
Earth Syst. Sci. Data, 14, 4435–4443, 2022
https://doi.org/10.5194/essd-14-4435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Streamflow data availability in Europe: a detailed dataset
of interpolated flow-duration curves

Simone Persiano1, Alessio Pugliese1, Alberto Aloe2, Jon Olav Skøien2, Attilio Castellarin1, and
Alberto Pistocchi2

1Department of Civil, Chemical, Environmental and Materials Engineering (DICAM),
University of Bologna, Bologna, Italy

2European Commission, DG Joint Research Centre (JRC), Ispra, Italy

Correspondence: Alberto Pistocchi (alberto.pistocchi@ec.europa.eu)

Received: 8 January 2022 – Discussion started: 3 February 2022
Revised: 28 July 2022 – Accepted: 22 August 2022 – Published: 29 September 2022

Abstract. For about 24 000 river basins across Europe, we provide a continuous representation of the stream-
flow regime in terms of empirical flow-duration curves (FDCs), which are key signatures of the hydrological
behaviour of a catchment and are widely used for supporting decisions on water resource management as well
as for assessing hydrologic change. In this study, FDCs are estimated by means of the geostatistical procedure
termed total negative deviation top-kriging (TNDTK), starting from the empirical FDCs made available by the
Joint Research Centre of the European Commission (DG-JRC) for about 3000 discharge measurement stations
across Europe. Consistent with previous studies, TNDTK is shown to provide high accuracy for the entire study
area, even with different degrees of reliability, which varies significantly over the study area. In order to pro-
vide this kind of information site by site, together with the estimated FDCs, for each catchment we provide
indicators of the accuracy and reliability of the performed large-scale geostatistical prediction. The dataset is
freely available at the PANGAEA open-access library (Data Publisher for Earth & Environmental Science) at
https://doi.org/10.1594/PANGAEA.938975 (Persiano et al., 2021b).

1 Introduction

Over the past decades, the increasing accessibility of global
datasets (soil, land cover, morphology, climate characteris-
tics, satellite-based gridded precipitation, etc.) and the ever-
expanding computational capabilities have triggered the de-
velopment of macro-, continental- and global-scale rainfall-
runoff simulation models, which are already state of the art
(see e.g. Collischonn et al., 2007; de Paiva et al., 2013).
Macro-scale models are getting more and more popular and
accurate in terms of average performance over large areas;
their simulated streamflow series, some of which are open-
access and freely distributed, represent a wealth of informa-
tion for addressing a variety of water problems, such as the
streamflow regime prediction in data-scarce regions of the
world (Pechlivanidis and Arheimer, 2015) and the implemen-
tation of large-scale and transboundary policies for water re-
source system management or flood-risk mitigation (de Paiva

et al., 2013; Sampson et al., 2015; Falter et al., 2016). Due to
the impossibility of performing comprehensive calibrations
and validations of such models over the whole modelled re-
gions, local performance can be rather diverse (see e.g. de
Paiva et al., 2013; Donnelly et al., 2016), depending on sev-
eral factors, e.g. the quality of macro-scale input data or the
ability of the selected conceptual scheme to accurately rep-
resent the dominant hydrological processes locally govern-
ing the rainfall-runoff transformation (geological and mor-
phological or climatic and micro-climatic factors).

