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Abstract. Daily mean land surface temperatures (LSTs) acquired from polar orbiters are crucial for various ap-
plications such as global and regional climate change analysis. However, thermal sensors from polar orbiters can
only sample the surface effectively with very limited times per day under cloud-free conditions. These limitations
have produced a systematic sampling bias (1Tsb) on the daily mean LST (Tdm) estimated with the traditional
method, which uses the averages of clear-sky LST observations directly as the Tdm. Several methods have been
proposed for the estimation of the Tdm, yet they are becoming less capable of generating spatiotemporally seam-
less Tdm across the globe. Based on MODIS and reanalysis data, here we propose an improved annual and
diurnal temperature cycle-based framework (termed the IADTC framework) to generate global spatiotemporally
seamless Tdm products ranging from 2003 to 2019 (named the GADTC products). The validations show that the
IADTC framework reduces the systematic 1Tsb significantly. When validated only with in situ data, the assess-
ments show that the mean absolute errors (MAEs) of the IADTC framework are 1.4 and 1.1 K for SURFRAD
and FLUXNET data, respectively, and the mean biases are both close to zero. Direct comparisons between the
GADTC products and in situ measurements indicate that the MAEs are 2.2 and 3.1 K for the SURFRAD and
FLUXNET datasets, respectively, and the mean biases are −1.6 and −1.5 K for these two datasets, respec-
tively. By taking the GADTC products as references, further analysis reveals that the Tdm estimated with the
traditional averaging method yields a positive systematic 1Tsb of greater than 2.0 K in low-latitude and mid-
latitude regions while of a relatively small value in high-latitude regions. Although the global-mean LST trend
(2003 to 2019) calculated with the traditional method and the IADTC framework is relatively close (both be-
tween 0.025 to 0.029 K yr−1), regional discrepancies in LST trend do occur – the pixel-based MAE in LST trend
between these two methods reaches 0.012 K yr−1. We consider the IADTC framework can guide the further
optimization of Tdm estimation across the globe, and the generated GADTC products should be valuable in var-
ious applications such as global and regional warming analysis. The GADTC products are freely available at
https://doi.org/10.5281/zenodo.6287052 (Hong et al., 2022).
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1 Introduction

Land surface temperature (LST) is one of the most important
variables of land–atmosphere interaction (Jin and Dickinson,
2010). Currently, satellite thermal remote sensing provides
the only way to obtain long-term and regular LST over ex-
tensive areas. The archived long-term satellite-derived LST
datasets have been widely used in various fields such as land
cover change detection (Lambin and Ehrlich, 1997; Muro et
al., 2018), radiation flux simulation (Alcântara et al., 2010;
Anderson et al., 2007), drought monitoring (Karnieli et al.,
2010; Mildrexler et al., 2017), vegetation change analysis
(Julien and Sobrino, 2009; Julien et al., 2006; Still et al.,
2019), permafrost thawing monitoring (Westermann et al.,
2011), and global LST trend investigation (Jin, 2004; Jin and
Dickinson, 2002; Yan et al., 2020).

According to the satellite onboard duration and spatiotem-
poral resolution (Tomlinson et al., 2011), satellite-derived
LST products used for long-term time-series analysis can
be divided into two categories: (1) the LSTs obtained from
high-orbit geostationary satellite sensors with a coarse spatial
resolution (3–5 km), e.g., the MSG-SEVIRI (the Spinning
Enhanced Visible and Infrared Imager onboard Meteosat
Second Generation) and GOES (Geostationary Operational
Environmental Satellite), and (2) the LSTs from low-orbit
polar-orbiting satellite sensors. The second category of satel-
lite sensors can be further divided into (1) the narrow-swath
polar-orbiting satellite sensors with a relatively high spatial
resolution (around 100 m), e.g., Landsat and ASTER (Ad-
vanced Spaceborne Thermal Emission and Reflection Ra-
diometer) and (2) the polar-orbiting satellite sensors with
a moderate spatial resolution (around 1 km), e.g., AVHRR
(Advanced Very High-Resolution Radiometer), SLSTR (Sea
and Land Surface Temperature Radiometer), and MODIS
(Moderate Resolution Imaging Spectroradiometer).

The geostationary satellite thermal sensors are character-
ized by a very high temporal resolution (1 h or finer). How-
ever, they are relatively difficult to provide global consistent
LST products due to the limited coverage of a single geo-
stationary satellite and the systematic errors among different
satellites (Freitas et al., 2013). The Landsat (or similar po-
lar orbiters) has been providing thermal observations since
the 1980s, but the relatively long revisiting period (e.g., 16 d
for Landsat) makes it challenging to capture the daily and
hourly continuous LST dynamics (Fu and Weng, 2016). By
contrast, wide-swath polar-orbiting sensors (e.g., MODIS)
can sample the earth surface at least twice a day with a
relatively high spatial resolution (around 1.0 km). The fea-
ture makes the MODIS-like sensors overcome the limitations
of the Landsat-like satellites (with a long revisiting period)
and geostationary satellite sensors (with a restricted global
coverage). Therefore, the LSTs obtained from wide-swath
polar-orbiting sensors (e.g., MODIS and AVHRR) have been
widely used in capturing the long-term global LST dynam-
ics (Sobrino et al., 2020a; Mildrexler et al., 2011). Among

these, the MODIS LST data have been used the most (Eleft-
heriou et al., 2018; Fu, 2019; Heck et al., 2019; Potter and
Coppernoll-Houston, 2019; Quan et al., 2016; Sobrino et al.,
2020a; Yan et al., 2020; Zhao et al., 2019, 2021). This is
mainly because, especially when compared with the AVHRR
data, (1) MODIS LST observations are less affected by the
orbit drift effect (Julien and Sobrino, 2012; Latifovic et al.,
2012; Ma et al., 2020; Gutman, 1999); (2) the MODIS LST
products can offer more details about the diurnal LST dy-
namics with four observations per day (Crosson et al., 2012;
Hong et al., 2018); and (3) the MODIS LST retrieval algo-
rithm has been continuously improved, and the associated
LSTs products are comparably more mature and have been
extensively validated (Duan et al., 2018, 2019; Wan, 2014).

However, most previous studies employed temporally ag-
gregated results (8 d or monthly mean) of instantaneous
cloud-free LSTs for long-term LST time-series analysis
(Mao et al., 2017; Sobrino et al., 2020a, b; Xing et al.,
2021), instead of continuous daily mean LST (termed as Tdm)
on a day-to-day basis. Compared with the continuous daily
Tdm, temporally aggregated results of instantaneous cloud-
free LSTs lack the information of under-cloud thermal ob-
servations and insufficiently sample the LST diurnal dynam-
ics (Ermida et al., 2019; Hu et al., 2020; Westermann et al.,
2012). Such a direct temporal aggregation approach can pro-
duce a systematic sampling bias (termed as 1Tsb) (Hong et
al., 2021), which affects the accuracy of Tdm directly and the
associated trend analysis indirectly (Zhou and Wang, 2016).
To estimate accurate Tdm, Hong et al. (2021) designed the
ADTC-based framework that combines an annual temper-
ature cycle (ATC) model and a diurnal temperature cycle
(DTC) model. Based on the MODIS LST product and some
auxiliary data such as the reanalysis data, the ADTC-based
framework first uses an ATC model to reconstruct the in-
stantaneous under-cloud LSTs and then simulates the diurnal
LST dynamics with a four-parameter DTC model to solve the
issue of under-sampling with only four observations per day.
Validations showed that the ADTC-based framework can re-
duce the1Tsb significantly and produce the spatiotemporally
seamless Tdm (Hong et al., 2021).

However, the original ADTC-based framework (termed
the OADTC framework) has only been tested over a rel-
atively small region. In other words, the performance of
the OADTC framework over complicated situations across
global land surfaces has not been studied. Currently a global
spatiotemporally seamless daily mean LST product is still
unavailable to the satellite thermal remote-sensing commu-
nity; furthermore, the spatial distribution of 1Tsb and its im-
pact on the LST trend over global land surfaces also remains
unclear. There are two further limitations when applying the
OADTC framework to the actual generation of global seam-
less Tdm: (1) the selected ATC model in the OADTC frame-
work uses a single sinusoidal function to describe the intra-
annual variation of solar radiation, which becomes less suit-
able for equatorial and polar regions (Z. Liu et al., 2019);
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(2) the DTC model used may fail around sunrise with no-
solution or extreme solution and cause an underestimation
and even outliers of the daily mean LST (Hong et al., 2021;
Hu et al., 2020).

