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Abstract. From the Hindu Kush mountains to the Registan Desert, Afghanistan is a diverse landscape where
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural livelihoods and
food security. The ability to remotely monitor environmental conditions is critical to support decision making for
humanitarian assistance. The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS) global and Central Asia data streams provide information on hydrologic states for routine
integrated food security analysis. While developed for a specific project, these data are publicly available and
useful for other applications that require hydrologic estimates of the water and energy balance. These two data
streams are unique because of their suitability for routine monitoring, as well as for being a historical record
for computing relative indicators of water availability. The global stream is available at ∼ 1-month latency,
and monthly average outputs are on a 10 km grid from 1982–present. The second data stream, Central Asia (21–
56◦ N, 30–100◦ E), at∼ 1 d latency, provides daily average outputs on a 1 km grid from 2000–present. This paper
describes the configuration of the two FLDAS data streams, background on the software modeling framework,
selected meteorological inputs and parameters, and results from previous evaluation studies. We also provide
additional analysis of precipitation and snow cover over Afghanistan. We conclude with an example of how
these data are used in integrated food security analysis. For use in new and innovative studies that will improve
understanding of this region, these data are hosted by U.S. Geological Survey data portals and the National
Aeronautics and Space Administration (NASA). The Central Asia data described in this paper can be accessed
via the NASA repository at https://doi.org/10.5067/VQ4CD3Y9YC0R (Jacob and Slinski, 2021), and the global
data described in this paper can be accessed via the NASA repository at https://doi.org/10.5067/5NHC22T9375G
(McNally, 2018).
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1 Introduction

From the Hindu Kush mountains to the Registan Desert,
Afghanistan is a diverse landscape where droughts, floods,
conflict, and economic market accessibility pose challenges
for agricultural livelihoods and food security. The ability to
remotely monitor environmental conditions is critical to sup-
port decision making for economic development, humanitar-
ian assistance, water resource management, agriculture, and
more. Environmental datasets can be combined with socioe-
conomic variables and transformed into customized products
to support decision making. This is the definition of a “cli-
mate service” (Hewitt et al., 2012).

Hydrologic and land surface datasets are particularly rel-
evant for agriculture and water resource decision making.
When these datasets are credible, updated routinely, and
made publicly available, the influences of climate variabil-
ity and climate change can be incorporated into specialized
analyses by intermediary users1. One example of an inter-
mediary user central to this data descriptor is the food secu-
rity analysts of the Famine Early Warning Systems Network
(FEWS NET). FEWS NET analysts combine environmental
information, largely from remote sensing and earth system
models, with information on nutrition, livelihoods, markets,
and trade to provide decision support to the U.S. Agency for
International Development (USAID) Bureau of Humanitar-
ian Assistance. Additional examples and discussion of the
production of climate service inputs can be found in the lit-
erature (e.g., Vincent et al., 2018; McNally et al., 2019).

While these data are tailored to specific needs, they are
also applicable to other climate services and research, e.g.,
desert locust movement forecasting (Tabar et al., 2021). To
that end, this paper describes the FEWS NET Land Data
Assimilation System (FLDAS) global and Central Asia data
streams. The inputs (e.g., precipitation) and resulting hydro-
logic estimates (a) provide a 40+ year historical record for
contextualizing estimates in terms of departures from aver-
age (i.e., anomalies), (b) are low latency (<1 month) for
timely decision support, and (c) are familiar to the food and
water security user community.

The purpose of this data descriptor is four-fold:

– to describe the development of the moderate-resolution,
low-latency FLDAS hydrologic monitoring system for
Central Asia, specifically Afghanistan,

– to increase awareness of these data resources, which are
intended to be a public good,

– to demonstrate how our methods inform critical inves-
tigations that ultimately improve general understanding
of water resources in this important region of the world,
and

1The World Meteorological Organization, WMO, defines inter-
mediate (intermediary) users as those who transform climate infor-
mation into a climate service.

– to describe a “convergence of evidence” approach to hy-
drologic monitoring in locations where all sources of
information contain some level of uncertainty.

An outline of this data descriptor is as follows. Section 1.1
provides background on Afghanistan’s weather and climate.
Section 1.2 reviews previous studies that have conducted
evaluations of the meteorological inputs and hydrologic out-
puts of land data assimilation systems in the Central Asia re-
gion. Section 2 (“Methods”) describes the hydrologic model-
ing system, parameters and meteorological inputs, and model
outputs. Section 3 (“Results”) presents comparisons of pre-
cipitation inputs and comparisons of modeled snow esti-
mates to remotely sensed snow observations. Finally, Sect. 4
describes an application of these data to the Afghanistan
drought of 2018.

1.1 Afghanistan weather and climate

Central Asia, a region that includes Afghanistan, is water-
scarce, receiving roughly 75 % of its annual precipita-
tion during November–April (Oki and Kanae, 2006). In
Afghanistan, rainfall is highest in the northeast Hindu Kush
mountains and decreases toward the arid southwest Regis-
tan Desert (Fig. 1a). Temperature follows a similar pattern
with cooler temperatures in the high-elevation, wetter north-
east and warmer temperatures in the south and southwest
(Fig. 1b). Regional precipitation is strongly influenced by
the El Niño–Southern Oscillation (ENSO). La Niña condi-
tions are associated with below-average precipitation (FEWS
NET, 2020b), and El Niño conditions are associated with
above-average precipitation (Barlow et al., 2016; Hoell et al.,
2017; Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET,
2020a). Other factors with an important influence on precip-
itation include orography, storm tracks, and the Madden–
Julian oscillation (Barlow et al., 2005; Nazemosadat and
Ghaedamini, 2010; Hoell et al., 2018). The last several years
have experienced several ENSO events, with recent La Niña
events in 2016–2017, 2017–2018, and 2020–2022 (NOAA
CPC, 2021) that corresponded to droughts (FEWS NET,
2017b, 2018c, 2021).

