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Abstract. The drawbacks of low-coverage rate in global land inevitably exist in satellite-based daily soil mois-
ture products because of the satellite orbit covering scopes and the limitations of soil moisture retrieving models.
To solve this issue, Zhang et al. (2021a) generated seamless global daily soil moisture (SGD-SM 1.0) products
for the years 2013–2019. Nevertheless, there are still several shortages in SGD-SM 1.0 products, especially in
temporal range, sudden extreme weather conditions and sequential time-series information. In this work, we
develop an improved seamless global daily soil moisture (SGD-SM 2.0) dataset for the years 2002–2022, to
overcome the above-mentioned shortages. The SGD-SM 2.0 dataset uses three sensors, i.e. AMSR-E, AMSR2
and WindSat. Global daily precipitation products are fused into the proposed reconstructing model. We propose
an integrated long short-term memory convolutional neural network (LSTM-CNN) to fill the gaps and missing
regions in daily soil moisture products. In situ validation and time-series validation testify to the reconstruct-
ing accuracy and availability of SGD-SM 2.0 (R: 0.672, RMSE: 0.096, MAE: 0.078). The time-series curves
of the improved SGD-SM 2.0 are consistent with the original daily time-series soil moisture and precipitation
distribution. Compared with SGD-SM 1.0, the improved SGD-SM 2.0 outperforms on reconstructing accuracy
and time-series consistency. The SGD-SM 2.0 products are recorded in https://doi.org/10.5281/zenodo.6041561
(Zhang et al., 2022).

1 Introduction

Surface soil moisture acts as a significant part of global hy-
drology and meteorology, especially for forecasting drought
and flood disasters (Wigneron et al., 1999; Long et al., 2014;
Brocca et al., 2018). In recent years, satellite-based soil mois-
ture retrieving data have rapidly progressed in both global
and daily monitoring (Shi et al., 2006; Dorigo et al., 2012,
2021; Al Bitar et al., 2017), e.g. AMSR-E, AMSR2 and
WindSat global daily soil moisture products and so on (Fan
et al., 2004). These quantitative products have been widely
utilised for global and long-term hydrological analysis and
forecasting (Chen et al., 2021; Todd-Brown et al., 2022).

However, because of the limitations of soil moisture re-
trieving models and satellite orbital covering scopes, the ob-
tained daily soil moisture products are fragmentary and in-
complete (Shi et al., 2002; Enenkel et al., 2016; Meng et al.,
2021). As shown in Fig. 1a and b, plenty of gap regions ex-
ist in these soil moisture products. Actually, the land cover-
age rate is only approximately 20 % to 80 % in daily AMSR-
E, AMSR2 and WindSat quantitative products (Long et al.,
2019; Bogena et al., 2022).

To settle this adverse effect for global soil moisture appli-
cations, most works adopted the temporal averaging opera-
tion such as monthly, quarterly or yearly averaging (Schaf-
fitel et al., 2020; Guevara et al., 2021; Wang et al., 2021).
This strategy could usually acquire full-coverage soil mois-
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Figure 1. Daily soil moisture products of AMSR-E and WindSat.

ture products via averaging abundant daily products. Never-
theless, the temporal averaging operation is also a two-edged
sword. Firstly, it directly replaces daily temporal resolution
with low-frequency temporal resolution (Rebel et al., 2012;
Long et al., 2020; Zhang et al., 2021), which greatly low-
ers the utilisation of daily soil moisture products. Secondly,
a temporal averaging operation disregards the specific spa-
tial distribution of daily products and neglects the sequential
time-series changing characteristic (Zeng et al., 2015a; Wang
et al., 2021; Zhan et al., 2015). In other words, a monthly,
quarterly or yearly averaging strategy degrades the original
characteristics for daily soil moisture products.

To address this issue, Zhang et al. (2021a) generated a
seamless, global, daily soil moisture (named SGD-SM 1.0)
dataset from 2013 to 2019. The spatial resolution is denoted
as a 0.25◦ grid (about 25 km). The SGD-SM 1.0 dataset re-
lies on the deep spatio-temporal partial convolutional model
to fill the gaps or missing regions in daily soil moisture prod-
ucts. Thereafter, three validations are performed to verify
the reliability of SGD-SM 1.0 products. Relevant quantita-
tive indexes (R, RMSE and MAE) and results demonstrate
that SGD-SM 1.0 products can be extended for global, daily
and full-coverage soil moisture measurements (Zhang et al.,
2021a).

The SGD-SM 1.0 dataset maintains the original high-
frequency daily temporal resolution and effectively enhances
the utilisation of global daily soil moisture products. How-
ever, several weaknesses and limitations also exist in SGD-
SM 1.0. Based on SGD-SM 1.0 and the above-mentioned
considerations, we develop an improved seamless global
daily soil moisture (SGD-SM 2.0) dataset for the years 2002–
2022 in this work. Compared with SGD-SM 1.0, the main
improvements and contributions of SGD-SM 2.0 are listed
below:

– The SGD-SM 1.0 dataset only uses a single sensor
(AMSR2), and the temporal range is insufficient with
only 7 years. While global soil moisture analysis and ap-
plications generally need longer-term and more multi-

sensors products, the application range of SGD-SM 1.0
is still limited. Compared with SGD-SM 1.0, SGD-SM
2.0 uses three passive microwave sensors (AMSR-E,
WindSat and AMSR2). The temporal range of SGD-
SM 2.0 is extended to 20 years from 2002 to 2022. The
application scope of SGD-SM 2.0 could be enlarged
through these long-term soil moisture products.

– The SGD-SM 1.0 dataset ignores the daily extreme
weather conditions. If sudden precipitation occurs in
1 d, SGD-SM 1.0 usually performs poor under this
scenario. The main reason is that SGD-SM 1.0 relies
on the internal spatio-temporal correlation, which does
not consider the external environmental factors. Com-
pared with SGD-SM 1.0, SGD-SM 2.0 introduces the
global daily precipitation products into the reconstruct-
ing framework. Through fusing auxiliary precipitation
data, SGD-SM 2.0 could lead in the daily extreme
weather information for gap-filling.

– Although SGD-SM 1.0 employs 3-D partial convolu-
tional neural network (CNN) to exploit both spatial and
temporal features, it is still insufficient for utilising se-
quential time-series information. For daily soil moisture
products, how to effectively reconstruct gaps and miss-
ing regions through interrelated temporal information is
significant. Compared with SGD-SM 1.0, SGD-SM 2.0
develops an integrated long short-term memory convo-
lutional neural network (LSTM-CNN) to fill the gaps
and missing regions in these daily products. The pro-
posed LSTM-CNN model could simultaneously utilise
recurrent time-series information and spatial informa-
tion.

