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Abstract. Understanding the spatiotemporal dynamics of global urbanization over a long time series is increas-
ingly important for sustainable development goals. The harmonized nighttime light (NTL) time-series compos-
ites created by fusing multi-source NTL observations provide a long and consistent record of the nightscape
for characterizing and understanding global urban dynamics. In this study, we generated a global dataset of an-
nual urban extents (1992–2020) using consistent NTL observations and analyzed the spatiotemporal patterns of
global urban dynamics over nearly 30 years. The urbanized areas associated with locally high intensity human
activities were mapped from the global NTL time-series imagery using a new stepwise-partitioning framework.
This framework includes three components: (1) clustering of NTL signals to generate potential urban clusters,
(2) identification of optimal thresholds to delineate annual urban extents, and (3) check of temporal consistency
to correct pixel-level urban dynamics. We found that the global urban land area percentage of the Earth’s land
surface rose from 0.22 % to 0.69 % between 1992 and 2020. Urban dynamics over the past 3 decades at the
continent, country, and city levels exhibit various spatiotemporal patterns. Our resulting global urban extents
(1992–2020) were evaluated using other urban remote sensing products and socioeconomic data. The evalu-
ations indicate that this dataset is reliable for characterizing spatial extents associated with intensive human
settlement and high-intensity socioeconomic activities. The dataset of global urban extents from this study can
provide unique information to capture the historical and future trajectories of urbanization and to understand
and tackle urbanization impacts on food security, biodiversity, climate change, and public well-being and health.
This dataset can be downloaded from https://doi.org/10.6084/m9.figshare.16602224.v1 (Zhao et al., 2021).

1 Introduction

A better understanding of global urban dynamics over the
long term is crucial for sustainable development goals in a
changing world experiencing complex human–environment
interactions (Li and Gong, 2016; Li et al., 2019; Zhu et
al., 2019). With increased populations, intensified socioeco-

nomic activities, spatially expanded built-up areas and in-
frastructures, and escalated industrial structures, such com-
plex processes of urbanization worldwide are supposed
to accelerate human-driven modifications of Earth land-
scape and climate change from local and regional to global
scales (Defries et al., 2002; Kuang, 2020; Kuang et al.,
2021a). These urbanization-induced environmental changes
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pose challenges to a variety of fields such as agricultural pro-
duction (Hou et al., 2021; Jiang et al., 2013), environmental
quality (Liang et al., 2019; Qiang et al., 2012), energy con-
sumption (Guneralp et al., 2017; Chen et al., 2013), biodiver-
sity loss (Seto et al., 2012; Lawler et al., 2014), and human
health and well-being (Yang et al., 2018; Lu et al., 2019; Cao
et al., 2018). As the major gathering areas of human activ-
ities, urban areas play a critical role in global change and
regional development. For instance, despite covering an ex-
tremely small percentage of the global land surface, urban
areas are estimated to be responsible for more than 90 % of
the economic output, 65 % of the energy consumption, and
70 % of the greenhouse gas emission globally (Solecki et al.,
2013). Therefore, global records of annual urbanized areas
over the past few decades are the basis for exploring histori-
cal laws and predicting future pathways of urban growth and
for further understanding and tackling ongoing global change
and corresponding consequences for the urban system (Zhou
et al., 2018; Liu et al., 2020; Seto et al., 2012).

Satellite remote sensing big data have shown great poten-
tial for mapping dynamics of urban areas with continuous
observations spanning over years to decades at the global
scale (Zhu et al., 2019). Currently, global maps of urban areas
have been derived from medium-spatial-resolution data such
as the Moderate Resolution Imaging Spectrometer (MODIS)
(Schneider et al., 2010, 2009) and Landsat imagery (Liu et
al., 2018; Corbane et al., 2018; Gong et al., 2013; Chen et
al., 2015; Kuang et al., 2021b), as well as high-resolution
observations such as synthetic aperture radar (SAR) and Sen-
tinel data (Gong et al., 2019; Esch et al., 2013; Taubenbock
et al., 2012). Most of these maps aim to reveal the spatial
distribution of artificial impervious areas, and the extrac-
tion results with finer spatial resolutions are more likely to
be the real impervious surface. However, the issues of con-
sistency and comparability in the derived urban results of
different global maps inevitably hinder the applications of
global change studies (Yu et al., 2018). To address these chal-
lenges, several-decades-long global maps of annual artificial
impervious areas were systematically developed, using the
improved automatic mapping algorithms and massive Land-
sat time-series imagery on Google Earth Engine (GEE) plat-
form (Gong et al., 2020; Liu et al., 2020; Huang et al., 2021).
These temporally consistent records of artificial impervious
areas provide an essential basis for understanding the urban-
ization process from the perspective of physical character-
istics of the land-use type. Unlike the temporally consistent
but broken patches of artificial impervious areas used for re-
vealing the long-term urbanization process, the global urban
boundaries obtained from fine-resolution artificial impervi-
ous areas by Li et al. (2020b) provide spatially contiguous
boundaries of urban extents without hollow regions. Addi-
tionally, a global dataset of intra-urban land cover types with
a 5-year interval was developed aiming to provide more de-
tails of the key urban composites (e.g., green space and im-
pervious areas) (Kuang et al., 2021b). Therefore, different

global urban products based on artificial impervious areas
have greatly contributed to revealing human modifications to
the landscape against the background of rapid global urban-
ization.

Unlike other traditional remotely sensed products, artifi-
cial nighttime light (NTL) observations from satellites have a
unique significance in characterizing urbanized areas and ur-
banization activities (Zhao et al., 2019; Li and Zhou, 2017b).
The former mainly focus on reflecting the form and texture
information of the landscape, while the latter specializes in
providing the coupled information of NTL intensity and loca-
tion (Ma et al., 2015). The nocturnal lighting signals recorded
by different types of NTL imagery are suggested to be salient
indicators for revealing the dynamic patterns of human set-
tlements and economic activities from different perspectives
(Zhao et al., 2019). Specifically, the stable NTL products ob-
tained from the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP-OLS) are widely ap-
plied to delineate the boundary of the urban domain (Li and
Zhou, 2017b), while the improved NTL composites obtained
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
instrument on board the Suomi National Polar-orbiting Part-
nership (NPP) satellite are suitable for depicting further the
interior patterns within the urban domain (Chen et al., 2017;
Ma et al., 2018; Zhao et al., 2020). Both of them have advan-
tages in capturing urbanization and socioeconomic activities
with high local intensities (Zhao et al., 2019). Additionally,
the fine NTL images with higher capabilities of NTL detec-
tion derived from commercial satellites are supposed to iden-
tify different types of urban structures and functions (Zheng
et al., 2018; Wang and Shen, 2021). In a sense, urban areas
derived from NTL images may be more closely correlated to
the areas gathered by higher-intensity socioeconomic activi-
ties locally.

The characteristics of NTL spatial structures in potential
urban domains have been demonstrated to help identify the
ambiguous boundary between urban and surrounding non-
urban areas, but previous studies were limited regarding spa-
tial coverage or temporal periods. The key of this type of
method is to capture differences in NTL signals from rural
areas to urban cores at local scales (Zhao et al., 2020b). Su et
al. (2015) extracted the urban built-up areas in the urban ag-
glomeration of the Pearl River Delta in four different periods
by applying topographic analysis to NTL images to quan-
tify the relative spatial variations in NTL pixels from built-
up areas compared to surrounding non-built-up areas. Ad-
ditionally, some spatially explicit approaches were applied
to China and Southeast Asia for extracting their dynamics
of urban extents over the past 2 decades. The key idea of
this kind of approach is to identify the optimal urban thresh-
old through the robust quadratic relationship observed at the
local scales between pixel-level NTL and its spatial gradi-
ent (Zhao et al., 2018; Ma et al., 2015; Kamarajugedda et
al., 2017). However, the extracted urban extents are likely
to be overestimated when applying the above methods to
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large cities or metropolitan areas (Zhao et al., 2020b). Dif-
ferently, a quantile-based approach was proposed by Zhou
et al. (2018) to remove such bloomed pixels in suburban ar-
eas and delineate the urban extents (1992–2013) in differ-
ent urban clusters at the global scale. Still, the accuracy of
the extraction results cannot be guaranteed when applying
this algorithm to other city types (Zhao et al., 2020b). Re-
cently, a new framework, through capturing and quantify-
ing the spatial characteristics of NTL gradients from urban
cores to rural areas, was developed to identify the urban ex-
tents from the potential urban domains (Zhao et al., 2020b).
A salient advantage of this framework is to map the urban
extents over different spaces and time by effectively char-
acterizing the diverse patterns of NTL spatial gradients at
the local scales from urban to surrounding non-urban areas
(Zhao et al., 2020b). Thus far, this approach has been ini-
tially applied to Southeast Asia for monitoring its annual ur-
ban extents (1992–2018), showing great potential in further
applications for studies over large regions and long periods.

