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Abstract. Land surface soil moisture (SM) plays a critical role in hydrological processes and terrestrial ecosys-
tems in desertification areas. Passive microwave remote-sensing products such as the Soil Moisture Active Pas-
sive (SMAP) satellite have been shown to monitor surface soil water well. However, the coarse spatial resolution
and lack of full coverage of these products greatly limit their application in areas undergoing desertification.
In order to overcome these limitations, a combination of multiple machine learning methods, including multi-
ple linear regression (MLR), support vector regression (SVR), artificial neural networks (ANNs), random forest
(RF) and extreme gradient boosting (XGB), have been applied to downscale the 36 km SMAP SM products
and produce higher-spatial-resolution SM data based on related surface variables, such as vegetation index and
surface temperature. Desertification areas in northern China, which are sensitive to SM, were selected as the
study area, and the downscaled SM with a resolution of 1 km on a daily scale from 2015 to 2020 was pro-
duced. The results showed a good performance compared with in situ observed SM data, with an average
unbiased root mean square error value of 0.057 m3 m−3. In addition, their time series were consistent with
precipitation and performed better than common gridded SM products. The data can be used to assess soil
drought and provide a reference for reversing desertification in the study area. This dataset is freely available at
https://doi.org/10.6084/m9.figshare.16430478.v6 (Rao et al., 2022).

1 Introduction

Surface soil moisture (SM) plays a very important role in
water–energy cycle processes (Sandholt et al., 2002; De San-
tis et al., 2021) and is an important source of water for plants
and soil microbes (Wang et al., 2007; Gu et al., 2008; Mallick
et al., 2009). Large-scale areas of northern China are under-
going desertification because of scarce precipitation and in-
sufficient SM. The accurate acquisition of SM is valuable
to ecological conservation and revegetation in arid areas of
northern China.

In the past, SM data were mainly obtained through ground
measurements or the assimilation of products based on land

surface models such as the Global Land Data Assimilation
System (GLDAS) (Fang and Lakshmi, 2014; Zawadzki and
Kędzior, 2016; Liu et al., 2021). Although most accurate SM
data at different soil depths can be obtained, field measure-
ments and in situ observations are limited due to the high
cost and labor intensity involved in their collection and are
generally not representative of soil water status over larger
areas (Rahimzadeh-Bajgiran et al., 2013; Zhao et al., 2018;
Bai et al., 2019). With the development of remote-sensing
technologies, continuous SM estimates can be generated at
regional and global scales (Peng et al., 2021). Compared to
ground measurements, remote-sensing products can provide
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good spatial and temporal coverage of SM with a relatively
low cost to the user (Zeng et al., 2015; Zhao et al., 2018;
Meng et al., 2021). Data assimilation SM products largely
depend on the accuracy of the land surface model and the
original inputs (Zawadzki and Kędzior, 2016). They gener-
ally have low accuracy in areas where ground measurements
are scarce, which is a problem that can be overcome with
remote sensing.

At present, there are many remotely sensed SM data, some
of which are from microwave remote-sensing satellites, in-
cluding active and passive types. SM retrievals from active
sensors like Synthetic Aperture Radar (SAR) are sensitive
to scattering and greatly affected by the surface roughness
and vegetation types (Lievens et al., 2011; Wagner et al.,
2013). Unlike active sensors, passive microwave radiome-
ters or sensors are rarely affected by scattering (Abbaszadeh
et al., 2019). Common passive microwave SM products are
listed in Table 1 below. Studies have compared these prod-
ucts and found that Soil Moisture Active Passive (SMAP)
SM products have higher accuracy and robustness than other
remotely sensed SM products (Liu et al., 2019; Wang et al.,
2021).

Passive microwave SM products have been applied at wa-
tershed and national scale (Fang and Lakshmi, 2014; Meng
et al., 2021). However, due to their coarse spatial resolution,
microwave SM products have limited applicability to small-
scale areas. Compared to microwave sensors, optical satel-
lites such as MODIS and Landsat have a finer spatial reso-
lution. Some observations generated from optical satellites
provide good information about SM, such as vegetation in-
dex (VI) (usually Normalized Difference Vegetation Index
(NDVI) or Enhanced Vegetation Index (EVI)) and land sur-
face temperature (LST) (Wang et al., 2007; Sun et al., 2012).
Many experiments have tried to use these two parameters
from optical remote sensing to retrieve surface SM (Mallick
et al., 2009; Fang et al., 2013). Based on the LST and VI tri-
angle space, Sandholt et al. (2002) proposed the temperature
vegetation dryness index (TVDI) and used it to assess the SM
status. Relative SM indicators can be calculated using optical
remote-sensing data; however, reliable ground measurements
or other data are still required to obtain the true value of SM.