– Compared with SGD-SM 1.0 products, SGD-SM 2.0
products outperform on R (0.688), RMSE (0.094) and
MAE (0.077). In addition, the time-series curves of the
improved SGD-SM 2.0 products are more consistent
with the original daily time-series soil moisture values.
Benefiting from the data fusion of daily precipitation in-
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formation, the proposed LSTM model can extract time-
series features for filling the gaps and missing regions
in daily soil moisture products. Therefore, SGD-SM 2.0
can be utilised effectively for global hydrology monitor-
ing and analysis at fine (daily) temporal resolution.

The outline of this work is arranged as follows. Section 2
provides a description of products and data used in this work.
Section 3 gives the methodology of the proposed reconstruct-
ing framework for SGD-SM 2.0. Section 4 lists the experi-
mental results of SGD-SM 2.0 products. Section 5 discusses
the comparisons between SGD-SM 1.0 and SGD-SM 2.0, es-
pecially regarding reconstructing accuracy and time-series
consistency. Finally, the conclusion and outlook are sum-
marised in Sect. 6.

2 Products and data description

In this work, we simultaneously fuse satellite-based soil
moisture products and precipitation products to generate the
SGD-SM 2.0 dataset. The in situ soil moisture sites are em-
ployed to validate the reconstructing precision of SGD-SM
2.0. These in situ data are downloaded from the International
Soil Moisture Network (ISMN). Detailed descriptions are
listed below.

2.1 Satellite-based soil moisture products

The AMSR-E, AMSR2 and WindSat global daily soil mois-
ture products are utilised from 2002 to 2022. These three
sensors are onboarded at the Aqua satellite, GCOM-W1
and Coriolis satellite, respectively (Nepal et al., 2021). The
AMSR-E, AMSR2 and WindSat products are all passive sen-
sors for soil moisture retrieving. The spatial resolution is a
0.25◦ grid (about 25 km) in all these products, as depicted
in Fig. 1a–c. The retrieving model adopts the land parameter
retrieval model (LPRM) for AMSR-E, WindSat and AMSR2
products (McColl et al., 2017). We select the descending or-
bit (nighttime) and 6.9 GHz band for all these soil moisture
products. These datasets are all recorded in the GES DISC
website. These three products provide the original informa-
tion for using SGD-SM 2.0. The proposed reconstructing
model acquires the gap masks and relies on the valid spatio-
temporal soil moisture information from these three products
to fill the gaps and missing regions.

The time-series range of the AMSR-E sensor starts from
19 June 2002 and ends on 4 October 2011 (Njoku et al.,
2003; Shi et al., 2008). The time-series range of the Wind-
Sat sensor starts from 1 February 2003 and ends on 2 Au-
gust 2012. The time-series range of the AMSR2 sensor starts
from 3 July 2012 and continues to the current date (Zeng et
al., 2020). In consideration of the low-coverage rate in the
WindSat dataset, we only use WindSat global daily products
from 5 October 2011 to 2 July 2012 for acquiring sequen-
tial daily products. These recorded AMSR-E, WindSat and

AMSR2 global daily products are all employed as the ini-
tial input of the proposed LSTM-CNN model for generat-
ing SGD-SM 2.0 products. The daily coverage rate curves
of these three global quantitative products are depicted in
Fig. 2a–c, respectively.

2.2 Precipitation products

Precipitation usually has a high correlation with soil moisture
in the corresponding regions (Pellarin et al., 2009; Brocca et
al., 2014a; Sun and Fu, 2021). Therefore, we fuse the pre-
cipitation products into the proposed SGD-SM 2.0 dataset to
improve the reconstructing accuracy. The Integrated Multi-
satellitE Retrievals for GPM (IMERG) global daily precip-
itation V6 products are employed for the years 2002–2022
(Massari et al., 2020). These precipitation products are de-
rived from multiple precipitation-relevant satellite passive
microwave sensors, as portrayed in Fig. 3a. The spatial res-
olution is denoted as a 0.1◦ grid (about 10 km) in IMERG
level 3 global daily final precipitation products. To keep the
uniformity with soil moisture products, the spatial downsam-
pling operation is carried out for the original IMERG precip-
itation products from 0.1 to 0.25◦. We then normalise these
precipitation values via linear transformation for use in the
reconstructing model. These precipitation products were all
downloaded from GES DISC (Brocca et al., 2019; Berg et
al., 2021; Škrk et al., 2021).

2.3 In situ soil moisture data

In situ soil moisture sites are significant for testifying to the
satellite-based products (Brocca et al., 2014b; Gruber et al.,
2020). These sites provide high-precision surface soil mois-
ture values. Relying on in situ data, the quantitative indexes
could be derived for the proposed SGD-SM 2.0 dataset. The
ISMN unites global in situ surface data, which have been
widely applied for hydrology and soil moisture validation
(Dorigo et al., 2011, 2013, 2021; Wigneron et al., 2013).
We select 124 stations from the ISMN from 2002 to 2022
and match them with corresponding soil moisture products
in SGD-SM 2.0 (Zhang et al., 2020). The selected criteria
include three points:

1. The in situ soil moisture sites are downloadable through
the given website.

2. The in situ soil moisture sites are continuous for the
long-term observation, at least 1 year.

3. The spatial distribution of these in situ sites covers var-
ious continents, land use and soil types.

The spatial distribution of these selected in situ data is dis-
played in Fig. 3b. These in situ soil moisture data are public
and can be downloaded from https://ismn.geo.tuwien.ac.at/
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Figure 2. Daily coverage rate curves of AMSR-E, WindSat and AMSR2 soil moisture products in 2002, 2012, and 2021, respectively.

en/ (last access: 13 January 2022). The in situ validation re-
sults of SGD-SM 2.0 and the reconstructing accuracy com-
parisons with SGD-SM 1.0 are provided in Sects. 4.2 and 5.1,
respectively.

3 Methodology

The schematic representation of the proposed work is de-
picted in Fig. 4. Different from SGD-SM 1.0, we simulta-
neously fuse global daily precipitation products with global
daily soil moisture products into SGD-SM 2.0. An inte-
grated long short-term memory convolutional neural net-
work (LSTM-CNN) reconstructing model is developed to
fill the gaps and missing regions in global daily soil mois-
ture products. Finally, we recursively generate the seamless
daily soil moisture products in the SGD-SM 2.0 dataset. De-
tailed descriptions of the proposed LSTM-CNN reconstruct-
ing model, training and optimisation are stated below.