Despite Afghanistan’s semi-arid climate, agriculture is
an important sector, contributing 23 % of its gross domes-
tic product and employing 44 % of the national labor force
(CIA World Factbook, 2022). High mountain snowpack and
snowmelt runoff are important for agricultural water supply.
According to FEWS NET (2018b) snowmelt runoff is re-
sponsible for “providing over 80 % of irrigation water used.
The timing and duration of the snowmelt is a key factor in
determining the volume of irrigation water and the length of
time that it is available, as well as its availability for use in
marginal areas that experience [variable] rainfall.” Therefore,
routine hydrologic monitoring, with a particular emphasis on
snow, is critical for tracking agricultural conditions and pro-
vides early warning for food insecurity.
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Figure 1. (a) Average annual precipitation in Afghanistan from 1991–2020, with overlaid province boundaries. (b) Average maximum
monthly temperature from 1986–2015, overlaid with province boundaries. Map source USGS Knowledge Base (2021).
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1.2 Hydrologic data availability and uncertainty

Remote sensing and models are important inputs to cli-
mate services (Qamer et al., 2019). In the Central Asia re-
gion, and especially Afghanistan, estimates of meteorolog-
ical inputs and model parameters have considerable uncer-
tainty due to sparse in situ environmental observations. To
address these challenges, the NASA High Mountain Asia
project (https://www.himat.org/, last access: 24 June 2022)
has broadly aimed to explore the driving changes in hydrol-
ogy, as well as model validation and data assimilation, and
water budget processes from the Himalayas in the south and
east to the Hindu Kush in the west. These efforts and other
studies of satellite-derived rainfall informed the configura-
tion and interpretation of the FLDAS Central Asia and global
data streams.

The primary challenge to producing and evaluating hydro-
logic estimates is that sparse in situ precipitation observa-
tions lead to uncertainty in gridded, satellite-based precipita-
tion estimates. Precipitation station observations are used for
(a) bias correction of satellite estimates and (b) validation of
gridded products. In terms of gridded dataset development,
Hoell et al. (2015) describe how the lack of station obser-
vations and complex topography in Afghanistan, Iraq, and
Pakistan makes this issue particularly problematic. Barlow et
al. (2016) also highlight the station availability across the re-
gion and how that influences uncertainties in the Global Pre-
cipitation Climatology Center (GPCC) version 6 (Schneider
et al., 2017) dataset over Central Asia (Fig. 2a) and specifi-
cally Afghanistan over time (Fig. 2b).

In the absence of abundant in situ observations, one ap-
proach for remote sensing and model evaluation is to com-
pare multiple input datasets and evaluate the water balance.
Independent observations from the different components of
the water balance (e.g., evapotranspiration, soil moisture,
streamflow) help constrain estimates. We provide some back-
ground here and refer readers and data users to literature
from the NASA High Mountain Asia project, specifically
Yoon et al. (2019) and Ghatak et al. (2018), who explored
similar configurations to the FLDAS system. This back-
ground allows the reader to appreciate the uncertainties in in-
puts, outputs, and derived products and climate services over
Afghanistan and the broader Central Asia region.

Meteorological forcing is known to be the primary source
of uncertainty in land surface model simulations (Kato and
Rodell, 2007). Thus, its evaluation is important to under-
stand the quality of model inputs and outputs. For this reason,
Ghatak et al. (2018) compare four unique precipitation data
sources: daily Climate Hazards center Infrared Precipitation
with Stations (CHIRPS) (Funk et al., 2015), NOAA’s Global
Data Assimilation System (GDAS) (Derber et al., 1991), and
two estimates from NASA’s Modern Era Reanalysis for Re-
search and Applications version 2 (MERRA-2) (Gelaro et al.,
2017). They find that annual CHIRPS and GDAS precipita-
tion estimates had a similar bias and root mean squared error

over Afghanistan with respect to the APHRODITE (Asian
Precipitation Highly Resolved Observational Data Integra-
tion Toward Evaluation) rain-gauge-derived product (Yata-
gai et al., 2012). CHIRPS had a higher correlation with
APHRODITE. Ghatak et al. (2018) further evaluated the
quality of rainfall inputs based on the performance of evapo-
transpiration and other derived outputs. The authors caution
that gridded precipitation estimates that have in situ inputs,
like CHIRPS, may systematically underestimate precipita-
tion in mountainous regions. We keep this consideration in
mind when interpreting differences between FLDAS global
and Central Asia data streams.

Yoon et al. (2019) compare precipitation estimates from
10 different products, including APHRODITE, CHIRPS,
GDAS, and MERRA-2, across a broad region of High Asia,
including a portion of Afghanistan. They find that all datasets
generally capture the spatial pattern of rainfall and that the
products tend to agree more at high elevations, where it
is unlikely there are station observations. Like Ghatak et
al. (2018), they found CHIRPS and APHRODITE to have
a lower average precipitation than GDAS, attributable to the
incorporation of sparse gauge data.

In addition to precipitation, other meteorological inputs
are important for accurate hydrologic estimates. Yoon et
al. (2019) conducted an intercomparison of near-surface
air temperature estimates from three model analysis prod-
ucts (European Centre for Medium-Range Weather Forecasts
(ECMWF; Molteni et al., 1996), GDAS, and MERRA-2).
They noted a statistically significant upward trends in GDAS
and ECMWF temperature, as well as consistently higher
temperatures in MERRA-2. We see the same pattern when
averaging across Afghanistan. Yoon et al. (2019) conclude
that improvements in the meteorological boundary condi-
tions would be needed to reduce the uncertainty in the terres-
trial budget estimates. These sentiments are echoed in Qamer
et al. (2019).

Despite known uncertainties, Schiemann et al. (2008) find
that gridded precipitation estimates can qualitatively iden-
tify large-scale spatial distribution of precipitation, seasonal
cycles, and interannual variability (i.e., wet and dry years)
across Central Asia. Long-term estimates of rainfall from
satellite-derived products, as well as derived historical time
series from hydrologic modeling, can be used as a baseline
of “observations”, from which we can have a sense of rel-
ative conditions, i.e., anomalies and variability. When this
historical record is harmonized with a routine monitoring
system, current conditions can be placed in historical con-
text. Anomaly-based representation of hydrologic extremes
can provide confidence in modeled estimates that have the
potential to influence agricultural, water resource, and food
security outcomes. For these reasons one of the requirements
for FLDAS input is that there is a sufficiently long historical
record for contextualizing estimates in terms of anomalies.

