both linear and non-linear problems without time-intensive
data engineering processes by domain experts (LeCun et al.,
2015). Deep learning’s predictive modeling capabilities have

led to improvements in various fields, including image recog-
nition and synthesis (Demiray et al., 2021), speech recogni-
tion, language modeling, and time-series prediction.

Flooding is a significant concern for many areas in the
world as it is on an upward trend due to climate change.
The 1998 Bangladesh flood, the Iowa flood of 2008, and the
2013 North India floods show how catastrophic and both eco-
nomically and psychologically devastating floods can be for
populations in the respective regions. In order to maximize
the preparedness for floods and minimize their effects after
the disaster (Yildirim and Demir, 2021), weather and flood
forecasting stands as a perennial research interest for hydrol-
ogists and data scientists. Streamflow prediction and runoff
modeling are research efforts where the water from the land
or channel over time is modeled and forecasted using previ-
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ous data points for a location or nearby locations with similar
characteristics. Although this effort is conventionally carried
out with physically based models that require extensive com-
putational (Agliamzanov et al., 2020) and data resources, it
is critical for flood mitigation and decision support (Xu et al.,
2020).

Being a time-series prediction task, in essence, flood fore-
casting takes advantage of the practicality and efficacy that
deep learning brings to predictive modeling. Both time-series
adaptations of deep learning models intended for natural
language processing, and time-series focused deep neural
network implementations make this possible by proposing
methodologies that put the sequential nature of time-series
datasets into good use. Recurrent neural network (RNN) ar-
chitectures such as long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997), gated recurrent
unit (GRU) networks (Chung et al., 2014), and attention-
based sequence-to-sequence (S2S) networks (Vaswani et al.,
2017) are pronounced starting point for deep neural network
architectures for most time-series forecasting tasks.

Supervised learning, whether it be deep or not, is the most
common form of machine learning (LeCun et al., 2015), and
supervised learning tasks, such as flood forecasting, need a
dataset of previously recorded or labeled entries for the task.
That dataset typically consists of X and y values where X
values are the input that the model expects, and y values are
the output values the model returns. A supervised learning
model is trained using a loss function that measures the sim-
ilarity or difference of the y values from the dataset (actual
y-values) and the outputs of the model (predicted ys). During
a typical training process, predicted ys get closer to the actual
ys in time, hence the name training. As a quintessential part
of any supervised learning task, training neural network mod-
els on established datasets is common among deep learning
practitioners and researchers (Goodfellow et al., 2016). For
most tasks that deep learning researchers tackle today, there
are vast amounts of benchmark datasets available freely for
research. While computer vision datasets, such as Imagenet
(Deng et al., 2009), Ms-celeb-1m (Guo et al., 2016), Adobe-
240fps (Su et al., 2017), and Vimeo-90K (Xue et al., 2019)
and similarly time-series datasets namely, automobile parts
demand dataset (Seeger et al., 2016), electricity and traffic
(Yu et al., 2016) have been widely used to test proposed neu-
ral network architectures, to the best of our knowledge. There
are not many specific datasets that are published for geo-
science studies (Ebert-Uphoff et al., 2017) and specifically
for flood and streamflow forecasting.

The number of studies in hydrology and water resources,
and particularly in flood forecasting that employ deep learn-
ing, has been gaining interest in the last several years (Sit et
al., 2020). Flood forecasting studies in the literature, due to
the aforementioned sequential nature, have vastly employed
RNNs and LSTMs. Kratzert et al. (2018) utilized LSTM
networks for daily runoff prediction using meteorological
datasets. Furthermore, Kratzert et al. (2019) applied a similar

approach for ungauged US locations. Bai et al. (2019) incor-
porated a stack autoencoder with LSTM for daily streamflow
measurements from data for a week. Xiang et al. (2020) pre-
dicted the next 24 h of hourly streamflow rate by utilizing
an encoder-decoder S2S neural network that also uses rain-
fall products. Xiang and Demir (2020), moreover, extended
their study and developed a model that forecasts the hourly
streamflow rate for the next 5 d using 3 d of historic data.
They also incorporated upstream sensors into their proposed
network. Using the same dataset, Xiang et al. (2021), ex-
plored the generalization of S2S encoder-decoder networks
in flood forecasting. Sit and Demir (2019) predicted hourly
sensor measurements for 24 h using data from the upstream
sensor network and historic stage height measurements. Fi-
nally, Sit et al. (2021a), utilized graph neural networks for
streamflow forecasting for a small watershed in Iowa. To
sum up, deep learning models such as LSTM have been
used in meteorology and hydrology studies of soil mois-
ture modeling (Seeger et al., 2016), water table depth predic-
tion (Zhang et al., 2018), rainfall runoff modeling (Hu et al.,
2018; Kratzert et al., 2018), streamflow forecasting (Xiang et
al., 2020). As represented in perspective studies (Reichstein
et al., 2019), deep learning models such as LSTM can extract
spatiotemporal features automatically to gain further process
understanding of earth system science problems. Therefore,
we pay great attention to the application of LSTM and its
variant models in this research.