3.1 LSTM-CNN reconstructing model

As shown in Fig. 4, the original global daily soil moisture
product on date T (AMSR-E, WindSat or AMSR2) and its
corresponding global daily precipitation product are utilised
as the input data of the proposed framework. Firstly, the pre-
cipitation data on date T are transformed as the vector value
PT through a full-connected (FC in Fig. 4) layer. We em-
ploy the partial convolutional neural network (Partial CNN
in Fig. 4) to extract the spatial feature of soil moisture prod-
uct on date T . Different from the common CNN (Yuan et al.,
2019), partial CNN can effectively acquire the spatial infor-
mation within valid regions and eliminate the invalid infor-
mation within gaps or soil moisture missing regions (Zhang
et al., 2018a). We applied a partial CNN for generating the
SGD-SM 1.0 dataset. Due to its effectiveness on incomplete
soil moisture products, the partial CNN is also used in this
work for generating the SGD-SM 2.0 dataset. The formula
of a partial CNN in this work is determined as follows:

S′(m,n) =

{
W>(S(m,n)⊗M(m,n))

‖1(m,n)‖1
‖M(m,n)‖1

+ b,
∥∥M(m,n)

∥∥
1 6= 0

0, otherwise
, (1)

where M denotes the mask of its corresponding soil mois-
ture product S; 0 and 1 refer to the invalid and valid points
in the mask M. The trainable weighted and offset arguments
in the partial CNN are denoted by W and b, respectively;
and⊗ represents the dot product operation to exclude the in-
valid information in gaps or missing regions through mask
data. Subsequently, the current mask M needs to be regener-
ated under the below paradigm: if the partial convolution can
generate at least one valid value of the output result, we need
to mark this location as a valid value in the new masks. The
regenerated mask formula is defined as follows (Zhang et al.,
2020):

M′(m,n) =

{
L(m,n),

∥∥M(m,n)
∥∥

1 6= 0
0, other

, (2)

where L(m,n) stands for Earth land in position (m, n). It
should be noted that the Earth land mask includes six conti-
nents and neglects all regions of Antarctica and most regions
of Greenland. The main reason is that these omitted regions
are perennially covered with snowy or frozen land (Zhao et
al., 2021).

After four partial CNN layers in Fig. 4, an FC layer is also
acted on in the feature maps of the soil moisture product,
with the result of vector value ST :

ST = FC(S′4)s.t.PT = FC(PT ). (3)

Then, the two vectors, ST and PT , of soil moisture and
precipitation products are simultaneously imported into the
LSTM model in Fig. 4. The architecture of the LSTM model
within the proposed framework is displayed in Fig. 5.

As depicted in Fig. 5, soil moisture information ST , cor-
responding precipitation information PT , previous long-term
memory information CT−1, and previous short-term mem-
ory information hT−1 are simultaneously imported into the
LSTM model. The output values in the LSTM are the re-
generated soil moisture information S′T , current long-term
memory information CT , and current short-term memory in-
formation hT . It should be noted that current LSTM infor-
mation on date T is the previous LSTM information on next
date T +1, respectively. For memory information h0 and C0,
these vectors are initialised with zero elements. The LSTM
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Figure 3. IMERG global daily precipitation and selected in situ data.

Figure 4. Schematic representation of the proposed framework to generate SGD-SM 2.0 products.

is composed of three gates, i.e. oblivious gate, input gate and
output gate to control the memory information state (Zhang
et al., 2021b).

– Oblivious gate. This gate determines which information
needs to be discarded in the short-term memory state.
It is carried out by the sigmoid unit σ between the soil
moisture information ST and previous long-term mem-
ory information CT−1:

fT = σ (Wf · [hT−1,ST ] + bf ), (4)

where the sigmoid unit σ is defined below:

σ (a)=
1

1+ e−a
. (5)

In the sigmoid unit σ , 0 means fail and 1 means pass for
current information. Through checking the soil mois-
ture information ST and previous long-term memory in-
formation CT−1, it generates a vector between 0 and 1.
This variable determines which information is retained
or discarded in the short-term memory state.

– Input gate. This gate determines which new information
is added to the long-term memory state. Firstly, we use
hT−1 and ST to determine which information needs to
be updated through the sigmoid operation in Eq. (6):

iT = σ (Wi · [hT−1,ST ] + bi). (6)
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Figure 5. Structure of the LSTM model in the proposed framework.

Then the new candidate long-term memory information,
C̃T is generated through the tanh unit in Eq. (7):

C̃T = tanh(WC · [hT−1,ST ] + bC), (7)

where the tanh unit is defined as:

tanh(a)=
ea − e−a

ea + e−a
. (8)

– Output gate. In this gate, we need to output current long-
term memory information CT from previous CT−1 and
candidate long-term memory information C̃T :

CT = fT ⊗CT−1+ iT ⊗ C̃T . (9)

After updating current long-term memory information CT ,
the regenerated soil moisture information S′T is output
through previous short-term memory hT−1, soil moisture in-
formation ST , and corresponding precipitation information
PT :

S′T = σ (WS′ [hT−1,ST ] + bS′ )⊗ tanh(PT ). (10)

Besides, we need to output current short-term memory in-
formation hT for the next date T + 1 as follows:

hT = tanh(oT ⊗CT ). (11)

Later, the regenerated soil moisture information S′T is
transformed by an FC layer in the right of Fig. 4. Thereafter,
four partial CNN layers are performed to generate the final
SGD-SM 2.0 product on date T . Through the consecutive
time-series strategy, we recursively reconstruct the daily soil
moisture products in SGD-SM 2.0.

3.2 Training and optimisation

To generate the reliable and high-precision SGD-SM 2.0
dataset, the way in which to train and optimise the proposed
LSTM-CNN model is extremely crucial in this work. The
training stage needs huge numbers of sample labels to opti-
mise the trainable parameters in the proposed partial CNN
and LSTM in Figs. 4 and 5, respectively. The sample la-
bels adopt a patch-selecting strategy. We select sequential
time-series daily soil moisture patches with k = 7 in the re-
constructing framework. The spatial sizes of these 7 d soil
moisture patches are all set as 40× 40. These time-series
7 d soil moisture patches are all complete, without gaps or
data missing regions from the original soil moisture products.
Then, we randomly select 30 000 mask patches with the spa-
tial size of 40× 40. Each soil moisture patch is simulated
with missing regions via these mask patches. In this way,
we acquire 30 000 training samples from the original 2002–
2022 soil moisture products. Each training sample includes
four variables: the simulated 7 d soil moisture patches, the
complete 7 d soil moisture patches, the corresponding mask
patches, and the corresponding precipitation patches. These
variables are simultaneously imported into the LSTM-CNN
reconstructing model, as shown in Fig. 4.

