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Abstract. A global gridded net ecosystem exchange (NEE) of CO2 dataset is vital in global and regional carbon
cycle studies. Top-down atmospheric inversion is one of the major methods to estimate the global NEE; how-
ever, the existing global NEE datasets generated through inversion from conventional CO2 observations have
large uncertainties in places where observational data are sparse. Here, by assimilating the GOSAT ACOS v9
XCO2 product, we generate a 10-year (2010–2019) global monthly terrestrial NEE dataset using the Global
Carbon Assimilation System, version 2 (GCASv2), which is named GCAS2021. It includes gridded (1◦× 1◦),
globally, latitudinally, and regionally aggregated prior and posterior NEE and ocean (OCN) fluxes and pre-
scribed wildfire (FIRE) and fossil fuel and cement (FFC) carbon emissions. Globally, the decadal mean NEE is
−3.73±0.52 PgC yr−1, with an interannual amplitude of 2.73 PgC yr−1. Combining the OCN flux and FIRE and
FFC emissions, the net biosphere flux (NBE) and atmospheric growth rate (AGR) as well as their inter-annual
variabilities (IAVs) agree well with the estimates of the Global Carbon Budget 2020. Regionally, our dataset
shows that eastern North America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and
Southeast Asia are carbon sinks, while the western United States, African grasslands, Brazilian plateaus, and
parts of South Asia are carbon sources. In the TRANSCOM land regions, the NBEs of temperate N. America,
northern Africa, and boreal Asia are between the estimates of CMS-Flux NBE 2020 and CT2019B, and those
in temperate Asia, Europe, and Southeast Asia are consistent with CMS-Flux NBE 2020 but significantly dif-
ferent from CT2019B. In the RECCAP2 regions, except for Africa and South Asia, the NBEs are comparable
with the latest bottom-up estimate of Ciais et al. (2021). Compared with previous studies, the IAVs and sea-
sonal cycles of NEE of this dataset could clearly reflect the impacts of extreme climates and large-scale climate
anomalies on the carbon flux. The evaluations also show that the posterior CO2 concentrations at remote sites
and on a regional scale, as well as on vertical CO2 profiles in the Asia-Pacific region, are all consistent with
independent CO2 measurements from surface flask and aircraft CO2 observations, indicating that this dataset
captures surface carbon fluxes well. We believe that this dataset can contribute to regional- or national-scale
carbon cycle and carbon neutrality assessment and carbon dynamics research. The dataset can be accessed at
https://doi.org/10.5281/zenodo.5829774 (Jiang, 2022).
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1 Introduction

The terrestrial ecosystem uptakes CO2 from the atmo-
sphere through photosynthesis and releases CO2 into the at-
mosphere through respiration. Its net ecosystem exchange
(NEE) plays a very important role in regulating the atmo-
spheric CO2 concentration, thereby slowing down global
warming. However, NEE has significant spatial differences
and inter-annual variations (IAVs) (Bousquet et al., 2000;
Piao et al., 2020). Therefore, accurately quantifying global
and regional NEE and clarifying the drivers of IAV are key
scientific issues in global carbon cycle research, and a reli-
able global NEE dataset is vital for this research.

Until now, a series of global NEE or net biosphere ex-
change (NBE = NEE + wildfire carbon emission) products
like FLUXCOM (Jung et al., 2009), TRENDY (Sitch et al.,
2015), Jena CarboScope (Rödenbeck et al., 2003), CT2019B
(Jacobson et al., 2020), and CMS-Flux NBE 2020 (Liu et al.,
2021), have been available and widely used in different stud-
ies, which were created using data-driven machine learning
methods, ecosystem models, or inversion models. Machine
learning methods estimate the global carbon flux by upscal-
ing eddy covariance data (Zeng et al., 2020); ecosystem mod-
els simulate photosynthesis and respiration of ecosystems
based on meteorological, soil, and land cover data and a se-
ries of parameters (Chen et al., 1999); and inversion models
estimate surface CO2 fluxes using the globally distributed
atmospheric CO2 observations and/or satellite retrievals of
column-averaged CO2 dry air mole fraction (XCO2) (Enting
and Newsam, 1990; Gurney et al., 2002; Jiang et al., 2021).
Different methods have their own advantages and disadvan-
tages. The NEE estimated by top-down atmospheric inver-
sions is determined by the density and accuracy of the CO2
observations, the accuracy of modeled atmospheric transport,
and knowledge of the prior uncertainties of the flux inven-
tories (Liu et al., 2021). Generally, in situ and flask CO2
observations have high precision, with measurement error
lower than 0.2 ppm; however, the global distribution of flask
or in situ sites is extremely uneven. There are many sites
over North America (N. America) and Europe but very few
sites over the tropics, Africa, and southern oceans (Schuldt et
al., 2020). Therefore, the inversions generally have a robust
performance on a global or hemisphere scale (Houweling et
al., 2015), but on regional scales, due to the uneven distribu-
tion of observations, the reliability of inversion results varies
greatly in different regions (Peylin el al., 2013).

Satellite XCO2 retrievals from the Greenhouse Gases Ob-
serving Satellite (GOSAT) (Kuze et al., 2009) and the Ob-
serving Carbon Observatory 2 (OCO-2) (Crisp et al., 2017)
have much better spatial coverage (O’Dell et al., 2018) than
ground-based observations. Although the accuracy of XCO2
is relatively lower (∼ 1 ppm, Kulawik et al., 2019) compared
to flask and in situ observations, and the response of XCO2
to changes in the surface carbon flux is weaker, many inver-
sion studies have proved that satellite XCO2 retrievals could

improve the estimates of surface carbon fluxes (e.g., Basu et
al., 2013; Maksyutov et al., 2013; Saeki et al., 2013; Cheval-
lier et al., 2014; Deng et al., 2016), especially for the fluxes
in Africa, South America (S. America), and Asia, where the
sparsity of the surface monitoring sites is most evident (Tak-
agi et al., 2011). Wang et al. (2019) compared the NEE in-
ferred from GOSAT and OCO-2 retrievals and surface flask
observations and found that the performance of inversion
with GOSAT data only was comparable with the one us-
ing surface observations. Moreover, studies also showed that
with satellite XCO2 retrievals, the inverted carbon flux could
well reveal the impact of extreme droughts and large-scale
climate anomalies on regional and continental terrestrial car-
bon dynamics (Liu et al., 2018; Deng et al., 2016; Detmers
et al., 2015; Jiang et al., 2021).

By assimilating both GOSAT and OCO-2 XCO2 retrievals,
Liu et al. (2021) generated a global gridded monthly NBE
product (i.e., CMS-Flux NBE 2020) using the NASA Car-
bon Monitoring System Flux (CMS-Flux) inversion frame-
work (Liu et al., 2014, 2017, 2018; Bowman et al., 2017).
This dataset spans 2010–2018, in which the data from 2010–
2014 and 2015–2018 were inferred from GOSAT XCO2 and
OCO-2 data, respectively. GOSAT and OCO-2 XCO2 have
large differences on spatial resolution and coverage, which
may lead to discontinuities in the inversion results of certain
regions. The ACOS GOSAT v9 XCO2 data are now avail-
able on the NASA Goddard Earth Science Data and Informa-
tion Services Center (GES-DISC), which spans April 2009
to June 2020 and has been bias-corrected and quality-filtered
well (Taylor et al., 2022). In this study, based on the GOSAT
v9 XCO2 retrievals, we generate a 10-year global monthly
NEE dataset from 2010 to 2019 (GCAS2021) using the well-
constructed Global Carbon Assimilation System, version 2
(GCASv2) (Jiang et al., 2021; Wang et al., 2021a). Different
from Liu et al. (2021), GCAS2021 focuses on NEE because
the wildfire (FIRE) emission was not optimized in this study.
The optimized ocean flux and prescribed FIRE and fossil fuel
and cement carbon (FFC) emissions are also included in this
dataset. Users who want to use NBE data could combine the
NEE and FIRE emission by themselves. It is worth pointing
out that since we have not optimized FIRE emissions, the
optimized NEE may include compensation for the errors in
FIRE emissions. This paper is organized as follows: Sect. 2
details the GOSAT retrievals, prior fluxes, and the GCASv2
system as well as uncertainty settings. Section 3 introduces
the evaluation data and method, Sect. 4 briefly describes the
dataset, Sect. 5 presents the characteristics of the dataset, in-
cluding the estimates of global carbon budget and regional
NEE as well as their IAVs, Sect. 6 details the evaluations re-
sults against independent CO2 observations, and Sect. 7 gives
a summary and the main conclusions.
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2 Methods and data