From a climate services perspective, the reliance on the
representation of relatively wet and dry conditions, as well
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Figure 2. (a) Station data availability underlying the GPCC version 6 dataset, for the 1950–2016 period, on the 0.5◦ resolution grid over
Central Asia. (b) Fraction of grid cells with number of stations used as input to the GPCC rainfall dataset in Afghanistan from 1932–2016.

as a convergence of evidence approach, provides useable
information despite the above-mentioned uncertainties. A
convergence of evidence approach that draws on (quasi-
)independent sources of information is useful to understand
actual conditions. For the convergence of Earth observations,
hydrologic models can generate ensembles of historical, cur-
rent, or future estimates of snow, streamflow, soil mois-
ture, and evapotranspiration, which can then be compared to
satellite-derived estimates of surface water (e.g., McNally et
al., 2019), soil moisture (e.g., McNally et al., 2016), veg-
etation conditions and evapotranspiration (e.g., Jung et al.,
2019; Pervez et al., 2021), snow cover (e.g., Arsenault et al.,
2014), in situ streamflow (e.g., Jung et al., 2017), and oth-
ers. Hydrologic estimates can also be compared to outcomes
in crop production (e.g., McNally et al., 2015; Davenport
et al., 2019; Shukla et al., 2020) and nutrition, health, and
food security (e.g., Grace and Davenport, 2021) to provide
a qualitative understanding of both hydrologic model perfor-
mance and conditions on the ground. In this paper we provide
an example for 2018 when drought conditions were associ-
ated with crisis levels of acute food insecurity over most of
Afghanistan (FEWS NET, 2018c).

To summarize, our experience and the literature have char-
acterized uncertainties in available meteorological forcing
for the region. GDAS, CHIRPS, and MERRA-2 were cho-
sen for the FLDAS system based on our project requirements

of (a) a sufficiently long historical record for contextualizing
estimates in terms of anomalies, (b) low latency (<1 month)
for timely decision support, (c) familiarity with the FEWS
NET user community, and (d) prior evaluation by our team
and the broader community. We note here and describe in
more detail later that the Integrated Multi-satellite Retrievals
for the Global Precipitation Mission (IMERG), a NASA pre-
cipitation product (Huffman et al., 2020), have also met these
requirements since version 6, which was released in 2019 (af-
ter these studies and initial FLDAS configuration). We will
describe an IMERG, GDAS, and MERRA-2 comparison in
the “Results” (Sect. 3).

2 Methods

2.1 Land surface modeling system and parameters

A land surface model (LSM) can provide spatially and
temporally continuous information about the water and en-
ergy budgets of the land surface. This information is use-
ful for food and water security applications in places where
in situ measurements of rainfall, soil moisture, snow, and
runoff are sparse. This is particularly relevant in mountain-
ous places like Afghanistan where heterogeneous geography
limits the representativeness of sparse in situ measurements.
The FLDAS (McNally et al., 2017) utilizes the NASA’s Land
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Information System Framework (LISF), which is composed
of a pre-processor, the Land surface Data Toolkit (LDT; Ar-
senault et al., 2018), the Land Information System (Kumar et
al., 2006; Peters-Lidard et al., 2007), and the Land Verifica-
tion Toolkit (Kumar et al., 2012). In this data descriptor we
describe the two configurations of the FLDAS data streams
used for Central Asia food and water security applications. It
uses the Noah 3.6 LSM (Chen et al., 1996; Ek et al., 2003)
for the two data streams (Fig. 3 and Table 1). The first data
stream is global, at∼ 1-month latency, and provides monthly
average outputs on a 10 km grid from 1982–present. The sec-
ond data stream centered on Central Asia,∼ 1 d latency, pro-
vides daily average outputs at 1 km from 2001–present.

One important feature, added by the NASA LISF software
development team, is the radiation correction described in
Kumar et al. (2013) which improves the representation of
snow dynamics with respect to slope and aspect corrections
on the downward solar radiation field. Another noteworthy
feature is the method of the Central Asia data stream restart
(i.e., annual initialization based on climatology), which was
developed to address an issue of excessive interannual snow
accumulation found in the Noah LSM. First, a 9-year spin-up
of the system was performed to produce stable snow and soil
moisture conditions. Next, the resulting model states were
compared with the Moderate Resolution Imaging Spectrora-
diometer (MODIS) Maximum Snow Extent data originally
computed by NOAA National Operational Hydrologic Re-
mote Sensing Center (Greg Fall, NOAA Operational Data
Center, written communication, 2014). Then, the model-
estimated conditions were adjusted to produce a climatolog-
ical model state for 1 October that is used to initialize each
year. This approach ensures that the “water year”, beginning
1 October, is initialized with a reasonable initial amount of
snowpack. While this method does effectively manage exces-
sive interannual modeled snow accumulation, the user should
be aware that using the climatological model state will per-
sist for ∼ 1–2 months in the water and energy balance of the
LSM until they are superseded by “observed” meteorological
inputs for the current water year. Preliminary work indicates
that this issue will be resolved in future updates. In contrast,
the global data stream does not use this 1 October initializa-
tion procedure.

Although the two data stream specifications are largely the
same, there are some differences related to the input forcings,
parameters and specifications (Table 1), and model spin-up
procedures.

The parameters and specifications listed in Table 1 are
largely default settings defined by the Noah LSM commu-
nity (NCAR Research Applications Library, 2021). Ongoing
research aims to identify where model output performance
can be improved with parameter updates. Evaluating param-
eter updates had similar challenges as evaluating input forc-
ing described in Sect. 1.2: without reliable reference data
it is difficult to determine a “best” input. For example, we
have explored changing soil parameters from FAO to the In-

ternational Soil Reference and Information Centre (ISRIC)
SoilGrids database (Hengl et al., 2017). This change did
not result in improvements in streamflow statistics in south-
ern Africa, nor in soil moisture anomalies’ ability to repre-
sent drought events. We expect similar results in Afghanistan
where, for example, streamflow will be sensitive to a change
in soil parameters and the lack of reference data to evaluate
if there is an improvement. Moreover, our model runs at 0.1
and 0.01◦ may not fully exploit the added value of the 250 m
soil grids as noted in Ellenburg et al. (2021) for a LISF ap-
plication in East Africa.

Vegetation parameters are also potential sources of im-
provement whose importance to hydrologic estimates has
been highlighted (e.g., Miller et al., 2006). We have found
the NCEP estimates of green vegetation fraction (GVF) to be
sufficient for this configuration of Noah 3.6. We found that
a time series of GVF derived from the Normalized Differ-
ence Vegetation Index (NDVI) did not improve representa-
tion of droughts in eastern Africa. However, future FLDAS
global and Central Asia versions can be run with Noah-
Multiparameterization (Noah-MP) (Niu et al., 2011) which
has multiple vegetation options and relies on either leaf area
index or GVF. This model update is expected to open pos-
sibilities for the choice of datasets to meet our application
needs and potentially improve representation of the water
balance.