Given the advances in the fusion of multi-source luminous
remote sensing data for acquiring temporally consistent and
comparable NTL observations, a global record of annual ur-
ban extents aimed at portraying the spatiotemporal cover-
age of high-intensity or intensive urbanization and socioe-
conomic activities has its unique advantage in revealing the
global urbanization process (Li et al., 2020a). Despite a pro-
liferation of remotely sensed urban maps for different spa-
tiotemporal scales being developed, the definitions of urban
extents vary with different studies and datasets (Liu et al.,
2014; Kuang et al., 2021a). In addition to the artificial imper-
vious areas, the population has also been used as an indicator
when delineating the boundary between urban and non-urban
areas. For instance, urban center areas in the Global Human
Settlement (GHS) dataset were defined jointly with popula-
tion data and previously derived urban extent data (Florczyk
et al., 2019). However, this type of urban extent map, delin-
eated by supporting auxiliary data related to population and
socioeconomic factors, is always limited at both spatial and
temporal scales. Differently, urban extents delineated from
NTL imagery, although they may omit small human settle-
ments with low luminance (e.g., villages and small towns),
have been demonstrated to effectively identify areas gathered
by relatively active urbanization activities at the local scales
(Ma et al., 2015, 2018). Additionally, harmonizing the tem-
porally extended NTL dataset by integrating NTL observa-
tions from different sensors can provide valuable support for
mapping global urban dynamics over the past decades (Li et
al., 2020a). In short, global time-series maps of NTL-derived
annual urban areas that can characterize the relatively devel-
oped areas are pressingly needed.

To further extend the applications of NTL observations
for delineating, understanding, and predicting pathways of
global urban growth associated with socioeconomic activi-
ties, as well as to better support future sustainable develop-
ment, we generated a global dataset of annual urban extents

from 1992 to 2020 using long-term and consistent nighttime
lights. The remainder of this article describes the datasets and
pre-processing (Sect. 2), details of the stepwise methods for
NTL-based urban mapping (Sect. 3), a discussion of the re-
sults and findings (Sect. 4), and conclusions (Sect. 5).

2 Datasets and pre-processing

We used the harmonized global NTL dataset (1992–2020)
as the primary dataset for mapping the global time-series
urban extents. This dataset generated using the global in-
tegration framework of DMSP and VIIRS data could pro-
vide temporally consistent and extended DMSP-like sta-
ble NTLs compared to the previous version of DMSP sta-
ble NTL imagery (Li et al., 2020a). The DMSP stable
NTL composites (1992–2013) inter-calibrated by the NTL
stepwise-calibration model (Li and Zhou, 2017a) and the
extended DMSP-like data (2014–2020) simulated from the
VIIRS NTLs using the NTL integration approach (Zhao
et al., 2020a) are two major components of this time-
series dataset. These global annual image products consist
of 30× 30 arcsec gridded cell-based stable NTLs with a
0–63 digital number (DN) range. In this study, we down-
loaded the nearly 30-year-long records of global stable NTLs
tagged in GeoTIFF file format at the figshare repository
(https://doi.org/10.6084/m9.figshare.9828827.v2, Li et al.,
2021). To slightly distinguish the spatial variations of satu-
rated DMSP NTL observations when developing the urban
delineating method, a weight coefficient constructed based
on the normalized difference vegetation index (NDVI), de-
fined as (1−NDVI/100), was used to update the DN values
of NTL time-series imagery at the global scale.

Other ancillary data such as masks of water and gas flare
were used to filter out the urbanization-unrelated illumina-
tions recorded in the NTL time series. Similarly to in pre-
vious attempts (Zhao et al., 2020b), water masks were re-
garded as the aggregated 1 km water percentage maps with
values larger than 50 % derived from 250 m MODIS Land
Water Mask data (MOD44W), and gas flare masks were ob-
tained from Elvidge et al. (2009). In addition to the global
1 km binary urban maps used previously (Zhou et al., 2015,
2018), the global artificial impervious area (GAIA) data with
a spatial resolution of 30 m (Gong et al., 2020) in 2018 were
also processed to a 1 km binary layer of dense artificial im-
pervious area (AIA, pixels with values of GAIA percentage
> 50 %) to provide ancillary support for implementing the
stepwise urban mapping approach mentioned below.

3 Framework of stepwise urban mapping method

We mapped the global annual urban extents (1992–2020)
from time series of consistent NTL observations based on
a new stepwise-partitioning framework (Fig. 1). This frame-
work further improves and extends the urban mapping ap-
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proach developed in Zhao et al. (2020b). It includes three
components: (1) clustering of NTL signals to generate po-
tential urban clusters, (2) identification of optimal thresholds
to delineate annual urban extents, and (3) checking of tem-
poral consistency to correct pixel-level urban dynamics. The
“urban extents” derived from NTL imagery in this study were
defined as core urban domains, where most built-up areas and
partially green spaces and other land-use types with urban
functions are inside. The global urban mapping framework
was designed based on top-down segmentation and local de-
lineating and bottom-up merging. Details of the stepwise ur-
ban mapping method are given in the following sections.

3.1 Potential urban cluster map generation

A global map of potential urban clusters (i.e., urban domains
including urban cores and suburban and surrounding rural
areas) was generated using the NTL clustering and segmen-
tation approach. This approach includes two major sections.
First, we applied the marker-controlled watershed segmenta-
tion algorithm (Parvati et al., 2008) to generate global initial
urban clusters of spatially contiguous pixels with similar DN
values. The increasing of DNs in each urban cluster from
the periphery to the core spatially corresponds to the inten-
sification of urbanization and socioeconomic activities from
rural areas to urban cores. Therefore, each initial urban clus-
ter is an enclosed zone constituting urban and surrounding
non-urban areas. Considering that this grayscale morphology
algorithm with dilation and erosion processing is sensitive to
the spatial variations of NTL DN values, the filtered NTL im-
agery in 2013 rather than the latest imagery was used here to
avoid the over-segmentation of urban clusters caused by the
slight heterogeneity of simulated DMSP-like NTLs in the ur-
ban domain (Li et al., 2020a). Second, we used necessary
screening rules to identify and remove non-urban clusters
from the initial urban clusters which were unrelated to ur-
banization. Both the global binary urban reference data men-
tioned in the datasets and temporal trends of the annual av-
erage NTL DNs of each initial urban cluster were designed
to screen out the non-urban clusters from the initial ones.
Here, an updated urban binary layer in 2018 overlaid by its
binary layer of dense AIA (GAIA percentage> 50 %) and
corresponding NTL luminance layer (DN> 40) was used to
mark the areas associated with dense human settlements and
high-intensity human activities, respectively. The initial ur-
ban clusters, which exclude such areas or exhibit the abnor-
mal NTL temporal trends unrelated to the urbanization pro-
cess, were identified as non-urban clusters to be removed for
generating the potential urban clusters. As demonstrated in
Zhou et al. (2015, 2018) at the global scale, these associ-
ated parameters could jointly determine the screening rules
for identifying non-urban clusters. More details about cluster
screening are presented in Zhao et al. (2020b).

3.2 Initial urban extent delineation

The annual urban extents from 1992 to 2020 within each
potential urban cluster were automatically delineated by ex-
tending a heuristic NTL-based urban mapping approach fur-
ther developed in Zhao et al. (2020b). The key idea of this
approach is to determine a threshold from NTL images of
each potential urban cluster in different years by detecting
the corresponding feature points of NTL curves. Consider-
ing that local patterns of DMSP NTL spatial variations in
the potential urban domains over different spaces and time
are quite different, the characteristics of NTL quantile curves
were first examined to identify their corresponding patterns
before each delineation. Building on the work by Zhao et
al. (2020b), we revised the parameter details for realizing
more robust delineations of the initial urban extents at the
global scale.

First, we grouped the patterns of NTL distributions in lo-
cal areas into two types by characterizing their NTL quantile
curves. The quantile curves of NTL NDs at different quantile
levels from 0 to 1 were mapped to depict the two patterns of
NTL spatial gradients from non-urban areas to urban areas
(Fig. 2a). As mentioned in Zhou et al. (2018) and Zhao et
al. (2020b), both gradual and non-gradual variation in NTL
gradients can be observed during a shift in NTL quantile pat-
terns over long time series. For example, the NTL quantile
curves, which nearly coincide with the reference line (2004–
2012), show a gradual variation from non-urban to urban ar-
eas, while cases in others years exhibit non-gradual NTL gra-
dient variation with obvious turning features (Fig. 2b).