2.1 The ACOS v9 GOSAT XCO2 retrievals

The GOSAT satellite launched in 2009 (Kuze et al., 2009)
was developed jointly by the National Institute for Environ-
mental Studies (NIES), the Japanese Space Agency (JAXA),
and the Ministry of the Environment (MOE) of Japan, which
was designed to retrieve total column abundances of CO2
and CH4. In this study, the GOSAT XCO2 retrieval is the
ACOS Version 9.0 Level 2 Lite product (Taylor et al., 2022)
at the pixel level during May 2009–December 2019. The bias
correction and quality filtering of this XCO2 product have
been evaluated using estimates derived from the Total Car-
bon Column Observing Network (TCCON) as well as values
simulated from a suite of global atmospheric inverse model-
ing systems (models); the results show that the differences
in XCO2 between GOSAT v9 and both TCCON and models
have an 1σ error of approximately 1 ppm for ocean-glint ob-
servations and 1 to 1.5 ppm for land observations, and glob-
ally, the mean biases are less than approximately 0.2 ppm
(Taylor et al., 2022). Compared with its previous version
(ACOS v7.3), the proportion of data with a “good” XCO2
quality flag has increased from 3.9 % in v7.3 to 5.4 % in v9.

The GOSAT XCO2 retrievals have a resolution of
10.5 km2 at nadir. Considering the fact that the resolution of
a global atmospheric transport model is significantly lower
than that of XCO2 retrievals, we re-grid the XCO2 data into
1◦×1◦ grid cells. The pixel level XCO2 data are filtered with
the xco2_quality_flag, which is a simple quality flag denot-
ing science quality data (0= good, 1= bad), provided along
with the XCO2 product. In each 1◦× 1◦ grid and each day,
only the XCO2 with an xco2_quality_flag equal to 0 is se-
lected and averaged according to Eq. (1).

CG,T =
1
W

∑W

l=1
Cl,t , T =

1
W

∑W

l=1
t, (1)

where Cl,t denotes the selected pixel level XCO2 located in
1◦× 1◦ grid G of 1 d, l is the identifier of the record, t is
the observation time, and W denotes the number of Cl,t . T
is the averaged observation time, and CG,T is the re-grided
XCO2 concentrations. The other variables in the XCO2 prod-
uct like column-averaging kernel and retrieval error, which
will be used in the calculations of simulated XCO2, are also
re-gridded using this method.

2.2 Prior CO2 fluxes

The prior carbon fluxes used in this study consist of terres-
trial NEE, FIRE carbon emission, FFC carbon emission, and
CO2 exchanges over the ocean surface (OCN). NEE in a 3 h
interval is simulated using the Boreal Ecosystems Productiv-
ity Simulator (BEPS) model; for details about the BEPS sim-
ulations, please refer to Chen et al. (2019). FIRE emission is
directly obtained from the Global Fire Emissions Database,

Version 4.1 (GFED4s) (van der Werf et al., 2017; Mu et al.,
2011). FFC emission is an average of two products from
Carbon Dioxide Information Analysis Center (CDIAC) (An-
dres et al., 2011) and Open-source Data Inventory of An-
thropogenic CO2 (ODIAC) (Oda et al., 2018), respectively.
OCN flux is derived from the Takahashi et al. (2009) clima-
tology of seawater pCO2. Both FFC emission and OCN flux
were downloaded from CT2019B (Jacobson et al., 2020). It
should be noted that there are no data in the pCO2-Clim prod-
uct in many offshore areas like the Sea of Japan, the Mediter-
ranean, the Gulf of Mexico, and the East China Sea. Follow-
ing Jiang et al. (2021), the fluxes in 2009 modeled using a
combined global ocean circulation (OPA) and biogeochem-
istry model (PISCES-T) (Buitenhuis et al., 2006) are used to
fill the no-data areas. The sea–air CO2 fluxes simulated us-
ing the PISCES-T model have been used in many studies of
ocean carbon cycle dynamics (e.g., McKinley et al., 2006;
Valsala et al., 2012; Le Quéré et al., 2007) and also used as a
priori ocean fluxes in previous inversion studies (e.g., Jiang
et al., 2014; Deng and Chen, 2011; Chen et al., 2017). In
addition, the CT2019B product is only until the beginning
of 2019. The OCN flux in 2019 is assumed to be the same as
2018. FFC emission is adjusted from the emission in 2018 by
ratios of 2019/2018 in different countries or regions (Fig. S1
in the Supplement), which was calculated based on the 2018
and 2019 emissions compiled by the Global Carbon Budget
2020 (GCP2020; Friedlingstein et al., 2020).

2.3 The Global Carbon Assimilation System (GCAS),
version 2

The global monthly NEE dataset is inferred using the Global
Carbon Assimilation System, version 2 (GCASv2), which
was developed for estimating gridded surface carbon fluxes,
mainly using satellite XCO2 retrievals (Jiang et al., 2021).
In this system, the Model for Ozone and Related Chemi-
cal Tracers, version 4 (MOZART-4) (Emmons et al., 2010),
was coupled to simulate 3-D atmospheric CO2 concentra-
tions, and the ensemble square root filter (EnSRF) algo-
rithm (Whitaker and Hamill, 2002) was used to implement
the inversion of surface fluxes. GCASv2 runs cyclically, and
in each cycle (DA window), we use a “two-step” calcula-
tion scheme to maintain quality conservation. First, the prior
fluxes are optimized using XCO2 data, and then, the opti-
mized fluxes are put again into the MOZART-4 model to
generate the initial condition (IC) of the next window. In
order to reduce the representative error of XCO2, a “super-
observation” approach is also adopted, in which a super-
observation is generated by averaging all observations lo-
cated within the same model grid within a DA window;
and to reduce the impact of spurious correlations, a local-
ization technique is employed to determine which super-
observations will be used for the current grid’s optimization,
which is based on the correlation coefficient between the sim-
ulated concentration ensembles in each observation location
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and the perturbed fluxes in current model grids and their dis-
tances. For details, please refer to Jiang et al. (2021).

In this study, GCASv2 was run from 1 May 2009 to 31 De-
cember 2019 with the DA window of 1 week. The IC of 3-D
CO2 concentrations at 00:00 UTC 1 May 2009 was obtained
from the product of CarbonTracker, version 2017 (CT2017).
The first 8 months are considered as a spin-up run, and the
results from 1 January 2010 to 31 December 2019 are an-
alyzed and evaluated in this study. MOZART-4 is driven
by the GEOS-5 meteorological fields, which have a spatial
resolution of 1.9◦× 2.5◦ and a vertical level of 72 layers
(Tilmes, 2016). MOZART-4 uses the same spatial resolution
and the lowest 56 vertical levels of GEOS-5. Following Jiang
et al. (2021), the model–data mismatch error of XCO2 is con-
structed using the XCO2 retrieval errors, which are provided
along with the XCO2 product and re-gridded using the same
method as described in Sect. 2.1. All retrieval errors are also
uniformly inflated by a factor of 1.9 in this study, but a lowest
error is fixed as 1 ppm.