2.2 Meteorological forcing inputs

As previously discussed, precipitation is a critical input to
land surface models. The lower-latency Central Asia data
stream is a daily product, forced with GDAS (Derber et al.,
1991) 3-hourly precipitation, which is available from 2001–
present at <1 d latency. This dataset was chosen because of
its latency. The global data stream is driven by the daily
CHIRPS product (Funk et al., 2015), which is available from
1981–present at ∼ 5 d latency for CHIRPS Preliminary and
∼ 1.5-month latency for CHIRPS Final. The CHIRPS prod-
ucts were chosen as inputs because of their proven perfor-
mance in the literature, which has made it the “gold standard”
for food and water security monitoring by organizations like
FEWS NET, the World Food Program, and others who need
up-to-date estimates and a 40+ year historical record. As
mentioned earlier, the lack of rainfall stations for bias correc-
tion of satellite-derived estimates and evaluation poses a ma-
jor challenge. However, we find that the GDAS rainfall prod-
uct and the CHIRPS rainfall product are adequate for rou-
tine monitoring and, along with additional sources of remote
sensed information, are important for the convergence of evi-
dence when making a best estimate at land surface states and
fluxes.

Before the daily CHIRPS rainfall data can be used as in-
put to the FLDAS models, the daily precipitation is pre-
processed to a sub-daily time step using the LDT compo-
nent of the LISF software. LDT temporally disaggregates the
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Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (a) the global data stream at 10 km spatial resolution
and ∼ 1-month latency for monthly averaged hydrologic estimates and (b) the Central Asia data stream at 1 km spatial resolution and ∼ 1 d
latency for daily averaged hydrologic estimates. Imagery 2021 TerraMetrics, map data © Google.

daily CHIRPS rainfall using an approach similar to the North
American Land Data Assimilation System (NLDAS) precipi-
tation temporal downscaling (Cosgrove et al., 2003). For this
approach, we use a finer timescale MERRA-2 precipitation
timescale as a reference dataset to represent an accurate di-
urnal cycle. We note that this step in our methodology fa-
cilitates the solving of FLDAS water and energy balances at
a sub-daily time step. However, for Central Asia we do not
have sufficient reference data available to assess the impor-
tance of sub-daily precipitation distribution, as was demon-
strated by Sarmiento et al. (2021) for the United States where
adequate reference data are available. For spatial downscal-
ing, coarser-scale meteorological forcings are spatially dis-
aggregated to the output resolution (0.01 and 0.1◦ for Cen-
tral Asia and global, respectively) in the LISF using bilinear
interpolation.

The FLDAS models require additional meteorological
inputs, including air temperature, humidity, radiation, and
wind. The lower-latency Central Asia data stream uses
GDAS 3-hourly meteorological inputs available from 2001–
present at <1 d latency. For a longer historical record, the
global data stream uses MERRA-2 (Gelaro et al., 2017)
(1979–present) 1-hourly products with a 2-week latency.
Over the Afghanistan domain GDAS temperature has an up-
ward trend, whereas MERRA-2 is consistently warmer be-
fore 2010. We find that GDAS and MERRA-2 temperature
estimates are of similar magnitude during 2011–2020. Sim-
ilar results were noted by Yoon et al. (2019) who found an
upward trend in GDAS temperature, as well as consistently
higher temperatures in MERRA-2 across a broad High Asia
domain.

2.3 Model evaluation statistics and comparison data

In addition to guidance from previous studies (Sect. 1.2),
we assessed the quality of our modeling outputs by con-
ducting comparisons between (1) FLDAS satellite rainfall in-
puts and other satellite precipitation estimates and (2) model-
estimated snow cover fraction and satellite-derived snow
cover fraction estimates.

For the precipitation analysis, we compare CHIRPS and
GDAS inputs to the Integrated Multi-satellite Retrievals
for the Global Precipitation Mission (IMERG), a NASA
precipitation product that integrates passive microwave
and infrared satellite data with surface station observations
(Huffman et al., 2020). The IMERG Final Run precipi-
tation product, available at ∼ 2-month latency (thus not
suitable for our monitoring applications), has been used
in numerous verification studies, including studies over
Africa (Dezfuli et al., 2017), South America (Gadelha et
al., 2019; Manz et al., 2017), and the mid-Atlantic region
of the United States (Tan et al., 2016). These studies
demonstrated that IMERG Final Run was able to capture
large spatial patterns and seasonal and interannual pat-
terns of rainfall. However, fewer studies have explored
the performance of the lower-latency IMERG Late Run
(https://doi.org/10.5067/GPM/IMERGDL/DAY/06, Huff-
man et al., 2019) product that we use here. Kirschbaum et
al. (2016) include a qualitative comparison for CHIRPS
Final and IMERG Late Run for the southern Africa start-of-
season 2015. IMERG Late Run appears to perform similarly
to the 1.5-month latency CHIRPS Final and outperform the
1 d latency NOAA African Rainfall Estimation Algorithm
Version 2 (RFE) product (Xie and Arkin, 1996). Differences
in the daily rainfall distribution patterns between IMERG
Final Run and CHIRPS Final have also been shown to affect
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Table 1. FEWS NET Land Data Assimilation System (FLDAS) specifications for (a) global data stream, 10 km, monthly with CHIRPS and
MERRA-2 and (b) Central Asia data stream, 1 km, daily with GDAS.