Second, we identified the NTL thresholds to gradually re-
move non-urban pixels of the potential urban domains using
optimal strategies corresponding to pattern types. Two strate-
gies were jointly applied here to identify the urban extents in
areas with various urbanization stages. For example, when
the NTL variation pattern from non-urban to urban areas is
non-gradual, we remove non-urban pixels using the quantile-
based strategy; otherwise, we delineate the urban extents us-
ing the parabola-based strategy as an alternative because of
the difficulty in distinguishing boundaries among urban, sub-
urban, and rural areas. Both strategies were designed based
on the curve feature points of NTL variations from non-urban
to urban areas.

3.2.1 Pattern of NTL variation from non-urban to urban
areas

We quantified two parameters to classify the NTL variation
patterns from non-urban to urban areas into two different
types: (1) non-gradual NTL variation pattern and (2) gradual
NTL variation pattern. One parameter is the area ratio (Ar) of
two parts, the gray part (SR) below the reference line and the
yellow part (SQ) enclosed by the quantile curve and reference
line (Fig. 3a, arrow 1). The other is the included angle (Aα)
between two line segments, connected by the turning point
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Figure 1. Framework of mapping global urban extents using NTL time-series observations.

Figure 2. Illustration of the patterns of NTL quantile curves from non-urban to urban areas. (a) Two different examples for characterizing
the NTL quantile curves. (b) The changing process of NTL quantile curves from 1992 to 2020. Panels (a) and (b) show the selected cases in
the potential urban cluster in the Chengdu district, city of Chengdu, Sichuan Province, China.
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(red dot) and two adjacent intersections (blue dot) on both
sides (Fig. 3a, arrow 2). Based on tests at the global scale
and the previous parameterization in Zhao et al. (2020b),
we used the joint condition of the two parameters calculated
from NTL quantile analysis to identify the patterns of NTL
variation (Fig. 3b). When Aα is lower than 150◦ or Ar is
larger than 0.13, the NTL quantile curve is always far above
or below the reference line; we identify the variation pattern
of the NTL spatial gradient in the potential urban domain as
non-gradual. Otherwise, the pattern is considered a gradual
one.

3.2.2 Quantile-based strategy for non-gradual pattern

We used the quantile-based strategy to gradually separate
urban from surrounding non-urban areas in potential urban
clusters that exhibit a non-gradual pattern of the NTL spa-
tial gradient. As examined in Zhou et al. (2018) and Zhao
et al. (2020b), this approach can effectively capture the no-
table NTL gradient change among urban, suburban, and rural
areas. We used the turning point of the NTL quantile curve
for each urban domain to identify the temporary threshold
for gradually removing corresponding non-urban areas. For
a cluster with G< 0, its urbanized category in this year was
identified as I . For this case, relatively low-DN pixels are
dominant; the DN value of the turning point essentially re-
veals the potential boundary between rural and suburban.
Hence, the turning point of the NTL quantile curve consti-
tuted by remaining NTL pixels after the first removal corre-
sponds to the boundary between suburban and urban if the
second pattern of NTL variation is also non-gradual. There-
fore, the DN value of the turning point in the second removal
(D2) was identified as the optimal threshold for delineating
urban extent from the potential urban cluster in this year.
The urbanized category was identified as II for a cluster with
G> 0 and Q> 0.5. For this case with relatively balanced
high- and low-DN pixels, the estimated threshold is likely to
separate urban and suburban. Therefore, the DN value of the
turning point in the first removal (D1) was applied to identify
the corresponding urban extent in this case. For a cluster with
G> 0 and Q≤ 0.5, the urbanized category was identified as
III. For this case with both dim pixels and the strong bloom-
ing effect, the estimated threshold in the first removal is rela-
tively low and another removal is necessary when its gradient
pattern is again identified as non-gradual. Therefore, the ur-
ban boundary was derived after the second removal/iteration
using the threshold D2.

3.2.3 Parabola-based strategy for the gradual pattern

We used the parabola-based strategy to map urban extents
from potential urban clusters that exhibit a gradual pattern
of the NTL spatial gradient. Since pixels with relatively low,
medium, and high DN values constituted in these clusters
are generally balanced, the relationships of quadratic curves

between pixel-level NTL DNs and corresponding brightness
gradient (BG) values should always be robust and insensitive
(Ma et al., 2015). This strategy includes three steps. First, the
pixel-level BG was calculated to depict the neighboring fluc-
tuations in different urban clusters during the past decades.
Then, the relationship between NTL and the BG for each
case was fitted using a quadratic parabola. Finally, the split
points of the fitting curve were identified to obtain the op-
timal threshold for delineating urban extents. The key for
identifying urban extents in this approach is the law behind
the variation in NTL and its neighboring gradient from rural
to urban areas. Specifically, due to the intensified luminance
of human activities from rural to urban areas and the satura-
tion effect of DMSP NTL in urban cores, urban cores with
high NTL and rural areas with low NTL are likely to exhibit
low BG values (Fig. 5a). At the same time, urban–rural tran-
sition zones with medium NTL always have relatively high
BG values because of their spatially increasing NTL DNs
(Fig. 5a). Therefore, the quantitative relationship between
the NTL DN and BG can be characterized by a quadratic
parabola function. The extracted urban extents depend on the
range of NTL and the fitted results (Fig. 5b). Similarly to in
Ma et al. (2015) and Zhao et al. (2020b), areas with NTL DN
larger than that of the urban split point always correspond to
the dense artificial surface and thus are identified as urban
extents in this study (Fig. 5c). Therefore, despite there be-
ing no notable changes along the NTL gradient to delineate
urban and non-urban, the urban boundary in this type of po-
tential urban cluster can also be captured by the DN value of
the urban split point using the parabola-based strategy as an
alternative.

3.3 Urban sequence updating

Finally, we post-processed the initial urban extents delin-
eated from NTL imagery to build temporally more consis-
tent time-series urban extents. The post-processing scheme
includes two major procedures (Li et al., 2015). First, an iter-
atively temporal filtering procedure was applied to the initial
binary urban sequence, for correcting the temporal inconsis-
tency in the initial urban extents using a multi-temporal mov-
ing window. Cases of the pixels with isolated states in their
temporal-neighborhood urban sequence can be reduced by
changing the labels with low values of temporal-consistency
probability. Then, for the filtered urban sequence, a logical
reasoning check was performed to ensure that the updated se-
quence follows a reasonable urbanization process (i.e., non-
urban to urban). The alternatively occurring urban and non-
urban labels in the filtered urban sequence can be replaced
based on the major label category. Details of the two proce-
dures are described in Li et al. (2015).

Earth Syst. Sci. Data, 14, 517–534, 2022 https://doi.org/10.5194/essd-14-517-2022



M. Zhao et al.: A global dataset of annual urban extents from nighttime lights 523

Figure 3. Identification of NTL gradient patterns. (a) The quantification of the two parameters for characterizing NTL gradient variations.
D and Q represent NTL DN values and corresponding quantile levels; G represents the minimum distance between the reference line and
the turning point. (b) The schematic diagram for identifying the variation pattern of the NTL spatial gradient in the potential urban domain.

4 Results and discussion

4.1 Evaluations of derived urban extents

4.1.1 Comparison with global urban time-series
products

Urban extents delineated from NTL data spatially agree with
the relatively dense artificial impervious areas at the local
scales (Fig. 6). We first aggregated the 30 m GAIA data
(Gong et al., 2020) to the 1 km resolution to calculate the
proportion of impervious surface area (ISA) in each pixel.
We then selected urban clusters with different urban sizes and
sprawl trends in different continents for illustration. Through
overlaying the derived urban boundaries on the ISA percent-
age maps, we found that our mapped urban results can re-
veal the spatial distribution of the contiguous areas with rel-
atively high proportions of ISA. These dense artificial imper-
vious areas around urban cores are likely to be the real urban
extents containing intensive high-intensity human activities.
However, unlike using a single threshold of ISA percentage
values to define urban areas (Homer et al., 2015; Zhou et al.,
2014), the ISA percentage maps within the NTL-derived ur-
ban extents in this study vary over regions and across years.

Overall, the total NTL-derived urban areas are largely con-
sistent with the intensive artificial impervious areas at the
global and continent scales, corresponding to a reasonable
range of ISA percentage levels (20 %–45 %) over the past
decades (Fig. 7). We binarized the global ISA percentage
maps (1992–2018) at an interval of 5 % to obtain the refer-
ence urban boundary corresponding to different ISA levels.