For the partial CNN in the proposed framework, we set the
convolutional filter size as 3× 3 in all the partial CNN lay-
ers (Xiao et al., 2022a). The last partial CNN layer outputs
just one feature map and the other partial CNN layers out-
put 64 feature maps (Xiao et al., 2022b). The rectified linear
unit (ReLU) is utilised after each partial CNN layer. For the
LSTM model in the proposed framework, we set the dimen-
sion of long and short-term memory vectors CT and hT as
2048.

For the network optimisation, we adopt the same strategy
with the global–local function (Zhang et al., 2021a) in SGD-
SM 1.0. The global soil moisture uniformity and local soil
moisture heterogeneity are both taken into consideration in
the proposed LSTM-CNN reconstructing model. Different
from SGD-SM 1.0, we simultaneously fill the gaps and miss-
ing regions in the time-series 7 d soil moisture patches. De-
tailed definitions of the global–local function are determined
as follows:

ξ (W,b,Wf,i,C,S′ ,bf,i,C,S′ )

=

k∑
T=1

(∥∥∥(1−MT )⊗ (Srec
T −Sori

T )
∥∥∥2

2

+

∥∥∥ML⊗ (Srec
T −Sori

T )
∥∥∥2

2

)
, (12)

where ML represents the global land mask (including six
continents and neglecting all regions of Antarctica and most
regions of Greenland); α stands for the balancing parame-
ter to equilibrate the local loss and global loss (Zhang et al.,
2020). Empirically, this ratio is fixed as 0.1 in the training
and optimisation stage.
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In terms of the hyperparameters and operations of the pro-
posed framework, related explanations are listed below. The
batch size of the LSTM-CNN reconstructing model is set
as 128 (Zhang et al., 2018a). The whole epoch number is
confirmed, determined as 500 (1 epoch denotes that all the
samples in the training set have been utilised for the neu-
ral network optimisation at one time). The inceptive learn-
ing rate is started at 0.005 (Zhang et al., 2018b). It gradu-
ally decreases through multiplying a damping factor (equal
to 0.5) every 100 epochs (Zhang et al., 2019). On software
configuration, the LSTM-CNN model is carried out on the
PyTorch 1.8.1 framework. We use Python 3.7 language, Py-
Charm platform and the Windows 10 environment to gener-
ate seamless global daily soil moisture products. On hard-
ware configuration, we employ a NVIDIA Titan X (Pascal)
GPU, Inter E5-2609v3 CPU, and 16 GB DDR4 RAM to ex-
ecute the proposed LSTM-CNN model.

4 Experiments and validations

The released SGD-SM 2.0 products are recorded in
https://doi.org/10.5281/zenodo.6041561 (Zhang et al.,
2022). The SGD-SM 2.0 dataset starts from 23 June 2002
and ends on 5 February 2022. The initial and reconstructing
global daily soil moisture products have been stored with
individual NetCDF4 (*.nc) documents. Because part of the
daily soil moisture products is missing at GES DISC, these
products are also neglected in the proposed SGD-SM 2.0
dataset (7115 files). In this section, the experimental results
of the SGD-SM 2.0 dataset are given in Sect. 4.1. Later, we
carry out the in situ validation and time-series validation of
SGD-SM 2.0 in Sect. 4.2 and 4.3, respectively.

4.1 Experimental results

As shown in Figs. 6 and 7, the original SM and SGD-SM 2.0
results are given on 10, 20 and 30 September 2002 and on
10, 20 and 30 June 2020, respectively.

For comparison purposes, the left lines are the original
global daily products and the right lines are the reconstructed
SGD-SM 2.0 products in Figs. 6 and 7. It should be noted
that we neglect all regions in Antarctica and most regions in
Greenland because of the perpetual frozen soil. Clearly, gaps
and missing regions are filled through the proposed frame-
work in Sect. 3.

From the spatial perspective, the proposed SGD-SM 2.0
dataset performs both global soil moisture uniformity and lo-
cal soil moisture heterogeneity in Figs. 6 and 7. It ensures
the spatial consistency, especially for the gap regions with
the adjoining soil moisture regions. Beyond that, the recon-
structed regions in SGD-SM 2.0 do not reflect distinct patch
or border effects. This also testifies to the powerful ability of
the partial CNN in the proposed framework, which can ef-
fectively exclude the invalid information in gaps or missing
soil moisture regions.

From the temporal perspective, the proposed SGD-SM 2.0
dataset utilises the complementary and sequential time-series
soil moisture information. By fusing global daily precipita-
tion products, SGD-SM 2.0 can consider the sporadic ex-
treme weather conditions for a single day. In addition, by
means of the LSTM model, the consistent temporal informa-
tion can be recovered and preserved in Figs. 6 and 7.

4.2 In situ validation

In situ validation is the most reliable method to measure
the accuracy and availability of the proposed SGD-SM 2.0
dataset (Walker et al., 2004; Draper et al., 2009; Zeng et
al., 2015b). In this work, we choose 124 in situ surface (0–
5 cm depth) soil moisture sites from the ISMN, as shown in
Fig. 3b. The selected in situ values are limited from 2002 to
2022. We match the hourly in situ values with the descending
products. In consideration of validation reliability, we choose
the two neighbouring in situ values that correspond with the
observation time of soil moisture products. We then average
them as the ground-truth data.

As portrayed in Fig. 8, the scatters of six in situ soil
moisture sites (marked as blue circles in Fig. 3b: 42.537◦ N,
72.171◦W; 0.282◦ N, 36.866◦ E; 48.141◦ N, 15.171◦ E;
14.159◦ S, 131.388◦ E; 21.617◦ S, 47.632◦W; 31.369◦ N,
91.899◦ E) are displayed to demonstrate the reconstructing
accuracy of SGD-SM 2.0. The horizontal coordinate refers
to in situ data. Accordingly, the vertical coordinate denotes
reconstructing data in gaps or missing soil moisture regions.
The time range is limited from 2002 to 2022. The R indica-
tors of these sites are varied from 0.658 to 0.769 in Fig. 8a–
f. The RMSE and MAE indicators of these sites are varied
from 0.023 to 0.144 and from 0.021 to 0.128, respectively in
Fig. 8a–f.

In all 124 selected in situ sites, Table 1 compares the orig-
inal products with the SGD-SM 2.0 products. The average
evaluation indicators (R, RMSE, and MAE) of the origi-
nal SM (SGD-SM 2.0) products are 0.679 (0.672), 0.094
(0.096) and 0.075 (0.078), respectively. Generally, the pre-
cision of SGD-SM 2.0 products performs similar with incip-
ient products. The diversities of those indicators are few be-
tween the original and reconstructed SGD-SM 2.0 products
in Table 1. To a certain extent, in situ validation testifies to
the reconstructed accuracy and validity of the SGD-SM 2.0
products. These 124 selected soil moisture stations from the
ISMN (2002–2022) are shown in Table 2 for validating SGD-
SM 2.0. Besides, basic information about the representative
in situ soil moisture sites (taking partial sites as examples,
including COSMOS, SD-DEM, SMOS-CBR, SCAN, PBO,
USCRN and OZNET networks) is listed in Table 3. As the
example, it includes the name of the station, country, longi-
tude/latitude, main land use, lattice water, and soil organic
carbon.
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Figure 6. Original SM and proposed SGD-SM 2.0 results on 10, 20 and 30 September 2002.

