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Abstract. Photovoltaic (PV) technology, an efficient solution for mitigating the impacts of climate change, has
been increasingly used across the world to replace fossil fuel power to minimize greenhouse gas emissions. With
the world’s highest cumulative and fastest built PV capacity, China needs to assess the environmental and social
impacts of these established PV power plants. However, a comprehensive map regarding the PV power plants’
locations and extent remains scarce on the country scale. This study developed a workflow, combining machine
learning and visual interpretation methods with big satellite data, to map PV power plants across China. We
applied a pixel-based random forest (RF) model to classify the PV power plants from composite images in 2020
with a 30 m spatial resolution on the Google Earth Engine (GEE). The resulting classification map was further
improved by a visual interpretation approach. Eventually, we established a map of PV power plants in China by
2020, covering a total area of 2917 km2. We found that most PV power plants were situated on cropland, followed
by barren land and grassland, based on the derived national PV map. In addition, the installation of PV power
plants has generally decreased the vegetation cover. This new dataset is expected to be conducive to policy man-
agement, environmental assessment, and further classification of PV power plants. The dataset of photovoltaic
power plant distribution in China by 2020 is available to the public at https://doi.org/10.5281/zenodo.6849477
(Zhang et al., 2022).

1 Introduction

Solar power is the most available renewable energy source,
with great potential to replace fossil fuels to reduce green-
house gas (GHG) emissions and mitigate climate change
(Nemet, 2009; Creutzig et al., 2017). Photovoltaic (PV) tech-
nology can convert solar energy directly into electricity with
large PV arrays. With the development of PV technology
and the decline in the cost of PV power generation in re-
cent years, the number of PV power plants has been ris-
ing fast (Zou et al., 2017). China’s PV industry leads the
world regarding the cumulative installed and newly installed

capacity. According to the National Energy Administration
of China, the cumulative installed capacity of PV power in
China had reached 253 GW (gigawatts) by the end of 2020,
with 48.2 GW being newly installed in 2020. As China aims
to achieve a carbon emissions peak before 2030 and car-
bon neutrality before 2060, it is expected that PV power
generation will keep growing rapidly across China. As the
development of PV power plants requires a large amount
of land (Capellán-Pérez et al., 2017), knowing the distribu-
tions of PV power plants is crucial for evaluating the eco-
environmental effects and predicting the power generation
of PV power plants in China (Taha, 2013; Hernandez et al.,
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2014, 2015; Li et al., 2018; Grodsky and Hernandez, 2020).
However, data regarding the distributions of PV power plants
remain scarce in China, which has greatly hindered the na-
tional policy management and environmental assessment of
PV power plants in China.

Remote sensing techniques can acquire the features of dif-
ferent ground objects from images in spectral, temporal, and
spatial dimensions globally (Zhu et al., 2012). A few stud-
ies have mapped the PV panels or power plants by using
manually annotating (Bradbury et al., 2016; Dunnett et al.,
2020) and machine learning methods with various remote
sensing imagery (Malof et al., 2016a, b, 2017; Zhang et al.,
2021). Machine learning algorithms can classify ground fea-
tures with high accuracy by incorporating various input pre-
dictor data from remote sensing imagery without making as-
sumptions about the data distribution (Maxwell et al., 2018).
While machine learning methods have improved the effi-
ciency in identifying PV power plants, mapping PV power
plants is still challenging on a continental scale, which is
limited by the computing resources and accuracy in complex
environments.

Training an applicable machine learning model requires
massive labeled training samples to cover as much system
parameter space as possible. PV power plants are built in
various landscapes, including deserts, mountains, coasts, and
lakes (Sahu et al., 2016; Al Garni and Awasthi, 2017; Ham-
moud et al., 2019). The limited labeled data are insufficient
to cover most of the spectral parameter space of PV power
plants in complicated geographical environments. Thus, ma-
chine learning models will generate unavoidable misclassi-
fication when identifying PV power plants. Especially on a
continental scale, the model’s inaccuracy will lead to many
misclassified PV areas because the background non-PV area
is thousands of times larger than the actual PV area. Since
the PV power plants will not change in a short time, visual
interpretation provides a potential way to filter out misclassi-
fications from machine learning results.

