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Abstract. Offshore wind energy is at the advent of a massive global expansion. To investigate the develop-
ment of the offshore wind energy sector, optimal offshore wind farm locations, or the impact of offshore wind
farm projects, a freely accessible spatiotemporal data set of offshore wind energy infrastructure is necessary.
With free and direct access to such data, it is more likely that all stakeholders who operate in marine and
coastal environments will become involved in the upcoming massive expansion of offshore wind farms. To
that end, we introduce the DeepOWT (Deep-learning-derived Offshore Wind Turbines) data set (available at
https://doi.org/10.5281/zenodo.5933967, Hoeser and Kuenzer, 2022b), which provides 9941 offshore wind en-
ergy infrastructure locations along with their deployment stages on a global scale. DeepOWT is based on freely
accessible Earth observation data from the Sentinel-1 radar mission. The offshore wind energy infrastructure lo-
cations were derived by applying deep-learning-based object detection with two cascading convolutional neural
networks (CNNs) to search the entire Sentinel-1 archive on a global scale. The two successive CNNs have pre-
viously been optimised solely on synthetic training examples to detect the offshore wind energy infrastructures
in real-world imagery. With subsequent temporal analysis of the radar signal at the detected locations, the Deep-
OWT data set reports the deployment stages of each infrastructure with a quarterly frequency from July 2016
until June 2021. The spatiotemporal information is compiled in a ready-to-use geographic information system
(GIS) format to make the usability of the data set as accessible as possible.

1 Introduction

Lately, the expansion of carbon-neutral energy is being
strongly promoted (United Nations Framework Convention
on Climate Change, Conference Of the Parties; COP26,
2021). Offshore wind energy is an efficient and reliable en-
ergy source and appears to be an important cornerstone for
a renewable energy mix (Esteban et al., 2011). For example,
the European Union (EU) plans to increase the installed off-
shore wind energy capacity from 12 GW in 2020 to 300 GW
in 2050 with a view toward carbon-neutral energy produc-
tion. Most of this expansion is planned in the North Sea basin
(NSB), an already established hot spot for offshore wind
energy production. Nevertheless, new sites in the Mediter-

ranean Sea will be developed to achieve the stated goals (Eu-
ropean Commission, 2020). The plans of the EU are exem-
plary for a global trend of expanding offshore wind energy
projects. Offshore wind farms (OWFs) will be deployed to
pre-established offshore wind energy production sites like
the East China Sea (ECS). At the same time, the development
of new sites for large OWFs, for example, in the Atlantic
Ocean on the east coast of the United States, is ongoing (Ro-
drigues et al., 2015). Today, the offshore wind energy sector
is starting a phase of massive expansion worldwide, affect-
ing marine ecosystems (Drewitt and Langston, 2006; Wil-
son and Elliott, 2009; Bailey et al., 2014; Bergström et al.,
2014; Slavik et al., 2019) as well as stakeholders of differ-
ent socio-economic sectors that are active or interested in the
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same areas, like the fishing industry, shipping routes, military
exclusion zones, cultural heritage, residents of coastal areas,
or the recreational industry (Henderson et al., 2003; Wever
et al., 2015; Gusatu et al., 2020; Gus, atu et al., 2021; Virtanen
et al., 2022). To foster the development of offshore wind en-
ergy and to provide all stakeholders with free access to data
in order to ensure the most sustainable development possi-
ble, we introduce the DeepOWT (Deep-learning-derived Off-
shore Wind Turbines) data set, which reports offshore wind
turbine (OWT) locations along with their deployment time
series for 5 years, from 2016 until 2021, on a global scale.

The proposed DeepOWT data set has been derived from
the Sentinel-1 radar archive by applying deep-learning-based
object detection. The employed object detection models were
completely trained on synthetic training examples gener-
ated by the novel Synthetic data generation in Earth Ob-
servation (SyntEO) approach (Hoeser and Kuenzer, 2022a).
Thus, the methodological workflow enables the extraction of
highly detailed information from extensive Earth observation
archives. Hence, in addition to the offshore wind energy in-
frastructure locations, the temporal deployment process can
be described at each detected location. This is of major in-
terest for investigating the impact and optimisation measures
during the deployment processes, which is an eventful and
critical period in an OWT life cycle. Besides OWT locations,
DeepOWT also provides locations of OWF substations and
offshore wind energy infrastructure under construction in or-
der to further increase the information depth and precision of
a global OWT data set. In addition to this novel information,
DeepOWT is openly accessible, comes with valuable ground
truth data sets for spatial and temporal evaluation, and can
easily be used in geographic information system (GIS) soft-
ware due to its lightweight size (4.1 MB) and the established
“.geojson” format.

2 Related research

The proposed study applies deep-learning-based image anal-
ysis to detect offshore wind energy infrastructures in Earth
observation imagery. To provide an overview of the applied
method and investigated application, Sect. 2.1 briefly in-
troduces the application of convolutional neural networks
(CNNs) in Earth observation. Furthermore, Sect. 2.2 gives
an overview of the extraction of persistent marine infrastruc-
tures from Earth observation data with a specific focus on
OWTs.

2.1 Deep-learning-based image analysis in Earth
observation

During the “ImageNet Large Scale Visual Recognition Chal-
lenge” in 2012, Krizhevsky et al. (2012) proposed the
“AlexNet” CNN, which won the aforementioned compe-
tition. The successful implementation of a deep learning
model with many adjustable parameters by using an exces-

sive amount of training data in combination with modern
hardware like graphics processing units (GPUs) to optimise
the model brought new attention to deep learning and neural
networks from many research domains (Krizhevsky et al.,
2017; LeCun et al., 2015). CNNs turned out to be particu-
larly suitable for image analysis (e.g. for tasks such as im-
age recognition, image segmentation, and object detection).
These capabilities make CNNs the most widely used deep
learning models in remote sensing (Zhu et al., 2017; Ma
et al., 2019; Hoeser and Kuenzer, 2020).