Table 1. Comparisons between the original SM and SGD-SM 2.0 products (from 2002 to 2022) in the 124 selected in situ sites.

Average evaluation indicators

Soil moisture products (2002–2022) R RMSE ubRMSE MAE

Original SM 0.679 0.094 0.058 0.075
SGD-SM 2.0 0.672 0.096 0.061 0.078

4.3 Time-series validation

Long-term daily soil moisture products usually reflect typ-
ical time-series continuity (Wang et al., 2022; Seneviratne
et al., 2010). Therefore, we can utilise this characteristic to
validate the reliability of SGD-SM 2.0 products. As listed
in Figs. 9 and 10, 2 time-series daily original/SGD-SM 2.0
results of 2003–2018 and 2005–2020, are given in the lo-

cation (10.125◦ S, 42.625◦W) and the location (38.375◦ N,
117.125◦ E), respectively. The blue dots refer to the existing
valid values in Figs. 9 and 10. The red dots stand for the
SGD-SM 2.0 values in Figs. 9 and 10, which also represents
the invalid gaps or missing soil moisture regions. The ver-
tical coordinate denotes the percent of soil moisture product
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Figure 7. Original SM and proposed SGD-SM 2.0 results on 10, 20 and 30 June 2020.

in original and SGD-SM 2.0 products. The horizontal coordi-
nate denotes the annual date number between 2003 and 2020.

As depicted in Figs. 9a–d and 10a–d, a majority of the re-
constructed SGD-SM 2.0 values (in invalid gaps or missing
soil moisture regions) can distinctly embody the time-series
continuity. In the two locations of different years, original
soil moisture values and corresponding adjacent SGD-SM
2.0 values perform fore-and-aft consistency. If current valid
soil moisture values behave high or low, their neighbouring
SGD-SM 2.0 values also accord with them in Figs. 9 and 10.
This time-series validation manifests the reliability of the
proposed framework and validity of our improved SGD-SM
2.0 products. Generally, the proposed SGD-SM 2.0 products
are able to ensure the time-series continuity in daily temporal
resolution. This point is greatly important for reconstructing

long-term products. Benefiting from the utilisation of tempo-
ral information, the proposed LSTM model can extract and
transmit time-series features for filling the gaps and miss-
ing data regions in daily soil moisture products. Therefore,
SGD-SM 2.0 can be effectively applied for global hydrology
monitoring analysis at fine-temporal scale, rather than the
traditional monthly or yearly averaging operation. The for-
mer preserves the original daily temporal resolution, while
the latter sacrifices this daily temporal resolution. This val-
idation exactly demonstrates the above significance of the
proposed SGD-SM 2.0 dataset.
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Figure 8. Scatters of six in situ sites (horizontal coordinate refers to the in situ data; vertical coordinate denotes the reconstructing data).

Table 2. 124 selected soil moisture stations from the ISMN (2002–2022) for validating SGD-SM 2.0.

COSMOS-001 COSMOS-004 COSMOS-006 COSMOS-007 COSMOS-010 COSMOS-011
COSMOS-012 COSMOS-013 COSMOS-014 COSMOS-015 COSMOS-016 COSMOS-017
COSMOS-018 COSMOS-020 COSMOS-021 COSMOS-023 COSMOS-024 COSMOS-025
COSMOS-026 COSMOS-027 COSMOS-028 COSMOS-029 COSMOS-030 COSMOS-031
COSMOS-032 COSMOS-033 COSMOS-034 COSMOS-035 COSMOS-038 COSMOS-039
COSMOS-040 COSMOS-041 COSMOS-042 COSMOS-043 COSMOS-044 COSMOS-045
COSMOS-046 COSMOS-047 COSMOS-048 COSMOS-049 COSMOS-050 COSMOS-051
COSMOS-052 COSMOS-053 COSMOS-054 COSMOS-055 COSMOS-056 COSMOS-057
COSMOS-058 COSMOS-060 COSMOS-061 COSMOS-062 COSMOS-063 COSMOS-064
COSMOS-066 COSMOS-067 COSMOS-068 COSMOS-069 COSMOS-070 COSMOS-071
COSMOS-072 COSMOS-073 COSMOS-074 COSMOS-076 COSMOS-078 COSMOS-081
COSMOS-082 COSMOS-084 COSMOS-087 COSMOS-089 COSMOS-090 COSMOS-091
COSMOS-092 COSMOS-093 COSMOS-094 COSMOS-095 COSMOS-096 COSMOS-098
COSMOS-099 COSMOS-100 COSMOS-101 COSMOS-102 COSMOS-103 COSMOS-105
COSMOS-107 COSMOS-108 COSMOS-109 COSMOS-110 COSMOS-111 COSMOS-123
RSMN-15136 RSMN-15199 RSMN-15412 RSMN-15470 RSMN-15479 SD-DEM
SMOS-CBR SMOS-LHS SMOS-MTM SMOS-SFL SMOS-SVN SMOS-PZN
SCAN-2014 SCAN-2046 SCAN-2055 SCAN-2087 SCAN-2179 SCAN-2181
PBO-076 PBO-094 PBO-250 PBO-472 PBO-474 PBO-482
PBO-498 PBO-508 PBO-525 PBO-569 PBO-742 PBO-811
USCRN-011 USCRN-020 OZNET-K1 OZNET-K2

5 Comparisons with SGD-SM 1.0

In this section, we compare the proposed SGD-SM 2.0
dataset with the previous SGD-SM 1.0 dataset, from the per-
spectives of reconstructing accuracy and time-series consis-
tency. In contrast with SGD-SM 1.0, we fuse the global daily

precipitation products into the reconstructing framework. In
addition, the LSTM-CNN model is developed to fill the gaps
and missing regions in SGD-SM 2.0 global daily soil mois-
ture products. Detailed comparisons between the SGD-SM
1.0 and SGD-SM 2.0 datasets are displayed below.
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Table 3. Basic information about the in situ soil moisture sites (taking partial sites as examples).