Facing these issues, this study intends to formulate an
improved version of the original ADTC-based framework
(hereafter termed the IADTC framework) using an advanced
multi-type ATC model as well as a DTC model optimized for
estimating Tdm. With the IADTC framework, we then gen-
erate a global spatiotemporally seamless 0.5◦ Tdm product
(termed the GADTC product; refer to Sect. 3.1 for the de-
tailed description) for the period from 2003 to 2019. Based
on the GADTC product, we then analyze the global spa-
tial distribution of 1Tsb as well as LST trends, which are
compared with those obtained with the traditional method.
We consider that the IADTC framework and the associated
GADTC product should be useful for various applications
such as analysis of global climate change and assessment of
reanalysis data.

2 Datasets

The MODIS LST products and MERRA2 (the Modern-Era
Retrospective analysis for Research and Applications ver-
sion 2) reanalysis dataset were required as input data for the
IADTC framework. We also employed in situ LST measure-
ments from the SURFRAD and FLUXNET to validate the
IADTC framework and the GADTC product.

2.1 MODIS LST products

The MODIS LST products, including both the MOD11C1
and MYD11C1 LST products in Collection 6 from 2003
to 2019 (available at https://ladsweb.nascom.nasa.gov/, last
access: 1 March 2020), were used to help the generation
of Tdm. The MODIS LSTs were retrieved with a refined
generalized split-window algorithm, and their accuracies are
mostly within 1.0 K over homogeneous surfaces (Zhengming
and Zhao-Liang, 1997; Duan et al., 2019; Wan, 2014). The
MOD11C1 and MYD11C1 LST products cover the global
land surfaces four times per day with a spatial resolution of
0.05◦. At low-latitude and midlatitude regions, MOD11C1
LSTs are obtained around 10:30 and 22:30 (local solar time),
and MYD11C1 LSTs are around 01:30 and 13:30 (local solar
time) with a time interval of around 1.5 h. At high-latitude re-
gions, due to the convergence of satellite orbit (Fig. A1), the
overpass times possess a significant shift from those at low-
latitude and midlatitude regions (Østby et al., 2014). More
details on the time shift and its impact on the estimation of
Tdm with the IADTC framework are provided in Sects. 3.1.3
and 5.2.

2.2 Reanalysis data

Surface air temperatures (SATs) are used to drive the
ATC model for the reconstruction of under-cloud LSTs
(see Sect. 3.1). We employed the SATs from the
MERRA2 reanalysis dataset (the specific collection name
is inst1_2d_lfo_Nx, obtained from https://disc.gsfc.nasa.
gov/datasets/M2I1NXLFO_V5.12.4/summary, last access:
9 June 2020) from 2003 to 2019 (Gelaro et al., 2017; GMAO,
2015). The spatial and temporal resolutions of these reanaly-
sis SAT data are 0.5× 0.625◦ and 1 h, respectively.

2.3 In situ data

The in situ LST measurements from 133 globally distributed
stations (Fig. 1) were used to validate the IADTC frame-
work at site level (see Sect. 3.2.1) as well as to evalu-
ate the GADTC product (see Sect. 3.2.2). They include
seven SURFRAD (Surface Radiation Budget Network) sites
(Augustine et al., 2000) and 126 FLUXNET sites from
FLUXNET2015 datasets (Pastorello et al., 2020). These
two datasets have been widely used for validating satellite-
derived LSTs due to their extensive distribution, rigorous
quality control, and long-term availability (Guillevic et al.,
2018; Martin et al., 2019; Duan et al., 2019).

2.3.1 SURFRAD data

We employed observations from the seven SURFRAD sites
during the period of 2003–2019 (available at https://www.
esrl.noaa.gov/gmd/grad/surfrad/, last access: 1 April 2020).
The seven SURFRAD sites have relatively heterogeneous
surfaces, and their land cover types include grassland, crop-
land, and bare soil. Broadband hemispherical radiances are
measured with pyrgeometers (Eppley Precision Infrared Ra-
diometer) with a wavelength range of 4–50 µm. Sensors at
each site are installed at 10 m height with a spatial repre-
sentativeness of approximately 70× 70 m2 (Guillevic et al.,
2014). More detailed information on these sites is given in
Table 1 in Sect. 4.2. In situ LSTs were estimated with the
measured upward and downward longwave radiances with
the following formula:{
T = 4

√
L↑−(1−εb)L↓

εbσ

εb = 0.261+ 0.314ε31+ 0.411ε32,
(1)

where L↑ and L↓ are the upward and downward longwave
radiation, respectively; εb is the broadband emissivity es-
timated with the MODIS narrowband emissivities ε31 and
ε32 in MODIS Channels 31 and 32, respectively (Liang et
al., 2013); and σ is the Stefan–Boltzmann constant (5.67×
10−8 W m−2 K−4). To reduce the impacts of short-term LST
fluctuations on validation, we aggregated minutely observa-
tions into hourly values.
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Figure 1. Geolocation of the stations used for validation. The red circles and blue triangles represent the locations of the FLUXNET and
SURFRAD sites, respectively. The numbers “0” to “16” at the bottom represent the background land cover type as defined by the International
Geosphere-Biosphere Programme (IGBP) (Friedl et al., 2002).

2.3.2 FLUXNET data

We further employed the FLUXNET 2015 datasets (available
at https://fluxnet.org/data/fluxnet2015-dataset/, last access:
1 April 2020) to evaluate the GADTC product (Pastorello et
al., 2020). The FLUXNET 2015 datasets include more than
200 sites covering multiple ecosystem types across the globe
and provide hourly upwelling and downwelling longwave
radiation observations of two pyrgeometers (spectral range
3.5–50.0 µm) that can be used to retrieve LST (Guillevic et
al., 2018). Removing the sites without upwelling longwave
radiation observations resulted in a total of 126 sites for the
period from 2003–2015 (Fig. 1). The in situ LSTs were cal-
culated and preprocessed using the same method as for the
SURFRAD data.

3 Methodology

3.1 Generation of global gap-free daily mean LST with
the IADTC framework

The OADTC framework consists of two steps to gener-
ate Tdm (Hong et al., 2021): (1) reconstruction of instanta-
neous under-cloud LSTs with an ATC model to ensure the
availability of four valid LSTs at the four daily overpass
times and (2) simulation of diurnal LST dynamics using
a four-parameter DTC model and estimation of Tdm. This
study improved the OADTC framework using a more ad-
vanced ATC model as well as by optimizing the estimation
of Tdm with the DTC model. The generation of global gap-
free Tdm with this improved framework (termed the IADTC
framework) includes four steps (Fig. 2): data preprocess-
ing (Sect. 3.1.1), under-cloud LST reconstruction with an
advanced ATC model (Sect. 3.1.2), linear interpolation of

MODIS overpass time (Sect. 3.1.3), and Tdm estimation with
a DTC model (Sect. 3.1.4).

3.1.1 Data preprocessing

We generated the global Tdm product with a spatial resolu-
tion of 0.5×0.5◦ rather than a higher resolution (e.g., 1 km),
mainly because of the following two aspects. First, our study
aims at analyzing the spatial pattern of 1Tsb and the LST
trend at the global scale, i.e., to perform a LST climatol-
ogy analysis for which a spatial resolution of 0.5◦ is ade-
quate. Second, the Tdm generation is conducted on a daily
and pixel-by-pixel basis on the global scale, which requires
a huge amount of computational resources on a higher spa-
tial resolution. Consequently, the MOD11C1 and MYD11C1
products were resampled to a spatial resolution of 0.5◦; the
MERRA2 reanalysis hourly air temperature data were resam-
pled to daily values with the same resolution.