At the global scale, the total area of NTL-derived annual ur-
ban extents generally matches well with that of the areas with
ISA percentage values larger than around 25 %. This com-
parison is a bit different on different continents. Most ISA
percentage thresholds corresponding to the reference bound-
aries are generally stable, at around 30 % in Asia, 45 % in
Oceania, 20 % in Europe, and 25 % in North America. How-
ever, the NTL-derived urban results in Africa agree with the
ISA-derived reference results when the dynamic thresholds
are set from 55 % in 1992 to 20 % in 2018. This difference is
mainly because some artificial impervious areas in develop-
ing regions (e.g., small towns) in the early period cannot be
well reflected on NTL imagery due to the dim luminance at
night (Zhao et al., 2019). That is, during the earlier period,
the NTL-derived urban areas generally detect the urban core
with relatively dense artificial impervious areas, while other
land types such as the green space in continuously expanded
urban areas are likely to be identified as urban in the later
period (Zhou et al., 2018). A similar illustration can also be
found in South America. These comparisons suggest that our
urban extents derived from NTLs can reveal dense human
settlements with ISA percentage levels varying at a reason-
able range from 55 % to 5 %.

Urban extents derived from NTL imagery for each poten-
tial urban cluster are also largely consistent with the global
urban boundaries (GUBs) derived from fine-resolution ISA
data (Fig. 8). The multi-temporal GUB dataset delineated
using 30 m resolution GAIA data provides a physical urban
boundary globally over the past decades (Li et al., 2020b).
The local urban sizes of NTL-derived results and GUB data
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Figure 4. Illustration of the quantile-based strategy. (a) The schematic diagram for identifying three types of urban cluster with the non-
gradual pattern. (b) Corresponding examples of urban delineation in different urban cluster categories using the quantile-based strategy. The
urban clusters in Beijing in 1992 (type I), 1999 (type II), and 2011 (type III) are selected for illustration.

are generally consistent worldwide, with R2 values of no
less than 0.86, for six different periods (Fig. 8a). Most of
the cluster-based evaluation points are distributed near the
1 : 1 line, showing that the extracted urban results in each
potential urban cluster are generally consistent in these two
datasets. Specifically, urban areas from this study and the
reference dataset in the United States are largely scattered
along the 1 : 1 line, presenting high values of the corre-
sponding R2 larger than 0.9 (Fig. 8c). The comparison re-
sults in Asia are also reasonable, despite differences in the
total urban areas in some urban clusters being slightly ob-
vious (Fig. 8b). To further analyze the possible reasons for
the difference mentioned above, we selected several points
aligning far from the 1 : 1 line (1 and 2 in Fig. 8a and 1, 2,
3, and 4 in Fig. 8b) for illustration. By overlaying our ur-
ban boundaries on the NTL images and overlaying the ur-
ban reference boundaries (GUBs) on the fine-resolution ISA
maps (GAIA data), we found that the spatial inconsistency
of these two datasets is acceptable (Fig. 8d). First, the pervi-

ous surface areas with both large size and dim artificial lumi-
nance (e.g., grass, forest, or farmland of the suburban areas
between two towns/cities) are excluded in the NTL-derived
urban extents, while they are included in the GUB data (see
a1 and a2 in Fig. 8d). Second, the scattered artificial im-
pervious areas with medium artificial luminance distributed
around the urban fringe areas (e.g., large-scale shanty towns
or villages) are excluded in the NTL-derived urban extents,
while they are included in the GUB data (see b1 and b2 in
Fig. 8d). Third, continuous and brightly lit areas connecting
scattered artificial impervious areas (e.g., small cities with
scatter patterns isolated away from surrounding megacities)
are included in the NTL-derived urban extents, while they
are excluded in the GUB data (see b3 and b4 in Fig. 8d). Be-
sides, several hollow areas can also be observed within the
NTL-derived urban extents (see a1, a2, b3, and b4 in Fig. 8d).
These hollow areas with lower DNs at the local scales cor-
respond to regions without ISA and therefore should be con-
sidered non-urban areas. Therefore, compared with the urban
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Figure 5. Illustration of the parabola-based strategy. (a) The NTL and corresponding brightness gradient (BG) maps and their profile curves
in a latitudinal transect across the urban cluster of Baoji in 2012. (b) A schematic diagram of the parabola-based strategy. (c) An example of
mapping urban extents in Baoji in 2012 using the parabola-based strategy. The urban cluster of Baoji in (a) and (c) is a city in the Shaanxi
province in China. This cluster exhibits a gradual variation in the NTL spatial gradient in 2012.

Figure 6. Comparisons of urban extent from NTL imagery with the ISA percentage map calculated from GAIA data.

reference boundaries with multi-temporal records, the urban
extents detected from NTL imagery using our approach are
reasonable when considering the differences in the defini-
tions, data sources, and approaches used in delineating urban
boundaries.

4.1.2 Comparison with historical Google imagery

Urban dynamics derived from NTL imagery also agree well
with the actual urban extents in historical Google Earth im-
ages, for cities with different expansion patterns (Fig. 9).
Here, for illustration, the NTL-derived urban boundaries
were overlaid on both corresponding NTL images and cor-
responding high-resolution historical Google Earth maps (in
1992, 1999, 2006, 2013, and 2020) of two selected urban
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Figure 7. Comparisons of urban extent from NTL imagery with the ISA percentage map calculated from GAIA data from 1992 to 2018 at
the global and continent levels.

clusters. We find that our mapped results are capable of de-
tecting the spatial changes in urban dynamics over a long
period. That is, the delineated boundaries enable us to au-
tomatically distinguish urban areas and surrounding non-
urban areas for different urbanization processes. For exam-
ple, Chengdu (China) experienced an evident urban growth
over the nearly 30 years; the derived urban boundary from
NTL imagery can well depict the complex expansion pat-
terns such as enclave expansion and multi-center continuous
development. Furthermore, urban dynamics can be easily de-
lineated from cities experiencing sprawl expansion; one case
can be found in Omaha (United States). The results com-
monly suggest that the delineated urban extents using our
approach include both locally intensive impervious areas and
continuously lit areas with bright artificial luminance.

4.1.3 Comparison with socioeconomic statistics

Our time-series urban extents delineated from NTL imagery
are partly consistent with gridded global population maps
(Fig. 10). Considering that urbanization can be character-
ized in more ways than just human settlement, we applied
a population indicator from the Gridded Population of the
World (GPW) (Center for International Earth Science Infor-
mation Network, 2018) to evaluate the reliability of urban ex-
tents generated in this study. The gridded populations of each
potential urban cluster in different years were calculated to

characterize their total populations. In general, we observed
the correlation relationships between the urban sizes from
NTL data and the total population from GPW data (Fig. 10a–
e). Although the relationships between urban size and total
population are complex and difficult to quantify, a general
linear pattern is obvious between the two processed datasets,
with correlation values at about 0.5 in different periods. Such
weak correlations are reasonable because of the complex pro-
cesses of urban expansion and population growth, which not
only interact with each other but are also influenced by other
factors such as economic growth, transportation infrastruc-
ture, governance, and planning controls, as well as the char-
acteristics of the environment. Moreover, it was found that
large urban areas in different periods always correspond to
high populations, which is consistent with general cognition.
Besides, the consistency of the spatial extents between urban
areas and the high-population grid is also acceptable, such as
a current case in Des Moines in the United States (Fig. 10f).

4.2 Spatiotemporal patterns of global urban dynamics

4.2.1 Global and continent levels

Widespread expansions with different degrees of global ur-
ban extents have been observed over the past 3 decades.
Globally, the area percentage of global urban land as a pro-
portion of the Earth’s land surface was 0.22 % in 1992 and
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Figure 8. Comparisons of spatial extents between NTL- and GUB-derived urban areas. (a–c) Comparisons of the total area of the urban
extent for each urban cluster in different periods globally, in Asia, and in the United States, respectively. (d) A comparison of the urban
spatial extent within the marked clusters (see a and b) in different years. a1 and a2 are comparisons in the Los Angeles-dominated urban
cluster in 1995 and 2015, respectively. b1 and b2 are comparisons in the Beijing-dominated urban cluster in 2010 and 2015, respectively. b3
and b4 are comparisons in the Incheon–Seoul-dominated urban cluster in 2000 and 2005, respectively.