Station Long/lat Elevation (m) Main land use Lattice water Soil organic carbon

COSMOS-016 42.537, −72.171 316 Crop 4.50 % 1.59 %
COSMOS-055 0.282, 36.866 1824 Bush 6.10 % 1.11 %
COSMOS-082 48.141, 15.171 73 Grass 2.10 % 1.93 %
COSMOS-096 −14.159, 131.388 169 Silty sand 2.30 % 1.24 %
COSMOS-101 −21.617, −47.632 563 Grass 1.70 % 1.87 %
COSMOS-123 31.369, 91.899 1201 Forest 4.40 % 2.36 %
SD-DEM 13.287, 30.479 864 Coarse sand 1.30 % 0.98 %
SMOS-CBR 42.563, 13.798 52 Grass 3.40 % 2.25 %
SCAN-2014 38.173, −65.171 274 Crop 2.20 % 1.97 %
PBO-076 24.189, −81.343 156 Silty sand 1.90 % 1.14 %
USCRN-011 20.507, −97.662 583 Grass 3.70 % 1.98 %
OZNET-K1 −21.683, 139.841 659 Scrub 3.60 % 2.34 %

Figure 9. Time-series daily original/SGD-SM 2.0 results of the location (10.125◦ S, 42.625◦W) in 2003, 2008, 2013 and 2018.

5.1 Reconstructing accuracy

For ensuring the same time scope with SGD-SM 1.0, we
choose the part of SGD-SM 2.0 from 2013 to 2019. The aver-
age evaluation indicators (R, RMSE, and MAE) of monthly-
averaging, SGD-SM 1.0 and SGD-SM 2.0 datasets in selec-
tive 124 in situ sites are contrasted in Table 4.

Compared with monthly-averaging and SGD-SM 1.0
products, SGD-SM 2.0 products outperform on R (0.688),
RMSE (0.094) and MAE (0.077). The main reason is that
SGD-SM 1.0 ignores the sudden extreme weather conditions
for 1 d. If a sudden precipitation occurs in 1 d, while there
are no abnormalities before and after this day, SGD-SM 1.0
usually behaves with poor performance under this condi-
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Figure 10. Time-series daily original/SGD-SM 2.0 results of the location (38.375◦ N, 117.125◦ E) in 2005, 2010, 2015 and 2020.

Table 4. Comparisons between the SGD-SM 1.0 and SGD-SM 2.0
products (from 2013 to 2019) through selected 124 in situ sites. The
best indexes are marked as bold format.

Average evaluation indicators

Dataset version R RMSE ubRMSE MAE

Monthly-averaging 0.612 0.147 0.089 0.115
SGD-SM 1.0 0.659 0.107 0.066 0.083
SGD-SM 2.0 0.688 0.094 0.058 0.077

tion. Accordingly, SGD-SM 2.0 introduces the global daily
precipitation products into the reconstructing framework.
Through fusing auxiliary precipitation information, SGD-
SM 2.0 products can consider the sudden extreme weather
conditions for a single day in global daily soil moisture prod-
ucts. The comparisons validate the effectiveness of this point
in Table 4.

5.2 Time-series consistency

Except the reconstructing accuracy, time-series consistency
is also significant for seamless products (Wang et al.,

2021). As portrayed in Fig. 11a and b, we simultaneously
depict time-series daily original soil moisture, SGD-SM
1.0/2.0, and precipitation results of the location (48.875◦ N,
140.375◦ E) in 2013, respectively. The blue dots refer to ex-
isting valid values in Fig. 11. The red dots stand for the SGD-
SM 1.0/2.0 values in Fig. 11, which also represents the in-
valid gaps or missing soil moisture regions. The left vertical
coordinate denotes the percent of soil moisture product in the
original and SGD-SM 1.0/2.0 products. The right vertical co-
ordinate refers to the daily precipitation value (unit: mm) by
the IMERG precipitation products.

Compared with SGD-SM 1.0, SGD-SM 2.0 outperforms
on time-series consistency in Fig. 11a and b. The re-
constructed SGD-SM 2.0 dots behave more consecutively
around their adjacent original SM dots than SGD-SM 1.0.
A discrete problem in Fig. 11a exists in SGD-SM 1.0, to
some degree. Benefiting from the data fusion of daily precip-
itation information, the proposed LSTM model can extract
time-series features for filling the gaps and missing regions
in daily soil moisture products. Therefore, SGD-SM 2.0 can
be utilised effectively for global hydrology monitoring anal-
ysis at fine (daily) temporal resolution.
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Figure 11. Time-series daily original soil moisture, SGD-SM 1.0/2.0, and precipitation results at location (48.875◦ N, 140.375◦ E) in 2013.

5.3 Uncertainty analysis

The uncertainty of SGD-SM 2.0 and the proposed model
could be classified into three types: (1) the errors of original
AMSR-E/WindSat/AMSR2 products; (2) the meteorological
factors; (3) the generalisation of the proposed reconstructing
model.

– The errors of original AMSR-E/WindSat/AMSR2 prod-
ucts. The proposed SGD-SM product is generated based
on original AMSR-E/WindSat/AMSR2 products. Er-
rors also exist in these passive soil moisture products
(i.e. above 0.8 m3 m−3), due to the satellite sensor imag-
ing and soil moisture retrieval algorithm. As shown in
Table 1, the R, RMSE and MAE evaluation indexes of
the original products are 0.679, 0.094 and 0.075, respec-
tively. These errors are also inevitably transmitted into
the generated SGD-SM 2.0 products. In other words,
SGD-SM 2.0 absolutely trusts the initial satellite-based
SM values without any hesitation.

– The meteorological factors. The proposed method re-
lies on the temporal continuity and spatial consistency
for daily soil moisture gap-filling. Nevertheless, if the
unusual meteorology occurs in a single day, such as
precipitation and snowfall, it may disturb the above-
mentioned assumption and influence the reconstructing
effects. This uncertainty can be noticed in time-series
validation, especially for the rainy season. Although we
fuse the daily precipitation products into the proposed

model in SGD-SM 2.0, it still cannot adequately reflect
the emergency meteorological factors such as brief pre-
cipitation.

– The generalisation of proposed reconstructing model.
In this work, we train the proposed LSTM-CNN model
through selecting complete soil moisture patches all
over the world. In addition, the simulated masks are also
chosen from the daily soil moisture products. However,
differences between the training data and testing data
still exist, such as land covering type and mask size.
This uncertainty may disturb the generalisation of the
proposed LSTM-CNN model for SGD-SM 2.0, to some
degree.

6 Data availability

The proposed SGD-SM 2.0 dataset can be acquired
from https://doi.org/10.5281/zenodo.6041561 (Zhang et al.,
2022).

