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Abstract. Snow dynamics are crucial in ecosystems, affecting radiation balance, hydrological cycles, biodi-
versity, and human activities. Snow areas with notably diverse characteristics are extensively distributed in
China, mainly including Northern Xinjiang (NX), Northeast China (NC), and the Qinghai–Tibet Plateau (QTP).
Spatiotemporal continuous snow monitoring is indispensable for ecosystem maintenance. Nevertheless, the
formidable challenge of cloud obscuration severely impedes data collection. In the past decades, abundant binary
snow cover area (SCA) maps have been retrieved from moderate resolution imaging spectroradiometer (MODIS)
datasets. However, the integrated normalized difference snow index (NDSI) maps containing additional details
on snow cover extent are still extremely scarce. In this study, a recent 20-year stretch seamless Terra–Aqua
MODIS NDSI collection in China is generated using a Spatio-Temporal Adaptive fusion method with erroR cor-
rection (STAR), which comprehensively considers spatial and temporal contextual information. Evaluation tests
confirm that the cloud-free STAR NDSI collection is superior to the two baseline datasets. The omission error
decreased by 10 % in NX compared to the snow cover extent product, and the average correlation coefficient
increased by 0.11 compared to the global cloud-gap-filled MODIS NDSI product. Consequently, this collection
can serve as a basic dataset for hydrological and climatic modeling to explore various critical environmental
issues in China. This collection is available from https://doi.org/10.5281/zenodo.5644386 (Jing et al., 2021).

1 Introduction

Snow is a fundamental component of the cryosphere,
strongly interacting with global energy budgets and hydro-
logical dynamics (Hall et al., 1995). Snow cover has a re-
markable impact on the Earth’s radiation balance due to
its highly reflective nature, thus generating feedback in the
global climate system (Konzelmann and Ohmura, 1995).
Up to one-sixth of the world’s population relies on melt-
water from glaciers and snowpacks for drinking, irrigation,
hydropower generation, and industrial production (Barnett
et al., 2005). Therefore, snow dynamics have a profound
impact on climate change and human activities. The snow
cover extent of the Northern Hemisphere has continued to
decrease since the mid-20th century (Pachauri and Meyer,
2014). However, regional-scale snow variations in different

environmental conditions present mixed trends due to the
strong sensitivity of snow cover to climate change (Bormann
et al., 2018). The snow cover regions in China are extensively
distributed with remarkable spatial and temporal heterogene-
ity (Wang et al., 2018), mainly in Northern Xinjiang (NX),
Northeast China (NC), and the Qinghai–Tibet Plateau (QTP).
Therefore, accurate snow cover acquisition in China is signif-
icant for snow pattern analysis, water resource management,
climate change monitoring, etc.

China has conducted large-scale observations of snow
parameters since the 1950s through meteorological sta-
tions, providing a valuable database for long-term snow-
related studies. However, it is difficult to accurately de-
pict the snow characteristics in China, especially in QTP
which is dominated by patchy and shallow snow, due to the
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sparsely and unevenly distributed traditional in situ obser-
vations. Satellite-based remote sensing is a prominent alter-
native for continuous snow cover monitoring at meso- and
macroscales. Moderate resolution imaging spectroradiome-
ter (MODIS) snow cover datasets are extensively used for
various hydrological and climatological applications due to
their relatively high spatial and temporal resolutions. At
present, the Collection 5 (C5) suite providing snow cover
area (SCA) and fractional snow cover (FSC) data, and the
Collection 6 (C6) suite providing normalized difference
snow index (NDSI) data are the most appealing representa-
tives (Riggs and Hall, 2015). However, the main constraint
of optical remote-sensed datasets, including MODIS C5 and
C6 snow cover datasets, is cloud persistence.

Numerous algorithms have been proposed in the past
decades to improve the spatiotemporal continuity of MODIS
C5 snow cover datasets. Cloud-removal algorithms can be
categorized into single-source feature fusion methods and
multi-source data fusion methods considering data sources.
Single-source feature fusion methods fill the gaps based
on homologous contextual information, relying on the spa-
tiotemporal correlations of snow features. These methods
have evolved from the classical Terra and Aqua combination
(TAC; Parajka and Bloschl, 2008), multi-day combination
(MDC; Gafurov and Bardossy, 2009), and snow-line method
(SNOWL; Parajka et al., 2010) to complex spatiotemporal
union methods. For example, Gafurov et al. (2015) proposed
a four-step method to generate cloud-free MODIS SCA
maps, successively combining TAC, neighborhood filtering,
MDC, and a classification tree. Dariane et al. (2017) sug-
gested the aggregation of TAC, MDC, SNOWL, and neigh-
borhood filtering with elevation constraints to fill the cloud-
covered gaps. Li et al. (2017) developed an adaptive spa-
tiotemporal weighted method to reclassify the cloudy pixels.
These methods for binary SCA mapping have achieved sat-
isfactory cloud-removal effectiveness and accuracy. Multi-
source data fusion methods (Akyurek et al., 2010; Brown
et al., 2010; Chen et al., 2018; Gafurov et al., 2015; Gao
et al., 2011; He et al., 2017) maximize the complementar-
ity among heterogeneous datasets from optical, microwave,
and/or station measurements. This type of method is effec-
tive for filling the continuous gaps in space and time when
the supplementary data are of high quality in the cloud-
obscured regions (Li et al., 2019). In addition to traditional
methods, learning-based methods are increasingly applied to
snow cover mapping due to their satisfactory capabilities for
nonlinear expressiveness (Yuan et al., 2020). The SCA and
FSC maps can be generated by exploring the relationship
between snow coverage and MODIS reflectances combined
with ancillary factors, including NDSI, temperature, vegeta-
tion, and terrain parameters. As a representative of learning-
based methods, artificial neural networks have been success-
fully utilized to model the relationship (Dobreva and Klein,
2011; Hou and Huang, 2014; Moosavi et al., 2014; Çiftçi et
al., 2017; Kuter, 2021). Such methods are relatively uncer-

tain but promising because the accuracy substantially relies
on the quantity and quality of training data.

Increasing studies have moved to the MODIS C6 suite
since its release in 2016. In C6 data, snow cover is reported as
NDSI rather than SCA and FSC. The NDSI is an index that
is related to the snow presence in a pixel and is a more accu-
rate description of snow fraction than SCA and FSC (Riggs
and Hall, 2015; Riggs et al., 2017). The clear-sky accuracy
of C6 NDSI datasets is robust compared to higher-resolution
remote-sensed images (such as Landsat and Sentinel series)
and in situ measurements (Crawford, 2015; Zhang et al.,
2019; Aalstad et al., 2020). As a basic dataset, it has the
significant advantage of allowing users to more accurately
determine SCA or FSC for their particular study areas and
application requirements (Hall et al., 2019). For example,
several optimal classification thresholds for SCA (Huang et
al., 2018; Malmros et al., 2018; Tong et al., 2020) and spe-
cially tuned mapping methods for FSC (Kuter et al., 2018;
Hou et al., 2020; Zhang et al., 2021) were designed to gen-
erate regional SCA and FSC datasets from NDSI snow cover
datasets, which were superior to the globally harmonized
algorithms in C5 data. However, severe cloud contamina-
tion also limits the application of NDSI datasets, resulting
in many studies only considering cloud-free areas (Kuter et
al., 2018; Malmros et al., 2018; Tong et al., 2020; Hou et
al., 2020; Zhang et al., 2021). Therefore, a cloud-free NDSI
dataset is significant for in-depth snow cover research. Since
the aforementioned cloud-removal methods were generally
designed for binary SCA, their applicability to NDSI with
more complicated spatiotemporal characteristics should be
improved. Thus, several gap-filling methods with associated
concern for spatial and temporal correlations of snow pres-
ence were proposed to remove clouds from NDSI (Jing et
al., 2019; Chen et al., 2020; Li et al., 2020). Among these
methods, the spatiotemporal feature-based methods with rel-
atively high robustness are more effective for improving
NDSI datasets (Jing et al., 2019).