In addition to optical and multispectral Earth observation
data, deep learning models have also been increasingly used
to analyse radar data from spaceborne Earth observation mis-
sions (Zhu et al., 2021). Baumhoer et al. (2019) and Dirscherl
et al. (2021) demonstrated how U-Net-based CNNs can be
used to extract the Antarctic coastline and supraglacial lakes
from Sentinel-1 data respectively. Other examples of pixel-
wise classifications or image segmentation tasks that exploit
Sentinel-1 data with CNNs are the mapping of burned ar-
eas (Belenguer-Plomer et al., 2021), crop-type mapping (Cué
La Rosa et al., 2018; Mullissa et al., 2018), or the classi-
fication of irrigated agricultural land (Bazzi et al., 2020).
Closely related to the topic of persistent marine infrastruc-
ture in this paper is the application of ship detection with
CNNs and Sentinel-1 data. A considerable number of stud-
ies have looked at the extraction of vessels from Sentinel-1
data by employing CNN-based object detection models; the
reader is referred to Hoeser et al. (2020) for a comprehensive
overview.

Multiple studies have demonstrated that CNNs can learn
the spatial representation of target classes in Sentinel-1 im-
ages and that they can also consider the spatial context in
these images to reduce false positives (Dirscherl et al., 2021;
Kang et al., 2017; Hoeser and Kuenzer, 2022a). This prop-
erty of CNNs is a particularly important argument for their
use in extracting object classes from extensive, unfiltered
satellite data archives, as demonstrated in this study.

2.2 Offshore wind turbine detection in Earth observation
imagery

The detection of persistent offshore infrastructure in Earth
observation data has been investigated by applying different
approaches. A commonly used approach is the constant false
alarm rate (CFAR), as used by Zhang et al. (2019) for ma-
rine infrastructure detection. Wong et al. (2019) combined
the CFAR approach with a difference of Gaussians (DoG)
preprocessing of remote sensing radar imagery to further in-
crease the contrast between persistent marine infrastructure
and the surrounding sea. Xu et al. (2020) applied order statis-
tic filtering in combination with a derived set of thresholds
to extract marine infrastructure from imagery provided by
the Landsat and Sentinel-2 missions. Zhang et al. (2021) de-
veloped a handcrafted morphologic approach with manual
thresholds to identify single OWTs in Sentinel-1 data. All of
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the aforementioned studies have the commonality that they
strongly depend on the high contrast between offshore infras-
tructure and the surrounding open sea. In a preceding study
to this data set, Hoeser and Kuenzer (2022a) proposed an
adaptive, deep-learning-based object detection approach that
takes multiscale spatial patterns of the target objects into ac-
count to distinguish further different types of offshore infras-
tructure in a single model.

Radar imagery, especially that provided by the Sentinel-
1 mission, is an auspicious data source for studies related
to the offshore wind energy sector. Besides the detection of
persistent offshore infrastructures, the successful investiga-
tion of Sentinel-1 data for estimating wind energy potentials
in near-coast and offshore areas (Majidi Nezhad et al., 2019)
demonstrates the versatility of radar Earth observation data
in the context of offshore wind energy production.

In 2022, there are three data sets that describe OWTs on a
global scale, some of which are freely accessible. These are
the 4C Offshore wind data set (4C Offshore, 2021), OWT
locations in the Open Street Map (OSM) project, and the
“global offshore wind turbine” (GOWT v1.3) data set by
Zhang et al. (2021). The 4C Offshore wind data set col-
lects information about offshore wind projects provided by
OWF operators, project descriptions, and contracts. It pro-
vides an overview of OWF boundaries, single OWT locations
and specifications, OWF substations, and export cables (4C
Offshore, 2021). However, the private company 4C Offshore
maintains the 4C Offshore wind data set and sells the infor-
mation. Hence, the data set is only partly accessible to the
public and can not be freely used in planning and research to
its full extent.

The first open-source variant to mention is the OSM
project, which provides OWT locations in its spatial
database. As OSM data rely on the activity of the OSM com-
munity, the accuracy and completeness of the OWT locations
vary from region to region. Hence, the data set accuracy is
not spatially homogenous. Furthermore, there is only a lim-
ited temporal consistency in this data set. An entry made in
OSM on a specific date does not necessarily correlate with its
first appearance in the real world, especially when the tem-
poral accuracy is narrowed down to weeks or months.

The GOWT v1.3 data set demonstrates the possibility for
large-scale OWT detection by investigating Earth observa-
tion data. In its published version (version 1.3), it provides
OWT locations from 2014 until 2019. Thus, an OWT lo-
cation is reported as such when it first appears in a remote
sensing image. In GOWT v1.3 there is no difference between
OWTs under construction and those completed (Zhang et al.,
2021). This class indifference leads to a temporarily shifted
overestimation of the number of power-generating OWTs, as
the construction phase is not provided separately. Further-
more, GOWT v1.3 does not separately classify OWF substa-
tions and has difficulties differentiating them from OWTs,
which results in false positive detections of OWTs within
OWF areas.

From these existing data sets and their limitations, the fol-
lowing characteristics have been derived for a global OWT
data set:

– access to all OWT information, such as location and
construction stage in a single file;

– a global extent with homogenous reliability;

– temporal consistency with respect to the date given in
the data set for a single data point and its real-world
appearance;

– differentiation between OWTs that are under construc-
tion and OWTs that are completed;

– differentiation between OWTs and OWF substations;

– the inclusion of the latest OWF projects independent of
their size, location, and construction type.

The motivation of this study is to use a deep-learning-
based object detection approach in order to derive a global
offshore wind turbine data set with an information depth that
is not yet freely available. To that end, we present the Deep-
OWT (Deep-learning-derived Offshore Wind Turbines) data
set in this study. The main contributions are as follows:

– the presentation of a deep-learning-based object detec-
tion workflow with two cascading CNNs that detect off-
shore wind farms in the first stage and single offshore
wind energy infrastructure facilities in the second stage;

– the application of the recently proposed SyntEO frame-
work by Hoeser and Kuenzer (2022a) for using syn-
thetic data to train the two supervised deep learning
models;

– the introduction of the DeepOWT data set with offshore
wind energy infrastructure locations on a global scale
and quarterly deployment stages for each location from
July 2016 until June 2021;

– the differentiation between offshore wind turbines, off-
shore wind energy substations, and offshore wind en-
ergy infrastructure under construction for each detected
object in the DeepOWT data set;

– the generation of spatiotemporal ground truth data sets
of offshore wind energy infrastructures for the two ma-
jor wind energy production sites – the North Sea basin
and the East China Sea;

– a comprehensive spatiotemporal evaluation of the auto-
matically derived DeepOWT data set;

– free access to the DeepOWT data set and the ground
truth data sets created.
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3 Materials and methods

The upcoming sections introduce the investigated Sentinel-
1 data (Sect. 3.1) and the workflow applied to obtain the
proposed data (Sect. 3.2). The workflow describes how the
training data for the deep learning approach are generated
(Sect. 3.2.1) as well as how the CNNs are trained and used
to extract offshore wind energy infrastructures (Sect. 3.2.2).
The proceeding section (Sect. 3.2.3) explains how the de-
ployment time series are derived for each extracted object.
Finally, the evaluation process for the automatically derived
results with hand-annotated benchmark data sets is described
(Sect. 3.2.4).