7 Conclusions

In this paper, we generate an improved seamless global daily
soil moisture (SGD-SM 2.0) dataset from 2002 to 2022.
Compared with the previous SGD-SM 1.0, the temporal
range of SGD-SM 2.0 is extended to 20 years from 2002 to
2022. The SGD-SM 2.0 dataset fuses the global daily pre-
cipitation products with global daily soil moisture products.
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In addition, the SGD-SM 2.0 dataset develops an integrated
LSTM-CNN model to fill the gaps and missing regions. In
situ validation and time-series validation testify to the soil
moisture time-series of SGD-SM 2.0 products (R: 0.672,
RMSE: 0.096, MAE: 0.078). In contrast with SGD-SM 1.0,
the time-series curves of the improved SGD-SM 2.0 prod-
ucts are consistency with the original daily time-series soil
moisture values.

In our future work (SGD-SM 3.0), we will fuse multi-
source data such as global land cover products and land
surface temperature into the reconstructed framework. More
spatio-temporal models will be exploited to generate the
prospective products. In addition, we will introduce the out-
lier filtering strategy to exclude this initial soil moisture ex-
ception information (above 80 % volume. Identifying outliers
by comparing the soil moisture data product with the poros-
ity information from the global soil database SoilGrid will
also be utilised in SGD-SM 3.0.
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pinšek, Z., Kajfež Bogataj, L., and de Luis, M.: SLOCLIM:
a high-resolution daily gridded precipitation and temperature
dataset for Slovenia, Earth Syst. Sci. Data, 13, 3577–3592,
https://doi.org/10.5194/essd-13-3577-2021, 2021.

Sun, L. and Fu, Y.: A new merged dataset for analyzing clouds,
precipitation and atmospheric parameters based on ERA5 re-
analysis data and the measurements of the Tropical Rainfall

https://doi.org/10.5194/essd-14-4473-2022 Earth Syst. Sci. Data, 14, 4473–4488, 2022

https://doi.org/10.5194/hess-25-5749-2021
https://doi.org/10.5194/hess-25-5749-2021
https://doi.org/10.5194/hess-15-1675-2011
https://doi.org/10.2136/vzj2012.0097
https://doi.org/10.1016/j.rse.2008.11.011
https://doi.org/10.5194/hess-20-4191-2016
https://doi.org/10.1029/2003JD004345
https://doi.org/10.1016/j.rse.2020.111806
https://doi.org/10.5194/essd-13-1711-2021
https://doi.org/10.1016/j.rse.2014.08.006
https://doi.org/10.1016/j.rse.2019.111364
https://doi.org/10.1038/s41467-020-17428-6
https://doi.org/10.5194/hess-24-2687-2020
https://doi.org/10.1038/NGEO2868
https://doi.org/10.5194/essd-13-3239-2021
https://doi.org/10.5194/hess-25-1761-2021
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.5194/hess-13-1887-2009
https://doi.org/10.5194/hess-16-833-2012
https://doi.org/10.5194/hess-16-833-2012
https://doi.org/10.5194/essd-12-501-2020
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1109/TGRS.2002.807003
https://doi.org/10.1109/TGRS.2006.876706
https://doi.org/10.1016/j.rse.2008.07.015
https://doi.org/10.5194/essd-13-3577-2021


4488 Q. Zhang et al.: An improved seamless global daily soil moisture long-term dataset

Measuring Mission (TRMM) precipitation radar and visible
and infrared scanner, Earth Syst. Sci. Data, 13, 2293–2306,
https://doi.org/10.5194/essd-13-2293-2021, 2021.

Todd-Brown, K. E. O., Abramoff, R. Z., Beem-Miller, J., Blair,
H. K., Earl, S., Frederick, K. J., Fuka, D. R., Guevara Santa-
maria, M., Harden, J. W., Heckman, K., Heran, L. J., Holmquist,
J. R., Hoyt, A. M., Klinges, D. H., LeBauer, D. S., Malho-
tra, A., McClelland, S. C., Nave, L. E., Rocci, K. S., Schaef-
fer, S. M., Stoner, S., van Gestel, N., von Fromm, S. F., and
Younger, M. L.: Reviews and syntheses: The promise of big di-
verse soil data, moving current practices towards future poten-
tial, Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-
19-3505-2022, 2022.

Walker, J., Willgoose, G., and Kalma, J.: In situ measurement of
soil moisture: a comparison of techniques, J. Hydrol., 293, 85–
99, https://doi.org/10.1016/j.jhydrol.2004.01.008, 2004.

Wang, M., Wigneron, J. P., Sun, R., Fan, L., Frappart, F.,
Tao, S., and Ciais, P.: A consistent record of vegetation
optical depth retrieved from the AMSR-E and AMSR2 X-
band observations, Int. J. Appl. Earth Obs., 105, 102609,
https://doi.org/10.1016/j.jag.2021.102609, 2021.

Wang, Q., Ding, X., Tong, X., and Atkinson, P. M.: Spatio-temporal
spectral unmixing of time-series images, Remote Sens. Environ.,
259, 112407, https://doi.org/10.1016/j.rse.2021.112407, 2021.

Wang, Q., Wang, L., Zhu, X., Ge, Y., Tong, X., and Atkinson,
P. M.: Remote sensing image gap filling based on spatial-
spectral random forest, Science of Remote Sensing, 5, 100048,
https://doi.org/10.1016/j.srs.2022.100048, 2022.

Wang, Y., Mao, J., Jin, M., Hoffman, F. M., Shi, X., Wullschleger,
S. D., and Dai, Y.: Development of observation-based global
multilayer soil moisture products for 1970 to 2016, Earth Syst.
Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-
2021, 2021.

Wigneron, J. P., Olioso, A., Calvet, J. C., and Bertuzzi, P.: Esti-
mating root zone soil moisture from surface soil moisture data
and soil-vegetation-atmosphere transfer modeling, Water Resour.
Res., 35, 3735–3745, https://doi.org/10.1029/1999WR900258,
1999.

Wigneron, J. P., Calvet, J. C., Pellarin, T., Van de Griend, A.
A., Berger, M., and Ferrazzoli, P.: Retrieving near-surface soil
moisture from microwave radiometric observations: current sta-
tus and future plans, Remote Sens. Environ., 85, 489–506,
https://doi.org/10.1016/S0034-4257(03)00051-8, 2013.

Xiao, Y., Su, X., Yuan, Q., Liu, D., Shen, H., and Zhang, L.: Satel-
lite video super-resolution via multiscale deformable convolution
alignment and temporal grouping projection, IEEE T. Geosci.
Remote, 60, 1–19, https://doi.org/10.1109/TGRS.2021.3107352,
2022a.