Deep learning models, including convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and resid-
ual networks (ResNet; He et al., 2016; Schmidhuber, 2015;
Krizhevsky et al., 2012), have also been applied to map the
PV power plants in the United States (Yu et al., 2018), China
(Hou et al., 2019), and worldwide (Kruitwagen et al., 2021).
As a branch of machine learning, deep learning is charac-
terized by neural networks (NNs) involving several to hun-
dreds of layers that exploit feature representations learned
exclusively from data. Deep learning models can accurately
identify PV power plants from remote sensing data by devel-
oping in-depth information without hand-crafting features,
but these tasks need extensive computation resources. For ex-
ample, Kruitwagen et al. (2021) used deep learning models
and over 106 CPU hours, 20 000 GPU hours, 71 MWh, and
approximately 2 months in real time to map the PV power
plants worldwide with remote sensing imagery. It goes with-
out saying that these tasks usually require additional storage

resources to store an enormous amount of remote sensing
imagery. As a result, updating or modifying such PV maps
derived from deep learning methods for the regional places
of interest such as China is infeasible for researchers in most
of the countries who do not have access to supercomputing
facilities.

Cloud computing platforms facilitate classification tasks
on a global scale with shared data and computing resources.
The Google Earth Engine (GEE) is a cloud geospatial com-
puting platform that supports freely available petabyte re-
mote sensing data, multiple machine learning algorithms,
and shared computing resources (Gorelick et al., 2017). With
GEE’s support, researchers in the remote sensing community
have completed numerous classification works on a planetary
scale (Deines et al., 2019; Li et al., 2019; Gong et al., 2019,
2020; Xie et al., 2019; Mao et al., 2021).

In this study, we integrated the advantage of cloud comput-
ing, machine learning, and visual interpretation to map the
PV power plants in China in 2020. We used GEE to acquire
the preliminary classified result using a random forest model
from Landsat 8 imagery. We further refined the classified re-
sults by visual interpretation. Based on the final filtering re-
sult, we also investigated the stats of the PV power plants
within different climatic and geographic areas. The proposed
approach in this study is easy to repeat, and the result will
help future policymaking and environmental assessment for
PV power facilities. A great number of labeled PV power
plant samples across China derived from visual interpreta-
tion could offer valuable data for future studies to update and
improve maps of PV power plants.

In summary, the objectives of this study are to (1) build a
workflow to map the PV power plants on a continental scale
with Landsat imagery on GEE, (2) produce a fine-resolution
map of PV power plants in China, and (3) analyze the distri-
bution characteristics of PV power plants in China.

2 Materials and methods

2.1 Machine learning classification

2.1.1 Landsat 8 surface reflectance imagery

This study used the Landsat 8 (L-8) surface reflectance (SR)
product with a 30 m spatial resolution. The L-8 product has
been atmospherically and topographically corrected and is
accessible on GEE. We removed the pixels contaminated by
clouds and shadows in each image using the pixel quality
control bands. We further composited L-8 image datasets us-
ing the median value of six reflective bands during a spe-
cific period. The composite image was robust against ex-
treme values and provided enough information about the par-
ticular period (Flood, 2013). We composited the images of
autumn 2020 (September to November) and the whole year
of 2020 (January to December) over China, respectively. The
composite image in autumn (C1) has the advantage of fewer
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Figure 1. The composite image from Landsat 8 imagery during autumn 2020 (background) and PV samples of training and validation (red
regions) in this study.

Table 1. Training and validation dataset.

Set PV for training Non-PV for training PV for validation Non-PV for validation

C1 14 408 34 780 4874 11 850
C2 15 022 37 605 4978 12 257

Note: composite image one (CS1) is composited from Landsat images during September–November 2020. Composite
image two (CS2) is composited from Landsat images during January–December 2020.

clouds, snow, and vegetation in China compared to the im-
age from other seasons. The composite image of the whole
year (C2) was involved in nearly 4 times as many images as
the C1, so the C2 is less affected by the contaminated pixels
than C1 but has less timeliness. Therefore, we used C2 as a
substitute in the regions where the quality of C1 was poor.