Many studies on snow monitoring in China are available,
and most of these studies focus on binary SCA mapping. On
the regional scale, QTP, which is known as the world’s third
pole, plays a key role in the global climate system. Never-
theless, snow cover mapping is particularly challenging over
QTP due to the frequent cloud cover resembling fragmented
snow. A large number of studies have demonstrated that the
snow cover variability over QTP is extremely complex, with
significant spatiotemporal heterogeneity (Gao et al., 2012;
Tang et al., 2013; Yu et al., 2016; Liang et al., 2017; Zhang
et al., 2012). Located in mid-latitude areas, NX (Wang et al.,
2008) and NC (Che et al., 2016) are dominated by seasonal
snow cover. Che et al. (2019) presented an integrated snow
cover dataset from a distributed hydrometeorological obser-
vation network in the Heihe River Basin, which achieved a
prominent demonstration of data synthesis at a watershed
scale. In addition, the large-scale transient snow cover re-
gions increase the level of challenge for generating high-
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quality snow cover datasets. On the national scale, Huang et
al. (2016) obtained a long-term cloud-removed SCA product
using a multi-source data fusion method. Despite many rele-
vant studies, only a few cloud-free snow cover datasets have
been released publicly.

Several typical long-term cloud-free snow cover products
available online are listed in Table 1 (datasets are refer-
enced via DOI), which cover most snow-dominated regions
in China. Huang (2020) provided MODIS daily cloudless
SCA products with relatively accurate snow detection capa-
bilities in the Northern Hemisphere based on multi-source
data. Muhammad and Thapa (2020, 2021) obtained 8 d/daily
MODIS SCA and glacier composite datasets for High Moun-
tain Asia by aggregating seasonal, temporal, and spatial fil-
ters, which can serve as a valuable input for hydrological and
glaciological investigations. Hao et al. (2021, 2022) yielded
two long-term daily SCA datasets over China through a
series of processes such as quality control, cloud detec-
tion, snow discrimination, and gap-filling (including hid-
den Markov random field and snow-depth interpolation tech-
niques). Their releases and updates promoted the research
of snow cover characteristics in China. Qiu et al. (2017)
yielded a daily FSC dataset with detailed snow cover in-
formation over High Mountain Asia with MDC and spatial
filtering. Additionally, the global cloud-gap-filled MODIS
NDSI dataset (MOD10A1F) has been available online since
2020, where cloud-covered grids in the MODIS Terra NDSI
product are filled by retaining clear-sky observations from
previous days (Hall and Riggs, 2020). However, this dataset
performs poorly in China, where periodic and transient snow
is dominant. In general, cloud-free SCA datasets produced
by composite algorithms are frequently released, while high-
quality cloud-free NDSI datasets are still scarce.

To this end, this study generates a spatiotemporally con-
tinuous Terra–Aqua MODIS NDSI product with satisfac-
tory accuracy for China, fully considering the spatiotem-
poral characteristics of regional snow cover variability. A
Spatio-Temporal Adaptive fusion method with erroR correc-
tion (STAR), improved from our previous work (Jing et al.,
2019), is utilized to eliminate cloud obscuration. The long-
term detailed snow cover extent dataset will facilitate snow-
related scientific studies and practical applications in China.

The rest of this paper is arranged as follows: first, Sect. 2
describes the input data and the proposed cloud-removal
method. Section 3 then presents the verification accuracy
of the STAR NDSI collection, with a subsequent analyti-
cal application. The cloud-removal effectiveness under dif-
ferent cloud coverages is discussed in Sect. 4. Finally, the
data availability and the conclusions are provided in Sects. 5
and 6, respectively.

2 Data and methods

2.1 Data

MODIS sensors onboard Terra and Aqua satellites provide
the global snow cover datasets. The daily MOD10A1 and
MYD10A1 datasets of C6 are available through the web-
site of the National Aeronautics and Space Administra-
tion (NASA; https://search.earthdata.nasa.gov/, last access:
6 July 2022). The NDSI_Snow_Cover (hereafter referred to
as NDSI) scientific dataset, with a range of 0, 10 to 100, was
used in this study. As shown in Fig. 1, the NDSI of 19 tiles
covering China (excluding sea area) from 1 August 2000 to
31 July 2020, was acquired to generate snow cover maps.
The 90 m digital elevation model (DEM) dataset of the Shut-
tle Radar Topographic Mission (SRTM) was obtained from
the United States Geological Survey (USGS). In addition,
two existing cloud-free snow cover products, including the
daily snow cover extent at a 5 km resolution (NIEER AVHRR
SCE, https://doi.org/10.11888/Snow.tpdc.271381, Hao et
al., 2021) and the daily cloud-gap-filled MODIS NDSI
at a 500 m resolution (MODIS CGF NDSI/MOD10A1F,
https://doi.org/10.5067/MODIS/MOD10A1F.061, Hall and
Riggs, 2020), were used for comparison. For reference data,
the snow-depth measurements respectively derived from 49
and 102 meteorological stations in NX and QTP (Tibet Mete-
orological Bureau and National Meteorological Information,
2018) were used for station-based validation. Since the snow
depth data can only assess the classification performance of
MODIS NDSI retrievals, the NDSI maps derived from Land-
sat OLI images were utilized for comprehensive validation.

2.2 Algorithm description

MODIS NDSI datasets are unable to represent the daily con-
ditions of snow accumulation and ablation accurately be-
cause the optical remote-sensed images are subject to severe
cloud pollution. Therefore, STAR, which is derived from our
two-stage spatiotemporal fusion method (Jing et al., 2019),
is presented to produce a spatiotemporal continuous snow
collection. As shown in Fig. 2, the generation procedure
comprises the pre-process TAC and the key-process STAR.
Then, a quality assessment (QA) approach is presented to
provide a data reliability profile for users. On this basis, post-
processing is used to further improve the data quality in indi-
vidual abnormal areas.

2.2.1 Terra and Aqua combination (TAC)

TAC blends the same-day snow maps deriving from MODIS
sensors onboard Terra and Aqua satellites. Its cornerstone is
the unlikely significant changes of the snow pattern within
the data-acquired time interval (approximately 3 h). Since
TAC can efficiently decrease the cloud fraction by 5 %–20 %
with negligible precision sacrifice (Li et al., 2019), it is intro-
duced as a pre-processing combination to reduce cloud cov-
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Table 1. Typical long-term cloud-free snow cover products covering most snow-dominated regions in China.