3.1.2 Under-cloud LST reconstruction with multi-type
ATC model

The general formula of ATC model is displayed in Eq. (2).
The single-type ATC model in the OADTC framework uses
a single sinusoidal function (M = 1 in Eq. 2) to model the
intra-annual LST variations driven by solar radiation change
and incorporates surface air temperatures to help simulate the
LST fluctuations induced by synoptic conditions (Zou et al.,
2018; Z. Liu et al., 2019). The use of a single sinusoidal func-
tion is generally acceptable for midlatitude regions. How-
ever, a single sinusoidal is no longer suitable for low lati-
tudes because there are two solar radiation peaks within a
yearly cycle of low-latitude regions (Xing et al., 2020; Bech-
tel, 2015; Cao and Sanchez-Azofeifa, 2017); it is also inad-
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Figure 2. Flowchart of the IADTC framework. DTRfour refers to
diurnal temperature range (DTR) calculated as the maximum minus
the minimum from the gap-free LSTs at the four overpass times;
DTRDTC refers to the DTR calculated from the hourly LSTs mod-
eled with the DTC model. 1DTR refers to the absolute difference
between DTRfour and DTRDTC.

equate for high-latitude regions where polar days and nights
occur (Østby et al., 2014; Z. Liu et al., 2019; Westermann et
al., 2012). Therefore, the use of the single-type ATC model in
the OADTC framework is less suitable to generate Tdm at the
global scale (Fig. 3). To overcome this limitation, the IADTC
framework uses different versions of ATC model (termed the
multi-type ATC model) to reconstruct under-cloud LSTs over
the low-latitude, midlatitude, and high-latitude regions, re-
spectively. The details are given as follows:

1. Low-latitude regions (23.5◦ N–23.5◦ S).

The solar radiation possesses two peaks within a yearly
cycle over low-latitude regions (Fig. 3a). We therefore
employed the ATC model with two sinusoidal functions
(M = 2 in Eq. 2) to reconstruct the daily LST dynamics
within an annual cycle (Z. Liu et al., 2019; Xing et al.,
2020).

2. Midlatitude regions (23.5◦–66.5◦ N/S).

The solar radiation peaks once in summer during an an-
nual cycle. We therefore employed the ATC model with
a single sinusoidal function (M = 1 in Eq. 2) to recon-
struct the daily LST dynamics (Fig. 3b).

3. High-latitude regions (66.5◦–90◦ N/S).

The polar day/night phenomena occur over high-
latitude regions, and the duration increases with lati-
tude. Theoretically, over these regions, the ATC model
with multiple sinusoidal functions should be the best
choice. However, the number of cloud-free MODIS ob-
servations is limited, and additional model complexity
can lead to over-fitting and weaken the generalization
ability of the ATC model (Z. Liu et al., 2019). To bal-
ance model accuracy and generalization ability, the ATC
model with two sinusoidal functions was selected for
high-latitude regions (see Fig. 3c).


TATCM (d)= T0+

∑M
m=1Am sin

(
2πmd
N
+ θm

)
+ k ·1Tair (d)

1Tair (d)= Tair (d)− TATCO (d)
TATCO (d)= T0

′
+
∑M
m=1Am

′ sin
(

2πmd
N
+ θm

′

)
,

(2)

where TATCM (d) denotes the daily LST variations simu-
lated with the ATC model;M is the number of harmonic
components used; d and N are the day of year (DOY)
and number of days in a year, respectively; 1Tair (d) is
the difference between the daily SATs (i.e., Tair (d), ob-
tained from MERRA2 reanalysis data) and the modeled
air temperatures with the original ATC model (TATCO
(d)); and T0, Am, θm, and k are the parameters that need
to be solved with the cloud-free daily LSTs and SATs,
usually through the least-squares method.

3.1.3 Interpolation of overpass times

The under-cloud LST reconstruction with the ATC model en-
sures that there are four valid LSTs within a diurnal cycle.
However, there are still missing values for the corresponding
four overpass times. We used linear interpolation to recon-
struct the missing overpass times based on the valid overpass
times on the 2 adjacent days with valid values. For exam-
ple, if the overpass times from 10 to 20 July for Aqua day
are missing, the linear interpolation was used to fill the miss-
ing values during this period using the valid values on the
2 adjacent days with valid values (i.e., 9 and 21 July). The
uncertainties of linear interpolation are expected to be within
the range associated with local overpass time fluctuations.
For the low-latitude and midlatitude regions where the over-
pass time fluctuations are relatively small (less than 1.5 h),
the uncertainties using linear interpolation are relatively mi-
nor. However, for the high-latitude regions where the over-
pass times fluctuate significantly (Fig. A1), linear interpola-
tion holds a larger error and might affect the estimation of
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Figure 3. Comparison of reconstructing under-cloud LSTs with
multi-type and single-type ATC models at different latitudes. Pan-
els (a, b, c) show three examples of ATC modeling at low-latitudes,
midlatitudes, and high-latitudes for cloud-free Terra-day LST in
2019. The green circles, blue lines, and red lines denote the cloud-
free observations and LSTs simulated by the single- and multi-type
ATC models, respectively. Note that for (b), the results of the single-
and multi-type ATC models are identical since they both use the
ATC model with a single sinusoidal function.

Tdm. More discussions in terms of the uncertainties of the
linear interpolation are provided in Sect. 5.2.

3.1.4 Estimation of daily mean LST with DTC model

The under-cloud LST reconstruction (Sect. 3.1.2) and linear
interpolation of overpass time (Sect. 3.1.3) ensure that there
are four valid LSTs and the associated overpass times per
day. These provide the foundation for estimating Tdm with
a four-parameter DTC model. This study selected the four-
parameter GOT09-dT-τ model, which has been shown to
have the highest accuracy among a variety of four-parameter
DTC models (Hong et al., 2018). Further details related to
the formulae and the associated parameters of the GOT09-
dT-τ model are provided in Göttsche and Olesen (2009) and
Hong et al. (2018).

For the generation of global products, the GOT09-dT-τ
model can face the issues of no solution or extreme solu-
tion, under which the estimated Tdm can be significantly bi-

ased due to the reduced capability to model LST around sun-
rise (Hu et al., 2020) (Fig. 4c). The failed simulations can
be associated with the following two reasons: (1) there are
four daily MODIS LSTs per daily cycle but no observation
around sunrise (Hong et al., 2018); (2) the DTC model is sub-
ject to the clear-sky hypothesis (Göttsche and Olesen, 2009).
Therefore, to avoid outliers caused by failed simulations, un-
der certain conditions, Tdm was estimated directly by averag-
ing the four LSTs per daily cycle. We introduced two criteria
to determine whether to use the DTC model for estimating
Tdm or not (Fig. 2, Scenario no. 1 to no. 3).

The first criterion is based on the diurnal temperature
range (DTR), which was calculated as the maximum mi-
nus the minimum LSTs within a diurnal cycle. Specifi-
cally, the DTR calculated by four LSTs within the diur-
nal cycle (termed DTRfour) was used (Fig. 2). Here these
four daily LSTs can consist of both cloud-free observations
(Tin_cloud_free, the green circles in Fig. 4) and under-cloud
LSTs reconstructed by the ATC model (Tin_ATC, the blue tri-
angles in Fig. 4). For relatively small DTRfour, e.g., on over-
cast days with heavy clouds or on days with low incoming
solar radiation (e.g., polar nights), Tdm can be directly es-
timated as the mean of the four daily LSTs per daily cycle
(Fig. 4a). In this case, the DTC model would be unneces-
sary. We empirically set the DTRfour threshold as 5.0 K (see
Sect. 5.1 for detailed discussions). In other words, when the
DTRfour is less than 5.0 K (see Scenario no. 1 in Figs. 2
and 4a), Tdm estimated with the IADTC framework (termed
Tdm_IADTC) was obtained by averaging the four LSTs within
a diurnal cycle (termed Tdm_ATC_four).