An empirical characterization of the natural streamflow
regime over large areas would be a fundamental piece of in-
formation for benchmarking the performance of macro-scale
models and for assessing their potential locally. This neces-
sity conflicts with the availability and accessibility of stream-
flow observations, which can be limited even in technologi-
cally advanced regions of the world.
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In this context, along the lines of the study conducted
by Castellarin et al. (2018) for the Danube region, the
present study performs a statistical regionalization of stream-
flow regimes in Europe, compiling a data-driven benchmark
dataset for hydrological models as well as a data layer to be
made available for broader use. The streamflow regime for
each catchment is characterized in terms of a flow-duration
curve (FDC), a graphical representation of the frequency (i.e.
percentage of time or duration) with which a given stream-
flow is equalled or exceeded over a historical period of time
at a given river basin (see e.g. Vogel and Fennessey, 1994).
Providing a simple and compact view of the historical vari-
ability of streamflows, from high flows to low flows, an FDC
is a key signature of the hydrological behaviour of a catch-
ment: its shape reflects climate conditions and the hydroge-
ological characteristics (i.e. size, morphology, permeability)
of the catchment itself (see e.g. Castellarin, 2014; Wester-
berg et al., 2016). For this reason, FDCs are routinely used
for addressing water resource management problems such as
hydropower feasibility studies, classification of streamflow
regimes, irrigation planning and management, definition of
environmental flows and habitat suitability studies (e.g. Vo-
gel and Fennessey, 1995; Yaeger et al., 2012) as well as for
assessing hydrologic change at a river cross section (Kroll et
al., 2015; Ceola et al., 2018).

Starting from a compilation of about 3000 discharge mea-
surement stations across Europe, where streamflow indices
and empirical period-of-record FDCs (POR FDCs) (i.e. 15
streamflow quantiles) are compiled by the Joint Research
Centre of the European Commission (DG-JRC) from the
archives of the Global Runoff Data Centre (GRDC), here
we perform a geostatistical interpolation of the streamflow
regime to provide FDC estimates for a total of 24 148 ele-
mentary catchments for the European region. With this aim,
high-quality empirical POR FDCs are interpolated over the
stream network using the geostatistical procedure termed to-
tal negative deviation top-kriging (TNDTK; Pugliese et al.,
2014, 2016), which has been shown to provide reliable pre-
dictions of continuous FDCs at ungauged locations, over-
coming the limit of regression models of modelling stream-
flow quantiles independently of each other (Pugliese et al.,
2016; Castellarin et al., 2018). Also, being a BLUE (i.e. best
linear unbiased estimator) procedure, TNDTK was shown to
be an effective tool for correcting systematic bias associated
with the outcomes of macro-scale rainfall-runoff models (i.e.
Pugliese et al., 2018). In line with Castellarin et al. (2018),
together with the estimated FDCs, for each elementary catch-
ment we provide indicators of the accuracy and reliability of
the performed large-scale geostatistical prediction.

2 Data and methods

2.1 Source data and screening

The present study uses a database compiled by the DG-
JRC, consisting of 3138 stream gauges across Europe. For
the catchment upstream from each gauged station, stream-
flow indices and several catchment descriptors are avail-
able. Streamflow indices are computed from the streamflow
time series observed at each gauge and consist of mean an-
nual flow (MAF, long-term average daily discharge) and 15
streamflow quantiles associated with duration of 1 %, 5 %,
10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 75 %, 80 %,
90 %, 95 %, 97 % and 99.7 %. The quality of streamflow
data is classified as high and low: high-quality data refer to
gauging stations with a precise positioning along the stream
that are unique in their elementary sub-basin (i.e. the por-
tion of the basin directly drained by a river stretch, between
two confluences, or from the headwater to the first conflu-
ence), whereas low-quality data refer to cases in which more
stream gauges are present in a single elementary basin, hence
potentially being affected by imprecise positioning along
the stream (see also Castellarin et al., 2018). In particular,
3004 study catchments are extracted from the original DG-
JRC database of 3138 measuring points by consolidating and
merging multiple entries (i.e. in case of stream gauge redun-
dancy for a given location, only the highest-quality stream
gauge associated with the largest drainage area is retained).

Among the 3004 selected catchments, empirical MAF val-
ues observed at high-quality measuring points show a mini-
mum, 1st quartile, median, mean, 3rd quartile and maximum
equal to 0.01, 3.03, 9.41, 80.16, 35.38 and 6378.00 m3 s−1, in
this order. Consistent with Castellarin et al. (2018), based on
the values of MAF standardized by catchment area (i.e. unit
mean annual flow, MAF/area) as a function of basin area (see
Fig. 1), the 146 measuring points falling outside the interval
0.0015–0.08 m3 s−1 km−2 are regarded as highly discordant
and are therefore excluded from further analyses. Among the
2858 retained catchments, Figs. 1 and 2 highlight the pre-
dominance of stream gauges with high-quality data (2484)
over the low-quality ones (374, mainly concentrated in the
area of the Danube region; see Castellarin et al., 2018).