Global Central Asia

Spatial extent 59.95◦ S–89.95◦ N, 179.95◦W–179.95◦ E 21–56◦ N, 30–100◦ E

Landmask Generated from MODIS using LISF-LDT, with MOD44w mask applied
post-processing

MOD44w (Carroll et al., 2017)

Land cover IGBP land cover IGBP land cover

Elevation Shuttle Radar Topography Mission (SRTM; NASA JPL, 2013) SRTM

Albedo National Centers for Environmental Prediction (NCEP) albedo (Csiszar
and Gutman, 1999) and MODIS-based max snow albedo (Barlage et al.,
2005)

NCEP albedo and MODIS-
based max snow albedo

Vegetation parameters NCEP greenness fraction (Gutman and Ignatov, 1998) NCEP greenness fraction

Non-precipitation
meteorological inputs

MERRA-2 GDAS

Soil texture Food and Agricultural Organization (FAO) soil texture and properties
(Reynolds et al., 2000)

FAO soil texture and properties

Precipitation inputs CHIRPS daily precipitation, downscaled to 6 hourly with LDT GDAS 3-hourly precipitation

Specifications Noah 3.6.1 Noah 3.6.1

Map projection Geographic latitude–longitude Geographic latitude–longitude

Software version 7.2 7.3

Spatial resolution 10 km 1 km

Temporal coverage 1 January 1982 to present 1 October 2000 to present

Model time step 15 min time step 30 min time step

Met. forcing heights 2 m air temperature (Tair), 10 m wind 2 m Tair, 10 m wind

Soil layers (meters) 0–0.1; 0.1–0.4; 0.4–1.0; 1–2 0–0.1; 0.1–0.4; 0.4–1.0; 1–2

Features Radiation correction Radiation correction

the resulting hydrological modeled output in simulations
done using the NASA LISF (Sarmiento et al., 2021).

For the snow cover fraction (SCF) analysis, we compare
the global and Central Asia data streams with the MODIS
daily SCF product, MOD10A1 Collection 6 (Hall and Riggs,
2016). MOD10A1 data are available at 500 m spatial reso-
lution from February 2000 to the present. SCF is generated
using the Normalized Difference Snow Index (NDSI) and ad-
ditional filters to reduce error and flag uncertainty. Routine
qualitative comparisons, which can be viewed on the NASA
LISF FEWS NET project website, generally show agree-
ment between the model and MODIS SCF, as well as occur-
rence of cloud cover (https://ldas.gsfc.nasa.gov/fldas/models/
central-asia, last access: 28 June 2022). Following Arsenault
et al. (2014), we aggregated pixels to 0.01◦ to reduce error re-
lated to sensor viewing angles and gridding artifacts. For this
analysis, using MODIS SCF as “truth”, we determined true
positives (TPs), true negatives (TNs), false negatives (FNs),

and false positives (FPs). We then computed probability of
detection (POD), where POD= (TP/(TP+FN)), and false
alarm rate (FAR), where FAR= (FP/(FP+TN)). We com-
puted these for the total area of Afghanistan (28–39◦ N, 60–
76◦ E), as well as by basin (Fig. 4). This paper does not com-
pare modeled snow water equivalent (SWE) to independent
snow observations because, as noted by Yoon et al. (2019),
direct evaluation of snow mass and SWE is difficult over
Central Asia due to poor coverage of accurate snow obser-
vations. We follow the Yoon et al. (2019) recommendation to
conduct quantitative SCF comparisons and provide qualita-
tive SWE analysis in “Applications” (Sect. 4).

In addition to rainfall and snow comparisons, we con-
ducted monthly pixel-wise comparison of Central Asia and
the global run’s estimates of evapotranspiration (ET) and
soil moisture versus Operational Simplified Surface Energy
Balance (SSEBop; Senay et al., 2013). ET and Soil Mois-
ture Active Passive (SMAP) Level 3 (Entekhabi et al., 2010,
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2016) use the normalized information contribution (NIC)
metric following Sarmiento et al. (2021). The analysis was
performed for the period 2016–2021 to match the SMAP
record. The NIC metric first computes anomaly correlations
between the model runs and the reference dataset and then
computes the difference between the performance of each
model run using a scale of −1 to +1 to highlight if the
global or Central Asia data stream performs better with re-
spect to the reference. To make the comparisons, the refer-
ence datasets (SMAP and SSEBop) were re-gridded to match
the grid spacing and locations of the experiment model out-
puts.

3 Results

3.1 Gridded rainfall comparison

We have two data streams for Central Asia applications with
different precipitation inputs: (1) the global data stream with
CHIRPS precipitation at 10 km spatial resolution provides a
long-term consistent data record; and (2) the Central Asia
data stream with GDAS precipitation at 1 km provides near-
real-time, finer-spatial-resolution updates. These two data
streams have their respective errors and allow data users to
apply a convergence of evidence approach for food and wa-
ter security applications. This section presents a compar-
ison of the GDAS and CHIRPS precipitation inputs used
for the Central Asia and global data streams, respectively.
We also include IMERG Late Run for comparison as a
high-quality, low-latency product. Future work may incorpo-
rate the IMERG Late Run precipitation inputs into FLDAS
simulations. We also include MERRA-2 precipitation for
comparison. Pair-wise correlations are shown in Table 2.
CHIRPS Final, IMERG Late Run, and GDAS (R ≥ 0.90)
are well correlated in terms of average daily precipitation
(mm d−1) at the monthly and annual (i.e., water year) time
steps. MERRA-2 correlations with these datasets are lower
at the monthly (0.75≤ R ≤ 0.81) and water year (0.64≤
R ≤ 0.69) time steps. Figure 4 shows the time series of the
precipitation products for their overlapping period of record
(2001–2020), which illustrates how they vary in time, and
shows some general patterns in terms of relative precipita-
tion (in mm): GDAS (blue) and IMERG Late Run (purple)
tend to have the highest precipitation totals, CHIRPS (green)
has lower precipitation but is higher than MERRA-2 (yel-
low), which tends to have the lowest precipitation, until 2019
when it is notably higher than the other products.

3.2 Remotely sensed and modeled snow comparisons

The estimation of snow is important for Afghanistan and
Central Asia because it is a critical contributor to water
resources and irrigated agriculture. We compared average
SCF (Fig. 6a), POD, and FAR statistics (Fig. 6b) relative to
MODIS SCF over eight hydrologic basins in Afghanistan.

Figure 4. Afghanistan water year precipitation for CHIRPS,
GDAS, IMERG Late Run, and MERRA-2.

Overall, both model runs estimate greater average SCF
than the MODIS SCF product. The Central Asia data
stream has consistently higher average snow cover for all
basins compared to MODIS SCF estimates and the global
data stream. It is perhaps not surprising that the Central
Asia data stream performs consistently better in POD (by
basin=∼ 80 %) except for the western basin. Similarly, the
FAR of the Central Asia data stream is higher where POD
is higher except for the northern basin. The difference in
statistics may be related to the different forcing inputs or the
higher spatial resolution of the Central Asia data stream. Ku-
mar et al. (2013) note that higher spatial resolution was im-
portant for snow-dominated basins.