When DTRfour is greater than 5.0 K, the DTC model would
be used to simulate the diurnal LST dynamics. However, for
the global generation of Tdm, the simulation can still fail for
cases with complicated diurnal LST dynamics (Fig. 4c). To
avoid this issue, we introduced the second criterion to deter-
mine whether to use the DTC model or not. This was done
by comparing the DTRfour and the DTR calculated by the
DTC model (termed DTRDTC). This comparison can be used
to identify the failed simulations of the DTC model because
the DTRDTC would be abnormal once the LSTs modeled
by the DTC model are significantly underestimated around
sunrise. Therefore, we employed the absolute difference be-
tween DTRDTC and DTRfour (termed as 1DTR) as the sec-
ond threshold to further determine whether to use the DTC
model or not. This study empirically set the1DTR threshold
as 20.0 K. More discussions on this are provided in Sect. 5.1.

In the practical generation of Tdm, when DTRfour ≥ 5.0 K
and 1DTR < 20.0 K (Scenario no. 2 in Fig. 2), the DTC
modeling results (Tin_ATC_DTC; see the blue line in Fig. 4b)
are satisfactory and were then used to estimate Tdm. The
Tdm_IADTC was then calculated as the average of instanta-
neous hourly LSTs (Tin_ATC_DTC). When DTRfour ≥ 5.0 K
and 1DTR ≥ 20.0 K (Scenario no. 3 in Fig. 2), the DTC
model may fail (Fig. 4c) as the Tdm estimate based on the
DTC modeling (i.e., Tdm_ATC_DTC) is considerably lower
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Figure 4. Estimation of Tdm under different conditions. Panel
(a) displays an example of estimating Tdm by averaging
Tin_cloud_free and Tin_ATC when DTRfour is less than 5.0 K (i.e.,
Scenario no. 1); panel (b) displays an example of estimating
Tdm based on the DTC modeling results (i.e., Scenario no. 2);
panel (c) displays an example of estimating Tdm by averaging
Tin_cloud_free and Tin_ATC when 1DTR is equal or greater than
20.0 K (i.e., Scenario no. 3). The green circles, red rectangles, and
blue triangles denote the instantaneous cloud-free LST observa-
tions, under-cloud LST observations, and under-cloud LSTs recon-
structed by the ATC model, respectively. The black lines denote
the in situ LST observations, while the blue lines show the DTC-
modeled values based on the cloud-free LST observations and ATC-
modeled under-cloud LSTs. Note that hours larger than 24 along the
x axis correspond to the next day.

than the true Tdm. In this case, the error of Tdm_ATC_DTC can
be even larger than that of Tdm estimated as the average of the
four LSTs within the day (i.e., Tdm_ATC_four; refer to Fig. 11
in Sect. 5.1). Therefore, in this case, Tdm_IADTC was directly
calculated as Tdm_ATC_four. In summary, for Scenarios no. 1
and 3, Tdm_IADTC was calculated as Tdm_ATC_four, while it
was calculated as Tdm_ATC_DTC for Scenario no. 2.

3.2 Validations

The GADTC products were validated from the following
two aspects: (1) validating the IADTC framework indi-
rectly with single-source in situ measurements at the site
level and (2) validating the GADTC products directly by
comparing with in situ measurements. These two aspects
complement each other and allow us to assess the appli-
cability of the IADTC framework and the accuracy of the
generated GADTC products. The direct comparison of the
GADTC product with in situ measurements (SURFRAD and
FLUXNET measurements for this study) provides informa-
tion on the accuracy of the IADTC framework, especially

over homogeneous areas (Guillevic et al., 2018). However,
such direct validations can be affected by uncertainties be-
yond the IADTC framework, e.g., a mismatch of spatial scale
between satellite and in situ measurements, different obser-
vation angles, and uncertainties from the LST retrieval algo-
rithm (Ermida et al., 2014; Guillevic et al., 2014; Li et al.,
2014). Therefore, direct comparisons may not fully reflect
the true accuracy of the IADTC framework. To address this
issue and assess the applicability of IADTC framework, we
validated the IADTC framework indirectly by driving it with
in situ measurement and then using hourly measurements for
validation. This strategy avoids the mismatch issue of multi-
source data and can, therefore, better reflect the accuracy of
the IADTC framework (Hong et al., 2021).

3.2.1 Validation of the IADTC framework with in situ
measurements

The IADTC framework was validated with in situ hourly
measurements obtained exclusively from SURFRAD and
FLUXNET data. During this validation process, the
MERRA2 air temperature at the corresponding station lo-
cation, instead of the air temperature from in situ measure-
ments, was used to drive the ATC model, which is identical
to the actual generation of the GADTC products.

The approach used the cloud-free in situ measurements
at each MODIS overpass time and MERRA2 air tempera-
tures to drive the ATC model and the corresponding under-
cloud in situ measurements (Tin_under_cloud, red rectangles in
Fig. 4) to evaluate the accuracy of the under-cloud LSTs re-
constructed by the ATC model (Tin_ATC). The accuracy of the
Tdm estimated with the IADTC framework (Tdm_IADTC) was
evaluated against “true” Tdm (termed Tdm_true), i.e., the av-
erage of the hourly in situ measurements (Tin_obs, gray line
in Fig. 4). We also provided the sampling bias (1Tsb) of the
traditional method based on cloud-free observations (i.e., the
average of Tin_cloud_free), which here is termed Tdm_cloud_free.
Therefore, the accuracy improvements of Tdm_IADTC com-
pared to Tdm_cloud_free are reflected in the corresponding re-
duction of 1Tsb. We further provide Tdm estimated with the
OADTC framework (termed Tdm_OADTC) to illustrate the im-
provement achieved by the IADTC framework.

3.2.2 Validation of the GADTC product directly with in
situ measurements

After matching the geolocation and observation time, we di-
rectly compared the GADTC product with in situ Tdm mea-
surements from SURFRAD and FLUXNET. Note that out-
liers in the in situ measurements were removed before per-
forming the accuracy evaluation; here outliers are defined
as the Tdm differences between in situ measurements and
GADTC products deviating by more than 3σ (3 standard de-
viations) from the mean (Göttsche et al., 2016; Zhang et al.,
2020).
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Figure 5. Validations of reconstructed under-cloud LSTs at Aqua
and Terra day and night overpass times based exclusively on in
situ data. The under-cloud LSTs were reconstructed with the ATC
model. Panels (a) and (b) show monthly mean errors obtained
for daytime overpasses (including Aqua day and Terra day) for
SURFRAD and FLUXNET data, respectively; (c) and (d) show the
same for the nighttime overpasses (including Aqua night and Terra
night).

3.3 Analysis of the GADTC product

We analyzed the difference in LST values and trends be-
tween Tdm_cloud_free (the daily mean LST estimated by the
traditional method) and the GADTC products. For the dif-
ference in LST values, we present the global spatial dis-
tribution of 1Tsb using the GADTC product as the refer-
ence (see Sect. 4.3). For the difference in LST trends, the
seasonal Mann–Kendall test and Theil–Sen slope were used
to diagnose the warming/cooling trend of LST and describe
its slope, respectively (see Sect. 4.4). The seasonal Mann–
Kendall test is a nonparametric test suitable to detect LST
warming/cooling trends and to quantify the associated sig-
nificance level in LST time series (Hirsch et al., 1982; Hus-
sain and Mahmud, 2019), while the Theil–Sen slope reduces
the impact of outliers on LST trend analysis (Sen, 1968;
Theil, 1950). We conducted a seasonal Mann–Kendall test
for both the Tdm_cloud_free and the GADTC product and com-
pared their Theil–Sen slopes in describing global LST trends.

4 Results

4.1 Validation of the IADTC framework with in situ
measurements

The validations using the SURFRAD measurements show
that the MAE and bias of the ATC model for the day are
4.7 and 4.0 K, respectively, while those for the night are 3.6
and −1.6 K, respectively (Fig. 5a and c). Although the re-
sults for the ATC model are less satisfactory, the Tdm accu-

Figure 6. Validations of daily mean LST (Tdm) estimation with
SURFRAD data. Box plots show the errors for the traditional
Tdm estimation method (Tdm_cloud_free), the IADTC framework
(Tdm_ATC_DTC), and the OADTC framework (Tdm_OADTC). Panels
(a) and (b) display the MAE and bias at the daily scale, respectively,
and panels (c) and (d) display the MAE and bias at the monthly
scale, respectively.

racies estimated with the IADTC framework are generally
acceptable: the MAEs of Tdm_IADTC at the daily and monthly
scales are 1.4 and 0.6 K, respectively and the corresponding
biases are both −0.2 K (Fig. 6). By contrast, the MAEs of
the Tdm_cloud_free are 4.1 and 2.5 K at the daily and monthly
scales, respectively; i.e., they indicate a significantly lower
accuracy compared to that of Tdm_IADTC.