There are four state vectors combining schemes in
GCASv2, including the following: (1) only the NEE is
treated as a state vector and optimized; (2) both NEE and
OCN flux are state vectors; (3) NEE, OCN flux, and FFC
emissions are optimized at the same time; and (4) only the
net flux is optimized. In this study, the second scheme was se-
lected: both NEE and ocean flux are optimized, and the FIRE
and FFC are prescribed. The perturbation of prior fluxes is
described in Eq. (2), where δi represents random perturba-
tion samples and is drawn from Gaussian distributions with
mean zero and standard deviation of 1. i is the identifier of
the perturbed samples, N is the ensemble size (here 50). λ
is a set of scaling factors, which represents the uncertainty
of each prior flux. XbNEE, XbFIRE, XbFFC, and XbOCN represent
the prior fluxes of NEE, FIRE, FFC, and OCN, respectively.
The spatial resolution of the perturbation factor (δi × λ) we
adopted is 3◦× 3◦, and the resolution of the prior fluxes is
1◦× 1◦; that is, the prior fluxes within each 3◦ grid have the
same perturbation factor. In each 3◦ grid, λNEE and λocn are
set to be 6 and 10, respectively, which correspond to a global
1− δ uncertainty of the NEE and OCN flux of about 0.6 and
0.2 PgC yr−1, respectively (for the method, see Sect. S1 in
the Supplement).

Xbi = λNEE× δi,NEE×XbNEE+ λocn× δi,ocn×XbOCN

+XbFire+XbFFC, i = 1,2, . . .,N (2)

3 Evaluation data and method

Due to the huge difference of spatial scale between the in-
verted and directly observed fluxes, generally, it is impossi-
ble to directly validate the posterior NEE using observations,
and instead, we indirectly evaluate the posterior flux by com-
paring the forward simulated atmospheric CO2 mixing ra-
tios against independent CO2 measurements (e.g., Jiang et

al., 2021; Wang et al., 2019; Feng et al., 2020). Therefore,
a forward simulation using the MOZART-4 model and the
posterior fluxes was conducted to create posterior CO2 con-
centrations. For comparison, the prior CO2 concentrations
were also simulated with the prior fluxes. The simulation pe-
riod and model configuration of MOZART-4 as well as initial
field are the same as the assimilation experiment as described
in Sect. 2.3.

Surface flask and aircraft CO2 observa-
tions are used for these independent evalua-
tions in this study, which were obtained from the
obspack_co2_1_GLOBALVIEWplus_v6.0_2020-09-11
product (OBSPACKv6; Schuldt et al., 2020). OBSPACKv6
contains a collection of discrete (flask), programmable flask
package (PFP), and quasi-continuous (in situ) measurements
at surface, tower, ship, and aircraft sites contributed by
national and universities laboratories around the world.
In this study, surface flask CO2 measurements (including
surface PFP) from 74 sites and aircraft measurements
(including flask, PFP, and in situ measurement methods)
from three projects are selected to evaluate the posterior
CO2 concentrations. There are 148 surface flask and PFP
sites of observations in OBSPACKv6. The 74 sites were
selected according to the following processes: (1) only
the sites with data more than 7 years during 2010–2019
were selected (48 sites removed); (2) for one location, if
there are observations from different institutes, only the
data provided by the NOAA Global Monitoring Laboratory
(with lab number of 1 in each filename) were selected (21
sites removed); (3) for one location, if both flask and PFP
observations are available, only flask observations were
adopted (1 site removed); (4) for the PFP site, if there are
observations at different heights, only the observations at
the top level were used (1 site removed); and (5) during
the evaluations, we find that MOZART-4 model is unable
to capture the variations of CO2 mixing ratios at BKT and
LJO; thus these sites were also removed. The locations of
the 74 sites are shown in Fig. 1, and the corresponding site
codes as well as information about latitude and longitude are
listed in Table S1 in the Supplement.

There are 76 aircraft observation sites (independent data
files) in OBSPACKv6. In this study, we chose observations
from the Comprehensive Observation Network for Trace
gases by Airliner (CONTRAIL) project (Machida et al.,
2008, 2018; Matsueda et al., 2008, 2015), the HIAPER Pole-
to-Pole Observations (HIPPO) program (Wofsy, 2011), and
the lower-troposphere greenhouse-gas sampling program in
the Amazon basin of the CARBAM project (Gatti et al.,
2014, 2021) to further evaluate the posterior CO2 concen-
trations. The CONTRAIL project measures CO2 concentra-
tions using Continuous CO2 Measuring Equipment (CME)
on two passenger aircraft (Boeing 747-400 and 777-200ER);
thus there are observations along flight paths (including level
flight, taking off, and landing) from Japan to N. America, to
Europe, to Hawaii, to Australia, and to Southeast and South
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Figure 1. Distributions of the surface flask observation sites used in this study.

Figure 2. Locations of aircraft observations (red and gray, observations of the CONTRAIL project; red marks show observations below
6 km, dark blue observations of the HIPPO project, and green data of the CARBAM project).

Asia (Fig. 2). During the taking off and landing, vertical pro-
files of CO2 concentrations near airports were observed. As
shown in Fig. 1, there are few surface observations over the
Asia-Pacific region, especially in Southeast and South Asia;
therefore, the CO2 vertical profiles near eight cities over the
Asia-Pacific region are selected in this study. The eight cities
are Hong Kong, Singapore, Jakarta, Bangkok, Sydney, New
Delhi, Shanghai, and Tokyo. The HIPPO program completed
aircraft measurements spanning the Pacific from 85◦ N to
67◦ S during the periods of March to April 2010 and June to
September 2011, with vertical profiles every approximately
2.2◦ of latitude (Wofsy, 2011). The CARBAM project con-
ducted vertical CO2 measurements at four sites (i.e., ALF,

RBA, SAN, TAB, and TEF) in the Amazon basin during
2010–2018 (Fig. 2) with small aircraft and PFP equipment.
TAB was from 2010 to 2012, and TEF started in 2013. Dur-
ing the evaluation of this study, TAB and TEF are combined
as one site, denoted TAB_TEF. At each site, one to three
spiral profiles from approximately 4420 to about 300 m a.s.l.
were observed in each month. It is worth noting that OB-
SPACKv6 only provides ALF, RBA, SAN, and TAB obser-
vations from 2010 to 2012; the rest of the data were down-
loaded from Gatti et al. (2021). For the CONTRAIL verti-
cal profiles, the observations between the heights of 2 and
6 km are used because the data measured below 2000 m are
highly affected by local emissions (Jiang et al., 2014) due
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to the frequently ascent and descent of aircraft. And for the
HIPPO and CARBAM observations, the data above 1 km are
adopted.

Four basic statistical measures, i.e., mean bias (BIAS),
mean absolute error (MAE), root mean square error (RMSE),
and correlation coefficient (CORR), are calculated against
the surface and aircraft CO2 observations, respectively. The
functions of these four basic statistical measures are ex-
pressed as

BIAS=
1
M

∑M

j=1

(
xj − yj

)
= ȳ− x̄ (3)

MAE=
1
M

∑M

j=1
|xj − yj | (4)

RMSE=

√
1
M

∑M

j=1

(
xj − yj

)2 (5)

CORR=

∑M
j=1(xj − x̄)(yj − ȳ)√∑M

j=1(xj − x̄)2
√∑M

j=1(yj − ȳ)2
, (6)

where xj and yj denote the modeled and the observational
values, respectively, at the j th out ofM records, and the over-
bars denote averages. The BIAS, MAE, RMSE, and CORR
reflect the overall model tendency, both the model bias and
error variance, and the linear correspondence between the
modeled and observational values, respectively.