3.1 Materials

The European Space Agency (ESA) Copernicus programme
provides open access to continuously acquired Earth obser-
vation data (Aschbacher, 2017). As part of this programme,
the spaceborne Sentinel-1 Synthetic Aperture Radar (SAR)
mission covers mainland and coastal areas on a global scale
with a 10 m pixel spacing. The active C-band radar system
with a wavelength of 5.6 cm is independent of cloud cover-
age and is able to acquire images at both day and night (Tor-
res et al., 2012). These specifications make the radar data of
the Sentinel-1 mission an excellent source to monitor coastal
environments and investigate OWTs on a global scale. All
Sentinel-1 acquisitions with IW (interferometric wide), GRD
(ground range detected), and VH (vertical sent–horizontal re-
ceived) polarised specifications were chosen as underlying
data in this study. Figure 1a shows how often a location on
Earth is sensed by the two Sentinel-1 satellites (A and B) for
the mentioned data product specification in the second quar-
ter of the year 2021. The focus of the Copernicus programme
becomes visible with a higher number of acquisitions over
Europe. Here, the satellites acquire data on both ascending
and descending orbits, with an inclination of 98.18◦. This
leads to an X-like pattern and a higher revisit rate compared
with other parts of the Earth. In order to harmonise all quar-
terly acquisitions of the entire Earth to a single global mosaic
with a pixel spacing of 10 m, all acquisitions were stacked
and reduced to a single-band median composite (see Fig. 1b).

The extent of the study area is defined by a 200 km buffer
of the OSM coastline towards the open sea. In order to sys-
tematically manage and process the data, a 1.8◦ regular grid
was generated for the entire Earth. All grid cells which inter-
sect the 200 km buffer were selected. The final grid, pictured
in Fig. 1b, defines the area where the DeepOWT data set was
detected.

A global Sentinel-1 median composite was queried for the
second quarter of 2021 (denoted as 2021Q2 hereafter). From
this median composite, the global OWF and OWT locations
were derived. The Google Earth Engine (GEE) (Gorelick
et al., 2017) Python application programming interface (API)
was used to query the Sentinel-1 data within each 1.8◦ grid

cell. The Sentinel-1 image collection in GEE provides the
IW, GRD, and VH acquisitions with additional preprocess-
ing for accurate orbit information, border and thermal noise
removal, radiometric calibration, and terrain correction. The
queried acquisitions within the 3-month period were reduced
to a median composite with a pixel size of 10 m× 10 m and
were then downloaded. To reduce the amount of data before
downloading, the 16 bit floating-point number with a range
of 0 to −40, which describes the Sentinel-1 backscatter sig-
nal in decibels, were rescaled to 0 to 255 and downloaded as
8 bit integers.

Quarterly subsets from 2016Q3 to 2021Q1 were generated
the same way as the 2021Q2 global median composite to in-
vestigate temporal deployment dynamics. For these 19 quar-
terly subsets, the Sentinel-1 median composites were only
created if a grid cell contained detected OWTs in 2021Q2.
Thus, the underlying data for the DeepOWT data set are 20
quarterly sets from 2016Q3 to 2021Q2. The latest period in
2021Q2 holds a Sentinel-1 median composite of the entire
global coastline. All other 19 sets only store Sentinel-1 me-
dian composites for OWF areas present in 2021Q2.

3.2 Methodology

Figure 2 shows an overview of the methodological workflow
used to derive the OWT locations and their temporal deploy-
ment dynamics for the proposed data set. The core of the
workflow is a cascade of two CNN object detectors: the first
CNN detects the OWF boundaries, and the second CNN de-
tects OWT locations on the 2021Q2 global median compos-
ite. In order to train both object detector CNNs, two synthetic
training data sets were generated in a preceding step. This is
the first application of the recently introduced SyntEO ap-
proach (Hoeser and Kuenzer, 2022a) embedded in a com-
plete workflow to generate a global data set. After the OWT
locations are detected in the 2021Q2 data, a time series of
19 quarterly periods is investigated to derive deployment dy-
namics for each OWT location from 2016Q3 until 2021Q1.
In a final step, the OWT locations are refined from a bound-
ing box to accurate point locations and are combined with the
derived deployment time series. The combined spatiotempo-
ral information is saved as a single file which comprises the
DeepOWT data set.

3.2.1 Synthetic training data set generation with SyntEO

In deep learning, layers of untrained weights are stacked to
build deep neural networks. In order to adjust the weights in
a neural network to succeed in a given task, a large data set
with annotated examples is necessary for supervised training
(LeCun et al., 2015). The annotation of such large training
data sets by hand is time-consuming and, in the case of only
a few real-world examples (e.g. OWFs), even impossible. In
order to solve these problems, the SyntEO approach was in-
troduced to automatically synthesise large annotated training

Earth Syst. Sci. Data, 14, 4251–4270, 2022 https://doi.org/10.5194/essd-14-4251-2022



T. Hoeser et al.: DeepOWT 4255

Figure 1. (a) The global distribution of the number of all available Sentinel-1 (IW–GRD–VH) acquisitions for the second quarter (Q2) of
2021. (b) The corresponding median backscatter amplitude and the data set boundary as a 1.8◦ grid within a buffer of 200 km of the global
coastline.

data sets with a special focus on the needs of Earth obser-
vation data. In SyntEO, a domain expert formulates an on-
tology that describes entities in a remote sensing scene and
their spatiotemporal interrelations. The SyntEO ontology is
a complex description of nested entities that are related by
using topological rules to describe their spatial dependen-
cies. A synthetic image is generated upon the formulated on-
tology by composing spatially meaningful geometries of all
entities to create an abstract scene composition. Hereinafter,
sensor-specific texture is added to the geometries of the ab-
stract scene composition to generate the final remote sensing
image. Furthermore, annotations are simultaneously derived
from the discrete geometries of the scene composition. Thus,
large deep-learning-ready data sets can be created quickly
and automatically. Figure 3 shows a visual summary of the
SyntEO process for better intuition. For an in-depth explana-
tion of the SyntEO framework and the underlying ontology
concept for automatic data generation in Earth observation,
we refer the reader to Hoeser and Kuenzer (2022a).