Some studies have tried to use surface variables from opti-
cal observations to improve the spatial resolution of passive
remotely sensed SM products (Peng et al., 2017). Zhao et
al. (2017) used the triangle method and Landsat satellite ob-
servations to disaggregate coarse-resolution SM data. Stud-
ies have shown that polynomial regression is effective in SM
and optical observations (Zhao and Li, 2013; Piles et al.,
2016). However, these methods have shortcomings in repre-
senting the nonlinear relationship between SM and other sur-
face variables (Zhao et al., 2018; Hu et al., 2020). Machine
learning methods can be applied to show the nonlinear re-
lationships between SM and surface variables. Random for-
est (RF) and artificial neural network (ANN) methods have
been widely used in previous studies due to their high gen-
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eralization ability and robustness (Yao et al., 2017; Liu et
al., 2020; Demarchi et al., 2020; Chen et al., 2021). Chen
et al. (2021) developed the global surface SM dataset cover-
ing 2003–2018 at 0.1◦ resolution with neural networks and
some related variables. Im et al. (2016) used machine learn-
ing approaches (RF, boosted regression trees, and Cubist) to
downscale AMSR-E SM data in South Korea and Australia
and found RF to be superior to the other downscaling meth-
ods. Although these machine learning methods perform well
in constructing nonlinear regression models, there are still
some shortcomings. For example, neural networks are prone
to overfitting when the sampling is inefficient (Piotrowski
and Napiorkowski, 2013) or variables that are weakly cor-
related with the dependent variable (Elshorbagy and Para-
suraman, 2008; Ågren et al., 2021). Since the RF algorithm
uses random sampling with replacement, its simulation re-
sults will not exceed the range of training set and tend to ig-
nore some extreme values when used as a regression model
(Belgiu and Drăguţ, 2016). Additionally, it does not perform
well when learning from an extremely imbalanced training
data (Lin et al., 2021). Extreme gradient boosting (XGB), as
a new ensemble learning method (Chen and Guestrin, 2016),
performs well in some fields (Wang et al., 2020; Fan et al.,
2021; Ma et al., 2021), but it has rarely been used for soil
moisture downscaling. Compared with methods such as RF,
the XGB algorithm adopts the boosting weighted sampling
method, which can reduce the impact of imbalanced data
and better simulate the extreme values existing in the sam-
ples (Chen and Guestrin, 2016). The coarse-resolution re-
mote sensed SM (> 10 km) itself has ignored some maxima
or minima with relatively finer-grid SM, so a method that
better simulates extreme values will obviously have certain
theoretical advantages.

The selection of feature variables is critical for regression
models. In addition to LST and VI mentioned above, vari-
ables such as terrain and soil conditions also have a signif-
icant impact on SM. Abbaszadeh et al. (2019) downscaled
SMAP radiometer SM products over the continental United
States using MODIS products (including NDVI and LST)
and precipitation and topographic data and evaluated the in-
fluence of soil texture on SM. Zhao et al. (2018) added ad-
ditional surface variables, such as leaf area index (LAI), nor-
malized difference water index (NDWI), surface albedo and
the solar zenith angle. Hu et al. (2020) added the normalized
shortwave-infrared difference bare soil moisture index (NS-
DSI), horizontally polarized brightness temperature (TBh)
and vertically polarized brightness temperature (TBv) to the
regression model. In general, all these variables can be clas-
sified into vegetation, temperature, soil wetness, topography
and soil factors and sensors conditions.

In recent years, the Chinese government has carried out
afforestation activities in order to reverse desertification in
the north. Considering the role of SM in terrestrial ecosys-
tems, it is urgent to obtain accurate SM with high temporal
and spatial resolution. This study aims to downscale SMAP

SM products by constructing a nonlinear relationship be-
tween SM and related surface variables by means of multiple
machine learning methods and generate SM products with
higher temporal and spatial resolution in desertification ar-
eas. The in situ observed SM data from the Maqu monitoring
network and Babao monitoring network, several gridded SM
products, and precipitation and temperature data from mete-
orological stations were used for validation and analysis.

2 Materials and methodology

2.1 Study area

Northern China is mostly arid with an annual precipita-
tion of generally less than 600 mm and is subject to large-
scale desertification. The desert areas of northern China are
susceptible to climate and hydrological changes and have
fragile ecosystems. Soil water is a key parameter in land–
atmosphere interactions (Ma et al., 2019), and its change
greatly affects the survival of vegetation and agricultural
production in desertification areas. The studied area whose
boundaries are provided by government departments used
for this study covers 3.36× 106 km2, encompassing seven
provinces (Fig. 1). The precipitation in the study area de-
creases gradually from southeast to northwest and belongs
to the temperate continental climate (Fig. 1). The terrain is
complex, and the average elevation is approximately 1900 m,
ranging from −192 to 7439 m.

2.2 Observations for the production of soil moisture data

2.2.1 SMAP SM data

The SMAP satellite was launched on 31 January 2015. Its
mission consists of an L-band radar and radiometer instru-
ment suite, which provides global measurements and mon-
itoring of SM in the top 5 cm of soil. The Level-3 products
are daily composites of the Level-2 products and are the most
commonly used for applications. The Level-3 products are
available in three spatial resolutions: 36 km passive, 9 km
active–passive and 3 km active (O’Neill et al., 2010). Fol-
lowing the malfunctioning of its radar in 2015, SMAP radar
data were replaced with those of Sentinel-1, limiting the ap-
plication of active and active–passive products.

The SMAP Level-3 passive daily SM product (L3_SM_P,
Version 6) with a grid resolution of 36 km has been pro-
duced since 31 March 2015. Zeng et al. (2015) showed that
most remotely sensed SM products were slightly better dur-
ing daytime than during nighttime, and the same conclu-
sion for the SMAP SM product was confirmed by Zhao et
al. (2018). Therefore, the SMAP Level-3 SM product with
the descending overpass time of 06:00 was used in this study.
The data were downloaded from NASA Earthdata (https:
//search.earthdata.nasa.gov, last access: 17 May 2021).
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Figure 1. Location of the study area.

2.2.2 MODIS products

MODIS provides continuous time-series predictors for im-
portant parameters, such as vegetation index and surface
temperature. This paper used MODIS products MOD09A1,
MOD11A1, MOD13A2, MOD15A2H and MCD43D58 (Ta-
ble 2). The 1 km daily LST was provided by MOD11A1, and
the 1 km 16 d EVI and NDVI was provided by MOD13A2.
MOD15A2H provided 8 d leaf area index (LAI) with a spa-
tial resolution of 500 m. MCD43D58 provided daily albedo
data with a spatial resolution of 30 arcsec (∼ 1000 m). Some
soil-wetness-related indexes, including the NDWI, NSDSI
and Land Surface Water Index (LSWI), were produced by
MOD09A1. Their formulas are

NDWI= (B4−B2)/(B4+B2) (1)
LSWI= (B2−B6)/(B2+B6) (2)

NSDSI= (B6−B7)/B6, (3)

where B2, B4, B6 and B7 represent the MOD09A1 surface
reflectance of the second, fourth, sixth and seventh bands,
respectively.