Differently from the case study of the Danube region de-
scribed in Castellarin et al. (2018), for which the analysis
was performed twice (first by considering low- and high-
quality data combined and then by focusing only on high-
quality data), for the European continent we focus only on
the 2484 measuring points associated with high-quality data.

Together with the above-mentioned stream gauges, the
DG-JRC identifies a layer of 32 960 prediction nodes over
the entire European region, for which we perform the predic-
tion of FDCs described herein.
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Figure 1. Unit mean annual flow (MAF/area) as a function of basin area for the 3004 study catchments. Stream gauges located outside the
interval 0.08–0.0015 m3 s−1 km−2 (see horizontal dashed lines) are identified as highly discordant and are removed from the dataset. Blue
and red points are associated with high- and low-quality data, respectively.

Figure 2. Stream gauges (2858) retained from the DG-JRC
database. Blue and red points refer to high- and low-quality data,
respectively.

2.2 Methods: geostatistical interpolation

Based on what was performed for the Danube region in
Castellarin et al. (2018), FDC predictions at the DG-JRC
catchments are obtained by applying the geostatistical proce-
dure named TNDTK (Pugliese et al., 2014, 2016). TNDTK
is based on top-kriging (Skøien et al., 2006, 2014), a geosta-
tistical tool which is widely used in the literature for pre-

dicting streamflow indices (e.g. low flows; see Castiglioni
et al., 2011; Laaha et al., 2014; high flows and floods;
see Merz et al., 2008; Archfield et al., 2013; Persiano et
al., 2021a), habitat suitability indices (Ceola et al., 2018)
and daily streamflow series (Skøien and Blöschl, 2007; de
Lavenne et al., 2016; Farmer, 2016) at ungauged river cross
sections as linear combinations of the empirical information
collected at neighbouring gauging stations by accounting for
the catchment size and nesting structure of the stream net-
work. Specifically, TNDTK (Pugliese et al., 2014, 2016) uses
top-kriging in an index-flow framework (Castellarin et al.,
2004) for predicting the entire FDC at ungauged sites, en-
suring its monotonicity. With this aim, as a first step, the di-
mensionality of the problem is reduced by standardizing the
empirical FDC at site x, 9(x,d) (where d is a specific du-
ration), for a reference value (e.g. MAF), Q∗(x), to yield a
dimensionless FDC, ψ (x,d):

ψ (x,d)=
9(x,d)
Q∗(x)

. (1)

Pugliese et al. (2014) identify an overall point index, named
total negative deviation (TND), which effectively summa-
rizes the entire curve. TND is derived by integrating the
area between the lower limb of the FDC and the reference
streamflow value Q∗(x) (see e.g. Fig. 1 in Pugliese et al.,
2014). Even though TND does not capture the portion of
the FDC associated with low durations (i.e. high flows), it is
very informative on the shape of the FDC that is controlled
by climatic, physiographic, and geo-pedological character-
istics of the catchment (see Pugliese et al., 2014). Larger
TNDs are associated with steeper FDCs (i.e. catchments with
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rapidly responding runoff processes), while smaller TNDs
are associated with less steep FDCs. Therefore, being capa-
ble of expressing the hydrological similarity between catch-
ments, TND is used as a regionalized variable to develop
site-specific weighting schemes within the TDNTK proce-
dure. The same weights, derived through the solution of the
linear kriging system, are used for a batch prediction of the
continuous dimensionless FDC, ψ̂ (x0,d), for the ungauged
site x0:

ψ̂ (x0,d)=
∑n

j=1
λj ψ

(
xj ,d

)
∀d ∈ (0,1), (2)

where λj , for j = 1, . . ., n, are the weights resulting from
the kriging interpolation of TNDs for the n neighbouring
gauged catchments, and ψ

(
xj ,d

)
is the dimensionless em-

pirical FDC at the donor site xj . Equation (2) highlights that
the computation of kriging weights depends on n, the number
of neighbouring sites on which to base the spatial interpola-
tion.