4 Dataset description

GCAS2021 includes (1) monthly and annual prior and pos-
terior NEE and OCN fluxes and prescribed FIRE and FFC
emissions in a global spatial resolution of 1◦× 1◦; (2) glob-
ally, latitudinally, and regionally aggregated monthly and an-
nual posterior NEE and NBE and their uncertainties; and
(3) weekly gridded ensemble members of posterior NEE and
OCN fluxes. The regional fluxes are aggregated both in the
TRANSCOM (Gurney et al., 2003) and the REgional Carbon
Cycle Assessment and Processes Project (RECCAP2; Ciais
et al., 2022) regions (Fig. 3). The latitudinal fluxes are ag-
gregated in northern midlatitudes to high latitudes (> 30◦ N,
NL), tropical latitudes (30◦ S–30◦ N, TL), and southern mid-
dle latitudes (< 30◦ N, SL). The weekly gridded ensemble
members could be used for calculating the posterior uncer-
tainties based on user defined regional masks. We also pro-
vide a Fortran program for the calculation of posterior uncer-
tainties. The method for calculating posterior uncertainties is
given in Sect. S1. The gridded data are in NetCDF-3 format,
while the regional aggregated data are in .xlsx format.

5 Characteristics of the dataset

5.1 Global carbon budgets

Table 1 presents the year-by-year and decadal averaged pos-
terior global carbon budgets during 2010–2019 of this study.

The global annual NEE is in the range of −2.51± 0.53 to
−5.24±0.50 PgC yr−1 (negative means absorbing CO2 from
the atmosphere, and positive means releasing CO2 to the at-
mosphere). The year of 2011 has the largest land sink in the
decade, while the year of 2016 has the weakest one, with in-
terannual amplitude reaching 2.73 PgC yr−1. On average, the
decadal mean NEE is−3.73±0.52 PgC yr−1. The OCN flux
has an overall increase trend from 2010 to 2009, with a mean
of −2.64± 0.16 PgC yr−1. Compared with the prior NEE
(Fig. S9l), the posterior NEEs increase significantly from
2010 to 2012 and decrease to varying degrees (in range of
0.15 to 1.15 PgC yr−1) from 2015 to 2019. Table 1 also lists
the estimates from the CMS-Flux (CMS-Flux NBE 2020, Liu
et al., 2021) and CarbonTracker (CT2019B, Jacobson et al.,
2020) systems. CMS-Flux NBE 2020 is a product for the pe-
riod of 2010–2018, in which the results of 2010–2014 were
inverted from the GOSAT XCO2 v7.3, and the rest were in-
ferred from the OCO-2 XCO2 v9 retrievals. Both GOSAT
and OCO-2 retrievals were from the ACOS team, created
using the same retrieval algorithm and validated using the
same strategy (Liu et al., 2021). CT2019B is a product in-
verted from global surface, tower, and aircraft CO2 measure-
ments. CMS-Flux NBE 2020 only presented the NBE results,
and the FIRE emission used in this study and CT2019B are
also different. Therefore, this comparison focuses on NBE. In
2010 and 2014, our estimates are close to CT2019B and sig-
nificantly lower than the estimates of CMS-Flux NBE 2020;
in contrast, in 2011, 2012, 2013, 2016, and 2017, they are
comparable to CMS-Flux NBE 2020 and higher than those of
CT2019B. In 2015, it is higher than both. Moreover, Fig. 4
presents a comparison between the estimates of this study
and GCP2020 (Friedlingstein et al., 2020). There are large
differences for the land-use and land-cover change (LULCC)
carbon emissions between this study and GCP2020; we di-
rectly use the FIRE emission from GFED 4.1s as prescribed
land-use emission, while GCP2020 uses an average of three
bookkeeping models (Houghton and Nassikas, 2017; Hansis
et al., 2015; Gasser et al., 2020), which account for changes
in all carbon pools affected by LULCC. Therefore, we also
compared the NBE between this study and GCP2020. For
GCP2020, the NBE is the sum of NEE and LULCC emis-
sions. Additionally, GCP2020 also reported the atmospheric
growth rate (AGR) of CO2 in the atmosphere, which was es-
timated directly from atmospheric CO2 concentration mea-
surements provided by the NOAA Earth System Research
Laboratory (Friedlingstein et al., 2020). Ideally, the inverted
global net carbon flux (i.e., AGR) should agree with the ob-
served AGR. As shown in Fig. 4, the interannual changes
of global NBE and AGR of this study match well with the
estimates of GCP2020, with CORR of 0.75 and 0.88, BIAS
(this study minus GCP2020) of 0.15 and 0.25 PgC yr−1, and
MAE of 0.51 and 0.40 PgC yr−1, respectively. The differ-
ence in NBE between this study and GCP2020 is partly due
to the imbalance item in GCP2020, especially in 2016. It
also should be noted that in this study, the AGR in 2019 is
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Table 1. Global carbon budget (PgC yr−1).

Year NEE OCN flux FFC FIRE NBE Net flux NBE

emission emission CMS-Flux CT2019B
NBE 2020

2010 −3.28± 0.49 −2.11± 0.15 9.04 2.15 −1.13± 0.49 5.80± 0.51 −2.1 −0.9
2011 −5.24± 0.50 −2.21± 0.15 9.40 1.87 −3.37± 0.50 3.81± 0.52 −3.71 −2.56
2012 −3.77± 0.50 −2.27± 0.15 9.58 2.05 −1.72± 0.50 5.58± 0.52 −2.05 −0.89
2013 −4.13± 0.49 −2.40± 0.15 9.63 1.77 −2.36± 0.49 4.86± 0.51 −2.13 −1.89
2014 −4.50± 0.51 −2.46± 0.16 9.71 2.04 −2.46± 0.51 4.79± 0.53 −3.82 −2.39
2015 −3.50± 0.53 −2.52± 0.16 9.68 2.29 −1.21± 0.53 5.95± 0.56 −0.56 −0.84
2016 −2.51± 0.53 −2.73± 0.16 9.71 1.87 −0.64± 0.53 6.33± 0.56 −0.85 −0.27
2017 −3.74± 0.56 −3.06± 0.17 9.87 1.92 −1.82± 0.56 4.99± 0.58 −2.05 −1.41
2018 −3.54± 0.56 −3.37± 0.16 10.07 1.83 −1.71± 0.56 4.99± 0.58 −1.77 −1.86
2019 −3.04± 0.49 −3.23± 0.16 10.03 2.32 −0.72± 0.49 6.08± 0.52 – –
Mean −3.73± 0.52 −2.64± 0.16 9.67 2.01 −1.71± 0.52 5.32± 0.54 −2.12 −1.45

Figure 3. Map of regional masks used in calculating regional fluxes: (a) the TRANSCOM region and (b) the RECCAP2 region.

higher than that in 2015 and significantly higher than the ob-
served value, which is mainly due to the abnormally low car-
bon sink in the tropical latitudes (TL, 30◦ S–30◦ N) in this
year (Fig. 7). The reason may be related to the biases in
the GOSAT XCO2 retrievals in TL. We analyze the monthly

changes of GOSAT XCO2 in 2015 and 2019 and compare
them with the OCO-2 XCO2 retrievals (OCO-2 v10, OCO-
2 Science Team, 2020). We find that after detrending, in
TL, the GOSAT XCO2 in 2019 is higher than that in 2015,
while OCO-2 is the opposite (Fig. S3). For the prior fluxes,
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the CORR, BIAS, and MAE of NBE and AGR compared
against the GCP2020 estimates are 0.16 and 0.49, −0.51
and 0.09 PgC yr−1, and 0.63 and 1.10 PgC yr−1 (Fig. S2).
These indicate that the estimate of global carbon budgets has
been significantly improved after being constrained by the
GOSAT retrievals.