These MODIS products are available from NASA Earth-
data (https://search.earthdata.nasa.gov, last access: 20 Febru-
ary 2021). All data were obtained from 2015 to 2020 and
processed to a spatial resolution of 1000 m.

2.2.3 Topographic data

Topographic factors are strongly related to SM, including el-
evation, slope and aspect (Bai et al., 2019; De Santis et al.,
2021). The Shuttle Radar Topography Mission (SRTM) dig-
ital elevation model (DEM) at 3 arcsec resolution (∼ 100 m),

version 3, obtained from the Land Processes Distributed
Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/
products/srtmgl3v003/, last access: 16 January 2021), was
used as elevation. Slope and aspect were generated based on
the DEM.

2.2.4 Soil texture data

Soil texture, the proportions of sand, silt and clay particles,
controls the water-holding capacity of the soil. The soil data
at 1000 m resolution, including the proportions of sand, silt
and clay, used for this study used the China Soil Characteris-
tics Dataset (CSCD) (Shangguan et al., 2012), obtained from
the National Tibetan Plateau Data Center (https://data.tpdc.
ac.cn/en/, last access: 3 January 2021).

2.2.5 In situ SM observations

The in situ SM measurements were collected from the data
provided by the Maqu monitoring network (Zhang et al.,
2021) and the Babao monitoring network (Kang et al., 2017).
The Maqu monitoring network covers 26 sites and provides
SM for the surface layer (0–5 cm) at 15 min intervals from
2009 to 2019; 19 of the available sites which have data after
2015 were used in this study (Fig. 1). The Babao monitor-
ing network covers 40 sites and provides hourly SM for the
surface layer (4, 10 and 20 cm) from 2013 to 2017; 29 of
the available sites have data after 2015, and their observa-
tions of the first layer (4 cm) were used in this study (Fig. 1).
For comparison with the simulated results, they were all pro-
cessed into daily time series.
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2.2.6 Precipitation and temperature data

The daily precipitation and temperature data were acquired
from 131 meteorological stations from the China Meteoro-
logical Data Service Centre (http://data.cma.cn, last access:
29 July 2021). The spatial locations of these meteorological
stations are shown in Fig. 1. The average annual precipitation
of most stations from 2015 to 2020 is less than 600 mm and
gradually decreases from northwest to southeast (Fig. 1).

2.2.7 Other gridded SM datasets

Some other gridded SM data were used to compare the
simulation results (Table 3). The SMAP Level-2 prod-
uct (L2_SM_SP) merges SMAP radiometer and processed
Sentinel-1A/1B SAR observations. It is available at 3 and
1 km resolution. The Global Change Observation Mission
Water (GCOM-W1) AMSR2 product is produced by the
Japan Aerospace Exploration Agency (JAXA), and SM data
at a 0.1◦ spatial resolution were selected for this study. The
Copernicus Climate Change Service (C3S) produces a global
SM gridded dataset from 1978 to present from satellite sen-
sors such as SMOS, AMSR2 and SMAP. It has a spatial res-
olution of 0.25◦ and offers three types of products: active,
passive and combined. The combined product that we used
in this study is generated by merging the active and passive
products. The fifth generation reanalysis dataset (ERA5) pro-
duced by European Centre for Medium-Range Weather Fore-
casts (ECMWF) provides several variables including volu-
metric soil water over several decades. In this dataset, the
soil is divided into four layers, and the depth of the top layer
is 0–7 cm. In this study, we downloaded the hourly volu-
metric soil water data of the top layer and processed them
as daily averages. Famine Early Warning Systems Network
(FEWS NET) Land Data Assimilation System (FLDAS) pro-
vides daily SM at a 0.01◦ spatial resolution over the Central
Asia region (30–100◦ E, 21–56◦ N), which covers part of our
study area. The product consists of four layers of SM, and
the SM at the top layer (0–10 cm) was selected for this study.

2.3 Downscaling approach based on multi-machine
learning

According to the selected variable indicators (mainly includ-
ing topographic data, soil data and some MODIS products)
and machine learning methods, we constructed a framework
to downscale SMAP SM based on multiple machine learning
methods (Fig. 2).

2.3.1 Machine learning methods

Machine learning methods are widely used in regression and
classification. We selected machine learning methods that are
currently widely used to build regression models for SM and
its related variables. We studied five methods: multiple linear
regression (MLR), support vector regression (SVR), ANNs,

random forest (RF) and extreme gradient boosting (XGB).
MLR and SVR have been widely used as regression meth-
ods in the past (Yu et al., 2012; Achieng, 2019; Wang et
al., 2019). ANN is currently one of the most popular ma-
chine learning methods and is used in many fields, including
the inversion of remotely sensed SM (Del Frate et al., 2003;
Elshorbagy and Parasuraman, 2008; Yao et al., 2017; Chen
et al., 2021).

RF and XGB are tree-based ensemble algorithms, which
have prediction accuracy and good generalization ability and
are not prone to overfitting (Rao et al., 2018; Abbaszadeh et
al., 2019). RF is a multiple-tree algorithm improved by boot-
strap to reduce decision tree bias in determining the splits.
Several studies have used RF to build regression models of
remotely sensed SM and related variables, and almost all
achieved better results compared to other regression meth-
ods (Zhao et al., 2018; Qu et al., 2019; Hu et al., 2020). In
contrast, the application of XGB, which applies a regular-
ized gradient boosting framework, is still very limited. How-
ever, XGB has prominent advantages in generalization per-
formance and accuracy (Wang et al., 2020).