Figure 9. Comparisons of urban extent from NTL observations with Google Earth imagery for two selected urban clusters in 1992, 1999,
2006, 2013, and 2020.
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Figure 10. Comparisons of the cluster-based urban extent from NTL imagery with the corresponding population from GPW data in different
periods, globally. (a–e) The relationships of the total urban area (km2) with the total population for each potential urban cluster in 2000,
2005, 2010, 2015, and 2020, respectively. (f) The spatial distribution of urban extent and the corresponding gridded population at the urban
cluster of Des Moines (United States) in 2020.

increased to 0.69 % in 2020, with a total increase of about
983 834 km2. The trends and magnitudes of urban growth
vary among different continents (Fig. 11a). For example,
Asia, Europe, and North America show both larger urban
distribution and faster urban expansion from 1992 to 2020
compared with other continents. With a faster urban growth
rate in Asia than on other continents, the total area of urban
land in Asia has surpassed that in Europe and North America,
ranking first in the world. Based on the current situation, the
total urban area of Europe may exceed that of North America
in the near future. The urban land percentage of each conti-
nent as a proportion of the global urban land also varies with
time. Specifically, the dynamics of this percentage in Asia
show a significant increasing trend, while those in Europe
and North America show an obvious decreasing trend and
a steady trend, respectively. Additionally, slightly increasing
trends of urban land as a proportion of the global urban land
are also observed in South America and Africa.

The spatiotemporal patterns of urban size also vary con-
siderably worldwide (Fig. 11b). To further analyze the gen-
eral characteristics of local urban dynamics, the total areas
of the derived urban extents for each potential urban cluster
in 1992 and 2020 were calculated to characterize their ur-
ban size. In general, a notable enlargement in urban size has
been observed in Asia from 1992 to 2020 due to its rapid ur-
banization processes. For example, the total number of the
largest urban areas (i.e., area > 2000 km2) of Asia in 1992
is 3, increasing to 16 in 2020. Additionally, many small-size
urban areas have been developed into medium- or large-size

urban areas worldwide, especially in Europe and Asia. The
distribution pattern of large and super-large urban areas (i.e.,
area> 1000 km2) in North America has remained unchanged
since the 1990s.

4.2.2 Country level

The dynamics of urban extents from 1992 to 2020 also vary
among different countries. The United States and China are
the top two countries in terms of the total urban area in 2020,
and the urban expansion in China is faster than that in the
United States over the nearly 30 years (Fig. 12a). Although
the total urban area in the top two countries occupies more
than one-third of the global total in 2020, a slightly decreas-
ing trend of this proportion, from 41 % in 1992 to 35 % in
2020, is observed. This can probably be attributed to a steady
urbanization process in the United States and relatively rapid
urbanization processes in other developing countries except
for China. The urban areas of African countries are generally
smaller than those of other countries, and the new expanded
urban areas over the past 3 decades are also relatively small.

For the countries with dense urban populations, the growth
patterns of urban areas and urbanized proportions also vary
with spaces and time (Fig. 12b). We selected the top 20
countries ranked by urban population in 2018 (https://data.
worldbank.org, last access: 5 September 2021) for illustra-
tion. By 2020, the total urban area in the United States and
China occupies about 0.22 % and 0.13 % of the global ur-
ban area. Moreover, more than 170 000 km2 of land has been
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Figure 11. Dynamics of urban extents from 1992 to 2020 at the continent level (a) and the spatial pattern of urban size in potential urban
clusters in 1992 and 2020 (b).

urbanized in China since the 1990s, showing a stronger mo-
mentum of increase in urban extents in the future than the
remaining countries. At the country level, the urbanized pro-
portion of the total land area in developed countries such as
Japan, the United Kingdom, South Korea, and Italy is higher,
followed by Germany, France, and the United States. Be-
sides, among these countries with a high proportion of urban
extents, South Korea and Italy have experienced a relatively
rapid urbanization process from 1992 to 2020.

4.2.3 City level

The spatial patterns of urban expansion at local scales from
1992 to 2020 in China and the United States are quite dif-
ferent (Fig. 13). We mapped the spatiotemporal distribution
of the urban extents at both regional and local scales to fur-
ther compare the historical pathways of the newly expanded
urban areas since 1992 in developed as well as developing
countries. In general, the spatial extents of the majority of
urban areas over the nearly 30 years in the United States are
relatively stable, while those in China tend to be enlarged at

different degrees. For instance, expansions in metropolises
of the United States like Chicago and Houston always oc-
cur in the early period. In contrast, slight expansions in small
cities (e.g., Clarksville and Omaha) during the last decade
can also be detected. However, urban areas in China exhibit
diverse patterns of spatial expansion over the past decades in
terms of expansion size, pace, direction, and shape. For in-
stance, Chengdu, Xi’an, and Hefei in China have developed
into large cities due to the rapid agglomerations of popula-
tion, industry, and economic activities since the turn of the
new century. Moreover, expansions in metropolises of China
like Beijing and Shanghai are also evident. As a valley city,
the urban sprawl in Lanzhou is mainly restricted by the land-
form, exhibiting a narrow shape of the strip.

5 Data availability

The global dataset of annual urban extents (1992–
2020) from nighttime light imagery is available at
https://doi.org/10.6084/m9.figshare.16602224.v1 (Zhao et
al., 2021). This dataset was tagged in GeoTIFF file format,
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Figure 12. Dynamics of urban extents from 1992 to 2020 both at the country level (a) and in the top 20 countries ranked by urban population
in 2018 (b).

Figure 13. Dynamics of urban extents from 1992 to 2020 in different cities of China and the United States. The spatial range of each subset
is 100 km× 100 km.
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with a spatial resolution of 30 arcsec (∼ 1 km) under the
WGS84 geographic coordinate system. A detailed descrip-
tion of this dataset is also provided. The uploaded imagery
can be processed using free GIS software such as QGIS. The
harmonized global NTL dataset used as the primary dataset
for mapping the global time-series urban extents is available
at https://doi.org/10.6084/m9.figshare.9828827.v5 (Li et al.,
2021). Additionally, other ancillary data used in this study
include water masks derived from MODIS MOD44W data,
gas flare data (Elvidge et al., 2009), binary urban map data
(Zhou et al., 2015, 2018), and GAIA data (Gong et al., 2020).

6 Conclusions

In this study, we generated a global dataset of annual ur-
ban extents (1992–2020) using consistent NTL observations
and analyzed the spatiotemporal patterns of global urban dy-
namics at different levels over the past 3 decades. The ad-
vantage of this dataset is to provide spatially explicit global
urban maps with long temporal coverage for depicting the
dynamics of urban areas associated with locally high in-
tensity human activities. Based on previous studies, a new
stepwise-partitioning framework, including potential urban
cluster identification, initial urban extent delineation, and ur-
ban sequence updating, was developed to generate the annual
urban extents from harmonized NTL time-series imagery at
the global scale. Then, we evaluated the global urban ex-
tents (1992–2020) using a variety of reference data including
fine-resolution ISA data, other urban boundary data, Google
Maps, and gridded population data. Next, the spatiotemporal
patterns of the global urban dynamics since the 1990s were
further discussed at the global, continent, country, and city
levels.

The evaluations indicate that this dataset of urban ex-
tents is reliable for characterizing spatial extents associated
with intensive human settlements and high-intensity socioe-
conomic activities, over space and time. In general, the global
urban land area as a percentage of the total Earth’s land
surface is 0.22 % in 1992 and increased to 0.69 % in 2020.
Specifically, Asia, Europe, and North America show a larger
urban distribution and faster urban expansion than other con-
tinents. The annual percentages of urban land as a proportion
of the global urban land in Asia show a significant increas-
ing trend. In contrast, those in Europe and North America
show an obvious decreasing trend and a steady trend, respec-
tively. The United States and China are the top two countries
in terms of the total urban area in 2020, and the urban expan-
sion in China is faster than that in the United States over the
nearly 30 years. Overall, the spatial extents of the majority of
urban areas since the 1990s in the United States are generally
stable, while those in China tend to be enlarged at different
degrees.

This study further extends the applications of NTL remote
sensing to urban-related studies. The stepwise urban map-
ping framework improved in this study specialized in identi-
fying the urbanized areas by classifying NTL signals of the
potential urban domains, including urban cores and suburban
and rural areas. Differently from other global urban map-
ping time-series products (e.g., artificial impervious areas),
our dataset is unique and advanced in its capacity to identify
areas associated with locally high intensity urbanization and
socioeconomic activities. It should be noted that some de-
veloped areas, such as areas with extensive luminosity loss
due to the policy or status of light turndown or turnoff at
night (Zhao et al., 2019), may be omitted in this dataset. This
limitation may be reduced by fusing NTL signals with other
effective information mined from fine-resolution ISA data
(Gong et al., 2020) and social media big data (Ma, 2018).
In general, our dataset shows great potential in various urban
studies, such as studies of urbanization and the correspond-
ing impacts on land use, habitat quality, urban heat islands,
and urban climate.