2.1.2 Random forest classification

We used a pixel-based random forest (RF) algorithm on GEE
to map the PV power plants over China (Zhang et al., 2021).
The RF classifier is an ensemble classifier that uses a set of
decision trees to predict classification or regression with the
advantages of high precision, efficiency, and stability (Belgiu
and Drăguţ, 2016). The RF classifier has also been proven
to be better than other machine learning classifiers on GEE
(Zhou et al., 2020; Phalke et al., 2020) for mapping range-
lands and croplands. For the RF classifier, we set the number

of trees to 500 and left the rest of the parameters at GEE’s de-
fault. Compared with the object-based model classification,
the pixel-based model classification uses the raw resolution
pixel and does not require further segmentation of the classi-
fied image.

2.1.3 Training and validation samples

The RF classifier is sensitive to the sampling design (Bel-
giu and Drăguţ, 2016). Suitable training samples are cru-
cial for an RF model’s classification accuracy and sta-
ble performance. We collected and labeled samples as PV
and non-PV regions, respectively, hereafter shortened to PV
and NPV. We primarily collected the PV samples from Dun-
nett’s dataset, which is a global solar plants dataset annotated
by volunteers (Dunnett et al., 2020). The total area of the
PV power plants in China is about 897 km2, based on Dun-
nett’s dataset.
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Figure 2. The visual interpretation examples (six sites) from (a) Landsat 8, (b) Sentinel-2, and (c) Google Earth RGB true color images. The
green dashed line is the boundary of the PV panels. © Google Earth 2021.
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Figure 3. The flowchart of mapping the PV power plant in China.

We manually modified this dataset with Google Earth’s
background to ensure that the PV samples are located inside
the PV power plants. We found that the labeled PV power
plants in Dunnett’s dataset are rarely found in eastern China,
which will limit our model’s performance to identify the
PV power plant in similar areas. With high-resolution Google
Earth images of 2017, we further enriched the training
dataset by manually selecting and labeling PV power plants
over regions of eastern China, where PV power plants are
rarely labeled in Dunnett’s dataset. The improved training
dataset aims to ensure that the labeled data covered most
of the parameter space of PV power plants in China. We
stored all the PV samples as polygon vectors. The area of the
modified labeled PV polygons was 1121 km2. We randomly
sampled points within the polygons with a balanced quantity
from humid and arid regions (Fig. 1).

We collected the NPV samples from adjacent regions of
the PV power plant region within 5 km buffer regions, includ-
ing the samples from manually selected typical land types
and the samples from the whole of China, respectively. We
prepared 20 000 points labeled as PV and 50 000 points la-
beled NPV in this study. At last, after filtering out the low-
quality pixels, we randomly chose 75 % of the total points
as the training set and the left 25 % of the total points as the
validation set (Table 1).

2.1.4 Calculation of variables

We collected nine variables from the Landsat 8 SR images
data, including six original bands and three calculated in-
dexes (Zhang et al., 2021). We used these variables to train
machine learning models to distinguish the PV and NPV re-
gions. The six original bands included blue (B2), green (B3),
red (B4), near-infrared (B5), and two shortwave infrared
bands (B6 and B7) from the L-8 images. The three in-
dices included the normalized difference vegetation index
(NDVI; Tucker, 1979), the normalized difference built-up in-
dex (NDBI; Zha et al., 2003), and the modified normalized
difference water index (MNDWI; Xu, 2006).

2.1.5 Classification accuracy assessment

We evaluated the pixel-based RF model by using a valida-
tion set. By comparing the confusion matrix of categorized
and labeled points in the validation set, we used the kappa
coefficient, overall accuracy, producer’s accuracy, and user’s
accuracy to assess the model’s performance with the valida-
tion set (Congalton, 1991). The kappa coefficient calculated
from the confusion matrix is widely used to check consis-
tency and evaluate model performance. The overall accuracy
is measured to examine the overall efficacy of the model. The
producer’s accuracy indicates the proportion of truth samples
correctly judged as the target class. The user’s accuracy indi-
cates the proportion of samples judged as the target class on
the classification map presented as truth samples.
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Figure 4. The examples of different steps (a1–d1) in true color of a Landsat 8 composite image in autumn 2020. (a2–d2) The random forest
classification result in red. (a3–d3) The result in pink after filtering, morphological operations, and vector converting. (a4–d4) The result in
blue after manually selecting and improving.