Most of the studies mentioned here acquired several raw
data products, whether in terms of rainfall measurements,
physical features of the studied area, or stage height, or dis-
charge measurements, from authorities and build their own
dataset benefiting from their expertise in the area. There
are several datasets and benchmarks in other earth science
studies, i.e., air quality forecast dataset, 3D cloud detection
dataset, and LANL earthquake prediction dataset. One of
the early user-friendly datasets in earth science is the Bei-
jing PM2.5 data. It was published in 2017, and includes the
hourly air quality PM2.5 data from the U.S. Embassy in Bei-
jing and meteorological data from Beijing Capital Interna-
tional Airport. After the dataset was released, researchers de-
veloped different novel machine learning and deep learning
models, including support vector machines (Zhu et al., 2018;
Liu et al., 2019), recurrent neural networks (Athira et al.,
2018), attention-based LSTM (Li et al., 2019), interpretable
deep learning (Guo et al., 2018), hybrid deep learning (Du
et al., 2019), convolutional networks (Tao et al., 2019), and
stacked LSTM (Sagheer and Kotb, 2019) on this specific
dataset. While knowledge of the application domain is es-
sential to find scientifically robust ways to prepare the input
data and to interpret the results of machine learning mod-
els, such knowledge is not always accessible to deep learning
experts. If there are well-defined benchmark datasets with a
clear description of the machine learning task to solve and
have well-defined and domain-science informed evaluation
metrics, then it becomes possible for non-domain experts to
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solve such challenges and introduce novel machine learn-
ing methods to the field. Furthermore, these papers used the
same dataset and therefore the results are comparable. Thus,
scientists could focus more on modeling and improving on
the basis of existing papers rather than collecting their own
datasets. A benchmark in hydrology will no doubt enhance
the application and development speed of deep learning stud-
ies in the water resources field.

For improved generic deep learning-based flood forecast-
ing models, scientists must expand on previous work, and
this can be done with the same testing set-up and evalua-
tion mechanism. There are some studies in the literature of
hydrology in limited numbers that construct the neural net-
work architecture around the CAMELS dataset (Newman et
al., 2014). CAMELS is a vast dataset that includes meteo-
rological and observed streamflow data points for the USA,
albeit not in an easy to use and ideal format for deep learning
research. It contains 671 catchments in the contiguous USA
that are minimally impacted by human activities. It includes
features such as topography, climate, streamflow, land cover,
soil, and geology on a watershed scale, and the hydromete-
orological time-series data ranges from 1980 to 2014 on a
daily basis. The data are generated from different sources,
including Daymet, NLDAS, and Maurer. CAMELS aggre-
gated these datasets at the watershed level. The researchers
also performed the model simulation using physically based
models such as the NWS model (McEnery et al., 2005),
and SNOW-17/SAC-SMA (Franz et al., 2008) which are
two popular traditional models of the past decades; however,
these modeling results are not shared as a benchmark. Even
though there is a dataset that could be used for predictive
deep learning rainfall runoff modeling, there is still a lack
of accessible datasets for benchmarking purposes (Maskey
et al., 2020). There remains a need for a dataset that is more
convenient to use in deep learning research given that most
of the deep learning researchers are not domain experts. The
limited usage of CAMELS in the literature also predicates
the challenges the CAMELS dataset presents for deep learn-
ing research.

Another dataset for flood forecasting is FlowDB (Godfried
et al., 2020). Unlike CAMELS, there are not many studies
that report their performance over FlowDB yet as the dataset
was only recently published. FlowDB is an hourly precipita-
tion and river flow dataset that also includes a subset dataset
for flash floods. The subset dataset includes injury costs and
damage estimations for flash flood events. FlowDB gathers
river flow data from the USGS and precipitation data from
many agencies, including the USGS, NOAA, and ASOS. Ad-
ditionally, the data FlowDB provides regarding flash floods
uses NSSL Flash by NOAA.