For this study, the ontology drafted by Hoeser and Kuen-
zer (2022a) was extended to simultaneously generate training
examples for OWF and OWT detection. In addition to the ori-
gin ontology, which only describes polygon-shaped OWFs,
see Hoeser and Kuenzer (2022a), linear OWFs were intro-
duced to increase the target object variance of the training
examples. To further enrich the training data set, non-target
classes like synthetically generated oil rigs and images that
show the mainland were explicitly added with no annotations
in order to provide negative training examples.

Furthermore, the ontology that has been formulated to
generate training examples for OWF detection was reused for
OWT detection. Most importantly, the size of the generated
images and the annotation were changed. Instead of large-
scale bounding box annotations for OWFs in synthetic im-
ages with a dimension of 2048 pixels× 2048 pixels, small-
scale bounding box annotations for each OWT were de-
rived from synthetic images with a dimension of 512 pix-
els× 512 pixels (see Fig. 3b). Thus, the CNN object detec-
tor, which detects OWTs and other offshore wind energy in-

https://doi.org/10.5194/essd-14-4251-2022 Earth Syst. Sci. Data, 14, 4251–4270, 2022



4256 T. Hoeser et al.: DeepOWT

Figure 2. The methodological workflow used to generate the DeepOWT data set based on the Sentinel-1 archive. Two CNNs detect OWF
and OWT locations, trained on synthetic examples. These spatial detections are used to define their temporal dynamics and an accurate
location. Finally, DeepOWT combines these spatiotemporal results.

frastructures, explicitly learns to focus on small-scale spatial
features.

In order to include other targets besides readily deployed
OWTs, the non-target class “oil rigs” in OWF detection was
reused. In the second synthetic data set, variants of the gen-
erated oil rig signatures are employed to provide annotated
examples for OWF substations and offshore wind energy
infrastructure under construction. The mainland examples
without annotation were kept to provide false positive train-
ing examples for OWT detection.

Two pools of training–annotation pairs with additional
metadata were generated to compile two balanced synthetic
training data sets: one training data set for OWF and one

training data set for single offshore wind energy infras-
tructure detection. To enable the TensorFlow deep learning
framework (Abadi et al., 2016), the selected image annota-
tion pairs were parsed to the TFRecord binary format. Thus,
the first training data set with 90 000 examples for OWF de-
tection and the second training data set with 275 000 exam-
ples for OWT detection were created.

3.2.2 Global OWT object detection with CNNs

Deep learning has become an important driver for new in-
sights and methodological developments in Earth system sci-
ence (Zhu et al., 2017; Reichstein et al., 2019). Recent devel-
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Figure 3. Simplified overview of a SyntEO workflow for automatic training example generation (Hoeser and Kuenzer, 2022a). Panel (a) vi-
sualises how the structure of a single OWF entity is generated. Panel (b) shows how multiple entities are composed to a scene composition.
The final image is generated by adding texture to the composed scene. The bounding box annotations are derived from the scene composition.

opments in CNNs have allowed for the detection of objects
in large images by taking the spatial context into account
(Hoeser and Kuenzer, 2020). For object detection, two-stage
region-based CNN (R-CNN) models are the most commonly
used architecture in Earth observation applications (Hoeser
et al., 2020). To derive the DeepOWT data set, we used a
cascade of two ResNet-50 (residual network with 50 convo-
lutional layers) (He et al., 2016) faster R-CNN (Ren et al.,
2015) models, where the first stage of the cascade detects
OWF areas on a global scale, and the second stage detects
single offshore wind energy infrastructure facilities within
the previously detected OWF areas.

The first CNN for OWF detection ingests images with a
dimension of 1024 pixels× 1024 pixels. This requires an
on-the-fly downscaling of the training examples for OWF
detection, which have a dimension of 2048× 2048 pixels.
For OWT detection in the second stage of the cascade, the
training examples already have a dimension of 512 pix-
els× 512 pixels that matches the CNN architecture. Another
difference in the model architectures for OWF and OWT de-
tection is the adapted scale factors for the region proposal
network (RPN), a submodule of the faster R-CNN object de-
tector (Ren et al., 2015). In order to adjust the sensitivity for
specific sizes of the target objects, the scale ratios were set
to [0.25, 0.5, 1, 2, 3.5] for OWF and [0.25, 0.5] for OWT
detection. The scale factors were calculated by applying the
approach introduced by Hoeser and Kuenzer (2022a).

The training of the two CNNs was conducted on four par-
allel NVIDIA RTX 2080 Ti GPUs. The training schemes
are the same for both architectures. A 0.95–0.05 training–

validation split was prepared for both synthetic data sets.
A single epoch without any data augmentation was used,
which was possible due to the large size and variability of the
synthetic data sets. The learning rate was scheduled to de-
crease smoothly by implementing the cosine decay method
(Loshchilov and Hutter, 2016). After a warm-up phase, the
base learning rate of 0.01 was reached and then reduced to 0
for all remaining training steps.

The two trained models were used in a cascading manner.
The first stage detects OWF by applying a threshold of 0.5
on the prediction score. Thus, the first stage allows a higher
false positive rate to include more OWF areas than necessary,
but it avoids false omissions of OWF areas. The second stage
detects single offshore wind energy infrastructure facilities
within the potential OWF areas by applying a threshold of
0.75 to consider a valid prediction. With the second stage’s
results, the predictions of the first stage are refined. Poten-
tial OWF areas with a share of 90 % or more non-OWTs are
belatedly dropped as false detections of stage one. This self-
checking property of the cascade leads to a high detection
rate with a low number of false omissions by simultaneously
decreasing false detections. This property was highly suit-
able for scanning extensive Earth observation archives to find
sparsely scattered target objects in large amounts of image
data.

As all predictions are performed on overlapping input tiles,
the same object can be detected multiple times. To sum-
marise all predicted bounding boxes in one file, the pixel co-
ordinates of the bounding boxes are translated to the World
Geodetic System 1984 (WGS84) geographic coordinate sys-
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tem. Furthermore, the bounding boxes are sorted in descend-
ing order by their prediction score and indexed with b =
1,2,3. . .B in order to consolidate the bounding boxes that
belong to the same object B. This sorted list of bounding
boxes Bb was unified in a cascading manner if the next box of
the list was completely within the unified box or if the boxes
had an intersection over union (IoU) larger than τIoU = 0.333
(see Eq. 1).