Author contributions. YZ and MZ designed the study; XL col-
lected the data; YZ, CC, and MZ discussed the method and analysis
sections; MZ implemented the study and drafted the manuscript;
YZ, CC, XL, SS, and CS reviewed and revised the manuscript.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Earth System Science Data. The peer-
review process was guided by an independent editor, and the authors
also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank the high-
performance computing support from the Center for Geodata
and Analysis, Faculty of Geographical Science, Beijing Normal
University (https://gda.bnu.edu.cn/, last access: 5 September
2021). We appreciate the reviewers and handling editor for their
constructive comments and suggestions.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. 42041007
and 42101462) and the China Postdoctoral Science Foundation
(grant no. 2021M690019).

Review statement. This paper was edited by Alexander Gruber
and reviewed by two anonymous referees.

https://doi.org/10.5194/essd-14-517-2022 Earth Syst. Sci. Data, 14, 517–534, 2022

https://doi.org/10.6084/m9.figshare.9828827.v5
https://gda.bnu.edu.cn/


532 M. Zhao et al.: A global dataset of annual urban extents from nighttime lights

References

Cao, Q., Yu, D., Georgescu, M., Wu, J., and Wang, W.: Impacts
of future urban expansion on summer climate and heat-related
human health in eastern China, Environ. Int., 112, 134–146,
https://doi.org/10.1016/j.envint.2017.12.027, 2018.

Center for International Earth Science Information Network:
Gridded Population of the World, Version 4 (GPWv4):
Population Count, Revision 11, NASA Socioeconomic
Data and Applications Center (SEDAC) [data set],
https://doi.org/10.7927/H4JW8BX5, 2018.

Chen, J., Chen, J., Liao, A. P., Cao, X., Chen, L. J., Chen, X. H.,
He, C. Y., Han, G., Peng, S., Lu, M., Zhang, W. W., Tong, X. H.,
and Mills, J.: Global land cover mapping at 30 m resolution: A
POK-based operational approach, ISPRS J. Photogramm., 103,
7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.

Chen, Y. M., Li, X., Wang, S. J., Liu, X. P., and Ai,
B.: Simulating Urban Form and Energy Consumption
in the Pearl River Delta Under Different Development
Strategies, Ann. Assoc. Am. Geogr., 103, 1567–1585,
https://doi.org/10.1080/00045608.2012.740360, 2013.

Chen, Z. Q., Yu, B. L., Song, W., Liu, H. X., Wu, Q. S., Shi,
K. F., and Wu, J. P.: A New Approach for Detecting Ur-
ban Centers and Their Spatial Structure With Nighttime Light
Remote Sensing, IEEE T. Geosci. Remote, 55, 6305–6319,
https://doi.org/10.1109/tgrs.2017.2725917, 2017.

Corbane, C., Florczyk, A., Pesaresi, M., Politis, P., and Syrris,
V.: GHS-BUILT R2018A – GHS built-up grid, derived
from Landsat, multitemporal (1975–1990–2000–2014), Euro-
pean Commission, Joint Research Centre (JRC) [data set],
https://doi.org/10.2905/jrc-ghsl-10007, 2018.

Defries, R. S., Bounoua, L., and Collatz, G. J.: Human modification
of the landscape and surface climate in the next fifty years, Glob.
Change Biol., 8, 438–458, 2002.

Elvidge, C. D., Daniel, Z., Baugh, K. E., Tuttle, B. T., and
Mikhail, Z.: A Fifteen Year Record of Global Natural Gas
Flaring Derived from Satellite Data, Energies, 2, 595–622,
https://doi.org/10.3390/en20300595, 2009.

Esch, T., Marconcini, M., Felbier, A., Roth, A., Heldens, W.,
Huber, M., Schwinger, M., Taubenbock, H., Muller, A., and
Dech, S.: Urban Footprint Processor-Fully Automated Process-
ing Chain Generating Settlement Masks From Global Data of the
TanDEM-X Mission, IEEE Geosci. Remote S., 10, 1617–1621,
https://doi.org/10.1109/lgrs.2013.2272953, 2013.

Florczyk, A. J., Melchiorri, M., Corbane, C., Schiavina, M.,
Maffenini, M., Pesaresi, M., Politis, P., Sabo, S., Freire,
S., Ehrlich, D., Kemper, T., Tommasi, P., Airaghi, D., and
Zanchetta, L.: Description of the GHS Urban Centre Database
2015, Publications Office of the European Union [data set],
https://doi.org/10.2760/037310, 2019.

Gong, P., Wang, J., Yu, L., Zhao, Y. C., Zhao, Y. Y., Liang, L., Niu,
Z. G., Huang, X. M., Fu, H. H., Liu, S., Li, C. C., Li, X. Y., Fu,
W., Liu, C. X., Xu, Y., Wang, X. Y., Cheng, Q., Hu, L. Y., Yao,
W. B., Zhang, H., Zhu, P., Zhao, Z. Y., Zhang, H. Y., Zheng, Y.
M., Ji, L. Y., Zhang, Y. W., Chen, H., Yan, A., Guo, J. H., Yu,
L., Wang, L., Liu, X. J., Shi, T. T., Zhu, M. H., Chen, Y. L.,
Yang, G. W., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z. L.,
Chen, J., and Chen, J.: Finer resolution observation and mon-
itoring of global land cover: first mapping results with Land-

sat TM and ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.

Gong, P., Liu, H., Zhang, M. N., Li, C. C., Wang, J., Huang, H.
B., Clinton, N., Ji, L. Y., Li, W. Y., Bai, Y. Q., Chen, B., Xu,
B., Zhu, Z. L., Yuan, C., Suen, H. P., Guo, J., Xu, N., Li, W. J.,
Zhao, Y. Y., Yang, J., Yu, C. Q., Wang, X., Fu, H. H., Yu, L.,
Dronova, I., Hui, F. M., Cheng, X., Shi, X. L., Xiao, F. J., Liu,
Q. F., and Song, L. C.: Stable classification with limited sample:
transferring a 30-m resolution sample set collected in 2015 to
mapping 10-m resolution global land cover in 2017, Sci. Bull.,
64, 370–373, https://doi.org/10.1016/j.scib.2019.03.002, 2019.

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T.,
Liu, X., Xu, B., Yang, J., Zhang, W., and Zhou, Y.: An-
nual maps of global artificial impervious area (GAIA) be-
tween 1985 and 2018, Remote Sens. Environ., 236, 111510,
https://doi.org/10.1016/j.rse.2019.111510, 2020.

Guneralp, B., Zhou, Y., Urge-Vorsatz, D., Gupta, M., Yu, S., Pa-
tel, P. L., Fragkias, M., Li, X., and Seto, K. C.: Global sce-
narios of urban density and its impacts on building energy
use through 2050, P. Natl. Acad. Sci. USA, 114, 8945–8950,
https://doi.org/10.1073/pnas.1606035114, 2017.

Homer, C., Dewitz, J., Yang, L. M., Jin, S., Danielson, P., Xian, G.,
Coulston, J., Herold, N., Wickham, J., and Megown, K.: Com-
pletion of the 2011 National Land Cover Database for the Con-
terminous United States – Representing a Decade of Land Cover
Change Information, Photogramm. Eng. Remote Sens., 81, 345–
354, https://doi.org/10.1016/S0099-1112(15)30100-2, 2015.

Hou, D., Meng, F., and Prishchepov, A. V.: How is ur-
banization shaping agricultural land-use? Unraveling
the nexus between farmland abandonment and urban-
ization in China, Landscape Urban Plan., 214, 104170,
https://doi.org/10.1016/j.landurbplan.2021.104170, 2021.

Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu,
X.: 30 m global impervious surface area dynamics and ur-
ban expansion pattern observed by Landsat satellites: From
1972 to 2019, Sci. China Earth Sci., 64, 1922–1933,
https://doi.org/10.1007/s11430-020-9797-9, 2021.

Jiang, L., Deng, X., and Seto, K. C.: The impact of urban expansion
on agricultural land use intensity in China, Land Use Policy, 35,
33–39, https://doi.org/10.1016/j.landusepol.2013.04.011, 2013.

Kamarajugedda, S. A., Mandapaka, P. V., and Lo, E. Y. M.: As-
sessing urban growth dynamics of major Southeast Asian cities
using night-time light data, Int. J. Remote Sens., 38, 6073–6093,
https://doi.org/10.1080/01431161.2017.1346846, 2017.

Kuang, W. H.: 70 years of urban expansion across China: trajec-
tory, pattern, and national policies, Sci. Bull., 65, 1970–1974,
https://doi.org/10.1016/j.scib.2020.07.005, 2020.

Kuang, W. H., Zhang, S., Li, X., and Lu, D.: A 30 m reso-
lution dataset of China’s urban impervious surface area and
green space, 2000–2018, Earth Syst. Sci. Data, 13, 63–82,
https://doi.org/10.5194/essd-13-63-2021, 2021a.