This study proposes a flood forecasting dataset that is pre-
pared with a focus on convenience for utilization in data-
driven and machine learning studies and provides benchmark
performance for state of art deep learning architectures on the
dataset for comparative analysis. Our dataset follows FAIR

data principles (Wilkinson et al., 2016), which means it is
findable and accessible through DOI, and the data is richly
described with references. WaterBench provides data from
125 catchments in the state of Iowa. The precipitation time-
series data ranges from October 2011 to September 2018
along with catchment-based features, such as topography,
soil type, and slopes. Even though the dataset was designed
in a way to eliminate most of the preprocessing and data
engineering tasks for machine learning applications and re-
search, it could be used in other studies with similar goals,
such as physically based modeling. Similarly, the dataset
could be used by combining it with other benchmark datasets
such as IowaRain (Sit et al., 2021b) utilizing cloud-based
rainfall products (Seo et al., 2019). WaterBench is different
from CAMELS with a higher temporal resolution. In addi-
tion, it focuses on the state of Iowa, and many large catch-
ments in WaterBench contain multiple USGS gauges, which
helps to represent the river structure better, and upstream-
downstream relations in deep learning algorithms. The rest
of this paper is structured as follows; the dataset preparation
phase and methodology employed in that phase are discussed
in Sect. 2. Section 3 gives a list of tasks that could be tack-
led using this dataset and presents the performance of several
neural network implementations in flood forecasting tasks. In
the last section, conclusions are discussed.

2 Methodology and dataset

2.1 Study area

The State of Iowa is located in the Midwest of the USA. It has
abundant and diversified water resources with 115 318 km
of rivers and streams from border to border (Iowa Depart-
ment of Natural Resources, 2022). In 2008, eastern Iowa was
devastated by flooding which caused over USD 6 billion in
property losses. Streamflow monitoring and forecasting are
consequently critical for Iowa for better water resources and
disaster management. In addition, agricultural-based activi-
ties in Iowa have a low pavement rate with limited human
influence, which makes it a suitable area for rainfall runoff
studies.

The United States Geological Survey (USGS) has over
100 streamflow gauges in the State of Iowa for monitoring
the streamflow rate in different streams. The measurements
from the USGS are typically recorded at 15–60 min intervals
in Iowa. Due to site maintenance or shutdowns the cover-
age of the USGS streamflow gauges changes over the years.
In this dataset, we selected all USGS gauges in the State of
Iowa with available data from 1 October 2011 (the water year
2012) to 30 September 2018 (the water year 2018).

As shown in Fig. 1, red dots are located at the outlets of
larger basins with multiple USGS gauges, which are divided
into several smaller upstream sub-basins. The green dots are
located at the outlets of the most upstream sub-basins. Thus,
considering the connectivity of the streams, the relationship

https://doi.org/10.5194/essd-14-5605-2022 Earth Syst. Sci. Data, 14, 5605–5616, 2022



5608 I. Demir et al.: WaterBench-Iowa

Figure 1. The location of 125 USGS gauges in the State of Iowa for
upstream sub-basins (green dot) and large downstream basins (red
dot).

of these gauges in one watershed can be represented as a tree
structure.

2.2 Dataset features

WaterBench includes detailed metadata and time-series fea-
tures for each catchment. These datasets are available in .csv
format for each catchment. The details of the datasets with
data source, type, resolution and units are shown in Table 1.
The statistics of the data, including the watershed size, con-
centration time (the longest streamflow path in the catch-
ment), slope, and four soil types, are shown in Table 2 and
Fig. 2. For each catchment, we provide static data (area,
slope, travel time, etc.) as well as time series for streamflow,
precipitation, and evapotranspiration (ET).

As shown in Table 3, all 125 catchments share similar pre-
cipitation ranges from 794 to 1056 mm, with a small stan-
dard deviation of 57 mm. Geologically, all the catchments are
located in two HUC (hydrologic unit code) watersheds, the
Upper Mississippi and Missouri rivers, and the study results
may not be applicable to other regions in the USA. However,
the modeling algorithms and the neural network architectures
normally apply to a broad spectrum of problems, and they
would be useful in other regions. WaterBench-Iowa is also
subject to a relatively high missing data rate for streamflow
as the reliable hourly dataset is limited by the USGS for some
of the watersheds in Iowa. In the following sections, we will
discuss the details of specific datasets and features.