In addition to precipitation and snow cover comparisons
we conducted comparisons with remotely sensed soil mois-
ture and ET (not shown). We found that in general, GDAS-
derived estimates of ET consistently performed better over
Afghanistan in terms of pixel-wise anomaly correlation and
NIC with SSEBop ET. Meanwhile, neither modeled estimate
of soil moisture consistently outperformed the other with re-
spect to SMAP. The ET results lend some support to the qual-
ity of the Central Asia data stream estimates. However, the
lack of signal in the soil moisture comparisons suggests that
more careful analysis of the model and remote sensing errors
is required before drawing conclusions regarding which data
stream is “best”.

3.3 Discussion of results compared to previous studies

Despite the lack of ground-based observations, our analy-
sis shows that the remotely sensed estimates and the mod-
els have good correspondence with other sources of evidence
in terms of seasonal timing and performance. This provides
analysts with confidence when using the FLDAS snow esti-
mates, in tandem with other sources, as an input to food secu-
rity assessments. Our approach is supported by other studies
that have explored the challenges of evaluating hydrologic
estimates over the region (Immerzeel et al., 2015; Ghatak et
al., 2018; Yoon et al., 2019; Qamer et al., 2019).

https://doi.org/10.5194/essd-14-3115-2022 Earth Syst. Sci. Data, 14, 3115–3135, 2022



3124 A. McNally et al.: A Central Asia hydrologic monitoring dataset

Table 2. Afghanistan spatial average Spearman rank correlation (R) of monthly (water year) precipitation 2001–2020.

GDAS CHIRPS Final IMERG Late Run

GDAS x – –
CHIRPS Final 0.91 (0.92) x –
IMERG Late Run 0.91 (0.89) 0.92 (0.90) x
MERRA-2 0.75 (0.64) 0.78 (0.68) 0.81(0.69)

Figure 5. Hydrologic basins used in the analysis of categorical statistics for snow-covered fraction.

Yoon et al. (2019) show that their LSM ensembles of SCF
have an average POD of 72 % and FAR of 36 %, which are
within the range of our POD and FAR statistics (60 %–80 %
POD; 20 %–40 % FAR) compared to MODIS SCF. The cat-
egorical statistics indicate that Central Asia (GDAS) tends
to have both a higher probability of detection and false alarm
rate, indicating higher averages than MODIS SCF and global
(CHIRPS).

With respect to the soil moisture and ET comparisons, we
found that the Central Asia data stream estimates of ET were
better correlated with SSEBop ET, but neither data stream
was consistently better correlated with SMAP. These differ-
ences could be a function of non-precipitation differences or
higher spatial resolution. Ghatak et al. (2018) also found that
the choice of reference dataset (with its own characteristics
and errors) was an important factor.

In general, given the lack of clarity on the “best” FLDAS
data stream, the convergence of evidence approach allows us
to consult both data streams, leveraging the longer time series
of CHIRPS and the lower latency of GDAS.

3.4 Limitations and future developments

Given the need for multiple data streams for the convergence
of evidence, we have summarized the pros and cons of the
Central Asia and global data streams in Table 3.

IMERG version 6 was released in 2019 and includes rain-
fall estimates processed back to 2000. Prior to this change
we had found encouraging results when comparing the onset
of rainy season using both IMERG Late Run and CHIRPS
(Kirschbaum et al., 2016). However, at that time the period
of record was a limitation for computing anomalies. We now
have an adequate period of record, and IMERG Late Run
is planned to be part of the upcoming FLDAS global and
FLDAS Central Asia releases. We are also encouraged by
the quality of IMERG at the daily time step when compared
to CHIRPS over the United States where accurate reference
data are available (Sarmiento et al., 2021).

In addition to IMERG other promising rainfall datasets
are in development. Ma et al. (2020) have developed the
AIMERG dataset that combines IMERG Final Run with
the APHRODITE rain-gauge-derived product (Yatagai et al.,
2012). Another promising dataset is CHIMES (Funk et al.,
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Table 3. Pros and cons of the two data streams.

Central Asia: Noah 3.6 with GDAS (2000–present) Global: Noah 3.6 with CHIRPS and MERRA-2 (1982–present)

Pros 1 km Less computationally intensive

1 d latency, daily time step Longer time record

Snow estimates available in USGS Early Warning eXplorer
https://earlywarning.usgs.gov/fews/ewx/∗

CHIRPS and MERRA-2 forcing spatial resolution does not change
over time (stable climatology)

Water and energy balance available in NASA Giovanni
https://giovanni.gsfc.nasa.gov/giovanni/∗;
Google Earth Engine
https://developers.google.com/earth-engine/datasets/tags/fldas∗;
Climate Engine https://climateengine.com/∗

Cons More computationally intensive Lower resolution (10 km)

Shorter time record ∼ 30 d latency

GDAS forcing resolution changes over time (unstable clima-
tology) (NOAA NCEP https://www.emc.ncep.noaa.gov/gmb/
STATS/html/model_changes.html∗)

Not publicly available at daily time step

Large data volume, difficult to move

∗ Last access: 24 June 2022

2022), a blend of CHIRPS and IMERG, whose developers
have been exploring the strengths and limitations of these
two datasets and their fusion to produce an optimal product.

With respect to other FLDAS developments, FLDAS
global and Central Asia are planned to be transitioned to
Noah-MP. This will allow for improved representation of
snowpack and groundwater. This will also necessitate the use
of different parameters, e.g., leaf area index, as well as the
potential to explore different parameter sets like ISRIC soils.
In the meantime, multi-forcing and multi-model ensembles,
as well as the convergence of evidence with other remotely
sensed data and field reports, are a viable approach for pro-
viding hydrologic estimates for various applications.

4 Applications

These data from global and Central Asia data streams are
routinely used in several FEWS NET information prod-
ucts listed in Table 4. NOAA’s Climate Prediction Cen-
ter (CPC) international desks provide a weekly briefing on
the past week’s weather conditions and 1–2-week forecasts
for FEWS NET regions of interest, including Central Asia.
There is also a monthly FEWS NET seasonal monitor and a
monthly seasonal forecast review for which these data pro-
vide information on the current state of the snowpack, soil
moisture, and runoff. These “observed conditions” can then
be qualitatively combined with forecasts 1 week to many
months in the future to assess potential hydro-meteorological
hazards. To demonstrate the role of these data in the early
warning process, at different points in the season, we provide
an example of the 2017–2018 wet season in Afghanistan dur-
ing a La Niña event that contributed to drought.