Kuang, W. H., Du, G. M., Lu, D. S., Dou, Y. Y., Li, X. Y.,
Zhang, S., Chi, W. F., Dong, J. W., Chen, G. S., Yin, Z.
R., Pan, T., Hamdi, R., Hou, Y. L., Chen, C. Y., Li, H., and
Miao, C.: Global observation of urban expansion and land-
cover dynamics using satellite big-data, Sci. Bull., 66, 297–300,
https://doi.org/10.1016/j.scib.2020.10.022, 2021b.

Lawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S.,
Withey, J. C., Helmers, D. P., Martinuzzi, S., Pennington, D., and

Earth Syst. Sci. Data, 14, 517–534, 2022 https://doi.org/10.5194/essd-14-517-2022

https://doi.org/10.1016/j.envint.2017.12.027
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.1016/j.isprsjprs.2014.09.002
https://doi.org/10.1080/00045608.2012.740360
https://doi.org/10.1109/tgrs.2017.2725917
https://doi.org/10.2905/jrc-ghsl-10007
https://doi.org/10.3390/en20300595
https://doi.org/10.1109/lgrs.2013.2272953
https://doi.org/10.2760/037310
https://doi.org/10.1080/01431161.2012.748992
https://doi.org/10.1016/j.scib.2019.03.002
https://doi.org/10.1016/j.rse.2019.111510
https://doi.org/10.1073/pnas.1606035114
https://doi.org/10.1016/S0099-1112(15)30100-2
https://doi.org/10.1016/j.landurbplan.2021.104170
https://doi.org/10.1007/s11430-020-9797-9
https://doi.org/10.1016/j.landusepol.2013.04.011
https://doi.org/10.1080/01431161.2017.1346846
https://doi.org/10.1016/j.scib.2020.07.005
https://doi.org/10.5194/essd-13-63-2021
https://doi.org/10.1016/j.scib.2020.10.022


M. Zhao et al.: A global dataset of annual urban extents from nighttime lights 533

Radeloff, V. C.: Projected land-use change impacts on ecosystem
services in the United States, P. Natl. Acad. Sci. USA, 111, 7492–
7497, https://doi.org/10.1073/pnas.1405557111, 2014.

Li, X. and Gong, P.: Urban growth models: progress and perspec-
tive, Sci. Bull., 61, 1637–1650, https://doi.org/10.1007/s11434-
016-1111-1, 2016.

Li, X., Zhou, Y., Eom, J., Yu, S., and Asrar, G. R.: Projecting Global
Urban Area Growth Through 2100 Based on Historical Time
Series Data and Future Shared Socioeconomic Pathways, Earth’s
Future, 7, 351–362, https://doi.org/10.1029/2019ef001152,
2019.

Li, X., Zhou, Y., Zhao, M., and Zhao, X.: A harmonized
global nighttime light dataset 1992–2018, Sci. Data, 7, 168,
https://doi.org/10.1038/s41597-020-0510-y, 2020a.

Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao,
Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang,
X., Lin, P., Li, X., Chen, J., He, C., Li, X., Yu, L., Clinton, N.,
and Zhu, Z.: Mapping global urban boundaries from the global
artificial impervious area (GAIA) data, Environ. Res. Lett., 15,
094044, https://doi.org/10.1088/1748-9326/ab9be3, 2020b.

Li, X., Zhou, Y., Zhao, M., and Zhao, X.: Harmoniza-
tion of DMSP and VIIRS nighttime light data from
1992–2020 at the global scale, figshare [data set],
https://doi.org/10.6084/m9.figshare.9828827.v5, 2021.

Li, X. C. and Zhou, Y. Y.: A Stepwise Calibration of Global
DMSP/OLS Stable Nighttime Light Data (1992–2013), Remote
Sens., 9, 637, https://doi.org/10.3390/rs9060637, 2017a.

Li, X. C. and Zhou, Y. Y.: Urban mapping using DMSP/OLS stable
night-time light: a review, Int. J. Remote Sens., 38, 6030–6046,
https://doi.org/10.1080/01431161.2016.1274451, 2017b.

Li, X. C., Gong, P., and Liang, L.: A 30-year (1984–2013)
record of annual urban dynamics of Beijing City derived
from Landsat data, Remote Sens. Environ., 166, 78–90,
https://doi.org/10.1016/j.rse.2015.06.007, 2015.

Liang, L., Wang, Z., and Li, J.: The effect of urban-
ization on environmental pollution in rapidly developing
urban agglomerations, J. Clean. Product., 237, 117649,
https://doi.org/10.1016/j.jclepro.2019.117649, 2019.

Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P.,
Gong, K., Ziegler, A. D., Chen, A., Gong, P., Chen, J., Hu,
G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., and
Zeng, Z.: High-spatiotemporal-resolution mapping of global ur-
ban change from 1985 to 2015, Nat. Sustain., 3, 564–570,
https://doi.org/10.1038/s41893-020-0521-x, 2020.

Liu, X. P., Hu, G. H., Chen, Y. M., Li, X., Xu, X. C., Li, S. Y., Pei,
F. S., and Wang, S. J.: High-resolution multi-temporal mapping
of global urban land using Landsat images based on the Google
Earth Engine Platform, Remote Sens. Environ., 209, 227–239,
https://doi.org/10.1016/j.rse.2018.02.055, 2018.

Liu, Z. F., He, C. Y., Zhou, Y. Y., and Wu, J. G.: How much of the
world’s land has been urbanized, really? A hierarchical frame-
work for avoiding confusion, Landscape Ecol., 29, 763–771,
https://doi.org/10.1007/s10980-014-0034-y, 2014.

Lu, X., Lin, C., Li, W., Chen, Y., Huang, Y., Fung, J. C. H., and Lau,
A. K. H.: Analysis of the adverse health effects of PM2.5 from
2001 to 2017 in China and the role of urbanization in aggravat-
ing the health burden, The Sci. Total Environ., 652, 683–695,
https://doi.org/10.1016/j.scitotenv.2018.10.140, 2019.

Ma, T.: Multi-Level Relationships between Satellite-Derived
Nighttime Lighting Signals and Social Media-Derived
Human Population Dynamics, Remote Sens., 10, 1128,
https://doi.org/10.3390/rs10071128, 2018.

Ma, T., Zhou, Y. K., Zhou, C. H., Haynie, S., Pei, T., and
Xu, T.: Night-time light derived estimation of spatio-
temporal characteristics of urbanization dynamics using
DMSP/OLS satellite data, Remote Sens. Environ., 158, 453–
464, https://doi.org/10.1016/j.rse.2014.11.022, 2015.

Ma, T., Yin, Z., and Zhou, A.: Delineating Spatial Patterns in
Human Settlements Using VIIRS Nighttime Light Data: A
Watershed-Based Partition Approach, Remote Sens., 10, 465,
https://doi.org/10.3390/rs10030465, 2018.

Parvati, K., Rao, B. S. P., and Das, M. M.: Image Segmentation
Using Gray-Scale Morphology and Marker-Controlled Water-
shed Transformation, Discrete Dyn. Nat. Soc., 2008, 384346,
https://doi.org/10.1155/2008/384346, 2008.

Qiang, Z., He, K., and Hong, H.: Policy: Cleaning China’s air, Na-
ture, 484, 161–162, 2012.

Schneider, A., Friedl, M. A., and Potere, D.: A new map of global
urban extent from MODIS satellite data, Environ. Res. Lett., 4,
044003, https://doi.org/10.1088/1748-9326/4/4/044003, 2009.

Schneider, A., Friedl, M. A., and Potere, D.: Mapping global ur-
ban areas using MODIS 500-m data: New methods and datasets
based on “urban ecoregions”, Remote Sens. Environ., 114, 1733–
1746, 10.1016/j.rse.2010.03.003, 2010.

Seto, K. C., Giineralp, B., and Hutyra, L. R.: Global forecasts of
urban expansion to 2030 and direct impacts on biodiversity and
carbon pools, P. Natl. Acad. Sci. USA, 109, 16083–16088, 2012.

Solecki, W., Seto, K. C., and Marcotullio, P. J.: It’s Time
for an Urbanization Science, Environment, 55, 12–17,
https://doi.org/10.1080/00139157.2013.748387, 2013.

Su, Y. X., Chen, X. Z., Wang, C. Y., Zhang, H. O., Liao, J. S., Ye,
Y. Y., and Wang, C. J.: A new method for extracting built-up ur-
ban areas using DMSP-OLS nighttime stable lights: a case study
in the Pearl River Delta, southern China, Geosci. Remote Sens.,
52, 218–238, https://doi.org/10.1080/15481603.2015.1007778,
2015.