References Type Spatial coverage Temporal Temporal Spatial DOI
coverage resolution resolution

Hao et al. (2021) SCA China 1981–2019 Daily ∼ 5 km https://doi.org/10.11888/Snow.tpdc.271381
Hao et al. (2022) SCA China 2000–2020 Daily ∼ 500 m https://doi.org/10.12072/ncdc.I-SNOW.db0001.2020
Huang (2020) SCA Northern Hemisphere 2000–2015 Daily ∼ 1 km https://doi.org/10.12072/ncdc.CCI.db0044.2020
Muhammad and Thapa (2021) SCA High Mountain Asia 2002–2019 Daily ∼ 500 m https://doi.org/10.1594/PANGAEA.918198
Qiu et al. (2017)* FSC High Mountain Asia 2002–2018 Daily ∼ 500 m https://doi.org/10.11922/sciencedb.457
Hall and Riggs (2020) NDSI Global coverage 2000–present Daily ∼ 500 m https://doi.org/10.5067/MODIS/MOD10A1F.061

* Cloud coverage is less than 10 %.

Figure 1. Topographic relief of China, meteorological stations in NX and QTP, and Landsat OLI scenes used for validation.

erage preliminarily. Its priority scheme is determined as high
value> low value> cloud.

NDSIP
= NDSITerra

IF
(

NDSITerra
≥ NDSIAqua OR NDSIAqua is cloud

)
,

NDSIP
= NDSIAqua

IF
(

NDSIAqua > NDSITerra OR NDSITerra is cloud
)
, (1)

where NDSITerra and NDSIAqua are MODIS NDSI datasets
from Terra and Aqua satellites, respectively. The NDSIP rep-
resents the pre-processed NDSI maps after TAC (referred
to as TAC NDSI dataset in subsequent sections). The snow
in low-altitude and low-latitude areas during summer is re-
versed to no snow to alleviate commission errors inherited
from the original data. In addition, since the Aqua dataset
is available from July 2002, the key-process STAR is di-
rectly used to remove clouds from the Terra MODIS NDSI
dataset between August 2000 and May 2002. Particularly, the
improved Aqua MODIS C6 NDSI dataset significantly en-
hances the effectiveness of TAC due to the successful restora-

tion of the absent Aqua MODIS band 6 data by the quantita-
tive image restoration method (Gladkova et al., 2012).

2.2.2 Spatio-Temporal Adaptive fusion with erroR
correction (STAR)

Many regions with persistent clouds are out of the scope of
TAC. To this end, an advanced STAR method, which com-
prehensively utilizes spatiotemporal contextual information,
is proposed to remove the clouds thoroughly. As shown in
Fig. 3, the method performs in two passes: spatio-temporal
adaptive fusion (STAF) and error correction (EC).

The first pass involves the generation of new NDSI maps
by adaptively merging the spatiotemporal contextual infor-
mation, including space partition, adaptive space–time block
determination, and Gaussian kernel function (GKF)-based
fusion. The research area is first segmented into dozens of
partitions considering the spatial heterogeneity of snow pat-
terns. Thus, the subsequent processes can be performed on
a partition basis. Moreover, the optimal query partitions (Q)
to each target partition (T ) are determined by a comprehen-
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Figure 2. Schematic representation of the generation procedure of STAR NDSI collection.

Figure 3. Detailed flowchart of the Spatio-Temporal Adaptive fusion with erroR correction (STAR).

sive consideration of temporal distance (t), regional corre-
lation (r), and cloud-free fraction (f ) concerning the tem-
poral complexity of snow variations. The following optimal
parameters are derived from the extensive experiments:{

Scheme 1: r > 0.7, if f C&T > 0.3
Scheme 2: max(t−1

+ f C), others
, (2)

where the regional correlation between the candidate par-
tition (C) within an 8 d window and the target partition is
considered representative if the fraction of the intersecting
cloud-free areas (f C&T) is higher than 0.3. The candidate

partition is then determined as a query partition according
to Scheme 1 when the regional correlation is larger than
0.7. Otherwise, Scheme 2 is activated. Two query partitions,
with short distance and high cloud-free fraction, are identi-
fied within the preceding 8 d and the backward 8 d, respec-
tively. Subsequently, the 3× 3 neighborhoods for each pixel
of the target partition in all the associated query partitions are
determined as the space–time reference block. Lastly, each
pixel is reassigned a fused value from the related space–time
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Table 2. Description and default values of STAF parameters.

Parameter Description Value

WT Temporal window for query partition ±8 d
WN Neighboring window for reference pixel 3× 3
r Minimum regional correlation for query partition 0.7
σ Standard deviation of GKF 0.5
ε Dimensional difference coefficient (σt/σs) in the GKF 25/9

block, as expressed in Eq. (3):

NDSIF
i =

∑M

t=1

∑N

s=1
w(i,st)×NDSIQ

(i,st),

where W(i,st) = r
2
t × exp

(
−((ε×1s(i,s))2

+1t2(i,t)))

2× σ 2

)
, (3)

where NDSIF
i denotes the fused NDSI of pixel i in the target

partition. The pre-processed NDSI is NDSIQ
(i,st) in associated

query partitions, and M is the number of query partitions,
each of which contains N reference pixels. In addition, the
weight W(i,st) is assigned by a two-dimensional GKF involv-
ing the spatial distance (1s(i,s)) and the temporal distance
(1t(i,t)), which is then normalized to w(i,st). The standard de-
viation of GKF is σ . The dimensional difference, which is
characterized by ε, is equal to σt/σs with an expression of
each single-dimensional GKF. The regional correlation be-
tween the query and target partitions is represented by rt if
Scheme 1 works; otherwise, it is ignored (i.e., rt = 1). The
constant term (ε/(2πσ 2)) of GKF is ignored due to the nor-
malization process. The important parameters in STAF are
listed in Table 2.

The second pass corrects the fused NDSI maps consid-
ering the spatial correlation within a partition. Specifically,
the residual errors of the intersecting cloud-free areas of the
pre-processed and fused NDSI maps (NDSIP after TAC and
NDSIF after STAF) are diffused to other cloud-free areas of
the fused NDSI maps using the triangulation-based natural
neighbor interpolation (NNI; Sibson, 1981). Then, the high-
quality NDSI maps (NDSIH) can be generated by removing
all errors from the fused NDSI maps. The process is formu-
lated as follows:
ER = NDSIF

R−NDSIP
R

ET(i) =
∑N ′

n=1φ(i,n)ER(i,n)
NDSIH

T = NDSIF
T−ET

, (4)

where “R” indicates the reference area which is the bound-
ary of the intersecting cloud-free areas. The target area is in-
dicated by “T”. The dynamic weights in the error diffusion
from ER to ET are based on the Voronoi diagrams. As ex-
pressed in Fig. 3b (left), the original Voronoi cells (bounded
by red and gray solid lines) of the reference pixels (gray dots)
intersect with the new Voronoi cells (bounded by blue and
gray solid lines) of the reference and target pixels. Taking
the target pixel T1 with the reference pixel R1 as an example,

the weight is assigned as the ratio of the area of the inter-
secting Voronoi cell (Adabch) to that of the new Voronoi cell
(Adefgh).