The XGB algorithm is a boosting-type ensemble of multi-
ple CART decision trees (Chen and Guestrin, 2016). The pre-
dicted result of the boosting-type tree ensemble model can be
expressed as follows:

ŷi =∅ (xi)=
K∑

k=1
fk(xi), fk ∈ F, (4)

where F is the space of regression tree, K is the total number
of trees, which means the model uses K additive functions,
and fk(xi) is the weighted score of the kth tree on ith input
data (xi).

XGB adopts a regularized learning objective to optimize
the simulation results.

Obj(∅)=
N∑

i=1
l(yi, ŷi)+

K∑
k=1

�(fk), (5)

where l is the loss function, N is the total number of input and
� is the regularization term to penalize the model complexity
and prevent overfitting.

Compared with RF and other some methods, XGB has sig-
nificantly faster calculation speed (Fan et al., 2018; Shi et al.,
2021). Some studies have shown that XGB is a better regres-
sion and classification algorithm than RF and other machine
learning methods (Ågren et al., 2021; Fan et al., 2021).

2.3.2 The construction of 16 d regression model

The downscaling process is shown in Fig. 2. First, all data
need to be preprocessed. Daily LST data are likely to be
affected by the cloud, so we performed quality control to
MOD11A1 products using its quality control (QC) band and
choose high-quality cloud-free pixels. All selected variables,
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Table 2. Main predictors used in the study and corresponding datasets.

Datasets Predictors Original spatial Temporal Number of granules
resolution resolution (years× tiles)

SMAP SM ∼ 36 km Daily 2064
MOD11A1 LST 1 km Daily 17 460
MOD13A2 NDVI; EVI 1 km 16 d 1104
MOD15A2H LAI; FAPAR 500 m 8 d 2208
MOD09A1 NDWI; LSWI; NSDSI 500 m 8 d 2208
MCD43D58 Albedo 30 arcsec (∼ 1 km) Daily 2192
SRTM DEM; slope; aspect 3 arcsec (∼ 100 m) – 32
CSCD Sand; silt; clay 1 km – 1

Figure 2. Schematic of the SMAP soil moisture downscaling framework.

including LST, albedo, LAI, NDWI, LSWI, NSDSI, NDVI,
EVI, DEM, slope, aspect, sand, silt and clay, were aggregated
into a resolution of 1 km with a GeoTIFF format. These vari-
ables were further resampled to the spatial resolution of the
SMAP SM data (36 km) using the nearest-neighbor interpo-
lation method.

Second, valid samples were obtained and split. Since it is
severely affected by noise (such as clouds), MOD11A1 only
provides daily valid clear-sky LST values onto grids. In ad-
dition, each SMAP image has a narrow coverage and pro-
vides only a small number of valid pixels per day. It means
that there may be few or no valid samples if only the data of
a certain day are selected to build the regression. The vari-
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Figure 3. The number of valid samples for a 16 d period in 2015–
2020. DOY is the day of year.

ables from MOD13A2 and MOD15A2H are the best com-
posite within 16 and 8 d, respectively. To overcome the limi-
tation, we chose to build regression models within 16 d peri-
ods (the lowest temporal resolution from these dynamic vari-
ables). All valid data (including training and test sets) within
16 d were used as the samples in the regression model. For
instance, for NDVI and EVI on 1 January 2020, which are
composite results from 1 to 15 January, the valid data dur-
ing the period were used as samples. The number of valid
samples for surface variables and SMAP SM for each period
in 2015–2020 is shown in Fig. 3. The day of year (DOY)
is used to represent the corresponding period. Since there
are limited available SMAP SM grid data, there may be few
valid samples we can obtain during cold seasons. The valid
samples for each period were divided into training and test
sets, each accounting for 50 % of the total number of sam-
ples. In this study, stratified random sampling based on sam-
pling date during the 16 d period was employed to split the
training and test sets. Moreover, to avoid excessively incon-
sistent training and test sets, the Kolmogorov–Smirnov (KS)
test is adopted to test the distribution consistency of them
(Kovalev and Utkin, 2020). If the p value of the KS test re-
sult is less than or equal to 0.05, stratified random sampling
is performed again and until the requirements are met.

Third, the regression model was determined based on
training and test sets. Considering the number of samples
is critical to the accuracy of the regression model, we only
selected periods with more than 100 samples to build the
model and DOY of 2016017, 2018017, 2018353, 2019001
and 2019177 were excluded. Then, we used the training set
and multiple machine learning methods (MLR, SVR, ANN,
RF and XGB) to build a regression model for each 16 d pe-
riod. The regression model was then defined according to the
selected machine learning method:

SM= f (LST, Albedo, LAI, NDWI, LSWI, NSDSI,

NDVI, EVI DEM, slope, aspect, sand, silt and clay), (6)
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where f represents the regression function of the machine
learning method (MLR, SVR, ANN, RF or XGB).

Finally, hyperparameters are turned, and the optimal
model is selected. Hyperparameters are critical for some ma-
chine learning methods (Klein et al., 2017; Khan et al., 2020;
Sun et al., 2021). In this study, the key hyperparameters of
SVR, ANN, RF and XGB are tuned based on grid search
cross-validation (CV). All models are evaluated based on the
correlation coefficient (R) and the root mean square error
(RMSE). They are calculated as follows:

R =
Cov(SMI ,SMP )
√

Var(SMI )Var(SMP )
(7)

RMSE=

√
1
n

(SMP −SMI )2, (8)

where SMI is the SMAP SM, SMP is the corresponding SM
predicted by the regression model, Cov represents the covari-
ance function, Var is the variance and n is the number of valid
samples for SMI or SMP .