Once a reliable model (e.g. a regional regression model or
kriging model) for predictingQ∗ at the ungauged site x0 (i.e.
Q̂∗ (x0)) has been set up for the study region, the prediction
of the dimensional FDC, 9̂ (x0,d), can be obtained as

9̂ (x0,d)= Q̂∗ (x0) ψ̂ (x0,d) ∀d ∈ (0,1). (3)

For the sake of brevity, this prediction method is referred to
as TNDTK. Additional details can be found in Pugliese et
al. (2014). TNDTK has been shown to provide reliable pre-
dictions of FDCs at ungauged sites over large study areas
(Castellarin et al., 2018) and to reliably reconstruct natural
FDCs at ungauged sites (Ceola et al., 2018).

3 Large-scale geostatistical prediction and
technical validation

3.1 Application of the geostatistical interpolation

In the present study, TNDTK is applied by implementing the
R package “rtop” (Skøien et al., 2014). The MAF is chosen
as the reference streamflow value Q∗ used for standardiz-
ing empirical FDCs across the study region, and empirical
TND values are computed for each empirical dimensionless
FDC, standardized by local MAF values. It is worth high-
lighting that, while computing TND values, the durations of
interest are transformed into standard normal variates using
the meta-Gaussian transformation, which enhances the rep-
resentation of the right tail of FDCs and therefore better dif-
ferentiates TND values associated with different empirical
curves. Either for MAF or TND interpolations, top-kriging is
implemented by following the next steps: (1) the binned sam-
ple variogram is calculated, (2) the five-parameter theoret-
ical variogram (i.e. a “modified” exponential model, which
combines an exponential model with a fractal model; see
details in Skøien et al., 2006) is then regressed against the
sample variogram through a weighted least squares (WLS)

Figure 3. Merger of the elementary catchments from the DG-JRC
database. Predictions have been performed for elementary catch-
ments within the blue area, while no predictions have been provided
for the black area.

regression method (Cressie, 1993), and (3) from the theoret-
ical variograms the kriging weights for n= 6 neighbouring
stream gauges are computed for any prediction location and
the streamflow index of interest is predicted at that location.
n= 6 was set after a preliminary sensitivity analysis which
confirmed the results obtained in previous studies (Pugliese
et al., 2014, 2016), suggesting that the size of nearest neigh-
bours should be kept limited when interpolating streamflow
indices, and TND values in particular. Moreover, differently
to what was done for the Danube region in Castellarin et
al. (2018), for application to the entire European continent,
300 km is set as the maximum distance from the prediction
location within which gauged basins are included for the pre-
diction itself.

In this study, TNDTK is used for predicting long-
term FDCs at prediction points located at the outlets
of 21 664 elementary catchments (elementary catchment
minimum drainage area: 0.01 km2; average drainage area:
172.83 km2; maximum drainage area: 1668.38 km2) located
within the European continent. In particular, interpolation
is performed only within watersheds including at least one
measuring point of the DG-JRC dataset (see the blue area in
Fig. 3). Elementary catchments within watersheds where no
measuring gauges are present have been excluded from the
analysis (see the black area in Fig. 3).

3.2 Cross-validation

In order to quantitatively test the reliability and robust-
ness of the predicted FDCs, a leave-one-out cross-validation
(LOOCV) procedure is used to simulate ungauged conditions
at each and every gauged location in the study area. With this
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Figure 4. Results of the top-kriging interpolation in cross-validation (LOOCV). For (a) MAF, (b) dimensionless FCDs, and (c) dimensional
FDCs, empirical (x axes) vs. predicted (y axes) values are reported together with the overall Nash–Sutcliffe efficiency for log-transformed
(LNSE) streamflows.

aim, the kriging interpolation of MAF and TND values has
been performed by adopting a LOOCV strategy (Castellarin
et al., 2018; Pugliese et al., 2014). The performance of the
proposed model is quantitatively assessed in terms of Nash–
Sutcliffe efficiency between empirical and predicted FDCs
by referring to log-transformed streamflows (LNSE) com-
puted either locally (i.e. at each gauge) and globally (i.e. as-
sessing global LNSE values duration-wise). Figure 4 shows
scatter diagrams between empirical and predicted values of
MAF and dimensionless and dimensional FDCs for the study
region obtained by means of the top-kriging interpolation in
LOOCV.