2.2.1 Area

In the water cycle, precipitation is the main driving force of
the streamflow. Based on the 90 m digital elevation model

(DEM), only the precipitation in a certain area will contribute
to a stream. Each measuring station has its corresponding
area, which can be calculated from the watershed boundary
shapefiles. Since the total precipitation amount is the product
of precipitation intensity and area, in the same watersheds
upstream sub-basins typically have lower streamflow rates
than the larger basins. In WaterBench, the boundary shape-
files of each watershed are obtained from the Iowa Flood
Information System (IFIS), a system operated by the Iowa
Flood Center (IFC). Moreover, the area is calculated from
the shapefiles in the unit of km2. Thus, the area contains one
value per station, and it is available in the column of “area”
in the “{station_id}_data.csv” files.

2.2.2 Time of concentration

The time of concentration provides the dimension of stream
length for a watershed. In WaterBench, the time of concen-
tration is defined as the longest length divided by the veloc-
ity, which is the time the water concentrates from the most
distant point from the watershed outlet. The velocity used
in this study is a constant value of 0.75 m s−1, which was
found appropriate for Iowa catchments (Mandapaka et al.,
2009; Mantilla et al., 2011), and has been successfully used
in many hydrologic models (Fonley et al., 2016; Sloan et al.,
2017). Thus, for a long and narrow watershed it may have
a small watershed area but a large time of concentration. In
WaterBench, the time of concentration is obtained from the
IFIS with the unit of hours. Thus, the

time of concentration contains one value per station, and
it is available in the column of “travel_time” in the “{sta-
tion_id}_data.csv” files.

2.2.3 Slope

The slope is one of the topographic features that represents
the slope gradient in percentage. A steep slope may cause
a higher velocity and lower infiltration rate, which normally
causes a larger streamflow rate during a precipitation event.
The original file, hillslope map, is calculated by IFC (Sit et
al., 2019), which splits the land of Iowa into over 600 000
hydrologic units using the algorithm developed by Mantilla
and Gupta (2005). In WaterBench, the average slope is calcu-
lated from the mean value of the hillslopes in each catchment
(Gericke and Du, 2012). Thus, the slope is a constant value
per watershed, and it is available in the column of “slope” in
the “{station_id}_data.csv” files.

2.2.4 Soil type

Soil type is one of the topographic features that represents the
proportions of 12 different soil types on the land. Normally,
the sandy soil has the largest infiltration rate, and the clay has
the least infiltration rate. The original file, global soil types,
is available from NASA (Post and Zobler, 2000). It is a 2-D
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Table 1. The details of datasets with data source, type, resolution and units.

Datasets Data type Sources Resolution Unit

Spatial Temporal

Area GIS shapefile
IFC (Krajewski
et al., 2017)

Station based Constant km2

Slope Hillslope data Hillslope based Constant %

Travel time Reach shapefile Station based Constant hour

ET Estimation from historical data State based monthly mm/month

Soil types Soil data NASA (Post and
Zobler, 2000)

0.5◦ grid Constant %

Streamflow rate USGS gauge measurement USGS Station based 15–60 min ft3 s−1

(0.0283 m3 s−1)

Precipitation Stage IV multi-sensor measurement NOAA (Lin, 2011) 4 km grid Hourly mm h−1

Table 2. The minimum, maximum, mean, median, and standard deviation (SD) of the watershed area, concentration time, average slope, and
percentage of soil types including loam, silt, sandy clay loam, and silty clay loam among 125 USGS gauges in the State of Iowa.

Area Concentration Slope Loam Silt Sandy clay Silty clay
(km2) time (h) loam loam

Min 6 2 0.38 % 0 % 0 % 0 % 0 %
Max 36 453 315 4.32 % 98 % 100 % 84 % 93 %
Mean 5405 77 1.97 % 33 % 31 % 18 % 18 %
Median 1918 53 1.80 % 33 % 21 % 4 % 7 %
SD 8320 68 0.80 % 28 % 30 % 24 % 23 %

map with a spatial resolution of 0.5◦. The soil type propor-
tion is then calculated using the weighted average for each
watershed. It should be noted that four dominant soil types,
including the loam, silt, sandy clay loam, and silty clay loam,
contribute to 99.91 % of the area in Iowa. Thus, only these
four soil types are considered in the dataset. The percentage
of each soil type is constant in the time-series dataset for each
station in the columns of “loam”, “silt”, “sandy_clay_loam”,
and “silty_clay_loam” in the “{station_id}_data.csv” files.