The RMSE is used as the evaluation metric for hyperpa-
rameter tuning. The tuning results of hyperparameters are
shown in Tables S2 and S3 in the Supplement. According
to the optimal hyperparameter, the corresponding model can
be constructed.

2.3.3 Prediction of the 1 km daily SM product

The accuracy of the five regression models was compared us-
ing the average RMSE of training and test sets. This average
RMSE can be expressed as

RMSE=
RMSETraining+RMSETest

2
, (9)

where RMSETraining and RMSETest are the RMSE of training
and test sets for these models, respectively.

The regression model with the smallest RMSE was se-
lected as the optimal model. Furthermore, we used the se-
lected optimal model and these surface variables with a reso-
lution of 1 km within 16 d to simulate daily SM at 1 km reso-
lution on the corresponding date. Taking 16 d as a period, all
daily SM data with a spatial resolution of 1 km from 2015 to
2020 were predicted. In addition, to obtain a more complete
time series of SM data, we used the model of the previous
period when the number of valid samples was less than 100.

2.4 Evaluation method

The in situ SM measurements were used to validate the
downscaled results. In addition to R and RMSE, bias and un-
biased RMSE (ubRMSE) were also used for accuracy evalua-
tion. Bias indicates the overall level of overestimation or un-
derestimation of simulation results. ubRMSE can eliminate
the influence of deviation. They were calculated according

to

ubRMSE=

√
1
n

((SMIn−SMIn)− (SMD−SMD))2 (10)

bias= SMIn−SMD, (11)

where SMIn is the in situ observed SM, SMD is the down-
scaled SM of the corresponding grid and n is the number of
valid samples for SMIn or SMD.

3 Results

3.1 Model comparison

The daily SM data from DOY 81 in 2015 to DOY 366 in 2020
were simulated producing 128 regression results every 16 d.
The correlation coefficient (R) and the root mean square er-
ror (RMSE) of each regression result for the training set and
the test set are shown in Figs. 4 and 5, respectively. Accord-
ing to Eq. (9), among the 128 regression results, there were
114 from the XGB model and 14 from RF.

For all models except MLR, R is greater than 0.6, and
RMSE is less than 0.05 m3 m−3 both for training and test
sets. R values greater than 0.6 and 0.8 indicate reliable and
strong correlations, respectively (Akoglu, 2018). It means
that all methods except MLR have reliable simulation ac-
curacy. For the training set using XGB, Rs are all above
0.96, generally higher than for other methods; similarly, the
RMSEs of XGB are all lower than 0.02 m3 m−3, generally
lower than those of other methods. The R of RF is second
only to that of XGB, and for several periods it is higher than
for XGB; the RMSEs of RF are also generally lower than
0.02 m3 m−3 and are lower than those of XGB in several pe-
riods. SVR and ANN perform generally better in the cold
season and worse in other seasons. In general, their results
are inferior to those of XGB and RF. The simulation results
of MLR are relatively poor both in terms of RMSE and R.

The results of the test set show that XGB, RF and SVR per-
form better than ANN and MLR. Table 4 shows the average
RMSE and R values of the training and test sets over all peri-
ods, and the performance order of the model can be obtained
as XGB > RF > SVR > ANN > MLR. In addition, there are
seasonal variations in R and RMSE both for training and test
sets. Moreover, the evaluation accuracy is generally better in
the cold season, when sample sizes are relatively small.

3.2 Comparison with the in situ data and precipitation

The downscaled 1 km gridded SM were compared with the
in situ SM observations of the Maqu network and Babao net-
work (Fig. 6). Due to the difference in sensors, soil depth and
measurement scale (point observation in case of the in situ
measured SM and 1 km grid for the downscaled SM), there
is a certain deviation between in situ observation data and the
downscaled gridded SM data. The downscaled SM of most
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Figure 4. The correlation coefficient (R) of the models (MLR, SVR, ANN, RF and XGB) on different periods: (a) the training accuracy and
(b) the test accuracy.

Figure 5. The root mean square error (RMSE) of the models (MLR, SVR, ANN, RF and XGB) for different periods: (a) the training accuracy
and (b) the test accuracy.

sites at the Maqu network and Babao network is highly cor-
related with the in situ measured SM (R > 0.6). In the Maqu
network, the ubRMSEs with an average of 0.057 m3 m−3

are all less than 0.090 m3 m−3, and the bias ranges from
−0.10 to 0.22 m3 m−3. In the Babao network, the average
ubRMSE of all sites is 0.081 m3 m−3, and some of them ex-
ceed 0.1 m3 m−3. In addition, their bias ranges from −0.07
to 0.45 m3 m−3. It means that the validation accuracy of the

Babao network is generally lower than that of the Maqu net-
work. That may be mainly because the measured soil depth at
the Babao network is 4 cm, which means that there could be a
systematic error between the datasets. Therefore, the valida-
tion accuracy should mainly refer to the evaluation accuracy
of the Maqu network.

To better understand the reason for these poor results, scat-
ter plots comparing the two sets of data were drawn. Figure
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Table 4. Accuracy of the models based on correlation coefficient (R) and root mean square error (RMSE).

Model MLR SVR ANN RF XGB Combination

Training set R 0.688 0.943 0.864 0.978 0.991 0.992
RMSE (m3 m−3) 0.042 0.019 0.028 0.013 0.007 0.007

Test set R 0.675 0.824 0.660 0.857 0.861 0.861
RMSE (m3 m−3) 0.043 0.033 0.047 0.030 0.029 0.028

Figure 6. The relationships between in situ SM and downscaled SM. (a) Maqu network and (b) Babao network.