Figure 4 highlights the good agreement between observed
and predicted values, with LNSE equal to 0.96 for MAF, me-
dian and mean values of at-site LNSEs equal to 0.95 and 0.87
for dimensionless FDCs and median and mean LNSEs equal
to 0.91 and 0.74 for dimensional FDCs. Moreover, the LNSE
values computed by comparing duration-wise predicted and
empirical streamflow quantiles across all sites for the 15 du-
rations considered in the study (Fig. 5) indicate good per-
formance, with LNSEs well above 0.75 for all durations. A
slightly worse performance is observed in the low-flow sec-
tion of the curves, which is expected (see e.g. Castellarin et
al., 2018).

For both dimensionless and dimensional FDCs (see
Fig. 4b and c, respectively), the lower value of the mean
LNSE compared to its median is expected and can be ex-
plained by the presence of some sites characterized by an
extremely low prediction performance. As shown in the ap-
plication of TNDTK within the Danube River basin (i.e.
Castellarin et al., 2018), TNDTK tends to perform better for
larger catchments, whereas lower performance is expected
for smaller catchments, especially for headwater ones. In
general, the combination of small catchment areas and wide
climatic variability may affect the TNDTK ability to predict
variation in streamflow regimes, especially regarding very
high durations (i.e. severe droughts). As a result, TNDTK
tends to overestimate low flows (see Pugliese et al., 2016).

Figure 5. Cross-validation (LOOCV) of predicted dimensional
FDCs. LNSE values are reported as a function of duration.

Also, rather poor predictions can be expected for catch-
ments characterized by a severe anthropogenic alteration of
the streamflow regime (e.g. river sections downstream of
lakes and reservoirs). For a thorough description of the main
causes of worst-case performances, the reader is referred to
Pugliese et al. (2016) and Castellarin et al. (2018).

3.3 Assessment of prediction uncertainty

The above-mentioned outcomes refer to aggregated mea-
sures of reliability. Given the wide extension of the study
area, it becomes apparent that the TNDTK predictions of
the streamflow regime are associated with different degrees
of reliability, which varies significantly over the study area.
Therefore, we develop for the entire study region (i.e. the
European continent) a measure of uncertainty to be attached
to FDC predictions. This measure should guide practition-
ers and users of interpolated FDCs, providing them with an
operational tool for judging the suitability of the predicted
FDCs for the water problem at hand. In order to assess pre-
diction uncertainty (i.e. an estimate of the interpolation er-
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Figure 6. Standardized prediction variance of TNDTK as a func-
tion of LNSE. LNSE values smaller than 0.7 are omitted here. The
red dashed line represents the moving average computed with a
moving window of 150 catchments. Note that, for the 2484 high-
quality stream gauges, only 2102 LNSE values are available.

ror), one can exploit the prediction variance, which is an out-
put of top-kriging, as with any kriging-based interpolation
procedure (Castellarin et al., 2018). This statistic is a com-
bination of model uncertainty and configuration of observa-
tion locations: lower kriging variances are expected for large
prediction catchments surrounded by several stream gauges,
whereas higher variances are expected for prediction nodes
located in data-scarce sub-areas and in upstream catchments.
Figure 6 reports the moving average of standardized predic-
tion variances (i.e. standardization with the maximum value,
y axis) as a function of LNSE values (x axis) for a subset of
150 catchments. Note that, for the 2484 high-quality stream
gauges, only 2102 LNSE values are available: the presence
of measured or estimated percentiles of daily flows equal
to zero makes the evaluation of LNSE impossible for 382
stream gauges.