2.2.5 Streamflow rate

The streamflow rate is a variable measured by the USGS
in the unit of cubic feet per second. The data was acquired
from the USGS National Water Information System. There
are nearly 200 real-time streamflow measuring stations in
Iowa. After removing the stations established after 2011 or
permanently closed before 2018, a total of 125 stations are
selected, as shown in Fig. 1. For each station, streamflow data
was aggregated to hourly values. The original data contains
a few missing values due to station system failures or inter-
net outages. For the stations located in the northern part of
Iowa, the river may freeze and have no flow rate measure-
ment over the winter, and all missing values were reported as
−9999 by the USGS. In the dataset, each watershed has two

columns, with the first column representing the timestamp
from 1 October 2011 00:00 to 30 September 2018 23:00, and
the second column representing the the streamflow values.
Thus, the streamflow rate contains 61 368 values per station,
and they are available in the column of “discharge” in the
“{station_id}_data.csv” files.

2.2.6 Precipitation volume

Many station-based and satellite datasets have been mea-
suring precipitation over the years. After comparisons, it is
found that NOAA’s Stage IV multi-sensor measurement is
the most accurate (Seo et al., 2018) in the state of Iowa.
The Stage IV multi-sensor provides the hourly precipita-
tion amount with a 4 km-grid spatial resolution. The catch-
ment level average precipitation is then calculated at each
hour. Since there is no rainfall or snowfall most of the time,
most precipitation values in the dataset are 0. In the dataset,
we provide the hourly catchment-averaged precipitation data
for each station from 1 October 2011 00:00 to 30 Septem-
ber 2018 23:00. Thus, the precipitation data contains 61 368
values per station, and they are available in the column of
“precipitation” in the “{station_id}_data.csv” files.
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Figure 2. Histograms of the catchment area (a), concentration time (b), average slope (c), and percentage of soil types including loam (d),
silt (e), sandy clay loam (f), and silty clay loam (g) for 125 USGS gauges in the State of Iowa.

Table 3. Summary statistics for precipitation and streamflow among 125 catchments from water year 2012–2018. Missing rate as a limitation.

Annual total Max. hourly Annual mean Missing rate of Missing rate of
precipitation (mm) precipitation (mm) streamflow (m3 s−1) precipitation (raw data) streamflow (raw data)

Min 794 9.1 3 0.02 % 0.69 %
Max 1056 60.0 12 963 0.04 % 33.14 %
Mean 952 24.8 1926 0.02 % 15.16 %
Median 961 22.2 608 0.02 % 16.14 %
SD 57 10.3 2864 0.01 % 6.4 %

2.2.7 Evapotranspiration (ET)

The ET represents the evaporation and plant transpiration
from the land in the water cycle. It is one of the major losses
of precipitated water. As no high-resolution real-time ET
dataset is available, we used the monthly estimation from the
historical measurement data in the past decades (Krajewski
et al., 2017) as an empirical dataset. This is a monthly based
dataset for the entire state of Iowa, and successfully captures
the seasonal effects in the state of Iowa. In the dataset, we ap-
plied the ET value for each time stamp from 1 October 2011
00:00 to 30 September 2018 23:00. Thus, the ET data con-
tains 61 368 values for all stations, and they are available in
the column of “et” in the “{station_id}_data.csv” files.

2.2.8 Watershed relationship

As many USGS measurement gauges are in the same wa-
tershed, many catchments in WaterBench-Iowa are not in-
dependent, and a relationship tree is given in the “catch-
ment_relationship.csv”. The csv file represents a discon-
nected directed graph with each row representing an edge.
Out of 125 catchments 63 have 1 or more upstream, as shown

in the relationship, which are relatively large catchments.
The remaining 62 catchments are specified as the very up-
stream catchments which have only 1 stream gauge. As these
catchments have no overlapping areas, the catchments in
our dataset form a disconnected graph. For the catchments
that have overlapping areas, the watershed ID 646 has the
largest connected subgraph with 27 upstream catchments.
With upstream-downstream relationships, WaterBench-Iowa
supports the cutting-edge studies such as graph neural net-
works.