φ(1,1) =
Adabch

Adefgh
. (5)

After all the partitions are processed in sequence, the next
iteration of STAR begins until the clouds are completely re-
moved.

2.2.3 Quality assessment (QA) approach

A revised QA approach for the gap-filled NDSI collection
is proposed on the basis of the quality estimate of MODIS
NDSI datasets (Riggs and Hall, 2015), and an example is pre-
sented in Fig. A1 (Appendix A). Users can examine the basic
quality of the gap-filled NDSI collection considering cloud
coverage and spatiotemporal consistency of the raw NDSI
dataset by retrieving the bit flags from the integer stored in
QA maps. The specific attributes are listed in Table 3.

The snow detection reversal of the pre-processed value in
TAC is tracked in Bit 2, the post-processing (Sect. 2.2.4) is
tracked in Bit 3, and the number of iterations primarily re-
lated to cloud coverage is indicated by Bit 4. If the range of
reference values is larger than 30, then the Bit 5 flag is set;
if the difference between pre-processed and fused values is
larger than 20, the Bit 6 flag is set. Bit 7 reflects the cloud
coverage of the space–time block. Furthermore, the combi-
nation of Bits 0 and 1 is a qualitative estimate of the cloud-
removed NDSI collection based on the number of iterations
(hereafter referred to as NI) and spatiotemporal consistency.
The comprehensive estimate is determined as follows:

– if NI= 5 and Bit 5 or 6 is set to 1, then it is assigned
“poor”;

– if NI= 4 and Bit 5 or 6 is set to 1, then it is assigned
“OK”;

– if NI= 3 and Bit 5 or 6 is set to 1, then it is assigned
“good”;

– otherwise, it is assigned “best”.

The QA maps are recommended for in-depth application of
the cloud-removed NDSI collection.

2.2.4 Post-processing

For areas with extremely rapid and fluctuating snow varia-
tion, the temporal contextual references are likely to intro-
duce incorrect information and magnify errors in the itera-
tive process. Post-processing is used in this study to reduce
the “disorder” phenomenon referring to QA maps. Firstly, the
NDSI map with the most consistent snow pattern in adjacent
time is artificially identified as a reference. Subsequently, the
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Table 3. Bit flags indicating the retrieval conditions according to the raw NDSI dataset.

Bit Description Bit combination Quality

0–1 Comprehensive estimate

00 Best
01 Good
10 OK
11 Poor

2 Pre-processing
0 None
1 Snow detection reversed

3 Post-processing
0 None
1 Post-processed

4 Number of iterations
0 No more than 3
1 More than 3

5 Consistency between reference values
0 Consistent
1 Inconsistent

6 Consistency between pre-processed and fused values
0 Consistent
1 Inconsistent

7 Cloud coverage of the space–time block
0 Low [0,60 %)
1 High [60 %,1]

Table 4. Confusion matrix and validation metrics.

MODIS NDSI datasets

In situ observations NDSI > 0 NDSI = 0

Snow depth > 0 cm SS SN
Snow depth = 0 cm NS NN

OA= SS+NN
SS+SN+NS+NN CE= NS

NS+NN OE= SN
SN+SS

aforementioned EC is applied to improve the spatial con-
sistency between the post-processing and original areas. Fi-
nally, the QA maps are updated.

2.3 Validation of the NDSI collection

The gap-filled NDSI collection is evaluated with the in situ
snow-depth observations and Landsat NDSI maps consider-
ing classification and numerical accuracies according to the
current mature verification methods. As shown in Table 4, the
classification metrics based on the confusion matrix include
overall accuracy (OA), commission error (CE), and omission
error (OE) (Klein and Barnett, 2003). Moreover, 3 general
metrics are introduced to measure numerical accuracy: corre-
lation coefficient (CC), absolute error (AE), and root-mean-
square error (RMSE).

3 Results

As mentioned above, the generation procedure of continuous
snow collection includes the pre-process TAC and the key-

process STAR. The remaining clouds of 30.62 % in the entire
collection after TAC are completely removed by STAR. To
elaborate the reliability of the STAR NDSI collection, TAC
NDSI, NIEER AVHRR SCE, and MODIS CGF NDSI prod-
ucts are used as baseline data. Specifically, based on in situ
snow-depth measurements, the classification accuracy of the
STAR NDSI collection is compared to those of TAC NDSI
and NIEER AVHRR SCE datasets. In addition, based on
Landsat NDSI maps, its numerical accuracy is compared to
those of TAC NDSI and MODIS CGF NDSI datasets. This
section presents the evaluation results, followed by an exem-
plary application.

3.1 Validation against in situ snow depth measurements

As described above, the in situ snow-depth data in NX from
1 January 2001 to 31 August 2007 and in QTP from 1 Au-
gust 2000 to 31 December 2013, were used as the ground
truth to evaluate the classification accuracy of the TAC NDSI,
NIEER AVHRR SCE, and STAR NDSI datasets. The near-
est pixel was matched with each meteorological station, with
a total of about 550 000 data pairs. Snow-covered pixels in
NDSI datasets range from 10 to 100, whereas snow-free pix-
els are 0; thus, the classification threshold is set as 10 (Zhang
et al., 2019). The discriminant threshold for in situ snow
depth is set as 0 or 1 cm. In addition, the cloud-covered areas
in the TAC NDSI dataset are considered to be snow-free.

Table 5 demonstrates that NIEER AVHRR SCE and STAR
NDSI datasets preeminently capture the snow dynamics in
NX referring to the in situ measurements, with OAs of more
than 94 %. However, the TAC NDSI dataset is insufficient to
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Figure 4. Monthly classification accuracy of TAC NDSI, NIEER AVHRR SCE, and STAR NDSI products in NX (group a) and QTP
(group b). Note that the optimal values for OA, CE and OE are 100 %, 0 % and 0 %, respectively.

accurately describe the snow cover variability. Although CEs
perform well regardless of the snow-depth threshold, OEs
of the TAC NDSI collection are extremely high, indicating
that many cloud-covered areas are dominated by snow. The
NIEER AVHRR SCE dataset partially retrieves snow pixels
under cloud obstruction with an OE decreased by ∼ 43 %.
The STAR NDSI collection completely removes clouds and
accurately presents snow distribution, with an OE further de-
creased from ∼ 17 % to ∼ 7 %. The generation procedure in
NX has two strengths. Firstly, the satellite-borne sensors can
accurately capture the snow events on the ground due to the
generally thick snow averaging approximately 20 cm. Sec-
ondly, the gap-filling approach with comprehensive consid-
eration of spatial and temporal correlation has outstanding
reliability due to the significant periodicity of snow variation.
It can be inferred that the NDSI datasets in NC have high ac-

curacy because of the similar snow conditions, despite the
lack of in situ data in this region.