5.2 Annual NEE averaged from 2010–2019

Figure 5 shows the distributions of the mean posterior an-
nual NEE during 2010–2019. Carbon uptakes mainly occur
over eastern N. America, the Amazon, the Congo Basin, Eu-
rope, boreal forests, southern China, and Southeast Asia; and
carbon releases mainly occur in western N. America (mainly
the western United States), the East African and Ethiopian
plateaus and the Sahel region (mainly the grasslands in
Africa), the Brazilian plateau, and parts of South Asia. Com-
pared with the prior NEE, the land sinks in western N. Amer-
ica, most of S. America, the grasslands in Africa, most of
East and South Asia, and eastern Siberia are decreased, while
the sinks in eastern N. America, Europe, and western Siberia
are significantly increased (Fig. S4). In N. America, the dis-
tribution of NEE constrained with GOSAT XCO2 exhibits
a similar pattern to that of a recent regional inversion using
surface CO2 and 14CO2 measurements, which also showed
significant sources over the western United States and sinks
over central and eastern United States (Basu et al., 2020). Us-
ing the Community Land Model (CLM5.0) and a Data As-
similation Research Testbed (DART) that were assimilated
with remotely sensed observations of leaf area and above-
ground biomass, Raczka et al. (2021) simulated the NEE
over the western United States and also found that there are
large areas with carbon release. The western United States
is dominated by natural lands, which are particularly vul-
nerable to forest mortality from droughts, insect attacks, and
wildfires. Ghimire et al. (2015) found a legacy of large car-
bon release from bark beetle outbreaks across the western
United States. In addition, the aging and decline of forest
may be another reason for the carbon release in the western
United States (Sleeter et al., 2018). The significant sources
of NEE in the grasslands of Africa are consistent with previ-
ous top-down estimates based on satellite retrievals (Palmer
et al., 2019) and surface CO2 measurements (Valentini et al.,
2014). Many observations based on the eddy covariance also
reported carbon sources of NEE in the savanna grassland of
western and southern Africa (e.g., Veenendaal et al., 2004;
Räsänen et al., 2017; Quansah et al., 2015). The significant
increase of carbon release in the grasslands of Africa may
be related to the underestimates of carbon emissions from
small fires in GFED 4s. The FIRE emission in GFED 4s was
estimated based on global burned area, measured by coarse-
spatial-resolution sensors. Ramo et al. (2021) showed that
coarse sensors are unsuitable for detecting small fires that
burn only a fraction of a satellite pixel and pointed out that

the FIRE emission of Africa in GFED 4s was underestimated
by about 31 % in 2016.

Table 2 lists the aggregated mean posterior annual NEE,
NBE, and FIRE emissions during the 10 years for the 11
TRANSCOM regions and the 10 RECCAP2 regions. Com-
pared with the prior NEE, the absolute relative changes in
most TRANSCOM regions are greater than 50 % (Fig. S5)
after being constrained with GOSAT data. In all regions, the
aggregated posterior NEE is negative, indicating a carbon
sink in each region. For the 11 TRANSCOM regions, we
estimate that Europe has the strongest sink, followed by bo-
real Asia, tropical S. America, and northern Africa with the
weakest sink. Among the 10 RECCAP2 regions, Russia’s
sink is the strongest, followed by N. America and Europe,
and West Asia’s sink is the weakest. It is worth noting that
Europe’s NEE in the TRANSCOM region is twice that in
RECCAP2. This is because the coverage of Europe is differ-
ent in TRANSCOM and RECCAP2; the former includes the
entire European continent, while the latter does not include
European Russia.

Figure 6 shows a comparison between the results of this
study and previous studies for both the TRANSCOM and
RECCAP2 regions. For the TRANSCOM region, as shown
in Fig. 6a, in temperate N. America, northern Africa, and
boreal Asia, the estimates of this study are between the re-
sults of CMS-Flux NBE 2020 and CT2019B; in temperate
Asia, Europe, and tropical Asia, our estimates are very close
to CMS-Flux but are significantly different with CT2019B.
Conversely, in Australia, our estimates are very consistent
with CT2019B but are significantly different from CMS-
Flux. In tropical S. America, our result shows a strong carbon
sink, which is consistent with previous mean annual biomass
sink estimate of −0.39± 0.10 PgC yr−1 in the Amazon dur-
ing the 1980–2004 period based on repeated censuses at a
widespread forest plot network (Phillips et al., 2009) and is
roughly consistent with a regional inversion in a wet year of
−0.25 PgC yr−1 based on aircraft CO2 measurements (Gatti
et al., 2014), while CMS-Flux NBE 2020 and CT2019B are
both carbon sources. On the contrary, in temperate S. Amer-
ica, our result shows a weak carbon source, while the other
two are both carbon sinks. In addition, in southern Africa,
our estimate is also significantly different from them; we
show a strong carbon source, while CMS-Flux NBE 2020
and CT2019B show a weak sink and source, respectively.
The differences between this study and CMS-Flux NBE 2020
may be related to the different XCO2 products used. As men-
tioned before, the NBEs of CMS-Flux from 2010–2014 and
2015–2018 were inferred from GOSAT and OCO-2 prod-
ucts, respectively. In general, OCO-2 XCO2 has much bet-
ter spatial coverage than GOSAT XCO2. Wang et al. (2019)
pointed out that data amount is one of the most important
factors affecting the inversion results; generally, in one re-
gion with more XCO2 data, the carbon flux relative to the
prior flux changes more. Therefore, we conduct an additional
comparison for the periods of 2010 to 2014 and 2015 to 2018,
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Figure 4. Comparisons between this study and GCP2020 for (a) NBE and (b) atmospheric growth rate (AGR); the NBE of GCP2020 is the
sum of land sink and land-use change carbon emission, and the AGR of this study is the net flux as listed in Table 1.

Figure 5. Global distribution of mean annual NEE during 2010–2019.

respectively, since in the first stage, the XCO2 used in these
two studies is almost the same (both GOSAT), while in the
second stage, it is different. As shown in Fig. S6, except for
southern Africa, the difference between the two is signifi-
cantly smaller in 2010–2014 than in 2015–2018, especially
in temperate S. America, northern Africa, and Australia, con-

firming that the significant differences are mainly from the
different XCO2 products used in these two studies. In addi-
tion to XCO2 data, the prior carbon flux can also have a sig-
nificant impact on the inversion results (Philip et al., 2019).
We further examine the prior and posterior NBE over south-
ern Africa in these two studies and find that the prior NBEs

https://doi.org/10.5194/essd-14-3013-2022 Earth Syst. Sci. Data, 14, 3013–3037, 2022



3022 F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset

Table 2. Regional terrestrial ecosystem carbon flux (PgC yr−1).

TRANSCOM region NEE FIRE NBE RECCAP2 region NEE FIRE NBE

Boreal N. America −0.32± 0.12 0.08 −0.23± 0.12 N. America −0.78± 0.23 0.14 −0.64± 0.23
Temperate N. America −0.43± 0.19 0.04 −0.40± 0.19 S. America −0.53± 0.21 0.29 −0.24± 0.22
Tropical S. America −0.50± 0.16 0.20 −0.30± 0.16 Russia −1.02± 0.20 0.15 −0.87± 0.20
Temperate S. America −0.06± 0.14 0.10 0.04± 0.14 Europe* −0.36± 0.13 0.01 −0.35± 0.13
Northern Africa −0.03± 0.21 0.37 0.34± 0.21 West Asia −0.05± 0.03 0.01 −0.04± 0.03
Southern Africa −0.13± 0.17 0.66 0.53± 0.17 Africa −0.17± 0.27 1.03 0.87± 0.27
Boreal Asia −0.68± 0.18 0.14 −0.54± 0.18 East Asia −0.30± 0.15 0.03 −0.27± 0.15
Temperate Asia −0.32± 0.17 0.04 −0.29± 0.17 South Asia −0.07± 0.10 0.02 −0.05± 0.10
Tropical Asia −0.32± 0.09 0.20 −0.12± 0.09 Southeast Asia −0.25± 0.08 0.19 −0.06± 0.08
Australia −0.12± 0.06 0.12 0.00± 0.06 Australasia −0.12± 0.06 0.12 0.00± 0.06
Europe −0.72± 0.17 0.02 −0.70± 0.17 – – – –

∗ Excluding European Russia.