3 Benchmark tasks and metrics

In this section, we define a sample benchmark task of pre-
dicting the hourly streamflow for the next 5 d for future com-
parative studies. This task forecasts the future hourly floods
at each hour as the National Water Model does. At each hour
t , we predict the streamflow for the next 5 d from hour t+1–
t+120 using all the data we can obtain at time t . In this task,
we ignore the errors in the rainfall forecast, and use all the
data including the topology data, the past 3 d precipitation
and streamflow data, and the future 5 d precipitation data as
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Figure 3. The median NSE and KGE among 125 watersheds in 125 different models at the prediction of the next 1–120 h.

Table 4. The median (standard deviation) NSE and KGE among 125 watersheds at the prediction hours 1, 6, 12, 24, 48, 72, 96, and 120 in
125 different models.

NSE KGE

Hour Ridge GRU LSTM S2S Ridge GRU LSTM S2S

1 1 (0.05) 0.85 (0.49) 0.84 (0.72) 0.91 (0.2) 1 (0.04) 0.88 (0.34) 0.84 (0.34) 0.77 (0.21)
6 0.97 (0.56) 0.84 (0.47) 0.82 (0.7) 0.88 (0.41) 0.97 (0.23) 0.87 (0.32) 0.84 (0.33) 0.78 (0.25)
12 0.91 (1.35) 0.83 (0.48) 0.81 (0.66) 0.84 (0.57) 0.93 (0.4) 0.86 (0.31) 0.85 (0.32) 0.76 (0.29)
24 0.81 (2.44) 0.83 (0.47) 0.79 (0.61) 0.79 (0.72) 0.85 (0.58) 0.85 (0.3) 0.85 (0.3) 0.74 (0.34)
48 0.69 (2.91) 0.8 (0.46) 0.77 (0.59) 0.76 (0.9) 0.77 (0.66) 0.83 (0.28) 0.83 (0.29) 0.75 (0.38)
72 0.62 (2.89) 0.79 (0.45) 0.76 (0.65) 0.72 (0.91) 0.74 (0.66) 0.84 (0.28) 0.82 (0.3) 0.74 (0.41)
96 0.62 (2.7) 0.76 (0.43) 0.75 (0.56) 0.69 (0.95) 0.71 (0.63) 0.82 (0.28) 0.8 (0.29) 0.74 (0.42)
120 0.6 (2.6) 0.74 (0.43) 0.74 (0.51) 0.65 (0.93) 0.69 (0.62) 0.79 (0.28) 0.79 (0.3) 0.7 (0.41)

Figure 4. Histogram of the GRU model performance.

input, to predict the streamflow for the next 120 h at the wa-
tershed outlet. Thus, we made 5 d predictions at each hour
in the training and test datasets, and evaluated the results on
different lead times from hour 1–hour 120. This task is a typ-
ical regression modeling of time series data. Therefore, we
suggest the traditional ridge regression model and three deep
learning models for modeling in this benchmark. Please refer
to the recent studies for the detailed model structures such as
LSTM (Kratzert et al., 2018), GRU (Gao et al., 2020) and
S2S (Xiang and Demir, 2020).

We take two separate approaches to tackle this problem.
The first approach involves a separate deep learning model
for each of the available watersheds, while the second one

involves building a single large regional model that carries
out the same task for all available watersheds. For this spe-
cific task, we selected the last water year as the test set, and
the rest as the training set. We further formatted the origi-
nal dataset into a ready to use structure for each watershed
with four files named as train_x, train_y, test_x, test_y. Thus,
a total of 500 files for 125 watersheds are provided for this
specific task. As general statistics, such as mean square error
(MSE) and root mean square error (RMSE) are not dimen-
sionless, the metrics for this study are Nash-Sutcliffe effi-
ciency (NSE) and Kling-Gupta efficiency (KGE). They are
both dimensionless statistics that are widely used in hydro-
logical studies, and can be used to compare between water-
sheds. Both NSE and KGE range from negative infinity to 1,
and the closer to 1 the better. The Eqs. (1) and (2) for NSE
and KGE are shown below:

NSE= 1−

∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1(Yi −µY )2 , (1)

KGE= 1−

√
(r − 1)2+

(
σ
Ŷ

σY
− 1

)2

+

(
µ
Ŷ

µY
− 1

)2

, (2)

where Yi is the observation at the time i, Ŷi is the model re-
sult at the time i, n is the total number of observations, r
is the Pearson correlation coefficient, σ is the standard devi-
ation, µ is the mean, σY is the standard deviation of all the
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Figure 5. Cumulative probability curve of the NSE and KGE at the 120 h forward predictions.