The proportions of the three scenarios were 0.2 %, 95.0 %,
and 4.8 %, respectively. In Scenarios no. 1 and no. 3 un-
der which the accuracies were improved compared with the
OADTC framework, the IADTC framework improves the
MAE of estimated Tdm by around 0.45 K (from 2.80 to
2.35 K; see Fig. B1a). The accuracy improvement results
mainly from two aspects: (1) the IADTC framework reduces
the systematic negative bias caused by cases for which the
DTC-modeled LSTs are significantly underestimated around
sunrise; and (2) the outliers due to failed DTC simulations are
avoided. The overall accuracies for all three scenarios show
that the IADTC framework improves the bias from −0.38
to −0.18 K, while the MAE improvement is relatively small.
The relatively slight increase in the overall accuracy is at-
tributed to the relatively small proportion of Scenarios no. 1
and no. 3 (around 5 %).

The validations using the FLUXNET data are similar to
those with the SURFRAD data: (1) the IADTC framework
significantly reduces the1Tsb of Tdm_cloud_free; (2) the MAEs
of Tdm_IADTC are 1.1 and 0.5 K at the daily and monthly
scales, respectively; and (3) the biases are both close to zero
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Figure 7. The same as Fig. 6 but for the FLUXNET data.

(Fig. 7). The validations again indicate that the under-cloud
LSTs reconstructed by the ATC model are systematically
positive during the day (the MAE and bias are 3.5 and 2.8 K,
respectively) and systematically negative during the night
(the MAE and bias are 2.2 and−0.9 K, respectively) (Fig. 5b
and d).

The proportion of each scenario is 10.2 %, 82.5 %, and
7.3 %, respectively. Compared with the OADTC framework,
in Scenarios no. 1 and no. 3 (the proportion is 17.4 %) un-
der which the accuracies are considerably improved, the
IADTC framework improved the MAE of the estimated Tdm
by around 0.78 K (from 1.95 to 1.17 K; refer to Fig. B1b).
However, for all the three scenarios, the overall MAE and
bias improvements of the IADTC framework are around 0.15
and 0.30 K, respectively (Fig. 7).

4.2 Evaluation of the GADTC product with in situ
measurements

The comparison between the GADTC products and in situ
measurements (SURFRAD and FLUXNET datasets) shows
that the MAEs of the GADTC products are 3.0 and 2.6 K
at the daily and monthly scales, respectively, and the mean
bias on both scales is −1.5 K (Fig. 8). The MAE and bias
are larger than those of the IADTC framework at site level
(Fig. 6). This is thought to be due to inconsistencies between
MODIS cloud-free observations and in situ measurements,
i.e., errors of MODIS cloud-free observations propagating
into the GADTC products. The mismatch in spatial resolu-
tion between the GADTC products and in situ measurements
can also lead to lower accuracies.

The validation with the SURFRAD measurements show
that the MAE of the GADTC products is 2.2 and 1.6 K at
the daily and monthly scales, respectively, and the bias is

around −1.6 K at both scales (Fig. 8a and d). These accu-
racies of daily mean LST are generally on a par with those
of instantaneous LSTs in studies comparing instantaneous
MODIS cloud-free observations and SURFRAD measure-
ments (Duan et al., 2019; Martin et al., 2019). Across the
different SURFRAD sites, the MAEs of the GADTC prod-
ucts are relatively similar (around 2.2 K; see Table 1).

The direct comparison between the GADTC products and
FLUXNET measurements shows that the MAEs are 3.1 and
2.8 K at the daily and monthly scales, respectively, and the
bias at these two timescales is −1.5 K (Fig. 8b and e). Com-
pared with the validations over the SURFRAD sites, the ac-
curacies over the FLUXNET sites decrease slightly, and the
standard deviations increase. The relatively larger errors at
several FLUXNET sites (e.g., AU-Wac, SJ-Adv, and CH-Fru
sites, with MAEs larger than 8.0 K; refer to the red ellipse
in Fig. 8e) partly account for the lower accuracy. The rela-
tively large errors at these sites might be related to the erro-
neous in situ measurements as well as the high spatial hetero-
geneity around these sites. However, the accuracies at most
FLUXNET sites are acceptable.

The validations over the FLUXNET sites show that the
MAEs vary from 2.6 to 4.8 K and depend on land cover type.
Relatively lower accuracies of the GADTC products (MAE
larger than 3.5 K) are observed over IGBP land cover types
OSH (open shrublands) and SNO (snow and ice) (Table 2).
This may be related to unusually large measurement errors
and the relatively high spatial heterogeneity at some sites as
well as the limited number of sites representing a particular
land cover type. For example, the accuracy assessment over
the SNO land cover type is performed with a single site, and
there are only three sites of the OSH land cover type (e.g.,
the RU-Cok with MAE as large as 4.6 K).

4.3 Analysis of the GADTC product

The validations based exclusively on in situ LST measure-
ments (Fig. 6) show that the IADTC framework can reduce
the sampling bias (1Tsb, i.e., Tdm_cloud_free−Tdm_true) signif-
icantly, especially at the monthly scale. 1Tsb directly affects
the value of Tdm and may further influence the LST trend.
Therefore, based on the GADTC products, we analyzed the
global distribution of 1Tsb (calculated by Tdm_cloud_free−

Tdm_IADTC) at the monthly scale (Sect. 4.3.1) and com-
pared the LST trend differences between monthly averaged
Tdm_cloud_free and Tdm_IADTC to study the impact of 1Tsb on
LST trends (Sect. 4.3.2).

4.3.1 Global distribution of the sampling bias ∆Tsb

The global distribution of the averaged 1Tsb from 2003 to
2019 shows that the global-mean 1Tsb is 1.8 K (Fig. 9).
At low-latitude and midlatitude regions, 1Tsb is generally
around 2.0 K, yet it can exceed 4.0 K in some regions,
e.g., deserts. At high-latitude regions, 1Tsb is close to or
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Figure 8. GADTC products versus in situ observations. Panels (a), (b), and (c) compare the daily mean LST over the SURFRAD, FLUXNET
and combined sites, respectively, and panels (d), (e), and (f) show the corresponding results for monthly mean LST. The biases were calculated
by the GADTC products minus the in situ measurements. The red ellipse in (b) highlights the cases with notably large errors.

Table 1. Validation results obtained over the seven SURFRAD sites.

Site ID Lat., long. IGBP N* Bias (K) MAE (K) RMSE (K) SD (K)

BON 40.05◦, −88.37◦ CRO 6153 −1.20 1.97 2.44 2.12
TBL 40.13◦, −105.24◦ GRA 6124 −1.37 2.30 2.89 2.54
DRA 36.62◦, −116.02◦ BSV 6102 −2.04 2.26 2.69 1.74
FPK 48.31◦, −105.10◦ GRA 6157 −1.78 2.54 3.18 2.63
GWN 34.25◦, −89.87◦ WSA 6144 −1.83 2.25 2.70 1.98
PSU 40.72◦, −77.93◦ CRO 6134 −1.30 1.85 2.24 1.82
SXF 43.73◦, −96.62◦ CRO 5786 −1.39 2.06 2.54 2.13

∗ N denotes the number of days used for validation.

slightly less than zero. 1Tsb also varies with month or sea-
son (Fig. C1). For example, the average1Tsb for September–
October–November (2.0 K) is larger than that for December–
January–February (1.5 K). We further observe that 1Tsb is
sensitive to land cover type and that DTR can partially ex-
plain 1Tsb. For instance, regions with a large DTR (e.g.,
deserts or bare soils) usually have a greater 1Tsb (Shar-
ifnezhadazizi et al., 2019; Hong et al., 2021; Jin and Dick-
inson, 2010).