4.1 Snow monitoring and seasonal outlooks

As previously mentioned, and as shown in Fig. 7,
Afghanistan and the broader region are strongly influenced
by La Niña, which tends to increase the likelihood of below-
average precipitation. Depending on this and antecedent con-
ditions there in an increased likelihood of below-average
snowpack, reduced springtime streamflow and flood risk, re-
duced summer irrigation water availability, and crop yield
losses.

A La Niña Watch was issued by NOAA in September 2017
(NOAA, 2017). The FEWS NET October 2017 Food Secu-
rity Outlook (FEWS NET, 2017a) stated that La Niña con-
ditions were expected throughout the Northern Hemisphere
in fall and winter and that below-average precipitation was
likely over much of Central Asia, including Afghanistan,
during the 2017–2018 wet season. With the expectation
of below-average precipitation coupled with above-average
temperatures, FEWS NET anticipated that snowpack would
most likely be below average. In the context of food secu-
rity outcomes, it was assumed that areas planted with win-
ter wheat were likely to be less than usual, reducing land
preparation activities and associated demand for labor. Two
provinces of particular concern were Daykundi and Wardak
(Fig. 8a; brown borders), both located in the Helmand River
Basin (Fig. 8a; gray shading). Precipitation deficits in these
provinces would lead to poor rangeland resources and pas-
ture availability and would likely result in decreased live-
stock productivity and milk production through May. How-
ever, given that October was the start of the wet season, there
remained a large spread of possible outcomes: spatial and
temporal rainfall distributions and snowpack totals necessi-
tating routine updates to assumptions.
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Table 4. Routine applications of FLDAS Afghanistan hydrologic data.

Routine application of these data Web link to updates Notes

FEWS NET Global Weather Hazards
Summary produced by NOAA CPC

https://fews.net/global/∗

https://www.cpc.ncep.noaa.gov/products/
international/index.shtml∗

Shapefiles
https://ftp.cpc.ncep.noaa.gov/fews/
weather_hazards/∗

Seasonal monitor https://earlywarning.usgs.gov/fews/
afghanistan/seasonal-monitor ∗

Updated near the middle of each month
from October–May, i.e., the wet season

FEWS NET Food Security Outlook
brief

https://fews.net/central-asia/afghanistan ∗ Information on snow or other hydrology
included if applicable

Crop Monitor for Early Warning https://cropmonitor.org/index.php/cmreports/
earlywarning-report/ ∗

Information on early warning and crop
conditions

∗ Last access: 24 June 2022

Figure 6. (a) Mean snow cover fraction for the entire area and
by hydrologic basin for MODIS Snow Cover Fraction (SCF), Cen-
tral Asia (CA), and global (GL) data streams for water year 2020.
(b) Probability of detection (POD) of snow presence and false alarm
rate (FAR) for the Central Asia (CA) and global data streams rela-
tive to the MODIS SCF for water year 2020.

Monitoring continued during the wet season, tracking ob-
servations from remote sensing, models, and field reports,
as well as forecasts across timescales. This information was
used to regularly update expectations of end-of-season out-
comes. Using the FLDAS Central Asia data stream, an
NOAA CPC weather hazards brief for 21 December 2017
reported that parts of northern and central Afghanistan re-
mained atypically snow-free and that northeastern high-
elevation areas exhibited SWE deficits. SWE is a commonly
used measurement of the amount of liquid water contained
within the snowpack, as well as an indicator of the amount of
water that will be released from the snowpack when it melts.
By 17 January 2018, an abnormal dryness polygon was
placed over northeastern Afghanistan and the central high-
lands based on below-average SWE values from the FLDAS
Central Asia estimates. Abnormal dryness is defined for an
area that has registered cumulative 4-week precipitation and
soil moisture ranking less than the 30th percentile, with a
standardized precipitation index (SPI) of 0.4 standard devia-
tions below the average. In addition, it is required that fore-
casts indicate below-average precipitation (less than 80 % of
normal) for that area during the 1-week outlook period. By
late February 2018, precipitation deficits and related SWE
(Fig. 9) increased and met the criteria for “drought” (Fig. 8b).
Drought is defined as an area that has previously been defined
as having “abnormal dryness” and has continued to register
seasonal precipitation and soil moisture deficits since the be-
ginning of the rainfall season. Specifically, 8-week cumula-
tive precipitation, soil moisture, and runoff below the 20th
percentile rank and an SPI of 0.8 SD below the average are
classification guidelines.

The February 2018 Food Security Outlook (FEWS NET,
2018b) provided the following updates, based on the CPC
hazard reports and seasonal monitors: “Snow accumulation
and cumulative precipitation were well below average for the
season through February 2018, with some basins at or near
record low snowpack, with data since 2002 . . . These factors
will likely have an adverse impact on staple production in
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Figure 7. Timing of wet and dry conditions related to La Niña. Increased likelihood of dry conditions from November–May for Afghanistan
during La Niña events. Image from FEWS NET (2020b).

marginal irrigated areas and in many rainfed areas. [More-
over, with] forecasts for above-average temperatures during
the spring and summer, rangeland conditions are expected
to be poor during the period of analysis through Septem-
ber 2018. This could have an adverse impact on pastoral-
ists and agro-pastoralists, particularly in areas where live-
stock movements are limited by conflict”. The Crop Moni-
tor for Early Warning reports for February and March 2018
(GEOGLAM, 2018a, b) also cited reduced snowpack in
Afghanistan and the negative impacts on winter wheat crops,
as well as irrigation water availability in the spring. The story
was also highlighted in NASA Earth Observatory March
2018 “Record Low Snowpack in Afghanistan” (NASA Earth
Observatory, 2018).

The USGS Early Warning eXplorer (EWX) (Shukla et al.,
2021) allows analysts to look at maps and time series for a
variety of variables and specific provinces and river basins.
Plots from EWX in Fig. 10 show below-average precipitation
for provinces in the Helmand Basin for January and Febru-
ary. CHIRPS cumulative rainfall for 2017–2018 versus the
18-year average for Day Kundi (a.k.a. Daykundi) Province
showed near-average conditions until December. From Jan-
uary, cumulative rainfall remained below the 2000–2018 av-
erage throughout the rest of the season ending in May; the
same pattern occurred in nearby Uruzgan Province. In neigh-
boring Maydan Wardak (a.k.a Wardak) Province, below-
average conditions were experienced in January and Febru-
ary, but cumulative rainfall recovered in March to remain
slightly above average. Day Kundi (Fig. 10b) and Wardak
(Fig. 10c) are provinces located in the upper reaches of the
Helmand Basin. Figure 10c shows SWE averaged across the
entire Helmand basin. The gray shading indicates the range

of the minimum and maximum values, and the dashed blue
line is the average. Initial snow conditions start above aver-
age until December, after which SWE deficits are near record
low values through the beginning of February and then per-
sist at below-average levels.