By contrast, despite the satisfactory performance of OAs
and CEs, the OEs of three snow cover datasets over QTP
are as remarkably high as 72 %, 42 %, and 39 %, even at the
snow-depth threshold of 1 cm (Table 6). This finding indi-
cates the omission of a large number of snow-covered pix-
els. The specific reasons are as follows: firstly, the original
MODIS NDSI maps frequently underestimate the snow pres-
ence throughout the snow period; because discriminating the
shallow snow pixels with an averaged snow depth of approx-
imately 4 cm over QTP is challenging. Secondly, the cred-
ibility of the spatiotemporal contextual information is rela-
tively low because the patchy snow rapidly and irregularly
varies due to the extremely complex topographic and climatic
conditions, leading to a further decrease in the accuracy of
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Table 5. Confusion matrices between TAC NDSI, NIEER AVHRR SCE, STAR NDSI datasets and in situ snow-depth (SD) data in NX from
1 January 2001 to 31 August 2007. Note that bold values indicate classification accuracy, including OE, CE, and OA.

Station TAC NIEER STAR

Indicator Snow No snow Total Snow No snow Total Snow No snow Total

Snow (SD > 0 cm) 13 466 19 836 33 302 27 656 5646 33 302 30 955 2347 33 302
OE 40 % 60 % 83 % 17 % 93 % 7 %
No snow 1269 76 909 78 178 1384 76 794 78 178 2741 75 437 78 178
CE 2 % 98 % 2 % 98 % 4 % 96 %
Total 14 735 96 745 111 480 29 040 82 440 111 480 33 696 77 784 111 480
OA 81 % 94 % 95 %

Snow (SD > 1 cm) 13 136 18 390 31 526 26 899 4627 31 526 29 909 1617 31 526
OE 42 % 58 % 85 % 15 % 95 % 5 %
No snow 1599 78 355 79 954 2141 77 813 79 954 3787 76 167 79 954
CE 2 % 98 % 3 % 97 % 5 % 95 %
Total 14 735 96 745 111 480 29 040 82 440 111 480 33 696 77 784 111 480
OA 82 % 94 % 95 %

the gap-filled results. Lastly, the meteorological stations over
QTP are unevenly distributed and are mostly located in low-
and medium-altitude/latitude areas dominated by transient
snow. Consequently, the evaluation results slightly exagger-
ate the real OEs.

For the in-depth analysis of the temporal characteristics,
the monthly classification accuracies of TAC NDSI, NIEER
AVHRR SCE and STAR NDSI products in NX and QTP are
shown in Fig. 4 (the horizontal axis is the month in a hy-
drological year). In NX (group a), the monthly snow fraction
in the in situ samples is greater than 85 % from December
to next February. Therefore, the clouds in the TAC NDSI
dataset seriously affect the snow cover estimation, while both
cloud-free products exhibit superior OAs. Compared to the
NIEER AVHRR SCE product, the STAR NDSI collection
has slightly higher CEs but relatively lower OEs. The OEs of
the STAR NDSI collection typically occur during snow ac-
cumulation and ablation periods, and almost disappear dur-
ing stable snow-covered and snow-free periods. In QTP, the
snow period is generally from October to next May, with
the monthly snow fraction of less than 10 % in the in situ
samples. Consequently, the underestimation of snow cover-
age caused by the clouds in the TAC NDSI dataset is slight.
All three products achieve outstanding OAs and CEs, but ex-
hibit relatively poor OEs. In NIEER AVHRR SCE and STAR
NDSI datasets, these OEs are generally observed outside the
snow period. As mentioned above, there are three reasons
for this phenomenon. Nonetheless, the STAR NDSI collec-
tion presents superior classification accuracy to TAC NDSI
and NIEER AVHRR SCE datasets.

Overall, the STAR NDSI collection is capable of snow
status estimation, eliminating cloud contamination in the
TAC NDSI dataset, and capturing more snow events than
the NIEER AVHRR SCE dataset. However, the accuracy of
the STAR NDSI collection has regional and temporal hetero-

geneity. Firstly, the accuracy over QTP is lower than that of
NX, which is consistent with the characteristic of the orig-
inal MODIS NDSI maps. Furthermore, the permanent and
periodic snow regime regions reconstructed by STAR have
prominently high accuracy, while the transient snow-covered
regions are easily omitted. Fortunately, the monitoring of per-
manent and periodic snow plays a key role in most snow-
related investigations. Finally, the accuracy of stable snow-
covered and snow-free periods is slightly better than that of
snow accumulation and ablation periods.

3.2 Validation based on Landsat NDSI maps

Only the classification accuracy can be evaluated by in situ
measurements due to the significant difference in the nature
of the snow depth and NDSI data. Therefore, Landsat im-
ages with finer spatial resolution were commonly adopted
for the numerical evaluation of NDSI datasets (Crawford,
2015). The NDSI values for the Landsat 8 dataset were calcu-
lated as follows: (Band3−Band6)/ (Band3+Band6). Sub-
sequently, the average of the 17× 17 neighborhoods closest
to the center of the MODIS NDSI pixel in the Landsat NDSI
map was considered to be the reference of this MODIS NDSI
pixel to match the spatial resolution of Landsat with that of
MODIS. Specifically, the cloud-contaminated pixels marked
by the quality band in Landsat images were excluded, and the
reference areas with cloud coverage larger than 30 % were
discarded. A total of 19 Landsat NDSI maps with different
snow coverages from January to April in 2018, which are dis-
tributed in NC (four scenes), the Central China region (CCR,
two scenes), QTP (eight scenes), and NX (five scenes), were
exploited as evaluation references for this validation experi-
ment. Two evaluations including a cross-comparison of TAC
NDSI, MODIS CGF NDSI, and STAR NDSI datasets, and
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Table 6. Confusion matrices between TAC NDSI, NIEER AVHRR SCE, STAR NDSI datasets and in situ snow-depth (SD) data in QTP
from 1 August 2000 to 31 December 2013. Note that bold values indicate classification accuracy, including OE, CE, and OA.

Station TAC NIEER STAR

Indicator Snow No snow Total Snow No snow Total Snow No snow Total

Snow (SD > 0 cm) 5189 18 095 23 284 10 900 12 384 23 284 11 219 12 065 23 284
OE 22 % 78 % 47 % 53 % 48 % 52 %
No snow 6145 404 624 410 769 17 663 393 106 410 769 9338 401 431 410 769
CE 1 % 99 % 4 % 96 % 2 % 98 %
Total 11 334 422 719 434 053 28 563 405 490 434 053 20 557 413 496 434 053
OA 94 % 93 % 95 %

Snow (SD > 1 cm) 4126 10 357 14 483 8391 6092 14 483 8813 5670 14 483
OE 28 % 72 % 58 % 42 % 61 % 39 %
No snow 7208 412 362 419 570 20 172 399 398 419 570 11 744 407 826 419 570
CE 2 % 98 % 5 % 95 % 3 % 97 %
Total 11 334 422 719 434 053 28 563 405 490 434 053 20 557 413 496 434 053
OA 96 % 94 % 96 %

an internal comparison of clear-sky and cloud-covered areas
are described in detail below.