7 shows the results of the 19 sites of the Maqu network. All
four statistical metrics, namely R, RMSE, ubRMSE and bias,
were calculated, and their fitting line of the scatter was plot-
ted. Not surprisingly, the relationship is generally improved
where there are more valid data. It means that the validation
effect of in situ observations is affected by the amount of
data. The same conclusion can be drawn through 29 sites at
the Babao network (Fig. S1 in the Supplement).

All SM products are compared with in situ SM. Figure 8
shows a significantly higher correlation between the down-
scaled SM and in situ SM of the Maqu network. The me-
dian ubRMSE of the downscaled SM is the smallest, and
its RMSE is second only to the C3S (0.25◦) product. The
bias of the downscaled SM is higher than that of some prod-
ucts, even higher than the original SMAP L3 (36 km) data.
Almost the same results can be obtained from in situ ob-
servations of the Babao network (Fig. S2). The difference
is that the bias of the downscaled SM is lower than the result
of SMAP L3 (36 km). Compared with the RF-based and the
XGB-based downscaled SM, the downscaled SM with multi-
ple machine learning approaches performed better, especially
R and ubRMSE.

The observed SM of sites with a greater number of ob-
served data were compared with these gridded SM data at
different resolutions and precipitation. Figure 9 shows the
temporal variations of these SM at four sites 2016–2017. The
relationship between in situ observed SM and precipitation at

all four sites is very consistent, showing annual fluctuation.
The greater SM corresponds to more precipitation during the
hot season, and the smaller SM corresponds to less precipi-
tation during the cold season.

Except for GCOMW/ASMR2 SM, the variation trends of
these acquired gridded SM and the downscaled SM are ba-
sically the same despite the large difference in spatial res-
olution. GCOMW/ASMR2 significantly underestimates SM
compared to other products. Both the SMAP L2 SM at 1 and
3 km may be overestimated (CST05) and may also be un-
derestimated (WSN18) compared with in situ observations.
Moreover, SMAP L2 SM has some valid data mainly on hot
days and almost no valid data during cold seasons. The peak
values of the ERA5 SM are close to those of the in situ obser-
vations, but the low values are overestimated. The C3S SM is
similar to the 36 km SMAP SM, and its peak values are sim-
ulated more accurately, while the minimum values have little
valid data. Compared with the original data (36 km SMAP
L3), the downscaled SM has a more complete time series,
especially during the cold season. The downscaled SM data
almost all match well with the in situ measured SM data, and
all of them are consistent with the precipitation. The differ-
ence between the downscaled SM and the in situ measured
SM is mainly reflected in the magnitude of the variation,
which is probably due to the difference in spatial resolution.
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Figure 7. Comparison between the downscaled SM and in situ SM of the Maqu network.

3.3 Mapping of the downscaled SM

SM varies greatly in different months in desertified areas.
Figure 10 shows the average SM in each month in the study
area. The SM shows a monthly change pattern, and the val-
ues from June to September are bigger than in other months,
especially in southern Qinghai Province, eastern Inner Mon-
golia Province, and western Xinjiang Province. The SM
in some areas is low throughout the year, such as in the
Tarim Basin of Xinjiang Province, western Inner Mongolia
Province and most of Gansu Province.

The annual average SM was calculated (Fig. S3). Com-
pared with the monthly average SM, the annual average SM
changed significantly less. Further, we compared the spatial

patterns of the downscaled SM with the gridded SM prod-
ucts with different resolutions. Figure 11 shows the daily av-
erage SM of these products from 2015 to 2020. The spatial
patterns of the downscaled SM and 36 km SMAP SM are
basically consistent, but the downscaled data show better de-
tails in some areas such as near rivers. The overall values
of GCOMW SM are relatively small and exhibit some ob-
vious errors in some areas. For example, SM in the Tarim
Basin is higher than in the surrounding area, which is com-
pletely inconsistent with other SM data. The spatial pattern
of the C3S SM is close to the downscaled SM and the 36 km
SMAP SM, but some details are not presented. For example,
SM in the Hetao Plain along the Yellow River is much higher

https://doi.org/10.5194/essd-14-3053-2022 Earth Syst. Sci. Data, 14, 3053–3073, 2022



3064 P. Rao et al.: Daily soil moisture mapping at 1 km resolution for desertification areas in northern China

Figure 8. Comparison of gridded products and in situ observation SM of the Maqu network.

than that in its surrounding area, which can be found in the
downscaled SM and the SMAP SM but not in the C3S SM.
There are obvious errors in the results of ERA5. The average
SM is significantly overestimated in the southern part of the
study area and underestimated in some areas in the north-
ern of the study area. The FLDAS SM has high resolution,
and its overall spatial pattern is relatively consistent with the
downscaled SM and 36 km SMAP SM. The difference is that
the FLDAS SM is significantly larger in higher-elevation ar-
eas of the west than in other regions, which is quite different
from other products. This suggests that the FLDAS SM may
be overestimated in these regions. In addition, FLDAS SM
does not show wetter soil along the river. The spatial patterns
of the RF-based and XGB-based downscaled SM are both
close to that of the downscaled SM with multiple machine
learning approaches; however, the maximum SM based on
RF is smaller than the results based on XGB and multi-model
combination.

To better demonstrate the differences in SM, a case of the
Mu Us Desert was selected (Fig. 12). The Mu Us Desert is
located in a semi-arid area with annual average precipitation
of less than 400 mm, decreasing gradually from southeast to
northwest. The main types of land cover are grassland and
sandy land, and the salinization is serious in a few areas.
Desertification has been severe for a long time in the past

but significantly reversed with artificial afforestation in re-
cent years.