observations, σ
Ŷ

is the standard deviation of model forecasts,
µY is the mean of all the observations and µ

Ŷ
is the mean of

all model forecasts.
Both NSE and KGE are dimensionless and in the range of

(−∞,1]. For both metrics, the closer to 1, better the model
performs. We calculate the NSE and KGE based on the test
year for each prediction hour. Since we predict the stream-
flow for the next 120 h at each hour, there will be 120 differ-
ent NSE and KGE values for different hours at each water-
shed for the lead time from 1 to 120 h. It should be noted
that since the watersheds here are not filtered, it is possi-
ble for some watersheds to be greatly affected by human ac-
tivities, including mitigation, construction, irrigation, urban
drainage, etc. activities in watersheds. Thus, a median value
of all 125 watersheds is meaningful to report as a widely em-
ployed practice within other hydrology studies (Kratzert et
al., 2018; Xiang et al., 2020). In addition, since the prediction
accuracy typically decreases when the lead time increases,
the median NSE and KGE of 125 stations at the 120 h for-
ward predictions are the lowest. Thus, the 120 h ahead pre-
diction scores are the most important metric that can repre-
sent the overall model performance on this task.

4 Benchmark results and discussion

To provide baseline results over the sample benchmark task
and two approaches defined in the previous section, we em-
ployed a linear regression model using ridge regression, and
three deep learning models using LSTM, GRU, and S2S net-
work architectures. For the first approach, we considered
each watershed independently and trained one model for
each watershed. Thus, the relationship between the water-
sheds is not used in this benchmark. The median NSE and
KGE scores among 125 watersheds at each hour are shown
in Fig. 3 and Table 4. As shown in the figure and the table,
the ridge regression has a high accuracy in the first 24 h as
the streamflow rates normally do not change too much in 1 d,

and they are relatively easy to predict. The metrics for the
medium-range show that the model using GRU has the best
performance. The NSE and KGE histograms of GRU show
that for most of the watersheds the GRU model performs well
and the GRU model gives negative scores only in a limited
number of watersheds. The standard deviations show rela-
tively stable results in all prediction hours using deep learn-
ing models. However, the ridge model shows higher standard
deviations and lower model performance than deep learning
models over 48 h.

Figure 5 shows the cumulative distribution of the NSE and
KGE among the 125 catchments at the lead time of 120 h in
addition to the median value for all 125 catchments. The re-
sults suggest that there is a large standard deviation between
catchments, and that negative NSE and KGE values occur
in 10 % of the catchments. These catchments with negative
NSE or KGE values are small (Fig. 7), so it is very challeng-
ing to predict the streamflow over 5 d.

As for the second approach, we attempted to develop sin-
gle regional models for all 125 watersheds as they share sim-
ilar physical attributes. As shown in Fig. 6, a single model
of all 125 watersheds is possible with the physical features
including area, slope, travel time, and soil types using the
customized NSE loss function (Xiang et al., 2021). Among
four models, similar to the first approach, the performance
of ridge regression is hard to beat at first. Nevertheless, the
deep learning model S2S starts to show a better performance
starting the second day. Table 5 shows the detailed results of
the regional model. Regional modeling using deep learning
is more difficult as seen by the decline in model performance
and greater standard deviations compared to the watershed
modeling results in Table 4.

As shown in the results, there are two major limitations.
First, the model efficiency is low on the first day. It is shown
in Fig. 3 and Table 4 that the deep learning models do not
show a higher accuracy in the first several hours compared to
the ridge model. Some hydrological studies have also shown
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Figure 6. The median NSE and KGE among 125 watersheds using one regional model at the prediction of the next 1–120 h.

Table 5. The median (standard deviation) NSE and KGE among 125 watersheds at the prediction hour 1, 6, 12, 24, 48, 72, 96, and 120 using
one regional model.