In order to calculate the exact area of each Bb, the bound-
ing box polygons were temporarily reprojected to their corre-
sponding UTM (Universal Transverse Mercator) coordinate
system depending on their UTM zone. The final unified poly-
gons describe the OWF and OWT locations. Figures 4 and 5
show the detection results of the CNN cascade for northern
Europe and south-eastern China respectively.

B1 :=


B1 ∪Bb+1 if Bb+1 ⊆ B1,

B1 ∪Bb+1 if B1∩Bb+1
B1∪Bb+1

> τIoU,

B1 otherwise.
(1)

3.2.3 Time series analysis for deployment dynamics
and location refinement

To describe the temporal dynamics of offshore wind energy
infrastructure deployment, a backwards-looking time series
analysis of the detected locations in 2021Q2 was performed.
For each bounding box of an object location, a multitempo-
ral stack of 19 quarterly Sentinel-1 median composites was
analysed to determine if an image shows the open sea, an
OWT or OWF substation under construction, or an OWT
or OWF substation readily deployed. Swath profiles that de-
scribe each column’s maximum value along the horizontal
axes from each image in the multitemporal stack were gen-
erated. Figure 6 shows quarterly images and corresponding
swath profiles for an OWT deployment time series. By ap-
plying two consecutive peak-finder algorithms with a high
and low prominence (Virtanen et al., 2020) to the swath pro-
file, the centre peak and adjacent peaks to the left and right
of the centre peak were detected. In a subsequent analysis,
which starts in 2021Q2 with the predicted class of the sec-
ond stage CNN, the changes in the number of peaks, centre
peak amplitude, and peak width are investigated to differen-
tiate the deployment stages until 2016Q3.

To finally refine the bounding boxes of offshore wind en-
ergy infrastructure locations to point locations, all pixel val-
ues within each bounding box of the 2021Q2 period were
analysed. As with the time series analysis, a maximum swath
profile was created along the x axis, and the centre peak was
searched for. With the derived x coordinate and amplitude of
the centre peak, the column at the x location of the image
patch within the bounding box was queried to find the cor-
responding y coordinate. By taking the geographic origin of
the image patch into account, the WGS84 coordinate for this
pixel was derived. Thus, the detected offshore wind energy
infrastructure location is no longer described by a bounding

box but by an accurate point location that is precisely at the
centre amplitude maximum of the detected object. The final
content for the derived data set is completed by merging spa-
tial and temporal processing results.

3.2.4 Data set evaluation

In order to evaluate the DeepOWT data set, two ground truth
data sets were generated. The test areas were the North Sea
basin (NSB) and the East China Sea (ECS), pictured in Fig. 7.
Their boundaries were aligned with the processing grid of
this study. The two areas were chosen due to their importance
for offshore wind energy generation; their differences con-
cerning the underlying Sentinel-1 data; and the different in-
teraction of OWFs with coastlines, coastal infrastructure, and
islands. While the majority of OWFs in the NSB are located
within a considerable distance of the coast, OWFs in the ECS
are built in close proximity to small islands and other infras-
tructures like bridges and harbours (see Fig. 5). Furthermore,
the NSB has a higher number of quarterly Sentinel-1 acqui-
sitions in both orbit directions, whereas the ECS is mainly
observed from a single orbit direction and, thus, has fewer
acquisitions for the same time interval (see Fig. 1). This re-
sults in different characteristics of the global Sentinel-1 me-
dian composite in both areas. Together, the NSB and ECS
represent various OWF types and how they appear in their
natural environment; therefore, they are representational test
sites.

Two types of ground truth data sets were generated and in-
cluded as separate files along with the proposed DeepOWT
data set: the first type describes the locations of the target ob-
jects at a single point in time, and the second type describes
quarterly time series of deployment dynamics.

Two data sets of the first type were generated, one for
2021Q2 and one for 2019Q4. The 2019Q4 data set will later
be used to compare the records of the DeepOWT data set to
OSM and GOWT v1.3 records, as the latter ends in 2019.
For both ground truth data sets, all locations of OWTs and
OWF substations, both readily deployed or under construc-
tion, were annotated by hand for the entire NSB and ECS.
Afterwards, the point locations were buffered with a radius of
100 m, which is the final area that defines a true positive lo-
cation. To generate the temporal ground truth data sets, about
15 % of the 2021Q2 ground truth locations were selected for
both the NSB and the ECS. For these selected locations, the
entire quarterly time series from 2016Q3 until 2021Q2 was
annotated by hand. An overview of the different ground truth
data sets and their number of annotated target objects is pro-
vided in Table 1.

During manual ground truth data labelling, all locations
and temporal intervals were visually examined and cross-
checked against different data sources. Therefore, Sentinel-
1 images were investigated in combination with additional
RGB (red–green–blue) images from Sentinel-2 and Google
Earth. Furthermore, public information concerning the de-
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Figure 4. Detection results of the CNN cascade for the North Sea basin. Panel (a) shows the OWFs detected by stage 1, and panel (b) shows
the OWT and OWF substations detected by stage 2 within the OWF boundaries of stage 1 in the German Bight.

Table 1. Overview of all ground truth data sets, their corresponding timestamp, and the number of objects in each class.

Site Timestamp Data set name OWT Construction Substation Open sea
∑

label

NSB 2021Q2 2021Q2_nsb 4016 253 85 – 4354
ECS 2021Q2 2021Q2_ecs 2208 574 62 – 2844
NSB 2019Q4 2019Q4_nsb 3571 172 78 – 3821
ECS 2019Q4 2019Q4_ecs 1208 214 47 – 1469
NSB 2016Q3–2021Q1 16Q3–21Q1_nsb 352–583a 59–47a 12–19a 227–1a 12 350b

ECS 2016Q3–2021Q1 16Q3–21Q1_ecs 40–311a 12–87a 3–11a 375–21a 8170b

a The numbers start in 2016Q3 and end in 20201Q1 of the ground truth time series. b The number of all hand-labelled classes for the entire ground
truth time series with 19 intervals.

ployment dynamics provided by official planning documents,
OWF operators, and news portals was examined, mainly to
validate the labels of the temporal ground truth data sets.