SM shows an overall trend of gradual decrease from the
southeast to the northwest (Fig. 12b–g), which is consistent
with the distribution of precipitation. The average SM of the
same location changes little from year to year. Overall, it is
relatively large in 2018 and relatively small in 2015, which is
roughly consistent with annual precipitation patterns. Land
cover types also have a certain influence on the spatial differ-
ence of SM. The northwestern portion of the Mu Us Desert
is mainly grassland, which is strongly dependent on precipi-
tation (Fig. 12h). The southeastern area is mainly cultivated
land and is less affected by precipitation as it relies on pump-
ing groundwater rather than natural precipitation (Fig. 12j).

4 Discussion

4.1 Variable importance assessment

The selection of variables is an important step of a nonlin-
ear regression model. The importance analysis of the vari-
ables carried out for this research found that a larger num-
ber of variables can improve the regression effect of these
models. Due to the variables obtained in this study coming
from multiple data sources, their preprocessing may affect
the construction of regression models and their relationship
with SM. Moreover, variables’ collinearity and hyperparam-
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Figure 9. Time series of the in situ observed SM, the downscaled SM, the acquired gridded SM products and daily precipitation at the four
selected SM sites (from Maqu network and Babao network, respectively) in 2016–2017.

eters also affect the importance relationship of variables. Fig-
ure 13 shows the average importance scores of each vari-
able for the RF and XGB models across all available days.
The importance scores of different variables in the RF-based
model and the XGB-based model are similar. LST and sur-
face albedo both affect surface energy exchange and parti-
tion. LST is an important variable in both models, which is
consistent with the study of Zhao et al. (2018). NSDSI is the
most sensitive soil moisture index compared to LSWI and
NDWI, which was demonstrated in Yue et al. (2019). Topo-
graphical factors also exhibit importance on SM, especially

elevation. NDVI is more sensitive to vegetation index than
EVI and LAI. However, their effect was smaller than that of
soil moisture index. It indicates that the SM inversion based
only on LST and VI is inadequate. The influence of soil tex-
ture (sand, silt and clay) is relatively weak.

The standard deviation of the importance scores of each
variable is shown with error bars in Fig. 13. Its changes are
mainly affected by the samples used in the regression model
and the temporal variations in surface variables. For static
variables such as soil structure and topographic factors, the
changes in their importance scores mainly depend on the
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Figure 10. Monthly average SM in the study area.

Figure 11. Daily average SM from 2015–2020 in the study area. Panels (a)–(h) are the downscaled SM (1 km), SMAP L3 SM (36 km),
GCOMW/ASMR2 SM (0.1◦), C3S SM (0.25◦), ERA5 SM (0.1◦), FLDAS SM (0.1◦), and RF-based and XGB-based downscaled SM
(1 km), respectively.
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Figure 12. Soil moisture estimated for the Mu Us Desert. (a) Land cover distribution over the study area; (b–g) annual average SM from
2015–2020; (h–j) annual precipitation and annual average temperature of three sites (53529, 53723 and 53740), whose surroundings are
mainly grassland, cultivated land and cultivated land, respectively.

number and the location of the samples. Figure 13 also shows
that their standard deviation is relatively small. Compared
with static variables, the standard deviation of the importance
scores of dynamic variables is significantly larger, especially
for LST and LAI. This indicates that it is not reliable to con-
struct a single regression model for a long time series.

In general, the variable importance analysis suggests that
the selected variables are suitable for the construction of the
regression model. Moreover, choosing 16 d as a time period
to build a regression model benefits from obtaining a suffi-
cient number of samples.

4.2 Advantages of model combination

Both RF and ANN have been applied to downscale remotely
sensed SM so far, especially RF (Zhao et al., 2018; Qu et al.,
2019; Hu et al., 2020). This study showed that the simulation

results of ANN have greater uncertainty, and the accuracy
is generally worse than that of RF (Figs. 4 and 5). The RF
algorithm shows a good simulation ability, but in compari-
son, the XGB algorithm also has a corresponding effect or
even higher. We also compared our simulation results com-
bining multiple models and the RF-based simulation results.
The results showed that the combined products have higher
accuracy than the RF-based products, which is mainly re-
flected in the relatively more reasonable simulation of peaks
and valleys (Table 4 and Fig. 11). MLR has the worst ef-
fect compared to the other four models, which is likely to
be affected by variable collinearity. In fact, many algorithms,
especially linear ones, exhibit more or less poor robustness
when there is high collinearity between variables (Dormann
et al., 2013; Cammarota and Pinto, 2021). However, fewer
explanatory variables often mean less ability to explain tar-
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Figure 13. The average importance scores of variables for the RF-based approach and XGB-based approach. Note that the importance scores
are presented by increase in node purity (IncNodePurity), where the sum value is normalized for the RF model. The XGB model uses gain
to reflect the weight of variables.

get variables. Several studies have shown that ensemble tree
algorithms such as RF and XGB are generally not affected
by variable collinearity (Tomaschek et al., 2018; Chen et al.,
2020; Feng et al., 2021).

A combination of multiple methods can reduce overfitting
and uncertainties for the simulation of long time series (Zan-
otti et al., 2019; Yu et al., 2021). The five methods (MLR,
SVR, ANN, RF and XGB) in this study have indicated the
potential flaws of a single model. Although the XGB model
generally performs better than other models, it still has some
shortcomings. As can be seen from Figs. 4 and 5, compared
with the training accuracy, the test accuracy of the XGB
model is significantly reduced in several periods. This means
that the simulation results of the XGB model are likely to
have a certain degree of overfitting. In contrast, the differ-
ence between training and test accuracy of the RF model is
smaller. It showed better stability than XGB at several peri-
ods (Figs. 4 and 5). The training accuracy of MLR and SVR
has a small difference from the test accuracy, but their over-
all accuracy is obviously lower (Table 4), which might be
due to variable collinearity. Some studies have proved that
SVR may also perform better than ensemble algorithms (Yu
et al., 2012; Fan et al., 2018). The fitting effect of ANN varies
greatly in different periods, indicating that its generalization
is lower than other models (Piotrowski and Napiorkowski,
2013). In general, the XGB and RF models provide the best
combination of prediction accuracy and stability.