NSE KGE

Hour Ridge GRU LSTM S2S Ridge GRU LSTM S2S

1 1 (0.1) 0.83 (0.4) 0.81 (0.48) 0.79 (216.13) 1 (0.1) 0.75 (0.25) 0.8 (0.39) 0.52 (27.69)
6 0.97 (3.99) 0.83 (0.45) 0.77 (0.6) 0.72 (155.71) 0.97 (0.8) 0.77 (0.24) 0.75 (0.4) 0.48 (23.37)
12 0.91 (16.86) 0.73 (0.45) 0.65 (0.79) 0.68 (160.17) 0.93 (1.84) 0.75 (0.23) 0.68 (0.42) 0.49 (23.58)
24 0.74 (62.36) 0.58 (0.47) 0.48 (1.37) 0.65 (165.67) 0.83 (4.01) 0.67 (0.25) 0.55 (0.46) 0.5 (23.82)
48 0.48 (189.98) 0.38 (0.71) 0.24 (2.91) 0.61 (167.32) 0.67 (7.84) 0.57 (0.32) 0.46 (0.6) 0.49 (23.25)
72 0.34 (320.38) 0.29 (0.88) 0.09 (4.83) 0.58 (171.55) 0.53 (11.16) 0.5 (0.36) 0.34 (0.76) 0.51 (23.11)
96 0.28 (448.45) 0.21 (1.01) −0.04 (6.83) 0.54 (173.72) 0.44 (14.2) 0.48 (0.39) 0.23 (0.91) 0.53 (23.17)
120 0.22 (568) 0.15 (1.23) −0.24 (8.91) 0.49 (178.42) 0.37 (16.81) 0.43 (0.45) 0.16 (1.05) 0.51 (23.22)

Figure 7. The distribution of the 120 h ahead prediction using the
best model in our benchmark (GRU for the single station).

that the basic persistence model (Streamflow t+n= Stream-
flow t) is hard to beat for short-range predictions when n is
smaller than 12 h (Krajewski et al., 2020). Thus, it is hard to
make both short-range and medium-range predictions accu-
rately in one model. The second limitation is the scale effect,
where the large basins have better model performance on the
streamflow forecast and the small basins are hard to predict.
The results show that as watersheds get larger the predic-
tions become easier and better. This means the small water-

sheds, typically representing the middle and upper reaches,
are harder to predict. Figure 7 shows the drainage area and
120 h ahead prediction performance in NSE for 125 water-
sheds. The scale effect observed in our benchmark indicates
that the prediction in small watersheds is still a challenge.

Although a lot of metadata are provided in our dataset,
as a benchmark our study does not consider complex pre-
treatment or models with domain knowledge in hydrology.
Some recent studies have shown that the moving average for
smoothing, the consideration of time lag, the consideration
of watershed upstream-downstream connections, and other
deep learning model architectures may be effective for a bet-
ter prediction. However, these studies were based on their
own datasets, and the results cannot be directly compared.
We encourage researchers to conduct comparisons based on
the WaterBench-Iowa.

5 Code and data availability

The data and codes that support this study are openly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.7087806
(Demir et al., 2022a). The dataset covers the 125 catchments
in Iowa, USA with 7 different features, including precipita-
tion, streamflow rate and ET with available data from 1 Oc-
tober 2011 (the water year 2012) to 30 September 2018 (the
water year 2018). The original files of the dataset, meta-
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data, and sample codes can be downloaded from archive
files. The four different models, including ridge, LSTM,
GRU, S2S, used in our paper are provided with ready-to-run
Python Jupyter Notebooks as well (Demir et al., 2022b). The
most recent code version can be found at https://github.com/
uihilab/WaterBench (Demir et al., 2022b). Feedback by fil-
ing an issue on the repository would be welcomed.

6 Conclusions

In this study, by aggregating the datasets of watershed area,
slope, soil types, streamflow, precipitation, and ET from
NASA, NOAA, USGS, and IFC, we present a dataset,
namely WaterBench-Iowa, that is prepared for an hourly
streamflow forecast task. This dataset has a high temporal
resolution with abundant geographic and relational informa-
tion, which can be used for a variety of deep learning and
machine learning application research. We defined a sample
streamflow forecasting task for the next 120 h and provided
example benchmark results on this task with a traditional lin-
ear and three customized deep learning models.

WaterBench-Iowa is not filtered and thus represents an
actual streamflow forecast problem as much as possible.
Although the data are limited to the Midwest, we be-
lieve that any studies on this dataset could provide in-
sights into other streamflow forecasting and rainfall runoff
modeling studies in other watersheds. With the open-
source release of WaterBench-Iowa (https://github.com/
uihilab/WaterBench, last access: 17 September 2022), this
work provides a comparable benchmark, which to some ex-
tent makes up for the lack of a unified benchmark in hydro-
logical and water resources research. We highly encourage
other researchers to use the WaterBench-Iowa in their hydro-
logical modeling research studies.
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