Apart from the DTR, in high-latitude regions, 1Tsb can
also be affected by the drift of MODIS overpass time. The
DTR is relatively small in high-latitude regions where the
angle of the incident solar radiation is low and the LST ob-
servations across a diurnal cycle are often already close to

the true Tdm, leading to a relatively small 1Tsb. The time
drift at high-latitude regions can also contribute to the rela-
tively small 1Tsb. At low-latitude and midlatitude regions,
MODIS samples the surface near 10:30, 13:30, 22:30, and
01:30 (local solar time) (Fig. A1): the systematic positive
1Tsb is then mostly due to the under-sampling of the night-
time cooling until the sunrise of the next day (Hong et al.,
2021). At high-latitude regions, the time drift effect allows
MODIS observations to be conducted at other than these four
times and alleviates the under-sampling of nighttime cooling,
thereby reducing 1Tsb.
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Table 2. Validation results for the GADTC products stratified by IGBP land cover type of the FLUXNET sites.

IGBP Site number N* Bias (K) MAE (K) RMSE (K) SD (K)

MF 5 7564 −1.95 2.62 3.25 2.61
EBF 11 29 588 −1.71 2.75 3.34 2.87
WET 15 14 556 −0.66 2.76 4.22 4.17
DBF 19 32 594 −1.78 2.89 3.56 3.08
SAV 5 10 355 −2.65 3.16 3.84 2.79
CRO 14 14 387 −1.59 3.26 4.10 3.78
GRA 23 45 257 −1.62 3.32 4.22 3.90
ENF 25 58 616 −0.81 3.38 4.18 4.10
WSA 5 7810 −2.33 3.44 4.06 3.32
OSH 3 5090 −3.34 3.62 4.33 2.75
SNO 1 403 −3.39 4.80 5.91 4.84

∗ N denotes the number of days used for validation.

Figure 9. Average sampling bias1Tsb from 2003 to 2019. (a) Global spatial distribution of1Tsb and (b) average results for 5◦ longitudinal
intervals.

4.3.2 Analysis of global LST trends from 2003 to 2019

The LST trends determined for Tdm_cloud_free and Tdm_IADTC
show similar global patterns; i.e., both can show comparable
warming/cooling trends (Fig. 10a and b). For example, they
both display an overall increasing LST trend over the globe
as well as an accelerated surface warming trend over the Arc-
tic and Europe (Fig. 10), which is consistent with most pre-
vious studies (Mao et al., 2017; Sobrino et al., 2020a, b).

However, the slopes of the LST trends are significantly dif-
ferent between Tdm_cloud_free and Tdm_IADTC with a MAE of
0.012 K yr−1 (Fig. 10e). The slope difference is related to the
variation of 1Tsb, which can be affected by the cloud per-
centage and cloud duration among different months. When
taking the slope of Tdm_IADTC as reference, the slope of
Tdm_cloud_free underestimates the global LST warming rate
by 0.004 K yr−1. With the original MODIS LST observations
(i.e., Tdm_cloud_free) as reference, the warming LST trends

would be underestimated over South America, Africa, Asia,
and Oceania. They would be overestimated over Europe and
relatively similar to the trends obtained with Tdm_IADTC over
North America and Antarctica.

5 Discussion

5.1 Empirical determination of the threshold for
optimizing the Tdm estimation with DTC model

To determine the threshold for the first criterion (i.e., the
threshold for the DTRfour; see Fig. 2), we analyzed the vari-
ations in the error of Tdm_ATC_four depending on DTRfour us-
ing SURFRAD and FLUXNET data (Fig. 11). The assess-
ments show that the errors of Tdm_ATC_four generally increase
with DTRfour. The linear fitting lines show that the error of
Tdm_ATC_four is relatively low when DTRfour is small. In other
words, the direct average of the four LSTs per daily cycle
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Figure 10. Global LST trends from 2003 to 2019. Panels (a) and (b) display the global LST trends based on Tdm_cloud_free and their
averaged results for 5◦ longitudinal intervals, respectively; panels (c) and (d) show the corresponding results for Tdm_IADTC; and panels
(e) and (f) show the global LST trend differences between Tdm_cloud_free and Tdm_IADTC and their averages for 5◦ longitudinal intervals,
respectively.

(Tdm_ATC_four) is a good estimate of Tdm when the DTRfour is
small. Based on the linear fits in Fig. 11a, b, and c, we there-
fore chose the DTRfour threshold of the first criterion to be
5.0 K.

The second criterion uses the 1DTR to filter cases for
which Tdm is significantly underestimated. To determine the
optimal threshold for 1DTR, we analyzed the MAE differ-
ences between Tdm_ATC_four and Tdm_ATC_DTC (i.e., the MAE
of Tdm_ATC_four minus the MAE of Tdm_ATC_DTC) and their
dependence on 1DTR for SURFRAD and FLUXNET data
(Fig. 11d and e). The assessments show that1DTR is gener-
ally less than 10 K, and the accuracy of Tdm_ATC_DTC is bet-

ter than that of Tdm_ATC_four. However, with the increase of
1DTR, the overall accuracy of Tdm_ATC_four can be superior
to Tdm_ATC_DTC. For SURFRAD data, the overall accuracy of
Tdm_ATC_four is better than that of Tdm_ATC_DTC once 1DTR
exceeds 22.0 K (i.e., the 1DTR threshold is 22.0 K), while
this threshold is 13.0 K for FLUXNET data. With the fur-
ther increase of 1DTR, the accuracy of Tdm_ATC_DTC can be
even lower than that of Tdm_ATC_four, e.g., by up to 2.0 K in
Fig. 11d and e. In other words, Tdm can be estimated more
accurately with Tdm_ATC_four than Tdm_ATC_DTC once 1DTR
is relatively large (i.e., Scenario no. 3).
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Figure 11. Threshold determination for the two criteria in Fig. 2. Panels (a), (b), and (c) display the errors of Tdm_ATC_four (Tdm_ATC_four
minus Tdm_true) depending on DTRfour for SURFRAD, FLUXNET, and combined data, respectively; and panels (d), (e), and (f) display the
MAE differences between Tdm_ATC_four and Tdm_ATC_DTC (i.e., the MAE of Tdm_ATC_four minus the MAE of Tdm_ATC_DTC) depending
on the 1DTR for SURFRAD, FLUXNET, and combined data, respectively. The black lines in (d), (e), and (f) denote the averaged MAE
difference within every unit along the x axis.

Note that the optimal threshold of 1DTR for the
SURFRAD data (22.0 K) differs from that for the FLUXNET
data (13.0 K). Here, we set the 1DTR threshold as 20.0 K,
which is close to that determined for the SURFRAD data,
mostly because of the following factors: (1) the SURFRAD
sites have been managed uniformly by NOAA (National
Oceanic and Atmospheric Administration) for over 15 years,
and the associated radiance measurements have been consis-
tently quality-controlled (Augustine et al., 2000); and (2) the
land cover types of the SURFRAD sites are not limited to
vegetation. We acknowledge that using a single threshold of
20.0 K may not be optimal for all climate zones and land
cover types across the globe, but use of a single threshold ef-
fectively avoids outliers due to failed simulations while keep-
ing the simplicity in the global generation of Tdm products.

With the thresholds given as above, we provide the per-
centage of each scenario within each 10◦ latitude zone
(Fig. 12). In low-latitude and midlatitude regions, the per-
centage of Scenario no. 2 (i.e., DTRfour ≥ 5.0 & 1DTR<
20.0 K) reaches over 80 %, indicating that the IADTC frame-
work mainly uses the DTC-modeled results to estimate Tdm
in those regions. With the increase of latitude, the percentage
of Scenario no. 1 (i.e., DTRfour < 5.0 K) gradually increases,
mostly due to a decrease in DTR with the weakened incom-
ing solar radiation over higher-latitude regions. The percent-

age of Scenario no. 1 reaches around 60 % in the Arctic and
Antarctic, which echoes well with the small 1Tsb in high-
latitude regions (Fig. 9). The percentage of Scenario no. 3
(i.e., DTRfour ≥ 5.0 & 1DTR≥ 20.0 K) remains relatively
stable at around 10 % over most regions across the globe,
but it can increase to 20 % in the equatorial zone (10◦ N–
10◦ S) and Antarctic, which indicates the relatively poor per-
formance of the DTC model over these regions. The lower
performance of the DTC model in the equatorial zone may be
related to the high cloud percentage, while over the Antarc-
tic, it reflects the expected difficulties over polar regions (see
Sect. 5.2 for more discussions).