Following the manual generation of the ground truth data
sets, we calculated evaluation metrics to assess the automat-

ically derived DeepOWT data set. To provide consistent and
comparable metrics that take the different numbers of objects
for each test site into account, the metrics were calculated
separately in the first step. A predicted object is considered a
true positive (TP) when it is within the ground truth polygon
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Figure 5. Detection results of the CNN cascade for the South and East China seas. Panel (a) shows the OWFs detected by stage 1, and
panel (b) shows the OWTs, OWF substations, and such under construction detected by stage 2 within the OWF boundaries of stage 1 in the
Taiwan Strait.

(a 100 m radius around the object centre of a test label) and
the predicted point and test polygon have the same class; oth-
erwise, it is a false positive (FP). A wrongly omitted ground
truth polygon is considered a false omission (FO). With TP,
FP, and FO defined, precision Pr and recall Rc were calcu-
lated:

Pr=
TP

TP+FP
, (2)

Rc=
TP

TP+FO
. (3)

The harmonic mean of Pr and Rc summarises both metrics
as the F1 score:

F1= 2×
Pr×Rc
Pr+Rc

. (4)

Furthermore, all detections made by a CNN were sorted
by their prediction scores in descending order and indexed

with c = 1,2, . . .,C. From this ordered list, an all-point in-
terpolated precision–recall (PR) curve Printerp is generated:

Printerp = max
R̃c:R̃c≥Rc

Printerp(R̃c). (5)

Finally, the area under the all-point interpolated PR curve
describes the average precision, AP, as follows (Padilla et al.,
2021):

AP=
C∑
c=1

(Rc(c)−Rc(c− 1))×Printerp(Rc(c)), (6)

where Rc(0)= 0.
In order to report the overall metrics for all n sites or inter-

vals of a time series, the separately calculated metrics were
combined by macro-averaging:
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Figure 6. Deployment time series from 2016Q3 to 20201Q2 of an OWT. The first and third rows show quarterly Sentinel-1 median compos-
ites of the same detected bounding box over time. The second and fourth rows show the corresponding maximal swath profiles with detected
peaks. The automatically derived construction stages are given for each image. The abbreviations used in the figure are as follows: sea – open
sea/no turbine, const – under construction, and owt – offshore wind turbine.

Pravg =
1
n

n∑
i=1

Pri; (7)

Rcavg =
1
n

n∑
i=1

Rci; (8)

F1avg =
1
n

n∑
i=1

F1i . (9)

Thus, the macro F1avg score is defined as the arith-
metic mean over harmonic means following Opitz and Burst
(2019).

4 Results

The derived DeepOWT data set contains 9941 offshore wind
energy infrastructure locations on a global scale. Each de-
tected location is associated with 20 quarterly deployment
stages from July 2016 until June 2021, which provide infor-
mation about the deployment process and the object class
in order to further specify the offshore wind energy infras-
tructure type. The three potential classes are offshore wind
turbines, offshore substations, and offshore wind energy in-
frastructure under construction. If no infrastructure object is
present during a time interval, the class is set to open sea.
Figure 8 provides an overview of all detected objects and

their corresponding classes over the entire time series in the
DeepOWT data set from July 2016 until June 2021.

4.1 Evaluation results

Table 2 and Fig. 9 summarise the evaluation results of the
objects detected by the CNN cascade in the latest interval
(2021Q2). The evaluation results show that the performance
is stable across both study sites. Thus, the CNN models
trained on synthetic data can handle both test site character-
istics equally well, despite the more challenging conditions
in the ECS.

OWT detection is of the highest quality, with an F1avg
score of 99.2 %. Furthermore, the F1avg score for OWF sub-
stations is 91.1 %. Offshore wind energy infrastructure under
construction appears to be the most challenging class. This
can be explained by the fact that the first real-world appear-
ance of an OWT under construction can be restrained in me-
dian images when its onset is at the end of a quarter; thus,
few Sentinel-1 acquisitions contribute to the quarterly me-
dian composite. Moreover, due to the unspecific spatial pat-
tern of a single OWT under construction, they are falsely re-
jected because they are similar to small islands and other per-
sistent marine infrastructure. The PR curve in Fig. 9 supports
this interpretation: it clearly shows that it is always a true pos-
itive when an OWT under construction is recognised, result-
ing in high precision. However, the PR curve drops sharply
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Figure 7. Overview of the ground truth sites’ boundaries and the hand-labelled object locations and deployment stages for the second quarter
of 2021. Panel (a) shows the North Sea basin (NSB), and panel (b) shows the East China Sea (ECS).
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Figure 8. The temporal development of all 9941 objects and their corresponding class in the DeepOWT data set. The class and location in
the interval 2021Q2 were derived using a CNN; in all other intervals, the class was derived by the swath profile analysis (see Fig. 6).

Table 2. Overview of all calculated metrics for the CNN cascade detections on the 2021Q2 global Sentinel-1 median composite for each
class separately. The detections were evaluated with the 2021Q2_nsb (North Sea basin) and 2021Q2_ecs (East China Sea) ground truth data
sets.

Site Class GT TP FP FO Pr Rc F1 AP

North Sea basin OWT 4016 3996 1 20 1.0 0.995 0.997 0.995
North Sea basin Under construction 253 186 7 67 0.964 0.735 0.834 0.72
North Sea basin OWF substation 85 74 2 11 0.974 0.871 0.919 0.859
East China Sea OWT 2208 2168 16 40 0.993 0.982 0.987 0.981
East China Sea Under construction 574 393 7 181 0.982 0.685 0.807 0.678
East China Sea OWF substation 62 56 6 6 0.903 0.903 0.903 0.853

Pravg Rcavg F1avg

Combined OWT 6224 6164 17 60 0.996 0.988 0.992
Combined Under construction 827 579 14 248 0.973 0.71 0.821
Combined OWF substation 147 130 8 17 0.938 0.887 0.911

The abbreviations used in the table are as follows: GT – ground truth, TP – true positive, FP – false positive, FO – false omission, Pr –
precision, Rc – recall, AP – average precision, and avg – average.

at a high precision level around a recall level of 0.7. This
indicates false omissions, which can also be seen in Table 2.
However, the OWT under construction class still has an F1avg
score of 82 %.

Figure 10 shows the results of the time series evaluation.
For each class and interval, the F1 scores were calculated.
The boxplots on the right-hand side show their distribution
and the F1avg over the entire time series. The combined as-
sessment reports the F1avg in each period by averaging the
corresponding results from the two ground truth sites. The
results show that the time series analysis performs equally
well on both sites, similar to the performance of the CNN
cascade. OWTs have an F1avg of 98.1 %, OWF substations
have an F1avg of 97.6 %, and offshore wind energy infras-
tructure under construction has an F1avg of 81 %.