Xiao, Y., Yuan, Q., He, J., Zhang, Q., Sun, J., Su, X., Wu,
J., and Zhang, L.: Space-time super-resolution for satel-
lite video: A joint framework based on multi-scale spatial-
temporal transformer, Int. J. Appl. Earth Obs., 108, 102731,
https://doi.org/10.1016/j.jag.2022.102731, 2022b.

Yuan, Q., Zhang, Q., Li, J., Shen, H., and Zhang, L.: Hyperspectral
image denoising employing a spatial–spectral deep residual con-
volutional neural network, IEEE T. Geosci. Remote, 57, 1205–
1218, https://doi.org/10.1109/TGRS.2018.2865197, 2019.

Zeng, J., Li, Z., Chen, Q., Bi, H. Y., Qiu, J. X., and
Zou, P. F.: Evaluation of remotely sensed and reanaly-

sis soil moisture products over the Tibetan Plateau using
in-situ observations, Remote Sens. Environ., 163, 91–110,
https://doi.org/10.1016/j.rse.2015.03.008, 2015a.

Zeng, J., Li, Z., Chen, Q., and Bi, H.: Method for soil moisture
and surface temperature estimation in the Tibetan Plateau us-
ing spaceborne radiometer observations, IEEE Geosci. Remote
S., 12, 97–101, https://doi.org/10.1109/LGRS.2014.2326890,
2015b.

Zeng, J., Chen, K., Cui, C., and Bai, X.: A physically based soil
moisture index from passive microwave brightness temperatures
for soil moisture variation monitoring, IEEE T. Geosci. Remote,
58, 2782–2795, https://doi.org/10.1109/TGRS.2019.2955542,
2020.

Zhang, P., Zheng, D., van der Velde, R., Wen, J., Zeng, Y., Wang,
X., Wang, Z., Chen, J., and Su, Z.: Status of the Tibetan
Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) sur-
face soil moisture dataset, Earth Syst. Sci. Data, 13, 3075–3102,
https://doi.org/10.5194/essd-13-3075-2021, 2021.

Zhang, Q., Yuan, Q., Zeng, C., Li, X., and Wei, Y.: Miss-
ing data reconstruction in remote sensing image with a
unified spatial-temporal-spectral deep convolutional neu-
ral network, IEEE T. Geosci. Remote, 56, 4274–4288,
https://doi.org/10.1109/TGRS.2018.2810208, 2018a.

Zhang, Q., Yuan, Q., Li, J., Yang, Z., and Ma, X.: Learning a dilated
residual network for SAR image despeckling, Remote Sens.,
196, 1–18, https://doi.org/10.3390/rs10020196, 2018b.

Zhang, Q., Yuan, Q., Li, J., Li, Z., Shen, H., and Zhang,
L.: Thick cloud and cloud shadow removal in multi-
temporal imagery using progressively spatio-temporal patch
group deep learning, ISPRS J. Photogramm., 162, 148–160,
https://doi.org/10.1016/j.isprsjprs.2020.02.008, 2020.

Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., and Zhang, L.:
Generating seamless global daily AMSR2 soil moisture (SGD-
SM) long-term products for the years 2013–2019, Earth Syst.
Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-
2021, 2021a.

Zhang, Q., Yuan, Q., Li, Z., Sun, F., and Zhang, L.: Combined
deep prior with low-rank tensor SVD for thick cloud removal
in multitemporal images, ISPRS J. Photogramm., 176, 125–137,
https://doi.org/10.1016/j.isprsjprs.2020.04.010, 2021b.

Zhang, Q., Yuan, Q., and Jin, T.: SGD-SM 2.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.6041561, 2022.

Zhan, W., Pan, M., Wanders, N., and Wood, E. F.: Correc-
tion of real-time satellite precipitation with satellite soil mois-
ture observations, Hydrol. Earth Syst. Sci., 19, 4275–4291,
https://doi.org/10.5194/hess-19-4275-2015, 2015.

Zhang, Q., Yuan, Q., Li, J., Liu, X., Shen, H., and Zhang, L.:
Hybrid noise removal in hyperspectral imagery with spatial-
spectral gradient network, IEEE T. Geosci. Remote, 57, 7317–
7329, https://doi.org/10.1109/TGRS.2019.2912909, 2019.

Zhao, T., Shi, J., Entekhabi, D., Jackson, T. J., Hu, L., Peng,
Z., Yao, P., Li, S., and Kang, C. S.: Retrievals of soil mois-
ture and vegetation optical depth using a multi-channel col-
laborative algorithm, Remote Sens. Environ., 257, 112321,
https://doi.org/10.1016/j.rse.2021.112321, 2021.

Earth Syst. Sci. Data, 14, 4473–4488, 2022 https://doi.org/10.5194/essd-14-4473-2022

https://doi.org/10.5194/essd-13-2293-2021
https://doi.org/10.5194/bg-19-3505-2022
https://doi.org/10.5194/bg-19-3505-2022
https://doi.org/10.1016/j.jhydrol.2004.01.008
https://doi.org/10.1016/j.jag.2021.102609
https://doi.org/10.1016/j.rse.2021.112407
https://doi.org/10.1016/j.srs.2022.100048
https://doi.org/10.5194/essd-13-4385-2021
https://doi.org/10.5194/essd-13-4385-2021
https://doi.org/10.1029/1999WR900258
https://doi.org/10.1016/S0034-4257(03)00051-8
https://doi.org/10.1109/TGRS.2021.3107352
https://doi.org/10.1016/j.jag.2022.102731
https://doi.org/10.1109/TGRS.2018.2865197
https://doi.org/10.1016/j.rse.2015.03.008
https://doi.org/10.1109/LGRS.2014.2326890
https://doi.org/10.1109/TGRS.2019.2955542
https://doi.org/10.5194/essd-13-3075-2021
https://doi.org/10.1109/TGRS.2018.2810208
https://doi.org/10.3390/rs10020196
https://doi.org/10.1016/j.isprsjprs.2020.02.008
https://doi.org/10.5194/essd-13-1385-2021
https://doi.org/10.5194/essd-13-1385-2021
https://doi.org/10.1016/j.isprsjprs.2020.04.010
https://doi.org/10.5281/zenodo.6041561
https://doi.org/10.5194/hess-19-4275-2015
https://doi.org/10.1109/TGRS.2019.2912909
https://doi.org/10.1016/j.rse.2021.112321

	Abstract
	Introduction
	Products and data description
	Satellite-based soil moisture products
	Precipitation products
	In situ soil moisture data

	Methodology
	LSTM-CNN reconstructing model
	Training and optimisation

	Experiments and validations
	Experimental results
	In situ validation
	Time-series validation

	Comparisons with SGD-SM 1.0
	Reconstructing accuracy
	Time-series consistency
	Uncertainty analysis

	Data availability
	Conclusions
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