5.2 Possible uncertainty sources of GADTC product

GADTC products uncertainties arise from four main sources:
(1) MODIS data quality or LST retrieval error, (2) cloud
cover and contamination; (3) overpass time drift and lin-
ear interpolation, and (4) uncertainties associated with the
IADTC framework. These four uncertainty sources can af-
fect the under-cloud LST reconstruction with the ATC model
as well as the diurnal LST dynamics modeling with the DTC
model and, consequently, affect the accuracy of the GADTC
products. In addition, these uncertainties can influence each
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Figure 12. Percentage of each scenario (see Fig. 2) within 10◦ lat-
itude intervals. For example, the number “−50” denotes the aver-
aged percentage of each scenario within 50 to 60◦ S.

other via error propagation. In the following, we discuss the
four error sources and their effect in more detail.

The ATC and DTC models use cloud-free LST observa-
tions to estimate Tdm. Therefore, retrieval errors of MODIS
LSTs affect the results of ATC and DTC models and the ac-
curacies of the estimated Tdm. Figure A2a shows that the
quality of MODIS LSTs in the equatorial regions is lower
than that in the other regions. This suggests that GADTC
products should have larger uncertainties in equatorial re-
gions where, consequently, the IADTC framework may need
further improvements.

Cloud percentage can also impact the accuracies of the
GADTC products. In regions with a higher cloud percent-
age, e.g., the equatorial regions (Fig. A2b), more under-cloud
LSTs need to be reconstructed with the ATC model. How-
ever, errors of reconstructed under-cloud LSTs are larger
than those of cloud-free LSTs. Therefore, regions with a
higher cloud percentage are also associated with larger errors
from ATC modeling and, consequently, DTC modeling and
the estimated Tdm. In polar regions, the cloud detection algo-
rithm has larger uncertainties due to the spectral similarities
between clouds and snow (Østby et al., 2014; Westermann
et al., 2012), which introduces additional uncertainties to the
GADTC products.

The impact of the overpass time drift mainly occurs over
high-latitude regions where the time drift is larger. On the one
hand, the cloud-free observations used for solving the free
parameters of the ATC model come from significantly dif-
ferent times within a daily cycle (Fig. A1), which affects the
under-cloud LST reconstruction. On the other hand, approx-
imately 30 % of the Tdm over high-latitude regions were es-
timated with the DTC modeling results (i.e., Scenario no. 2;
refer to Fig. 12), and the time drift can affect the shape of
the DTC curve and, therefore, the estimated Tdm. Temporal
normalization methods can adjust the LST observations at
fluctuated overpass time to the fixed time, which can elimi-
nate the uncertainties in the under-cloud LST reconstruction

and diurnal LST dynamics modeling (Ma et al., 2022; Z. Liu
et al., 2019; Duan et al., 2014).

The uncertainties of the GADTC products derived with
the IADTC framework mainly include three parts: the re-
construction error of the ATC model, the fitting error of the
DTC model, and the choice of the two thresholds. First, the
currently used ATC model reconstructs under-cloud LSTs
during the day (night) with small positive (negative) biases
(Fig. 5), even though information on under-cloud air temper-
ature has been incorporated (Z. Liu et al., 2019). Addition-
ally, the errors in the ATC model can affect the determina-
tion of scenarios and, consequently, the way to calculate the
Tdm. Second, the DTC model assumes clear-sky conditions
and is less capable of simulating under-cloud LST dynam-
ics accurately, which introduces additional uncertainties, es-
pecially under some complex situations (Hong et al., 2021).
Third, the two fixed thresholds for DTRfour and 1DTR were
determined empirically (Fig. 11): the threshold for DTRfour
may introduce additional uncertainty over high-latitude re-
gions with small DTRs, while the threshold for 1DTR may
still miss some cases with unrealistic modeling results.

It is difficult to distinguish and quantify the individual con-
tributions of these four uncertainty sources to the estimated
Tdm, as they can affect the ATC and DTC modeling individ-
ually and interactively. We are therefore unable to provide
a quality control flag for each pixel of the GADTC prod-
ucts. The validations have shown that the accuracies of the
GADTC products are generally acceptable over most areas
across the globe. However, there are relatively larger uncer-
tainties over equatorial and polar regions, where further val-
idations of the GADTC products and an optimization of the
IADTC framework are required.

5.3 Future perspectives

Further improvements of the GADTC product can focus on
the following three aspects:

1. More extensive validation and inter-comparison of the
GADTC products. The GADTC products have been
evaluated with FLUXNET and SURFRAD datasets,
which include in situ measurements from most climate
zones. However, the number of sites is very limited in
regions where the uncertainties of the GADTC prod-
ucts are largest (e.g., equatorial and polar regions; re-
fer to Fig. 1). It is therefore hard to validate the IADTC
framework as well as its improvements over these re-
gions, e.g., the use of a multi-type ATC model instead
of a single-type ATC model. The current in situ data are
also insufficient to verify the accuracies of the GADTC
products over these regions. It is therefore necessary to
obtain more in situ measurements over these regions
to validate the accuracy of IADTC framework as well
as the GADTC product more completely. Furthermore,
reanalysis data, which provide long-term spatiotempo-
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rally seamless LSTs and have been widely used in rele-
vant studies (Simmons et al., 2017), can be used to as-
sess the GADTC products (Trigo et al., 2015).

2. Rapid generation of high-resolution spatiotemporally
seamless Tdm product. Considering the limited comput-
ing resources as well as the aim of this study to obtain
the spatial distribution of 1Tsb and LST trends on a
global scale, the spatiotemporally seamless daily Tdm
values were generated at a spatial resolution of 0.5◦.
However, the current IADTC framework is equally suit-
able to generate spatiotemporally seamless daily 1 km
Tdm. For local-scale studies, the IADTC framework
can probably be applied directly, while for large-scale
(continent-scale or even global-scale) studies or appli-
cations, the generation of 1 km spatiotemporally seam-
less daily Tdm could be computationally unaffordable.
Under this circumstance, apart from using as many
computation resources as possible, we can resort to
three strategies to substantially reduce computational
complexity.

First, the similarity of the ATC and DTC model pa-
rameters among neighboring pixels can be utilized to
accelerate the calculation speed considerably (Hong et
al., 2021; Hu et al., 2020; Zhan et al., 2016). Second,
the physically based IADTC framework can also be in-
tegrated with some statistical or empirical estimation
strategies (both on Tdm or on 1Tsb) to help improve
the computational efficiency (Xing et al., 2021). This
is reasonable as 1Tsb (and Tdm) is generally related to
local surface properties (Figs. 9 and 11). For example,
for large-scale or global high-resolution generation of
spatiotemporally seamless daily 1 km Tdm, the IADTC
framework can be run in some chosen sample regions
to obtain adequate training samples of Tdm (or 1Tsb).
Based on these samples, statistical relationships be-
tween Tdm (1Tsb) and the related variables such as the
four daily LSTs, latitude, land cover type, elevation, and
cloud percentage can be obtained to help estimate the
Tdm (1Tsb) across the globe efficiently. Furthermore,
the training samples of Tdm (1Tsb) can also be from
geostationary satellite data, which can help reduce the
computational complexity of the DTC modeling. Third,
other highly efficient under-cloud LST reconstruction
methods, such as statistical interpolation, spatiotempo-
ral fusion, and the passive microwave-based method
(Wu et al., 2021; Hong et al., 2021), or the generated
under-cloud LST products (Zhang et al., 2022; Zhao et
al., 2020) can replace the ATC model in the Tdm gener-
ation framework. Similarly, more efficient diurnal LST
dynamics modeling methods can also replace the DTC
model (Jia et al., 2022).