4.3 Analysis of the relationship with precipitation and
temperature

Unlike predictors such as LST and NDVI that reflect SM
status, climatic factors are key drivers of SM variability.
To evaluate the impact of precipitation and temperature on
SM, we performed a partial correlation analysis on the data

of all meteorological stations. Figure 14 shows that SM is
mainly positively correlated with precipitation and temper-
ature, and a few regions are significantly negatively corre-
lated with temperature. In terms of spatial distribution, SM
of the sites in the eastern region (including Inner Mongo-
lia Province, Hebei Province and Shanxi Province) is mainly
significantly affected by precipitation. Due to the influence
of glaciers and snowmelt, the SM of the sites in the western
region (Xinjiang Province and Gansu Province) is more af-
fected by temperature. In addition, the number of sites with
significant positive correlation with precipitation and temper-
ature is the largest in Qinghai Province. This indicates that
precipitation and temperature in the eastern part of the east-
ern Tibetan Plateau both have a great influence on SM.

4.4 Uncertainty and prospects

While this study greatly improved the spatial resolution of
SM data from 2015 to 2020 in the desertification areas of
northern China by downscaling SMAP SM products, it still
presents some shortcomings. Due to the influence of snow,
ice and frozen ground, the number of valid SMAP pixels
during cold seasons is usually small, which limits the num-
ber of available samples. With a period of 16 d, the number
of valid samples may still be less than 100 during cold sea-
sons (Fig. 3). The sample size affects the simulation accu-
racy. Figures 4 and 5 show that there are seasonal variations
in R and RMSE, which is likely to be affected by the sam-
ple size. In general, a larger sample size often means more
efficient sampling and more reliable results but not necessar-
ily better evaluation accuracy. Likewise, insufficient samples
can sometimes have good evaluation accuracy, although the
results are less reliable. In order to reduce the error caused
by insufficient samples, this study replaced the periods with
fewer than 100 samples with the model of the previous pe-
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Figure 14. Partial correlation between monthly downscaled SM and precipitation and temperature (Pre – precipitation; Tem – temperature;
NS – not significant; SPC – significant positive correlation; SNC – significant negative correlation).

riods. For this reason, the simulation results sometimes per-
form poorly during cold seasons (Fig. 9). In addition, the up-
scaling (from 1 to 36 km resolution) of surface variables also
has a certain impact on the accuracy of the model.

Our products have a good correlation with the in situ ob-
servation data. However, in situ observed SM data are limited
in their representation of the entire 1 km× 1 km grid. Fig-
ure 6 shows that the evaluation accuracy of different points
varies greatly. It indicates that the relationship between in
situ observation data and remote-sensing SM has great un-
certainty due to the influence of scale, and the same conclu-
sion can also be found in some related studies (Zeng et al.,
2015; Abbaszadeh et al., 2019; Bai et al., 2019; Liu et al.,
2019; Zhang et al., 2021). In addition, due to instrument ac-
curacy and climate change, there are some errors in the in situ
observation data, especially at low temperatures. The in situ
observed SM data obtained in this paper are relatively lim-
ited, and their spatial distribution is concentrated in a certain
part of the study area, which is weak representative. In order
to verify the accuracy of the data as much as possible, this
study also selected several sets of gridded SM products for
comparison. The results showed that our products perform
better in temporal variability and spatial patterns (Figs. 9 and
11).

5 Data availability

The code mainly used in this paper mainly includes
sample selection, the building of the optimal regression
model and the result prediction. The downscaled daily
SM dataset at 1 km spatial resolution is available at
https://doi.org/10.6084/m9.figshare.16430478.v6 (Rao et al.,
2022). The data maps are all provided in GeoTIFF format,
and the value has been expanded 10 000 times to make them

easier to store. The filenames reflect the production date in
Julian Day format.

6 Conclusions

In this study, an approach was proposed for downscaling
36 km SMAP SM products using MODIS optical products
and other surface variables (mainly topographic data and soil
data) based on multiple machine learning methods. Overall,
the regression performance of the five methods is, in order,
XGB > RF > SVR > ANN > MLR. Compared with MLR,
SVR and ANN, XGB and RF have much better accuracy, and
they were used in combination to produce daily 1 km down-
scaled SM in a period of 16 d. The validation shows that the
downscaled SM data are highly related to most in situ mea-
sured SM. The ubRMSE with an average of 0.057 m3 m−3

is generally less than 0.090 m3 m−3 at the Maqu network.
Time series of SM data from in situ observation sites were
also compared. The results show that the downscaled SM is
highly related to SMAP SM and provide a more complete
time series and match better with the in situ measured SM.
Compared with some commonly used gridded SM products
such as SMAP L2 (l km or 3 km), GCOMW/ASMR2, C3S,
ERA5 and FLDAS SM, the downscaled SM data not only
have higher spatial resolution, but also have a more reliable
accuracy whether in time series or spatial distribution.

The maps of downscaled SM show larger values from June
to September, which coincides with the vegetation growing
season. The difference in annual mean SM is small. Spa-
tially, SM is relatively large in Qinghai Province and in north-
eastern Inner Mongolia, especially in summer. In arid areas
such as the Tarim Basin, SM is relatively small through-
out the year. Moreover, precipitation and temperature both
have great influence on SM in the study area. Precipitation
has a greater impact on SM in the eastern part of the study
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area, while the effect of temperature appears to be more pro-
nounced in the west.

This approach makes it possible to more accurately assess
the soil moisture status in the study area. The results can sup-
port regional agricultural planting and revegetation efforts
and can be applied to limit desertification in other areas in
the future.
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