4.2 Data set comparison

As reported in Sect. 2, two openly accessible data sets ex-
ist that describe OWT locations: OWT records in the OSM

database and the GOWT v1.3 data set (Zhang et al., 2021).
As the GOWT v1.3 data set holds records until December
2019, all entries until 2019Q4 of the DeepOWT data set
were chosen to perform the comparison. Likewise, for OSM
records of OWTs, only those entries were queried that were
registered by 31 December 2019. The evaluation metrics for
all three data sets were calculated on the 2019Q4_nsb and
2019Q4_ecs ground truth data sets.

As OSM describes the locations of readily deployed
OWTs, only the “owt” class from DeepOWT was assessed.
The comparison in Fig. 11 shows the consistently better per-
formance of DeepOWT compared with entries of the OSM
database. It also becomes clear that the availability of OWT
entries in the OSM database differs significantly between
the two ground truth sites. In comparison, the records of the
DeepOWT data set, which were derived from remote sensing
data, show similar and consistently better performance met-
rics for both sites. This clearly shows the advantages of OWT
detection based on remote sensing data on a global scale.
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Figure 9. Precision–recall curves for the CNN cascade detections on the 2021Q2 global Sentinel-1 median composite for each respective
class. The detections were evaluated with the 2021Q2_nsb (North Sea basin) and 2021Q2_ecs (East China Sea) ground truth data sets. The
AP values from Table 2 are the corresponding areas under the interpolated precision–recall curves.

Figure 10. F1 scores for the quarterly intervals visualised as points, where the point size describes the number of ground truth labels. The
panels on the right (boxplots) describe the F1 time series for each class and provide the temporal F1avg over the entire time series. The data
were evaluated on the 16Q3–21Q1_nsb (North Sea basin) and 16Q3–21Q1_ecs (East China Sea) ground truth data sets.
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Figure 11. Comparison of the F1 score and false omissions from
the OSM and DeepOWT data sets for readily deployed OWT loca-
tions in 2019Q4. The data sets were evaluated with the 2019Q4_nsb
(North Sea basin) and 2019Q4_ecs (East China Sea) ground truth
data sets.

Figure 12. Comparison of the F1 score and false omissions from
the GOWT v1.3 and DeepOWT data sets for readily deployed
OWTs and OWTs under construction in 2019Q4. The data sets were
evaluated with the 2019Q4_nsb (North Sea basin) and 2019Q4_ecs
(East China Sea) ground truth data sets.

GOWT v1.3 contains OWT locations, which are classi-
fied as such when the construction of a turbine foundation
starts. However, it does not distinguish between OWTs un-
der construction and those completed. Therefore, the “under
construction” and “owt” classes of the DeepOWT data set
were combined to compare the results with the GOWT v1.3
records. The comparison in Fig. 12 shows that both remote-
sensing-based data sets perform consistently on both test
sites. Nevertheless, this study’s deep-learning-based Deep-
OWT data set performs better than GOWT v1.3, which has
been derived by applying a handcrafted morphologic ap-
proach for OWT detection.

4.3 Technical description

The DeepOWT (Deep-learning-derived Offshore Wind Tur-
bines) data set is introduced with version number 1.21.2: the
first number is increased when significant changes are made
to the methodology used to automatically detect the OWF
and OWT objects or when additional content is appended to
the data set, and the second and third numbers describe the
year and quarter of the latest interval recorded in the data set.
Thus, using this system, methodological and temporal infor-
mation is incorporated into the data set name and versioning.

The data set contains the automatically derived target loca-
tion and the previously described hand-labelled ground truth
data sets. Table 3 provides an overview of which data set
file contains which information. DeepOWT 1.21.2 describes
the deployment stages of OWT and OWF substations on a
global scale from 2016Q3 to 2021Q2. Each entry holds the
information of the deployment stage within 3 months of the
respective quarter of a year. A total of 9737 OWTs were de-
tected for the second quarter (Q2) of 2021. Of these, 8885
were readily deployed, and 852 were under construction. Ad-
ditionally, 204 OWF substations were detected for the same
period. The file size of DeepOWT is 4.1 MB.

All automatically detected and hand-labelled objects are
described as points or polygons using the WGS84 geographic
coordinate system. The spatial geometries were checked
topologically in order to identify duplicate entries, even if
no topological errors were found during this inspection. The
checked geometries were stored in .geojson files along with
the temporal deployment information as a corresponding at-
tribute table. The quarterly periods of the time series in the
attribute table of a .geojson file are labelled using the follow-
ing format: YyyyyQq, where yyyy is the year, and q is the
quarter of a year. For each location and time series record,
the object class or deployment stage is described as an inte-
ger between zero and three. Table 4 provides the mapping of
the corresponding semantic labels.

4.4 Potential data set applications

Due to the increasing expansion of OWFs at existing and
recently developed wind energy production sites, a holistic
understanding and detailed insights into the expansion pro-
cess are gaining importance (Fox et al., 2006; Gus, atu et al.,
2021; Johnson et al., 2022). The proposed DeepOWT data
set enables all stakeholders involved to access OWT deploy-
ment time series globally. Therefore, the division into the
pre-construction, intermediate, and post-construction phases
of the deployment process is particularly important. OWT
operators can use this information to develop optimisation
measures for the necessary construction process with a spe-
cific focus on environmental conditions. Furthermore, single
turbine locations on a global scale and under different con-
ditions enable operators to investigate OWFs beyond their
own facilities in order to optimise efficiency during the en-
ergy production phase and make better location decisions.

As OWFs often expand into areas that are already used as
fishing grounds or shipping routes or into areas that are, to
some extent, restricted areas like nature reserves or military
exclusion zones, potential conflicts have to be recognised
early and solved by integrated spatial planning towards mul-
tiuse concepts of marine space (Wever et al., 2015; Gusatu
et al., 2020). DeepOWT supports the investigation and docu-
mentation of OWF projects and potential conflicts in order to
apply the insights to upcoming projects in an early planning
phase.
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Table 3. Overview of the metadata of all files included in the DeepOWT data set.