As observed in Castellarin et al. (2018) for the Danube re-
gion, Fig. 6 confirms for the European continent that higher
LNSE values are associated with lower prediction variances.
This information is useful for the application of TNDTK
to ungauged basins since the average density of prediction
nodes for the European region (i.e. approximately 5× 10−3

prediction points per square kilometre) is significantly higher
than the stream-gauging network density (i.e. approximately
6× 10−4 gauges per square kilometre for high-quality data).

3.4 Qualitative indicator of prediction accuracy

Furthermore, aiming at providing a qualitative assessment
of the accuracy of predicted FDCs, we refer the reader to
Fig. 6. First of all, we standardize prediction variances with
the maximum value (0.28) among gauged and ungauged
catchments, and then we compute a threshold value KV*
(where KV stands for kriging variance) as the value below
which the number of gauged catchments with LNSE< 0.8

is equal to 5 % of the total number of gauged stations. Then
ungauged catchments with standardized prediction variances
lower and higher than KV* are labelled with “yes” and “no”,
respectively. For gauged catchments LNSE values obtained
in LOOCV are attached.

4 Data availability

The data produced in this study are freely avail-
able at the PANGAEA open-access library (Data
Publisher for Earth & Environmental Science) at
https://doi.org/10.1594/PANGAEA.938975 (Persiano et
al., 2021b). The dataset consists of a GIS vector layer of the
contours of 24 148 elementary catchments contained within
the white area reported in Fig. 3. The elementary catchments
include both the 2484 high-quality gauged catchments and
the 21 664 prediction nodes for which FDCs are estimated.
Table 1 reports a summary of the information associated with
each catchment, including the predicted FDCs’ percentiles
and the measures of uncertainty and accuracy described
above. The file is stored using the ESRI shapefile format
in the ETRS89 (European Terrestrial Reference System
1989) LAEA (Lambert azimuthal equal area) datum and
geographic coordinate system.

5 Code availability

All the activities regarding data preparation, analysis and
representation of results have been produced by using
free and open-source software (i.e. Quantum GIS Geo-
graphic Information System – Open Source Geospatial Foun-
dation Project, http://qgis.osgeo.org (QGIS Development
Team, 2022), and the R Project for Statistical Comput-
ing, https://www.R-project.org/, R Core Team, 2022). A
repository containing an application example for extract-
ing POR FDCs from daily streamflow series observed at
gauged sites and computing FDCs at ungauged target sites
by means of total negative deviation top-kriging (TNDTK;
Pugliese et al., 2014, 2016) is available at the follow-
ing link: https://doi.org/10.5281/zenodo.4751160 (Persiano,
2021). Together with the R codes and example data, the
above-mentioned link also includes an RPubs link to an R-
Markdown notebook containing step-by-step comments on
the main R code. The specific R codes used for data prepara-
tion and analysis presented in this paper are made available
by the authors upon request.

6 Conclusions

The present study describes an original spatial dataset pro-
viding a continuous representation of the streamflow regime
for 24 148 elementary river catchments across Europe. For
each elementary catchment, the boundaries are provided to-
gether with the value of the corresponding drainage area (for

Earth Syst. Sci. Data, 14, 4435–4443, 2022 https://doi.org/10.5194/essd-14-4435-2022

https://doi.org/10.1594/PANGAEA.938975
http://qgis.osgeo.org
https://www.R-project.org/
https://doi.org/10.5281/zenodo.4751160


S. Persiano et al.: Streamflow data availability in Europe 4441

Table 1. Description of fields of the produced GIS layer reporting predicted FDCs for the entire European continent. Note that only the
2484 catchments with high-quality data are considered to be gauged and are used for predicting FDCs in ungauged locations.

Field Description

HydroID ID code associated with the corresponding elementary catchment

NextDownID ID code associated with the elementary catchment located immediately downstream of the
selected one; NextDownID is set to−1 if no elementary catchment is present downstream
within the GIS layer.