2.2 Visual interpretation

2.2.1 Filter and morphological operations

By applying the RF classification, we found pixels catego-
rized as PV region and NPV region over entire China. We
then filtered the pixels by topography. The PV power plants
are not suitable for being built in locations with large slopes

and shady slopes (Al Garni and Awasthi, 2017; Aydin et al.,
2013). We calculated slope and hillshade from the Shuttle
Radar Topography Mission (SRTM) with 30 m spatial reso-
lution (Farr et al., 2007). We calculated the hillshade by set-
ting azimuth as 180◦ and elevation angle as 45◦. We filtered
the pixels where the slope was over 30◦ and the value of the
hillshade was less than 150.
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Table 2. The attributes of the PV power plants in our dataset.

Attribute Label in dataset Data source Data spatial
resolution

Calculated method Periods

Average elevation elev SRTM Farr et al. (2007) 30 m Mean value within an object 2000

Annual mean temperature temp ERA5 Copernicus
Climate Change
Service (2017)

0.25◦ Value from object centroid 1990 to 2020

Annual precipitation precip ERA5 0.25◦ Value from object centroid 1990 to 2020

Population density popu WorldPop Tatem (2017) 100 m Mean value from object
(100 km buffer)

2020

Annual mean EVI in 2013 EVI 2013 Landsat 8 EVI Roy et al. (2014)
Huete et al. (2002)

30 m Mean value within an object 2013

Annual mean EVI in 2020 EVI 2020 Landsat 8 EVI 30 m Mean value within an object 2020

Land cover type landcover ESA WorldCover Zanaga (2021) 10 m Mode value from object
(2 km buffer)

2020

Table 3. Validation parameters for the model trained model with different variables sets.

Image Kappa OA (%) UA NPV (%) UA PV (%) PA NPV (%) PA PV (%)

C1 0.878 95.04 95.51 93.82 97.59 88.83
C2 0.886 95.39 95.96 93.89 97.62 89.89

Note: kappa coefficient is shown as Kappa; overall accuracy is OA; producer’s accuracy is PA; user’s accuracy is UA.

In pixel-based classification, sudden disturbances in the
image signal and different objects with the same spectrum
or the same objects with a different spectrum can cause a
salt-and-pepper noise (i.e., impulse noise) which presents as
image speckles. We filtered categorized PV pixels that con-
nect fewer than 9 pixels to neighbors to reduce the salt-and-
pepper noise. Additionally, the edge of the PV power plants
mixed with roads or other PV facilities that are not catego-
rized as PV regions should be part of the PV power plants.
We then used morphological operations on the GEE platform
to dilate the PV pixel clusters. The morphological operations
included one round max filter and one round mode filter with
a circle kernel of 1 pixel radius to conduct spatial filtering.

2.2.2 Visual interpretation

We further convert the clusters of PV pixels into polygo-
nal vectors on GEE. We used visual interpretation to iden-
tify all polygons categorized as the PV power plants by the
RF model. To meet the visual interpretation needs, we cal-
culated each polygon’s area and filtered the PV power plants
with fewer than 0.04 km2, which equaled 45 adjacent pixels.
According to Kruitwagen’s dataset, PV power plants over
0.04 km2 account for 94.2 % of the total area of PV power
plants in China (Kruitwagen et al., 2021).

With QGIS software (http://www.qgis.org/, last ac-
cess: 11 August 2022) and the GEE plugin (https://gee-
community.github.io/qgis-earthengine-plugin/, last access:

11 August 2022), we filter the PV polygons with visual in-
terpretation based on their sizes, shapes, color, and texture
with background true color images from Landsat 8, Sentinel-
2, and Google Earth (Fig. 2). We first collected the PV power
plants from the classified result of CS1, which stood for
the image in autumn of 2020, and we then collected the
PV power plants from the result of CS2, where clouds still
contaminate CS1.

2.3 Dataset organization and statistical analysis

We show a flowchart of this study in Fig. 3. We also mapped
some regions containing PV power plants as examples to
show the changes in different steps in Fig. 4.