Figure 6. 2010–2019 averaged regional NBE in (a) the TRANSCOM regions and (b) the RECCAP2 regions. Both CMS-Flux NBE 2020
and CT2019B are averaged from 2010 to 2018. The result of Ciais et al. (2021) is a bottom-up estimate, which is for the period of 2000–2009.

used in these two systems are quite different (a strong sink in
CMS-Flux and a source in this study). In the first stage, the
NBE changes (1NBE; a posteriori minus a priori) due to the
GOSAT constraints are quite small in both studies (Fig. S7),
resulting in the large difference in the posterior NBE between
these two studies, while in the second stage, because of the
better spatial coverage of OCO-2 XCO2, the 1NBE in CMS-
Flux increases significantly, resulting in a shift of NBE from
an a priori strong sink to an a posteriori medium source, thus
reducing the difference of the posterior NBE in these two
studies. We also find that there is also an increase in the1NBE

in this study, which may be related to the increase of GOSAT
XCO2 data from 2010 to 2019 (Taylor et al., 2022).

Based on inventory data of carbon-stock changes and
satellite estimates of biomass changes where inventory data
are missing, Ciais et al. (2021) gave a state-of-the-art es-
timate for the NBE of the RECCAP2 regions for the pe-
riod of 2000–2009, which was calculated by taking the
sum of the carbon-stock change and lateral carbon fluxes
from crop and wood trade and riverine-carbon export to the
ocean. Figure 6b shows a comparison between this study and
Ciais et al. (2021). Although the inverted NBE is not com-
pletely equivalent to the land sink obtained by the bottom-
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up method, generally, to reconcile top-down and bottom-
up results, the inverted NBE should be adjusted with the
lateral transport of reduced carbon compounds (RCCs) and
carbon release from net imported products (Ciais et al.,
2008; Jiang et al., 2016). Overall, except for Africa and
South Asia, the NBEs estimated in this study and Ciais et
al. (2021) are comparable. In Africa, we show a strong car-
bon source of 0.87±0.27 PgC yr−1, while Ciais et al. (2021)
reported a very weak sink of −0.07± 0.29 PgC yr−1. Until
now, there have still been big differences in top-down es-
timates of African NBE in different studies. Generally, the
estimates based on surface CO2 measurements show car-
bon sinks or a weak source, which are mainly in the range
of −0.26 to 0.32 PgC yr−1 (Valentini et al., 2014; Jacobson
et al., 2020), while the estimates from satellite XCO2 re-
trievals report strong carbon sources, with values mainly in
the range of 0.61 to 2.2 PgC yr−1 (Liu et al., 2021; Palmer
et al., 2019). Peiro et al. (2022) also found a similar phe-
nomenon by comparing the carbon fluxes constrained using
in situ observations and OCO-2 retrievals within the same
inversion frameworks. Although the estimates based on sur-
face measurements are much closer to the result of Ciais et
al. (2021), the surface CO2 observation sites in Africa are
very sparse; there are only four stations over the African con-
tinent and two stations located in adjacent islands, indicat-
ing that the constraints from surface measurements are very
poor, and the inverted fluxes often reflect the prior fluxes used
in these inversions (Valentini et al., 2014). In our prior flux,
the NBE in Africa is 0.34 PgC yr−1, which is consistent with
above surface-based estimates. This indicates that the strong
carbon source is almost constrained from satellite XCO2.
Since there is no TCCON site in Africa, which is usually
used to verify and correct the satellite XCO2 retrievals, there
are larger uncertainties in the XCO2 products, thus probably
resulting in an overestimation of the surface flux. Peiro et
al. (2022) reported that the version of OCO-2 retrievals had
a significant effect on the inversion results in Africa. How-
ever, due to the lack of validation data for XCO2 and few in
situ CO2 measurements, it is hard to know for sure which is
more accurate. In South Asia, we show a very weak sink of
−0.05±0.10 PgC yr−1, while Ciais et al. (2021) presented a
moderate sink of −0.25 PgC yr−1. Based on bottom-up and
top-down methods, there have been many studies on NBE in
South Asia in the past. Overall, the bottom-up estimates are
in the range of −0.01 to −0.25 PgC yr−1 (Cervarich et al.,
2016; Ciais et al., 2021; Nayak et al., 2015; Gahlot et al.,
2017; Patra et al., 2013), while the top-down estimates are
in the range of 0.04 to −0.37 PgC yr−1 (Patra et al., 2013;
Thompson et al., 2016; Cervarich et al., 2016; Niwa et al.,
2012; Jiang et al., 2014; Swathi et al., 2021). Our result for
South Asia is in the range of these previous studies.

5.3 Interannual variations and seasonal cycles

Figure 7a, b, and c show interannual variations (IAV) of the
NEE in the NL, TL, and SL, respectively. In NL, the IAV
of NEE is relatively small, with an interannual amplitude of
1.09±0.50 PgC yr−1. The smallest year of NEE appeared in
2018, which was−1.87±0.38 PgC yr−1, and the largest year
appeared in 2014, with a value of −2.91±0.33 PgC yr−1. In
TL, the inter-annual variability is very large, with the biggest
NEE in 2011 of−2.27±0.33 PgC yr−1 and the smallest NEE
in 2016 only −0.31±0.41 PgC yr−1. The interannual ampli-
tude of NEE in TL is nearly twice that of NL, which reaches
1.96±0.53 PgC yr−1. The strongest carbon sink in 2011 and
weakest sink in 2016 are related to the strongest 2011 La
Niña and 2015/2016 El Niño events, respectively, which is
in good agreement with many previous findings (Liu et al.,
2017; Bastos et al., 2018; Wang et al., 2018; Koren et al.,
2018). Bastos et al. (2018) showed a smaller difference of
carbon fluxes between 2015 and 2011 using both bottom-up
and top-down approaches, which was in the range of 0.7–
1.9 PgC yr−1. With the constraints of GOSAT and OCO-2
XCO2, Liu et al. (2017) found that relative to the 2011 La
Niña, the pantropical biosphere released 2.5±0.34 PgC more
carbon into the atmosphere in 2015, and during the peak
2015–2016 El Niño between May 2015 and April 2016, the
released carbon reached 3.3± 0.34 PgC. In this dataset, the
changes of carbon flux between 2011 La Niña and 2015–
2016 El Niño events in the pantropical area are lower than the
estimates of Liu et al. (2017) but close to Bastos et al. (2018).
We estimate that the change of NBE between 2015 and 2011
is 1.59± 0.34 PgC yr−1, and the peak period of 2015–2016
El Niño released 2.79 PgC more than in 2011 (Fig. S8). In
addition, it also could be found that there are weak carbon
sinks in 2010 and 2019 in TL. There have been many stud-
ies on the decline of carbon sinks in tropical regions in 2010
(van der Laan-Luijkx et al., 2015; Doughty et al., 2015; Gatti
et al., 2014). In 2019, the decrease of NEE may be related
to the Indian Ocean Dipole event, which significantly re-
duced the carbon uptakes over southern China, the former
Indo-China peninsula, and Australia (Wang et al., 2021b). In
SL, due to the small land area, its NEE is an order of mag-
nitude lower than the other two regions. It could be found
that there is a continuous decreasing trend. This trend is ba-
sically consistent with that in Australia (Fig. 8j), indicating
that the IAV of NEE in SL is dominated by that in southern
Australia, especially in southeastern Australia (Byrne et al.,
2021). Previous studies have revealed that the enhanced car-
bon uptake in Australia from 2010 to 2012 was associated
with the La Niña phase from the end of 2010 to early 2012
(Detmers et al., 2015), while the significantly increased car-
bon loss in 2019 was due to extreme drought (Byrne et al.,
2021) associated with the Indian Ocean Dipole event (Wang
et al., 2021b), indicating that the decreasing trend of carbon
sink in SL is caused by the extreme climate events that oc-
curred in the start and end years of this decade, respectively;
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Figure 7. Interannual variations of annual NEE of different latitudes (a northern midlatitudes to high latitudes (> 30◦ N); b tropical latitudes
(30◦ S–30◦ N); c southern middle latitudes (< 30◦ S)).