Area_EC Area of the elementary catchment (km2)

Area_AC Area of the whole catchment (km2)
(for headwater catchments, Area_AC=Area_EC)

Gauged Distinguishes between gauged and ungauged nodes: “yes” for gauged catchments (i.e.
2484 catchments with high-quality data); “no” for ungauged catchments (i.e. 21 664 pre-
diction nodes).

Var_est TNDTK prediction variance for each elementary catchment (–)

TND Empirical value of the total negative deviation, TND (Pugliese et al., 2014) (–)

MAF Mean annual flow (m3 s−1)∗

D9Q1 1st streamflow percentile (m3s−1)∗

D9Q5 5th streamflow percentile (m3s−1)∗

D9Q10 10th streamflow percentile (m3s−1)∗

D9Q20 20th streamflow percentile (m3s−1)∗

D9Q30 30th streamflow percentile (m3s−1)∗

D9Q40 40th streamflow percentile (m3s−1)∗

D9Q50 50th streamflow percentile (m3s−1)∗

D9Q60 60th streamflow percentile (m3s−1)∗

D9Q70 70th streamflow percentile (m3s−1)∗

D9Q75 75th streamflow percentile (m3s−1)∗

D9Q80 80th streamflow percentile (m3s−1)∗

D9Q90 90th streamflow percentile (m3s−1)∗

D9Q95 95th streamflow percentile (m3s−1)∗

D9Q97 97th streamflow percentile (m3s−1)∗

D9Q997 99.7th streamflow percentile (m3s−1)∗

LNSE LNSE values obtained in LOOCV for gauged catchments; for ungauged catchments, the
distinction is made between catchments with prediction variance lower (“yes”) and higher
than KV∗ (“no”). No values are reported for those gauged catchments where the presence
of measured or estimated percentiles of daily flows equal to zero makes the evaluation of
LNSE impossible.

LakeRatio Ratio between the area covered with bodies of water and the total area for each elementary
catchment (–).

∗ If the “Gauged” field is equal to “yes”, then the marked values are empirical, while they are predicted otherwise.
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both the elementary and whole catchments), mean annual
flow (i.e. long-term average daily discharge) and a set of
15 streamflow quantiles for durations from 1 to 99.7 % (i.e.
flow-duration curves, FDCs). The streamflow indices (i.e.
mean annual flood and FDCs) were estimated by means of
the TNDTK geostatistical procedure (i.e. total negative devi-
ation top-kriging) that, relying on a relatively small amount
(compared to macro-scale models) of input data (i.e. ob-
served streamflow series and catchment size and mutual posi-
tion), allows one to predict the natural streamflow regime (i.e.
FDCs) over large areas. In the present study, TNDTK relied
on the empirical observations available for about 3000 dis-
charge measurement stations included in the dataset itself.

Consistent with what was observed by Castellarin et
al. (2018) for the Danube region, the adopted procedure pro-
vides an overall good accuracy for the entire study area (i.e.
the European continent), with a reliability which can vary
significantly in space, depending mainly on stream-gauging
network density. For this reason, for each catchment we pro-
vide indicators of the accuracy and reliability of the per-
formed large-scale geostatistical prediction, i.e. a measure
of the prediction performance for gauged elementary catch-
ments and a measure of uncertainty (i.e. estimate of the in-
terpolation error, associated with kriging variance) for the
streamflow indices estimated at ungauged catchments. These
measures should provide practitioners and users with an op-
erational tool for judging the suitability of the predicted
FDCs for the water problem at hand.

Overall, the dataset made available herein is expected to be
useful for the evaluation of water resource availability at un-
gauged locations and as a benchmark for the development of
hydrological macro-scale models, whose local performances
are highly variable. For instance, based on FDCs, Pugliese
et al. (2018) show that TNDTK can be a useful tool for en-
hancing results from macro-scale models along the stream
network of a given region, with significant advantages even
for very low stream-gauging network densities. Such an en-
hancement procedure (Pugliese et al., 2018) does not explic-
itly account for the uncertainty associated with the predicted
FDC, yet the prediction variance (included in our published
dataset) returned by TNDTK can be used as a guide for
benchmarking and enhancing macro-scale models.
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