We built a dataset of PV power plants in China. We stored
the PV power plants as polygon objects with a shapefile for-
mat (Falge et al., 2017). Since PV power plants are not en-
tirely adjacent, we group the PV power plants within 10 km
for further analysis. We calculated area, average elevation,
annual mean air temperature, cumulative yearly precipita-
tion, population density, annual mean enhanced vegetation
index (EVI), and land cover type for each PV power plant
(Table 2). All the datasets are available on GEE.

https://doi.org/10.5194/essd-14-3743-2022 Earth Syst. Sci. Data, 14, 3743–3755, 2022
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Figure 5. (a) The distribution and the heat map of the PV power plants in China. (b) The areas of PV power plants in each province in China.
(c) The areas of PV power plants by the land cover in China.

3 Result

The map indicating the distributions of the PV power plants
in China is shown below (Fig. 5a). The PV power plant
mapped in this study was 2917 km2 by the autumn at the
end of 2020. In the machine learning classification process,
the result showed that the model with the dataset of CS1
had a comparable result with the model with the dataset of
CS2 (Table 3). The kappa coefficient (kappa), overall accu-
racy (OA), user’s accuracy (UA) of PV and non-PV (NPV),
and producer’s accuracy (PA) of PV and non-PV were
0.878, 95.04 %, 95.51 %, 93.82 %, 97.59 %, and 88.83 % for
the CS1. The kappa, OA, UA of PV and NPV, and PA of PV
and NPV were 0.886, 95.39 %, 95.961 %, 93.89 %, 97.62 %,
and 89.89 % for the CS2, respectively (Table 3).

The result showed that the top three provinces for in-
stalling PV power plants were Qinghai, Xinjiang, and Inner
Mongolia, respectively (Fig. 5b). The result based on the land
cover showed that most PV power plants were situated on
cropland, followed by barren land and grassland (Fig. 5c).

We have further counted the distributions of PV power
plants by temperature, precipitation, elevation, population
density, and location. From the result, many PV power plants
are located in China’s arid and alpine region, where solar en-
ergy resources are plentiful, precipitation is low, vegetation
is sparse, population density is low, and elevation is relativ-
ity high (Fig. 6). Additionally, some PV power plants are lo-
cated in the industrially developed eastern coastal provinces
of China, where precipitation is high, density population is
high, and elevation is low. This distribution result also shows
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Figure 6. The area of PV power plants is counted by (a) temperature, (b) precipitation, (c) elevation, (d) population density, (e) latitude, and
(f) longitude.

two tendencies in China’s site selection of PV power plants.
One tendency is to install PV power plants in areas with suit-
able natural conditions but less power demand. The other ten-
dency is to install PV power plants in the areas with more
local energy demand.

The installation of PV power plants affects the local veg-
etation under different climate conditions (Zhang and Xu,
2020; Nghiem et al., 2019; Liu et al., 2019). We calcu-

lated and compared each PV power plant’s annual mean EVI
(larger than 0) in 2013 and 2020 from Landsat 8 images. By
the record of the National Energy Administration of China,
the cumulative installation of the PV capacity is 19.4 GW by
2013 and 252.8 GW by 2020, which indicates that over 92 %
of PV power plants are installed after 2013. We compared
the EVI values in 2013 and 2020 and discovered the EVI
values of PV power plants in 2020 were strongly and posi-
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Figure 7. EVI values of PV power plants in 2020 vs. those in 2013 across China.

tively linked with the EVI values in 2013, of which the linear
regression with area weight (p < 0.01) showed that the es-
timated slope was 0.594 and intercept was 0.0312 (Fig. 7).
From the linear regression result, we found that the installa-
tion of PV power plants generally decreased the EVI in re-
gions of high vegetation cover. In contrast, in the hyper-arid
regions, where EVI was lower than 0.07, the installation of
PV power plants slightly increased the EVI values.

4 Data availability

The dataset of the photovoltaic power plant distribu-
tion in China by 2020 and the training set are stored
in a shapefile format and are available to the public
at https://doi.org/10.5281/zenodo.6849477 (Zhang et al.,
2022).