thus this downtrend is just a coincidence. On average, the
NEEs in NL, TL, and SL during this decade are−2.33±0.35,
−1.25±0.38, and−0.05±0.07 PgC yr−1, which account for
62.6 %, 33.4 %, and 1.4 % of the global total land sink, re-
spectively, indicating that the global land NEE is dominated
by the NEE in NL. However, the correlation coefficients be-
tween the IAVs of NEE in these three regions (NL, TL, and
SL) and the IAV of global terrestrial NEE are 0.57, 0.86, and
0.37, respectively, indicating that the IAV of global NEE is
dominated by its inter-annual changes in TL.

In Fig. 8, we further present the IAVs and seasonal cy-
cles of NEE in the 11 TRANSCOM regions. Since there are
some overlaps between the TRANSCOM and RECCAP2 re-
gions, for example, the N. America region in RECCAP2 is
almost the sum of the boreal and temperate N. America, and
the Africa region in RECCAP2 is the sum of northern and
southern Africa in TRANSCOM. In addition, the IAVs of
NEE in some regions of RECCAP2 like Russia and East Asia
are dominated by the NEE changes in corresponding regions
in TRANSCOM. Therefore, here we only analyze the annual
and monthly changes of NEE in the TRANSCOM regions.
The differences for the IAVs between the prior and posterior
NEE in each region are shown in Fig. S9.

There are significant differences in the IAVs of annual
NEE in each region. For example, in boreal N. America,
the weakest sink is in 2016 and the strongest sink in 2017,
while in temperate N. America, the weakest sink occurs in
2018 and the strongest in 2010. Europe has the weakest sink
in 2018, but the strongest sink is in 2014. For the interan-
nual amplitudes, temperate N. America, tropical S. America,
southern Africa, Australia, and Europe have relatively larger
interannual amplitudes, with values above 0.6 PgC yr−1. In
temperate S. America, boreal Asia, northern Africa, temper-

ate Asia, and tropical Asia, the interannual amplitudes are
comparable, ranging from 0.33 to 0.40 PgC yr−1, while bo-
real N. America has the smallest interannual amplitude of
0.22 PgC yr−1. Except for boreal N. America, boreal Asia,
and Europe, the interannual amplitudes in other regions are
larger than their 10-year averaged carbon sinks, especially
in temperate S. America, northern and southern Africa, and
Australia; their inter-annual amplitudes of NEE reach more
than 5 times of the mean carbon sinks.

For the seasonal cycles, the northern middle- and high-
latitudinal regions have a similar pattern, with carbon sources
during the cold season (from October to April) and carbon
sinks during the warm season (from May to September). In
the cold season, the difference of carbon releases in differ-
ent regions is relatively small, but in the warm season, the
intensity of carbon sinks in different regions is significantly
different, and the months in which the strongest carbon sinks
appear are also different. Boreal Asia and temperate and bo-
real N. America have the strongest sinks in July, and Eu-
rope has the strongest one in June, while temperate Asia
has the strongest in August. For the southern lands, south-
ern Africa and temperate S. America have a similar seasonal
cycle. Their carbon sources occur from July to about Decem-
ber, with a peak in October, and carbon sinks appear from
January to May. In Australia, the carbon sinks mainly occur
from March to October. In the tropics, northern Africa has
an opposite seasonal cycle to its adjacent region of south-
ern Africa; its carbon sink occurs during June to November.
The seasonal cycles in tropical Asia and tropical S. Amer-
ica are also nearly opposite. Tropical Asia has the strongest
sink in September and October, while tropical S. America
has the strongest carbon release in October. In general, the
tropical regions have a smaller seasonal amplitude, while
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Figure 8. Interannual variations of the annual (unit: PgC yr−1) and monthly (unit: PgC per month) NEE in the 11 TRANSCOM regions
(a boreal N. America; b temperate N. America; c tropical S. America; d temperate S. America; e northern Africa; f southern Africa; g boreal
Asia; h temperate Asia; i tropical Asia; j Australia; k Europe).
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Figure 9. Spatial distributions of the (a) BIAS and (b) MAE of the posterior CO2 concentrations at each site (simulations minus observations;
unit: ppm).

the high latitudes have a larger seasonal amplitude. The sea-
sonal amplitudes in boreal Asia and Europe reach 1.17 and
0.96 PgC per month, respectively, while in tropical Asia and
tropical S. America, the seasonal amplitudes are only about
0.12 PgC per month. The same region has basically similar
seasonal cycles in different years, but the intensity of its car-
bon sources and sinks, the time of transition from carbon
source to carbon sink, and the months with the strongest sink
or source are also significantly different in different years.
For example, in tropical Asia, the carbon sources from Jan-
uary to April in 2010 and 2016 are significantly stronger than
those in normal years; in temperate N. America, the carbon
sinks in the spring of 2012 are significantly stronger than
normal, but the carbon sinks in the summer are significantly
weaker than normal.

Generally, the IAVs of annual NEE and seasonal cycles
are related to large-scale climate anomalies and regional ex-
treme climate events like droughts, heat waves, and precipita-
tion, which have been widely studied around the world (e.g.,
Ciais et al., 2005; Betts et al., 2020; Bastos et al., 2018; Ko-
ren et al., 2018; Reichstein et al., 2013; Frank et al., 2015;
Zhao and Running, 2010). Evidence has shown that severe
drought events that occurred in the Amazon in 2010 (Potter
et al., 2011; Doughty et al., 2015), Europe in 2010 (Bastos
et al., 2020a), 2012 (He et al., 2019), and 2018 (Bastos et
al., 2020b; Graf et al., 2020; Wang et al., 2020), the United
States in 2011–2012 (He et al., 2018; Wolf et al., 2016; Liu
et al., 2018; Byrne et al., 2020) and 2018 (Li et al., 2020),
and Australia in 2019 (Byrne et al., 2021) caused signifi-
cant reductions of terrestrial carbon uptakes. Accordingly,
as shown in Fig. 8, the NEEs in this dataset are also much
smaller in those years and regions compared with the nor-
mal year. In particular, in 2012, the contiguous United States
experienced exceptionally warm temperatures and the most
severe drought since the Dust Bowl era of the 1930s. Wolf et
al. (2016) found that the warm spring reduced the impact of
the summer drought on net annual carbon uptake across the

United States. As mentioned above, our dataset also shows
the significant increase of carbon sink in the spring of 2012
and a large decrease during the summertime in temperate N.
America. In summer 2010, western Russia was hit by an ex-
traordinary heat wave, with the region experiencing by far the
warmest July since records began (Otto, et al., 2012; Guerlet
et al., 2013; Ishizawa et al., 2016); correspondingly, we find
that in our dataset, the carbon sink in boreal Asia in July 2010
is the weakest in this decade, and the areas with a signifi-
cant positive anomaly of NEE (source increase) are mainly
in western Russia (Fig. S10). The strong El Niño events in
2015 and 2016 led to a significant reduction in carbon sinks
in the pantropical regions, and many regions even turned to
carbon sources (Liu et al., 2017; Bastos et al., 2018). Clearly,
during 2015–2016, the inverted carbon sink in this study is
much weaker than normal years in tropical S. America and
tropical Asia, and it turns to carbon sources in northern and
southern Africa. These indicate that this NEE dataset could
clearly reveal the impact of climate extremes on carbon up-
takes; thus it will be of benefit for studies of the trends and
drivers of carbon flux in different regions of the world.