File Extent Timestamp Periods Geometry owt const sub sea Entries

DeepOWT.geojson Global 2016Q3–2021Q2 20 Points X X X X 9941
gt_2021Q2_nsb.geojson NSB 2021Q2 1 Polygons X X X × 4354
gt_2021Q2_ecs.geojson ECS 2021Q2 1 Polygons X X X × 2844
gt_2019Q4_nsb.geojson NSB 2019Q4 1 Polygons X X X × 3821
gt_2019Q4_ecs.geojson ECS 2019Q4 1 Polygons X X X × 1469
gt_2016Q3-2021Q1_nsb.geojson NSB 2016Q3–2021Q1 19 Polygons X X X X 650
gt_2016Q3-2021Q1_ecs.geojson ECS 2016Q3–2021Q1 19 Polygons X X X X 430
gt_nsb_gridded.geojson NSB – – Polygons × × × × 1
gt_ecs_gridded.geojson ECS – – Polygons × × × × 1

The abbreviations used in the table are as follows: owt – offshore wind turbine, const – under construction, sub – offshore wind farm substation, and sea – open sea.

Table 4. Mapping of the key in integer format (as used in the data
set files) to semantic labels and their abbreviations.

Data set key Semantic label Abbreviation

0 Open sea sea
1 Under construction const
2 Offshore wind turbine owt
3 Offshore wind farm substation sub

The ecological impacts of OWFs are varied and have to
be differentiated using the spatiotemporal scale (Drewitt and
Langston, 2006; Wilson and Elliott, 2009; Bailey et al., 2014;
Bergström et al., 2014; Slavik et al., 2019). Thus the spatially
contextualised deployment time series in DeepOWT are an
important data source for investigations of how habitats and
migration routes of marine wildlife are impacted. For poli-
cymakers, DeepOWT offers a quick overview of OWF ex-
pansion and the ability to compare trends on multiple scales
in space and time (Rodrigues et al., 2015). Finally, Deep-
OWT can be used as a database to foster the exchange and
transfer of knowledge between different stakeholders, which
was found to be of high importance in offshore wind en-
ergy projects (Henderson et al., 2003; Fox et al., 2006; Wever
et al., 2015; Gusatu et al., 2020).

From a technical perspective, DeepOWT offers a direct
integration in analysis made with GIS software and spa-
tial databases (Cavazzi and Dutton, 2016; Gusatu et al.,
2020). The lightweight file size and structure of OWT loca-
tions, which summarise petabytes of underlying remote sens-
ing images, enable fast processing, even on mobile devices.
Thus, the DeepOWT data set can be used in computationally
heavy GIS analysis as well as in field campaigns to enrich
on-site mapping information.

5 Data availability

The DeepOWT data set is freely available from
https://doi.org/10.5281/zenodo.5933967 (Hoeser and

Kuenzer, 2022b). Additionally, the Coastal Explorer
(https://coastalx.eoc.dlr.de/, last access: 3 August 2022),
made with the UKIS Frontend library (Boeck et al., 2022),
provides an interactive overview of the derived OWF bound-
aries and offshore wind energy infrastructure locations along
with their temporal deployment dynamics.

6 Conclusions

This study introduced the DeepOWT (Deep-learning-derived
Offshore Wind Turbines) data set, the first openly accessible
data set that provides offshore wind turbine (OWT) locations
along with their quarterly deployment stages on a global
scale. DeepOWT is derived from the data provided by the
Sentinel-1 spaceborne C-band radar mission. All available
acquisitions along the global coastline between July 2016
and June 2021 were used to build quarterly median com-
posites. The latest median composite from 2021 was investi-
gated using deep-learning-based object detection. A cascade
of two convolutional neural networks (CNNs) subsequently
detects potential offshore wind farm (OWF) locations and
single OWT and OWF substations within these areas. The
two CNNs were trained entirely on synthetic training data
generated using the novel approach for Synthetic data gen-
eration in Earth Observation, SyntEO (Hoeser and Kuenzer,
2022a). Based on the detections of the CNN cascade, a quar-
terly time series was derived that describes the deployment
dynamics for every offshore wind energy infrastructure loca-
tion between 2016 and 2021.

The data set covers 8885 OWTs, 852 platforms under con-
struction, and 204 OWF substations for the latest period, the
second quarter of 2021. The majority of OWTs are located
in the North Sea basin and the East and South China seas.
With equally good performance on the two ground truth data
sets in the North Sea basin and East China Sea, the qual-
ity of the data set is consistent over time and space. Deep-
OWT securely describes large OWFs far off the coast as well
as small OWFs in complex near-coastal environments. The
DeepOWT data set contains nine .geojson files: one file with
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the predicted offshore wind energy infrastructure locations
and deployment time series, and eight additional files that
describe the ground truth data. With a file size of 4.1 MB,
DeepOWT is easily portable and ready to use in GIS soft-
ware.

DeepOWT contributes to a holistic understanding as well
as detailed insights into the ongoing development of the off-
shore wind energy sector, which is at the beginning of a
massive expansion phase on a global scale. Furthermore,
DeepOWT proves the possibility of automatically detecting
small-scale objects within large Earth observation archives
of radar acquisitions without using auxiliary data by apply-
ing state-of-the-art deep learning methods. With the continu-
ation of the Sentinel-1 mission secured, the future detection
of OWT deployment time series on a global scale is possible.

Appendix A: Acronyms and abbreviations

AP Average precision GRD Ground range detected
API Application programming interface GT Ground truth
CFAR Constant false alarm rate IoU Intersection over Union
CNN Convolutional neural network IW Interferometric wide
COP26 United Nations Framework Convention on NSB North Sea basin

Climate Change, Conference Of the Parties OSM Open Street Map
DeepOWT Deep-learning-derived Offshore Wind Tur-

bine data set
OWF Offshore wind farm

DoG Difference of Gaussians OWT Offshore wind turbine
EC European Commission Pr Precision
ECS East China Sea PR Precision–recall
ESA European Space Agency Rc Recall
EU European Union ResNet-50 Residual network with 50 convolutional

layers
F1 Harmonic mean of precision and recall RGB Red–green–blue
Faster R-CNN Faster region-based convolutional neural

network
RPN Region proposal network

FO False omission SAR Synthetic Aperture Radar
FP False positive SyntEO Synthetic data generation for Earth Obser-

vation
GEE Google Earth Engine TP True positive
GIS Geographic information system UTM Universal Transverse Mercator
GOWT Global offshore wind turbine data set by

Zhang et al. (2021)
VH Vertical sent–horizontal received

GPU Graphics processing unit WGS World Geodetic System
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