3. Generation of Tdm with a longer time span. The
GADTC products can only date back to 2003 because

the IADTC framework requires four observations per
day to estimate Tdm, while MODIS started to provide
four daily observations in 2003. However, daily mean
LSTs with a longer time span are strongly required for
relevant studies such as climate change analysis (Jin and
Dickinson, 2010; Simmons et al., 2017). AVHRR data
provide global LST observations before 2000, and re-
cent studies have achieved tremendous progress in the
correction of orbit drift in order to generate more accu-
rate AVHRR LST datasets (Julien and Sobrino, 2012;
Latifovic et al., 2012; Ma et al., 2020; X. Liu et al.,
2019). However, the current IADTC framework is not
applicable to AVHRR since it only samples the sur-
face twice per day. It is therefore imperative to de-
velop a framework for Tdm estimation that also suits
AVHRR-like LSTs. Apart from polar orbiters, geosta-
tionary satellites and reanalysis data deliver LST over
similar time spans. Although reanalysis data are still
limited by their coarse spatial resolution and geostation-
ary satellite data have a limited spatial coverage, espe-
cially over polar regions, the fusion of these datasets has
great potential to help generate Tdm with a longer time
span (Long et al., 2020; Quan et al., 2018).

6 Data availability

The generated GADTC products are organized yearly and are
freely available at https://doi.org/10.5281/zenodo.6287052
(Hong et al., 2022). Each file contains the global day-to-day
spatiotemporal seamless daily mean land surface temperature
in units of kelvin.

7 Conclusions

MODIS LST products have been widely used for long-term
time-series analyses. However, due to the missing LSTs
caused by clouds and under-sampling of the diurnal LST
dynamics, currently there is still no global dataset of spa-
tiotemporally seamless daily mean LST (Tdm) with an ac-
ceptable systematic sampling bias (1Tsb), which is caused
by averaging only instantaneous cloud-free observations. To
resolve this issue, we proposed the IADTC framework by
using a more advanced ATC model as well as by optimiz-
ing the estimation of Tdm with the DTC model and gener-
ated global spatiotemporally seamless Tdm products (i.e., the
GADTC products) from 2003 to 2019. Based on SURFRAD
and FLUXNET in situ measurements, the IADTC framework
was validated with in situ measurements at the site level,
and the GADTC products were directly compared with in
situ Tdm observations. The validations with the SURFRAD
and FLUXNET measurements reveal that the IADTC frame-
work is able to reduce the systematic positive sampling bias
(1Tsb) of Tdm_cloud_free, avoid the outliers caused by failed
simulation, and provide relatively accurate estimates of spa-
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tiotemporally seamless Tdm. Based on the GADTC products,
we analyzed the global distribution of 1Tsb and examined
the similarities and differences between the GADTC prod-
ucts and Tdm_cloud_free (daily mean LST based on cloud-free
observations).

Our major conclusions are as follows: (1) the validations
of the IADTC framework based exclusively on in situ mea-
surements at the site level show MAEs of 1.4 and 1.1 K
for the SURFRAD and FLUXNET measurements, respec-
tively; the biases for these two datasets are both close to zero.
(2) The comparisons between the GADTC satellite products
and in situ Tdm observations show that the MAEs for the
SURFRAD and FLUXNET measurements are 2.2 and 3.1 K,
respectively; the associated biases for these two datasets are
−1.6 and −1.5 K, respectively. (3) The global-mean sam-
pling bias 1Tsb is 1.8 K; it is usually larger than 2.0 K over
low-latitude and midlatitude regions and close to zero over
high-latitude regions. (4) Global-mean LST trends derived
with the GADTC product and the traditional direct-averaging
method are similar (both between 0.025 to 0.029 K yr−1 from
2003 to 2019), while the pixel-based MAE in LST trend de-
rived with these two methods is 0.012 K yr−1. Despite its
limitations, the proposed IADTC framework allows for the
practical generation of global spatiotemporally seamless Tdm
and provides insights for generating global long-term high-
resolution (e.g., 1 km) Tdm products. The generated GADTC
product should be helpful for relevant applications such as
climate change analysis and thermal environment investiga-
tions.

Appendix A: Statistics on the original MODIS MXDC1
V6 products

Figure A1. Statistics on each MODIS overpass time within a 10◦

interval from 2003 to 2019. Each subplot displays the 99th per-
centile, median, first percentile, and the associated variation (the
99th percentile minus first percentile).
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Figure A2. Uncertainties of the downloaded MODIS MXD11C1 V6 LSTs. Panel (a) shows the percentage of LSTs with a retrieval error
less than 1.0 K, and panel (b) displays the percentage of invalid data (≈ clouds).

Appendix B: Mean absolute errors of Tdm_IADTC and
Tdm_OADTC in Scenarios no. 1 and no. 3 at the site
level

Figure B1. Box plots for the MAEs of the IADTC framework
(Tdm_ATC_DTC) and the OADTC framework (Tdm_OADTC) under
Scenarios no. 1 and no. 3. Panels (a) and (b) are for the SURFRAD
and FLUXNET measurements, respectively.
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Appendix C: Distribution of average sampling bias
per season

Figure C1. Average sampling bias 1Tsb for indicated 3-month interval between 2003 and 2019. Panel (a) displays the 1Tsb for December–
January–February (DJF), and (b) displays the corresponding results averaged over 5◦ longitudinal intervals. Similarly, (c) and (d), (e) and
(f), and (g) and (h) display the corresponding results for March–April–May (MAM), June–July–August (JJA), and September–October–
November (SON), respectively.
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Appendix D: Nomenclature

Acronyms
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ATC annual temperature cycle
AVHRR Advanced Very High-Resolution Radiometer
BSV barren sparse vegetation
CRO croplands
DBF deciduous broadleaf forests
DOY day of year
DTC diurnal temperature cycle
DTR daily temperature range
EBF evergreen broadleaf forests
ENF evergreen needleleaf forests
GADTC global daily mean LST product generated with the improved ADTC-based framework
GOES Geostationary Operational Environmental Satellite
GRA grasslands
IADTC framework improved ADTC-based framework
IGBP International Geosphere-Biosphere Programme
LST land surface temperature
MAE mean absolute error
MERRA-2 Modern-Era Retrospective analysis for Research and Applications version 2
MF mixed forests
MODIS Moderate-Resolution Imaging Spectroradiometer
MSG-SEVIRI the Spinning Enhanced Visible and Infrared Imager onboard Meteosat Second Generation
OADTC framework original ADTC-based framework
OSH open shrublands
SAV savannas
SAT surface air temperature
SNO snow and ice
SURFRAD Surface Radiation Budget Network
WET permanent wetlands
WSA woody savannas
Symbol representation
DTRfour diurnal temperature range calculated by the four LSTs which include the cloud-free

LSTs and ATC-reconstructed LSTs
DTRDTC diurnal temperature range calculated by the DTC model
1DTR the difference between DTRDTC and DTRfour
Tdm daily mean LST
Tdm_ATC_DTC daily mean LST calculated by frequently sampling diurnal LST dynamics modeled by

DTC model with cloud-free LST observations and under-cloud LSTs reconstructed by ATC model
Tdm_ATC_four daily mean LST calculated by averaging cloud-free LST observations and under-cloud

LSTs reconstructed by ATC model
Tdm_cloud_free daily mean LST calculated by averaging cloud-free LST observations
Tdm_IADTC daily mean LST estimated with the IADTC framework
Tdm_OADTC daily mean LST estimated with the OADTC framework
Tdm_true true daily mean LST for validation
Tin_ATC instantaneous under-cloud LSTs reconstructed by ATC model
Tin_ATC_DTC diurnal LST dynamics modeled by DTC model with cloud-free LST observations and

under-cloud LSTs reconstructed by ATC model
Tin_cloud_free instantaneous cloud-free LST observations
Tin_obs hourly LST observations
Tin_under_cloud instantaneous under-cloud LST observations
1Tsb sampling bias
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