5 Discussion and conclusion

In this study, we have successfully established a dataset for
PV power plants with a total area of 2917 km2 in China until
2020. To our knowledge, our dataset is the latest and most
complete public dataset for the spatial extent of PV power
plants in China. Our method integrates the efficiency of ma-
chine learning and the accuracy of visual interpretation. The
two pixel-wise RF models performed well, with the pro-
ducer’s accuracy being over 84 % and overall accuracy being
over 96 %.

PV power plants are a mixture of PV panels and their
occupied lands, which often cause challenges in mapping
PV power plants. The PV power plants are more likely to
have similar spectral features to other objects, such as plastic-
covered sheds and biological soil crust. PV power plants in

different regions have different PV panel spacing and tilt an-
gles due to the sunlight incident angle and terrain, which
could cause spectral variability (Yadav and Chandel, 2013; Ji
et al., 2021). The model trained by large and scattered train-
ing samples ensures that most PV power plants are success-
fully identified in China under various conditions.

Nevertheless, there are still some omission errors in the
RF classification result. Misclassified PV regions with spo-
radic distribution among the PV power plants will not im-
pact the morphological operations and visual interpretation
results. However, some PV power plants, which are of the
lower density of PV panels, would be misclassified as non-
PV objects. In particular, these PV power plants situated in
mountainous areas typically have unique installation spacing
and installation angles for their solar panels. Additionally,
the mountainous terrain also impacts the reflectance of the
PV power plants (Wen et al., 2018). These PV power plants
were thus mainly missed in our study but only took up a small
portion of the total number.

A large number of misclassified PV power plants due to
commission errors in the machine learning step still exists in
China. After transferring the pixel clusters to objects of vec-
tors, we have spent dozens of hours on visual interpretation
work to filter the misclassification regions with commission
error.

In the previous study, Dunnett et al. (2020) provided
a harmonized solar plants dataset obtained from an open-
access map containing PV power plants in China. The to-
tal area of PV power plants in China from Dunnett’s dataset
is 897.4 km2, of which 842 km2 have spatially intersected
with our dataset. The solar panel areas not intersected are
55.4 km2. Some of them are too small for our method to rec-
ognize. The comparison between the two datasets suggested
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that the dataset relying on voluntary annotation is incomplete
and with no guarantee of timely updates in China. We also
compared our result with Kruitwagen’s dataset (Kruitwagen
et al., 2021), which was classified by deep learning methods.
The total area of PV power plants in China from Kruitwa-
gen’s dataset is 2169.8 km2 by 2018, of which 1873.5 km2

have spatially intersected with our dataset. The PV power
plants in Kruitwagen’s dataset that do not intersect with our
dataset are 296.3 km2, some of which are too small to be
identified by our method and some of which are misidenti-
fied in Kruitwagen’s dataset.

Our dataset could provide the training samples for re-
searchers to identify PV power plants in the future. We calcu-
lated each PV power plant’s geographical and climatic condi-
tions based on the PV map and auxiliary data. The PV power
plants in China are more likely to be installed in suitable
natural conditions but with low power demand or in areas
with high local energy demand. We also found that installing
PV power plants will generally decrease the vegetation. Our
dataset is conducive to policy management and environmen-
tal assessment.

Author contributions. XZ and MX designed the research and
performed the analysis. XZ wrote the paper. XZ and SW performed
the analysis. ZX edited and revised the paper. XZ, SW, and YH pre-
pared the data.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This research has been supported by the Na-
tional Key Research and Development Program of China (grant nos.
2017YFA0604300 and 2018YFA0606500).

Review statement. This paper was edited by Hanqin Tian and re-
viewed by three anonymous referees.

References

Al Garni, H. Z. and Awasthi, A.: Solar PV power plant
site selection using a GIS-AHP based approach with ap-
plication in Saudi Arabia, Appl. Energ., 206, 1225–1240,
https://doi.org/10.1016/j.apenergy.2017.10.024, 2017.

Aydin, N. Y., Kentel, E., and Duzgun, H. S.: GIS-based site selec-
tion methodology for hybrid renewable energy systems: A case
study from western Turkey, Energ. Convers. Manage., 70, 90–
106, 2013.
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