For the cross-comparison, the visual effects of three NDSI
datasets on 8 January 2018 and 3 February 2018 are shown
in Fig. 5. The TAC NDSI dataset is still heavily obscured by
clouds. Although the MODIS CGF NDSI dataset completely
removes clouds from the MOD10A1 product, it is difficult
to accurately retrieve periodic and transient snow cover re-
gions due to the simplicity of the cloud-gap-filled method.
Specifically, the gaps are filled by retaining clear-sky obser-
vations from previous days. However, snow patterns under
cloud cover are likely to change significantly during these
days. Therefore, snow cover is significantly underestimated
during accumulation (Fig. 5a2) and overestimated during ab-
lation (Fig. 5b2). By contrast, the STAR NDSI collection
pre-eminently captures the snow dynamics under temporally
continuous clouds, attributing to the spatiotemporal adap-
tive fusion strategy. Furthermore, the three NDSI datasets are
quantitatively assessed by Landsat NDSI maps.

As the average cloud cover is as high as 40.7 %, the
TAC NDSI dataset has a low correlation with Landsat NDSI
maps, with an average CC of 0.46 (Table 7). The cloud-free
MODIS CGF NDSI dataset enhances the correlation with
Landsat NDSI maps, with an average CC of 0.73. By con-
trast, the snow dynamics presented by the spatiotemporally
continuous STAR NDSI dataset are highly consistent with
Landsat NDSI maps, with an average CC further increased
to 0.84. Compared to TAC NDSI and MODIS CGF NDSI
datasets, the average RMSE of STAR NDSI dataset is de-
creased by 9.06 and 5.58, respectively. The positive AEs re-
veal that NDSI values for snow pixels in MODIS CGF NDSI
and STAR NDSI datasets are generally higher than those of
Landsat NDSI maps. In terms of snow coverage, the STAR
NDSI dataset notably improves the detection of snow events
compared to the other two datasets, with an average abso-

lute SRD decreased by 31.1 % and 2.4 % (SRD indicates the
difference of snow rate between MODIS and Landsat NDSI
datasets). Consequently, the STAR NDSI collection is a more
promising snow cover product than TAC NDSI and MODIS
CGF NDSI datasets, contributing to related hydrological and
meteorological studies.

In addition to the cross-comparison of TAC NDSI,
MODIS CGF NDSI, and STAR NDSI datasets, an internal
comparison of the STAR NDSI collection in clear-sky and
cloud-covered areas was performed based on Landsat NDSI
maps, to highlight the accuracy of the recovered pixels in the
STAR NDSI collection. As described above, clear-sky and
cloud-covered areas account for 59.3 % and 40.7 %, respec-
tively. Table 8 indicates that the snow distribution of recov-
ered areas in the STAR NDSI collection is relatively con-
sistent with that of Landsat NDSI maps. Although the aver-
age CC decreases from 0.85 to 0.73 and the average RMSE
increases from 13.48 to 16.30 compared to clear-sky areas,
the accuracy of recovered areas is satisfactory. Since many
recovered areas inherit errors from clear-sky areas because
the cloud-removal procedure completely relies on the origi-
nal dataset, a slight decrease in accuracy is reasonable. In ad-
dition, the average AEs of clear-sky and recovered areas are
7.81 and 6.83, respectively, revealing the systematic overesti-
mation of NDSI values in snow cover regions (Landsat NDSI
values are generally low). Except for a few areas, the snow
conditions in most cloud-covered areas are well recovered,
with an average SRD of −5.0 %. This finding highlights that
the STAR NDSI collection can completely remove clouds
with satisfactory accuracy.

For in-depth verification analysis, Fig. 6 shows the vi-
sual effects in four regions corresponding to four highlighted
groups in Table 8. The accuracy of clear-sky areas in NC is
prominently high with a CC of 0.92, while recovered areas
notably reduce the performance with a CC of 0.42. However,
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Figure 5. Comparison of TAC NDSI (column 1), MODIS CGF NDSI (column 2), and STAR NDSI (column 3) products on 8 January 2018
(group a) and 3 February 2018 (group b).

Table 7. Performance statistics for TAC NDSI, MODIS CGF NDSI, and STAR NDSI datasets against Landsat NDSI maps.

Region_date Cloud cover CC RMSE AE SRD (%)

(%) TAC CGF STAR TAC CGF STAR TAC CGF STAR TAC CGF STAR

NC1_20180225 61.4 0.49 0.90 0.87 25.64 20.20 17.10 −11.59 18.35 15.07 −60.1 1.0 1.0
NC2_20180311 43.6 0.69 0.72 0.83 26.75 19.77 13.87 −9.36 15.72 12.14 −43.1 −5.7 −1.7
NC3_20180311 34.6 0.19 0.86 0.86 18.61 20.97 8.79 −10.26 10.78 0.15 −34.2 0.0 −2.8
NC4_20180318 16.3 0.73 0.95 0.98 21.50 15.03 10.25 −3.33 8.26 5.42 −16.6 0.5 −1.1
CCR1_20180203 14.9 0.20 0.93 0.95 11.53 14.91 5.04 −3.56 6.55 1.54 −11.4 4.2 2.8
CCR2_20180203 95.0 −0.07 0.52 0.73 14.26 38.77 8.43 −9.07 32.76 0.10 −47.8 29.8 −5.4
QTP1_20180322 36.3 0.39 0.75 0.83 18.03 14.26 10.70 −5.30 2.02 0.77 −13.8 1.2 1.3
QTP2_20180225 22.4 0.54 0.71 0.82 25.50 17.92 15.27 −9.66 −2.62 −0.30 −27.8 −11.5 −9.1
QTP3_20180320 15.3 0.29 0.31 0.74 11.40 11.64 7.91 −2.89 −2.37 −1.49 −6.7 −5.9 −3.5
QTP4_20180401 29.5 0.47 0.51 0.79 30.94 29.60 16.64 −16.86 −16.36 −3.71 −31.6 −29.2 −8.3
QTP5_20180307 42.5 0.47 0.92 0.92 30.00 13.80 13.80 −11.76 7.67 7.67 −36.0 1.0 1.0
QTP6_20180305 64.9 0.17 0.76 0.78 42.26 17.26 14.53 −32.30 −4.49 4.67 −66.1 −10.9 −2.9
QTP7_20180107 60.8 0.44 0.75 0.80 28.13 18.09 18.08 −15.95 −0.48 6.04 −60.0 −19.2 −12.6
QTP8_20180128 34.6 0.49 0.38 0.82 11.98 28.32 10.65 0.67 −4.91 2.68 1.1 −47.7 4.3
NX1_20180105 52.2 0.79 0.89 0.86 27.53 22.78 22.81 −4.00 20.21 22.18 −52.2 8.4 0.1
NX2_20180213 23.4 0.64 0.82 0.92 23.55 10.65 20.81 7.13 2.68 18.29 −14.8 4.3 7.2
NX3_20180220 56.0 0.56 0.73 0.86 26.35 24.83 18.78 −9.87 21.24 16.06 −51.2 2.8 1.9
NX4_20180103 23.5 0.70 0.65 0.74 28.94 25.58 28.86 15.70 22.93 26.66 −21.8 −1.1 −0.2
NX5_20180220 46.1 0.55 0.87 0.92 23.55 15.95 11.99 −10.44 5.59 2.28 −32.7 −4.1 −8.0

Average 40.7 0.46 0.73 0.84 23.50 20.02 14.44 −7.51 7.55 7.17 −33.0 −4.3 −1.9

Note that TAC, CGF, and STAR represent TAC NDSI, MODIS CGF NDSI, and STAR NDSI datasets, respectively.
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Table 8. Performance statistics for STAR NDSI collection against Landsat NDSI maps in clear-sky and cloud-covered areas according to the
TAC dataset. Note that ** and * respectively indicate an improvement and degradation of cloud-covered areas compared to clear-sky areas
(corresponding to four groups in Fig. 6).