By the end of the season in April 2018, FEWS
NET (2018c) concluded that “below-average precipitation
throughout most of the country during the October 2017–
May 2018 wet season has led to very low snowpack . . .
Low irrigation water availability is likely to have an ad-
verse impact on yields for winter wheat and other . . . bar-
ley, maize, and others . . . particularly in downstream areas
in regions with limited rainfall. . . . The poor performance of
the wet season and above-average temperatures . . . exacer-
bated dry rangeland conditions in many areas, particularly
in . . . Sari Pul, [and surrounding] . . . provinces. Pastoral-
ists and agropastoralists in these areas will likely attempt
to migrate to areas with better pasture and water availabil-
ity or sell livestock at below-average prices”. At the same
time, UNICEF (2018) reported in April 2018 that among “the
[drought] affected provinces, Baghis, Bamyan, Daykundi,
Ghor, Helmand, . . . and Uruzgan are of critical priority for
nutrition and water, sanitation and hygiene assistance”.

Several months after a season has ended and harvest is
complete, more statistics become available for further ver-
ification of the drought outcomes. The FEWS NET (2018a)
October 2018 Food Security Outlook reported that the 2017–
2018 drought had significant negative impacts on rainfed
wheat production and livestock pasture and body conditions
across the country. Reporting statistics from the Afghanistan
Ministry of Agriculture, Irrigation, and Livestock, the to-
tal wheat production for the 2017–2018 season was about
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Figure 8. (a) Map showing hydrological basins, with Helmand Basin in darker gray and location of Daykundi and Wardak provinces (outlined
in red) where food security conditions were of particular concern. (b) NOAA CPC Afghanistan hazard report for 22–28 February 2018 (CPC
NOAA, 2018) showing widespread abnormal dryness and drought, defined by 90 d precipitation deficits and extremely low snow water
equivalent.

20 % below average, in which irrigated agriculture performed
about average. However, rainfed agricultural production was
only about 50 % of average, most severely affecting house-
holds in Badakhshan, Badhis, and Daykundi provinces. In
these locations dry conditions, conflict, poor incomes, and
depleted assets were expected to continue to affect emer-
gency food insecurity through May 2019.

5 Code availability

The NASA Land Information System Framework (LISF)
is publicly available and open-source software. The soft-
ware and technical support are available at https://
github.com/NASA-LIS/LISF (last access: 28 June 2022).
The version used for this paper was LISF-public-7.3.2
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Figure 9. FLDAS Central Asia snow water equivalent (SWE) estimates for 22 February 2018. SWE deficits of 300 mm were widespread at
this time.

https://doi.org/10.5281/zenodo.6795120 (Geiger and Kumar
2021).

6 Data availability

The Central Asia data described in this paper can be ac-
cessed at the NASA GES DISC repository under data doi
https://doi.org/10.5067/VQ4CD3Y9YC0R (Jacob and Slin-
ski, 2021).

The global data described in this paper can be ac-
cessed at the NASA GES DISC repository under data doi
https://doi.org/10.5067/5NHC22T9375G (McNally, 2018).

7 Conclusion

This paper describes a comprehensive hydrologic analysis
system for food security monitoring in Central Asia, with
analysis focusing on Afghanistan. While these data are tai-
lored to specific needs, they are also applicable to other cli-
mate services and research. Our intent is to provide the reader
with information regarding the configuration and specifica-
tion of both the current global and Central Asia data streams.
These data are publicly available and available at near-real
time for food security decision support. Note that, as an on-
going initiative, FLDAS model version and parameters are
routinely updated, and the user should consult the version
updates provided by the NASA Goddard Earth Science Data

and Information Services Center (GES DISC) data provider
and documentation on the USGS early warning website. For
example, efforts are currently underway to upgrade to the
Noah-MP (Niu et al., 2011) land surface model, which re-
quires some changes in parameters for snow, glaciers, and
groundwater. This, and future changes, can be informed by
the strengths and weaknesses of the data stream configura-
tions that we have discussed in this paper.

This paper also provides model–model and model–
remote-sensing comparisons, as well as a review of other re-
search, that highlight the challenges of the quantitative eval-
uation of models and remote sensing in this region. A key
challenge to hydrologic modeling is the considerable uncer-
tainty in the meteorological forcing available for this region,
particularly precipitation. Advancements in remote sensing
and modeling should help reduce these uncertainties. In ad-
dition, the current land surface modeling reflects natural con-
ditions; i.e., they do not include representations of anthro-
pogenic effects such as human water abstractions (e.g., dams
for flood control or irrigation, water diversions, groundwater
pumping) or land application of abstracted water (i.e., irriga-
tion). These factors affect estimates of runoff, soil moisture,
evapotranspiration, and sensible heat flux (land surface tem-
peratures) in irrigated areas. Therefore, it is important to be
aware of the limitations and combine the products with others
(e.g., NDVI or actual evapotranspiration (ETa) in irrigated ar-
eas) when exploring water and energy balance. Even with im-
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Figure 10. (a) CHIRPS cumulative rainfall for 2017–2018 versus average conditions for Daykundi Province. (b) CHIRPS cumulative rainfall
for 2017–2018 versus average conditions for Maydan Wardak Province and (c) Helmand Basin SWE from the FLDAS Central Asia data
stream. The gray shading indicates the range of the minimum and maximum values, the dashed blue line is the average, and the black line is
2017–2018. Figures from USGS EWX (https://earlywarning.usgs.gov/fews/ewx/, last access: 24 June 2022).
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provements to meteorological forcing and modeling param-
eterizations, errors will remain. Therefore, the convergence
of evidence approach is beneficial and would be important
when assessing hydro-meteorological hazards and associated
risks to food and water security. By making the data pub-
licly available the broader food security and water resource
communities will be able to provide insights that can lead to
improvements in our understanding of the water and energy
balance that can ultimately lead to improvements to food and
water security decision support systems.
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