Taubenbock, H., Esch, T., Felbier, A., Wiesner, M., Roth,
A., and Dech, S.: Monitoring urbanization in mega
cities from space, Remote Sens. Environ., 117, 162–176,
https://doi.org/10.1016/j.rse.2011.09.015, 2012.

Wang, Y. P. and Shen, Z. H.: Comparing Luojia 1-01 and VIIRS
Nighttime Light Data in Detecting Urban Spatial Structure Using
a Threshold-Based Kernel Density Estimation, Remote Sens., 13,
1574, https://doi.org/10.3390/rs13081574, 2021.

Yang, J., Siri, J. G., Remais, J. V., Cheng, Q., Zhang, H., Chan,
K. K. Y., Sun, Z., Zhao, Y., Cong, N., Li, X., Zhang, W., Bai,
Y., Bi, J., Cai, W., Chan, E. Y. Y., Chen, W., Fan, W., Fu, H.,
He, J., Huang, H., Ji, J. S., Jia, P., Jiang, X., Kwan, M.-P., Li,
T., Li, X., Liang, S., Liang, X., Liang, L., Liu, Q., Lu, Y., Luo,
Y., Ma, X., Schwartländer, B., Shen, Z., Shi, P., Su, J., Wu, T.,
Yang, C., Yin, Y., Zhang, Q., Zhang, Y., Zhang, Y., Xu, B.,
and Gong, P.: The Tsinghua–Lancet Commission on Healthy
Cities in China: unlocking the power of cities for a healthy
China, Lancet, 391, 2140–2184, https://doi.org/10.1016/S0140-
6736(18)30486-0, 2018.

Yu, L., Liu, X. X., Zhao, Y. Y., Yu, C. Q., and Gong, P.: Difficult to
map regions in 30 m global land cover mapping determined with

https://doi.org/10.5194/essd-14-517-2022 Earth Syst. Sci. Data, 14, 517–534, 2022

https://doi.org/10.1073/pnas.1405557111
https://doi.org/10.1007/s11434-016-1111-1
https://doi.org/10.1007/s11434-016-1111-1
https://doi.org/10.1029/2019ef001152
https://doi.org/10.1038/s41597-020-0510-y
https://doi.org/10.1088/1748-9326/ab9be3
https://doi.org/10.6084/m9.figshare.9828827.v5
https://doi.org/10.3390/rs9060637
https://doi.org/10.1080/01431161.2016.1274451
https://doi.org/10.1016/j.rse.2015.06.007
https://doi.org/10.1016/j.jclepro.2019.117649
https://doi.org/10.1038/s41893-020-0521-x
https://doi.org/10.1016/j.rse.2018.02.055
https://doi.org/10.1007/s10980-014-0034-y
https://doi.org/10.1016/j.scitotenv.2018.10.140
https://doi.org/10.3390/rs10071128
https://doi.org/10.1016/j.rse.2014.11.022
https://doi.org/10.3390/rs10030465
https://doi.org/10.1155/2008/384346
https://doi.org/10.1088/1748-9326/4/4/044003
https://doi.org/10.1080/00139157.2013.748387
https://doi.org/10.1080/15481603.2015.1007778
https://doi.org/10.1016/j.rse.2011.09.015
https://doi.org/10.3390/rs13081574
https://doi.org/10.1016/S0140-6736(18)30486-0
https://doi.org/10.1016/S0140-6736(18)30486-0


534 M. Zhao et al.: A global dataset of annual urban extents from nighttime lights

a common validation dataset, Int. J. Remote Sens., 39, 4077–
4087, https://doi.org/10.1080/01431161.2018.1455238, 2018.

Zhao, M., Zhou, Y., Li, X., Cao, W., He, C., Yu, B., Li, X.,
Elvidge, C. D., Cheng, W., and Zhou, C.: Applications of
Satellite Remote Sensing of Nighttime Light Observations: Ad-
vances, Challenges, and Perspectives, Remote Sens., 11, 1971,
https://doi.org/10.3390/rs11171971, 2019.

Zhao, M., Cheng, W., Zhou, C., Li, M., Huang, K., and
Wang, N.: Assessing Spatiotemporal Characteristics of Ur-
banization Dynamics in Southeast Asia Using Time Series
of DMSP/OLS Nighttime Light Data, Remote Sens., 10, 47,
https://doi.org/10.3390/rs10010047, 2018.

Zhao, M., Zhou, Y., Li, X., Zhou, C., Cheng, W., Li, M., and
Huang, K.: Building a Series of Consistent Night-Time Light
Data (1992–2018) in Southeast Asia by Integrating DMSP-
OLS and NPP-VIIRS, IEEE T. Geosci. Remote, 58, 1843–1856,
https://doi.org/10.1109/tgrs.2019.2949797, 2020a.

Zhao, M., Zhou, Y., Li, X., Cheng, W., Zhou, C., Ma, T.,
Li, M., and Huang, K.: Mapping urban dynamics (1992–
2018) in Southeast Asia using consistent nighttime light data
from DMSP and VIIRS, Remote Sens. Environ., 248, 111980,
https://doi.org/10.1016/j.rse.2020.111980, 2020b.

Zhao, M., Cheng, C., Zhou, Y., Li, X., Shen, S., and
Song, C.: A global dataset of annual urban extents (1992–
2020) from harmonized nighttime lights, figshare [data set],
https://doi.org/10.6084/m9.figshare.16602224.v1, 2021.

Zhao, X., Li, X., Zhou, Y. Y., and Li, D. R.: Analyzing Ur-
ban Spatial Connectivity Using Night Light Observations:
A Case Study of Three Representative Urban Agglomera-
tions in China, IEEE J. Sel. Top. Appl., 13, 1097–1108,
https://doi.org/10.1109/jstars.2020.2980514, 2020.

Zheng, Q. M., Weng, Q. H., Huang, L. Y., Wang, K., Deng,
J. S., Jiang, R. W., Ye, Z. R., and Gan, M. Y.: A new
source of multi-spectral high spatial resolution night-time
light imagery-JL1-3B, Remote Sens. Environ., 215, 300–312,
https://doi.org/10.1016/j.rse.2018.06.016, 2018.

Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., and Imhoff,
M.: A global record of annual urban dynamics (1992–2013)
from nighttime lights, Remote Sens. Environ., 219, 206–220,
https://doi.org/10.1016/j.rse.2018.10.015, 2018.

Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A.,
Bond-Lamberty, B., Asrar, G. R., Zhang, X., He, C., and
Elvidge, C. D.: A global map of urban extent from nightlights,
Environ. Res. Lett., 10, 054011, https://doi.org/10.1088/1748-
9326/10/5/054011, 2015.

Zhou, Y. Y., Smith, S. J., Elvidge, C. D., Zhao, K. G., Thomson, A.,
and Imhoff, M.: A cluster-based method to map urban area from
DMSP/OLS nightlights, Remote Sens. Environ., 147, 173–185,
https://doi.org/10.1016/j.rse.2014.03.004, 2014.

Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S.
T. A., and Taubenböck, H.: Understanding an urbanizing planet:
Strategic directions for remote sensing, Remote Sens. Environ.,
228, 164–182, https://doi.org/10.1016/j.rse.2019.04.020, 2019.

Earth Syst. Sci. Data, 14, 517–534, 2022 https://doi.org/10.5194/essd-14-517-2022

https://doi.org/10.1080/01431161.2018.1455238
https://doi.org/10.3390/rs11171971
https://doi.org/10.3390/rs10010047
https://doi.org/10.1109/tgrs.2019.2949797
https://doi.org/10.1016/j.rse.2020.111980
https://doi.org/10.6084/m9.figshare.16602224.v1
https://doi.org/10.1109/jstars.2020.2980514
https://doi.org/10.1016/j.rse.2018.06.016
https://doi.org/10.1016/j.rse.2018.10.015
https://doi.org/10.1088/1748-9326/10/5/054011
https://doi.org/10.1088/1748-9326/10/5/054011
https://doi.org/10.1016/j.rse.2014.03.004
https://doi.org/10.1016/j.rse.2019.04.020

	Abstract
	Introduction
	Datasets and pre-processing
	Framework of stepwise urban mapping method
	Potential urban cluster map generation
	Initial urban extent delineation
	Pattern of NTL variation from non-urban to urban areas
	Quantile-based strategy for non-gradual pattern
	Parabola-based strategy for the gradual pattern

	Urban sequence updating

	Results and discussion
	Evaluations of derived urban extents
	Comparison with global urban time-series products
	Comparison with historical Google imagery
	Comparison with socioeconomic statistics

	Spatiotemporal patterns of global urban dynamics
	Global and continent levels
	Country level
	City level


	Data availability
	Conclusions
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