Region_Date CC RMSE AE SRD (%)

Clear-sky Cloud-cover Clear-sky Cloud-cover Clear-sky Cloud-cover Clear-sky Cloud-cover

NC1_20180225 0.95 0.76 16.89 17.23 15.23 14.97 2.91 −0.2
NC2_20180311 0.89 0.71 12.27 15.71 11.78 12.62 −0.10 −3.7
NC3_20180311* 0.92 0.42 2.31 14.60 −0.09 0.61 −1.02 −6.1
NC4_20180318 0.98 0.86 10.29 14.75 4.88 11.30 −1.23 −0.2
CCR1_20180203 0.83 0.68 3.37 10.29 0.68 6.50 3.48 −0.9
CCR2_20180203** 0.55 0.74 10.93 8.28 6.80 −0.25 32.63 −7.4
QTP1_20180322 0.75 0.87 10.22 11.49 0.44 1.35 0.11 3.4
QTP2_20180225* 0.86 0.64 13.50 20.24 0.89 −4.40 −7.49 −14.8
QTP3_20180320 0.73 0.69 3.74 18.19 −0.40 −7.52 −1.07 −16.9
QTP4_20180401 0.79 0.78 16.56 17.08 −4.35 −2.17 −8.14 −8.3
QTP5_20180307 0.94 0.88 13.82 13.86 8.01 7.16 1.68 0.1
QTP6_20180305 0.79 0.76 15.03 14.26 1.75 6.24 −4.79 −1.9
QTP7_20180107 0.98 0.63 15.17 19.74 10.28 3.27 −1.00 −20.0
QTP8_20180128 0.75 0.89 11.13 9.92 3.27 1.67 7.62 −1.7
NX1_20180105 0.89 0.62 24.47 21.17 24.29 20.25 0.00 0.1
NX2_20180213 0.95 0.74 20.47 21.88 18.27 18.37 9.00 1.5
NX3_20180220 0.93 0.75 17.45 19.77 15.37 16.60 4.02 0.2
NX4_20180103* 0.64 0.58 29.54 26.53 28.09 22.00 0.61 −2.9
NX5_20180220 0.97 0.86 8.92 14.81 3.26 1.13 −1.31 −15.7

Average 0.85 0.73 13.48 16.30 7.81 6.83 1.89 −5.0

Fig. 6a shows that clear-sky areas in the TAC NDSI dataset
cannot reflect the snow events, whereas the STAR NDSI col-
lection effectively retrieves these events. Inevitably, the snow
edges are slightly inaccurate and blurry due to insufficient
reference information. For group (b), the original accuracy of
the NDSI dataset in CCR is relatively low, with high cloud
coverage and a false acceptance rate, while the STAR NDSI
collection presents a snow pattern consistent with Landsat
NDSI. Nevertheless, CCR is a transient snow area with rel-
atively low altitudes and latitudes. Therefore, the gap-filled
result has visible uncertainty, in which commission (black
box) and omission (red box) frequently occur. As mentioned
above, MODIS NDSI datasets generally perform poorly over
QTP. However, Fig. 6c demonstrates that TAC NDSI and
STAR NDSI collections can accurately capture snow events
despite a few omissions (red box). Similar to the NC region,
CCs provide a positive indication of overall performance in
NX. As shown in Fig. 6d, even the NX4_20180103 scene,
with a remarkably low CC of 0.58, can effectively reflect
the snow pattern. In addition, the NDSI dataset retrieved by
STAR inevitably has a few extremely abnormal areas dur-
ing 20 years due to the vast territory of China; an example
is presented in Fig. A2 (Appendix A). These areas have se-
vere cloud contamination and irregular snow dynamics, con-
tributing to the challenges in reconstruction and evaluation.
Therefore, these areas are corrected by post-processing as de-
scribed in Sect. 2.2.4.

Overall, the numerical accuracy of the STAR NDSI collec-
tion is rigorously evaluated based on fine-resolution Landsat
NDSI maps. The cross-comparison indicates that the STAR
NDSI collection is superior to both TAC NDSI and MODIS
CGF NDSI datasets. In addition, the internal comparison re-
veals that the effectiveness of cloud removal is satisfactory,
although recovered areas have slightly lower accuracy than
clear-sky areas. Consequently, the STAR NDSI collection
has considerable application potential.

3.3 Application of the STAR NDSI collection

In addition to quality evaluation, the exemplary analysis
also contributes to understanding the potential of the STAR
NDSI collection for hydrological and climatic applications.
Therefore, the spatial distribution and temporal variability of
snow cover in China are analyzed as two simple application
demonstrations.

From a spatial perspective, the sequence shown in Fig. 7
indicates that the snow fraction first increases and then de-
creases in NC and NX regions from 5 December 2014 to
25 January 2015. However, due to the complex topographic
and climatic conditions, the snow cover in QTP presents
irregular distribution and considerable fluctuations. During
this period, the snow cover pattern in China changed dramat-
ically, with the overall snow fraction ranging from 19.25 %
to 35.42 %. In addition, another sequence of cloud-free NDSI
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Figure 6. Comparison of TAC NDSI (column 1), Landsat NDSI (column 2), and STAR NDSI (column 3) products, and classification
consistency (column 4) corresponding to NC3_20180311, CCR2_20180203, QTP2_20180225, and NX4_20180103 (groups a to d).

maps in early 2020 is shown in Fig. 8. During this period, the
snow cover in China presents a single-wave depletion curve.
The peaks of snow fractions are observed in three major snow
areas between 11 January 2020 and 21 January 2020. Com-
pared to the previous sequence, the snow cover variation in
QTP in this sequence has significantly enhanced regularity.

Figure 9 shows the daily average snow fraction in the three
main subregions of China and the entire situation consid-

ering temporal analysis. In terms of intra-annual variabil-
ity, the snow dynamics periodically evolve in NX and NC
but substantially fluctuate in QTP. Similar snow depletion
curves are present in NX and NC, demonstrating rapid accu-
mulation and ablation in November and March, respectively.
There is a relatively long snow period in QTP, with an av-
erage snow fraction varying from 20 % to 40 % from Octo-
ber to next May. Consequently, China is dominated by pe-
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Figure 7. A sequence of the STAR NDSI collection from 5 December 2014 to 25 January 2015.

Figure 8. A sequence of the STAR NDSI collection from 1 January 2020 to 21 February 2020.
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Figure 9. Daily average snow fraction of NX, NC, QTP, and China.

Table 9. The cloud-removal effectiveness of STAR compared to Landsat NDSI maps under different simulated cloud conditions. Note that
bold values indicate a significant degradation of the accuracy under the current cloud cover compared to the previous one.

Region_date Snow fraction (%) Added cloud (%) CC RMSE AE SRD (%)

TAC STAR TAC STAR TAC STAR TAC STAR

NC4_20180318 44 %
11 %

0.98
0.98

10.29
10.44

4.88
4.62

−1.23
−1.78

55 % 0.89 19.11 11.17 12.96
80 % 0.86 21.24 13.03 16.31

QTP2_20180225 83 %
16 %

0.86
0.85

13.50
13.77

0.89
0.28

−7.49
−7.90

44 % 0.84 14.21 −0.31 −8.86
81 % 0.78 17.64 −3.72 −17.17

QTP9_20180125 42 %
19 %

0.89
0.90

10.56
10.51

0.93
0.89

−3.16
−3.14

49 % 0.87 11.34 0.65 −3.64
80 % 0.54 19.35 −9.59 −25.03

NX2_20180213 83 %
18 %

0.95
0.94

20.47
20.84

18.27
18.64

9.00
9.71

48 % 0.94 21.26 18.86 9.15
75 % 0.93 22.24 19.69 8.18

riodic snow. As for inter-annual variability, among the three
major snow areas, the snow fraction in NC remarkably fluc-
tuates with a standard deviation of 5.3 %. The snow cover-
age in QTP presented a slight decreasing trend from 2005 to
2017 but increased significantly in the past 2 years. In partic-
ular, rather than a significant rise in maximum snow cover-
age, the increase can be observed throughout the snow period
with a slight reduction in intra-annual volatility. This finding
implies that the regional climatic conditions tend to stabi-
lize slightly. In addition, no significant trend has been de-
tected in snow dynamics in China during the 20 years. Nev-

ertheless, the significant fluctuation of maximum snow cov-
erage in China indicates the presence of non-negligible large-
scale transient snow cover regions. For example, Fig. A3
(Appendix A) shows the extreme snow event in southern
China caused by the La Niña phenomenon, which resulted
in heavy casualties and economic losses in the hydrological
year 2007–2008.

Overall, the STAR NDSI collection can accurately reflect
the spatial and temporal dynamics of snow cover in China.
It is promising for hydrological and meteorological applica-
tions.
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4 Discussion

To elaborate the cloud-removal effectiveness of the proposed
STAR method, the performance statistics under different
simulated cloud conditions are shown in Table 9. Four TAC
NDSI maps with little cloud cover during the snow period
were used in the simulated experiment. Cloud masks from
other dates were added to the target maps, with different frac-
tions of about 20 %, 50 % and 80 %. Subsequently, the ar-
tificially cloud-covered maps were recovered by STAR and
validated by Landsat NDSI maps.

The quantitative results indicate that the recovery effec-
tiveness of STAR typically declines significantly when cloud
coverage is greater than 80 %. As a result, STAR can com-
pletely remove clouds with little loss of accuracy. Only in
the NC4_20180318 scene, high overestimation occurs when
cloud coverage reaches 55 %. The phenomenon is caused by
high cloud coverage and rapid snow variation in space and
time. Therefore, users are recommended to refer to QA maps
of the STAR NDSI collection during snow accumulation and
ablation periods, in which Bit 7 reflects the cloud coverage
of the space–time block.

5 Data availability

The improved cloud-free Terra–Aqua MODIS NDSI col-
lection (STAR NDSI collection) for China from 1 Au-
gust 2000 to 31 July 2020, including STAR NDSI
and STAR QA data, is available for download at
https://doi.org/10.5281/zenodo.5644386 (Jing et al., 2021).
The dataset is provided using a WGS 84 / UTM zone 48N
projection, with a tag image file format (TIFF). Users can
discuss and respond to issues that arise during the use of
this dataset. New versions can be released in consideration of
user comments. In addition, a source code for this collection
is available at https://doi.org/10.5281/zenodo.6648868 (Jing,
2022).

6 Conclusions

The STAR NDSI collection is derived from Terra–Aqua
MODIS NDSI datasets using an optimized STAR from our
last research (Jing et al., 2019). The evaluation tests indi-
cate that the STAR NDSI collection is highly consistent with
the in situ snow-depth measurements and higher-resolution
NDSI maps. The STAR NDSI collection generally has the
following strengths: (1) This collection has reached a con-
tinuous 20-year period, which is the minimum period of a
dataset for long-term hydrological and climatic processes
analysis. (2) The cloud-free collection can accurately esti-
mate the snow dynamics, highly consistent with in situ snow-
depth and Landsat NDSI maps. Specifically, the STAR NDSI
collection eliminates cloud contamination and pre-eminently
improves the overall performance of the TAC NDSI dataset.

Due to the higher spatial resolution and larger dynamic
range, the classification accuracy of the STAR NDSI collec-
tion is higher than that of the NIEER AVHRR SCE dataset.
In terms of numerical accuracy, it is superior to the MODIS
CGF NDSI dataset, since the STAF method generally out-
performs the simplified MDC method. Additionally, it has a
satisfactory accuracy in original cloud-covered areas. (3) The
collection provides a detailed snow cover dataset for China,
accurately reflecting the snow conditions of the following
three major snow areas: NX, NC, and QTP. The collection
is available at: https://doi.org/10.5281/zenodo.5644386 (Jing
et al., 2021).

As discussed above, the STAR NDSI collection still has
some deficiencies. A future release should consider several
issues: (1) the original accuracy of MODIS NDSI datasets
reduced by factors such as complex climatic conditions and
dense forest coverage; (2) the reconstruction accuracy of
snow edges affected by mixed pixels and high cloud cover-
age; (3) the reconstruction accuracy of transient snow areas
due to the inadequate spatiotemporal contextual information;
and (4) the lack of evaluation based on in situ snow-depth
measurements in NC due to the limited access to climate sta-
tion data.

Despite the aforementioned deficiencies, since snow is a
pivotal driver and sensitive indicator for many hydrometeo-
rological processes, the daily 500 m STAR NDSI collection
for 20 years has various potential applications: (1) achieving
a deep understanding of long-term snow cover variability in
China, (2) providing effective forcing data for hydrological
and meteorological models, and (3) supporting strategic de-
cisions on water resources management, environmental pol-
lution governance, and related economic development.
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Appendix A

Figure A1. The QA maps over Taklimakan Desert on 19 Jan-
uary 2008. The QA map (a). Comprehensive QA map (b).

Figure A2. Post-processing over Taklimakan Desert on 19 Jan-
uary 2008. STAR result (a). Final result (b).

Figure A3. Extreme snow event in southern China on 31 January 2008 (a), 5 February 2008 (b), and 10 February 2008 (c).

https://doi.org/10.5194/essd-14-3137-2022 Earth Syst. Sci. Data, 14, 3137–3156, 2022
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