6 Evaluations

6.1 Against surface flask observations

As shown in Sect. 3, surface flask observations from 74 sites
are used to evaluate the inversion results. The modeled CO2
concentrations were extracted from the simulated 3 h interval
3-D CO2 fields according to the locations, time, and heights
of each observation. It should be noted that the records with
absolute biases between the posterior CO2 concentrations
and CO2 measurements greater than 10 ppm were removed,
which are considered to have a lack of regional representa-
tiveness. Due to the low spatial resolution (1.9◦× 2.5◦) of
our model, we cannot reproduce such observations. Figure 9
shows the comparisons between the posterior CO2 concen-
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Figure 10. Time series of monthly averaged observations and simulations in the seven regions and at the MLO site.

trations and surface flask CO2 measurements. At most sites
located in ocean areas, tropical lands, and southern lands, the
BIAS is within ±0.5 ppm, and MAE is lower than 1 ppm.
In the northern midlatitudes to high latitudes, BIAS of some
stations is higher than±1.0 ppm, and MAE of almost all sta-
tions is higher than 1.5 ppm (Table S1). The global mean
BIAS, MAE, and RMSE are 0.36, 1.76, and 2.28 ppm. The
CORR of each site is in the range of 0.86 and 1, with a global
mean of 0.96.

The higher deviations in the northern midlatitudes to high
latitudes, especially in temperate N. America and Europe, are
probably due to the mismatch of spatial and temporal repre-
sentativeness between the observations and simulations. In
order to further increase the spatial and temporal represen-
tativeness of the observations, regional and monthly mean
observed and modeled concentrations in seven land regions
are compared. As shown in Fig. 1, the seven regions are high
latitudes (> 60◦ N), N. America, S. America, Europe, East
Asia, Africa, and Australia. There are 8 sites in the high
latitudes, 19 sites in N. America, 9 sites in Europe, 5 sites
in East Asia, 3 sites in S. America, 5 sites in Africa, and
4 sites in Australia (Fig. 1, Table S1). Figure 10 shows the
time series of the monthly observed and modeled CO2 con-
centrations in the seven regions. In addition, the Mauna Loa
Observatory (MLO) in Hawaii is a global background site;

the comparisons of monthly mean concentrations at MLO
are also shown in Fig. 10. Clearly, the modeled regional and
monthly mean CO2 concentrations agree well with the ob-
servations. The mean BIAS values are in the range of 0.1
to 0.56 ppm, and MAE and RMSE are in the range of 0.42–
1.46 and 0.52–1.73 ppm, respectively. In S. America, Africa,
and Australia, the posterior CO2 concentrations are very con-
sistent with the observations, with BIAS only in the range
of 0.1–0.24 ppm, and MAE about 0.5 ppm. Among these re-
gions, the deviations in Europe and high-latitude regions are
relatively larger, with a MAE of greater than 1.4 ppm and a
RMSE about 1.7 ppm. Significant positive biases mainly oc-
cur during the winter. This is understandable because in the
winter at high latitudes, satellite observations are very scarce,
leading to very insufficient constraints on the winter carbon
flux. This indicates that there may be an overestimation of
carbon releases at high latitudes in winter. At MLO, the sim-
ulations also agree well with the observations, with BIAS,
MAE, and RMSE of 0.2, 0.46, and 0.57 ppm, respectively.
Figure S11 shows the time series of biases in the seven re-
gions and at the MLO site; for comparison, the biases of prior
CO2 concentrations are also shown in this figure. Clearly, the
biases of the simulated CO2 concentrations are significantly
decreased relative to the prior. It also could be found that
there is an upward trend in the biases of the posterior CO2
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Figure 11. Statistical results for monthly mean profiles in the eight Asia-Pacific cities (a Hong Kong, b Bangkok, c Singapore, d Jakarta,
d Tokyo, f Shanghai, g New Delhi, and h Sydney).

Figure 12. Statistical results at different heights against the observations in the Amazon basin (a ALF; b RBA; c SAN; d TAB_TEF).

concentrations in all regions except East Asia, as well as at
the MLO site. On global average (74 sites), the annual mean
biases increase from−0.36 ppm in 2010 to 0.75 ppm in 2019,
with an uptrend slope of 0.115 ppm yr−1 (Fig. S12). By mul-
tiplying by a factor of 2.124 PgC ppm−1 (Ballantyne et al.,
2012), this bias accumulation rate is equal to 0.244 PgC yr−1,
which is very consistent with the 10-year-averaged bias in the
inverted global AGR given in Sect. 5.1 (0.25 PgC yr−1). This
uptrend is a result of a residual trend in the inversions fit to

the GOSAT data. We analyze the time series of the global
averaged monthly mean posterior XCO2 and GOSAT XCO2
concentrations and find that the mismatches between the pos-
terior XCO2 fields and GOSAT data also have an upward
trend from 2010 to 2019, with an annual mean increment
about 0.09 ppm yr−1 (Fig. S13).
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Figure 13. BIAS at different latitudes and heights against the
HIPPO observations.

6.2 Against aircraft measurements

We further evaluate the posterior CO2 concentrations against
the aircraft observations. First, the posterior CO2 were ex-
tracted from the simulated CO2 fields according to the loca-
tions, time, and heights of each aircraft observation, and then,
both the observed and modeled CO2 concentrations were di-
vided into 14 layers: 1000–1500, 1500–2000, 2000–2500,
2500–3000, 3000–3500, 3500–4000, 4000–4500, 4500–
5000, 5000–5500, 5500–6000, 6000–7000, 7000–8000,
8000–9000, and above 9000 m (CONTRAIL only 3–10 lay-
ers and CARBAM only 1–8 layers). Monthly mean observed
and modeled CO2 concentrations at each height were calcu-
lated and compared for the CONTRAIL and CARBAM pro-
files. For comparisons against the HIPPO observations, the
data were further divided into 2◦ intervals along the longitu-
dinal direction, and all data in each layer and 2◦ latitudinal
intervals were averaged.

Figures 11 and 12 show the evaluation results of monthly
mean profiles in eight cities over the Asia-Pacific region
and at four sites in the Amazon basin, respectively. Overall,
the deviations between the simulations and observations de-
crease with height. In the Asia-Pacific region, the BIAS is ba-
sically within ±0.5 ppm, and most MAE values are smaller
than 1 ppm, especially in Southeast Asia, indicating that we
have a good estimate of NEE in this area. Shanghai and New
Delhi have relatively larger MAE and RMSE values, with
MAE about 1.5 ppm and RMSE existing 2 ppm in the low-
est level, probably due to the fact that Shanghai and New
Delhi are one of the largest cities in China and India, re-
spectively, and have very strong anthropogenic CO2 emis-
sions, which may affect the performance of the MOZART

model. In the Amazon basin, the MAE and RMSE of all four
sites decrease with height, with MAE and RMSE decreas-
ing from about 2 ppm near 1000 m height to about 1.5 ppm
near 4000 m. For BIAS, below 2000 m, they increase sig-
nificantly with height. There are negative (∼−1.0 ppm, data
not shown), small (∼ 0.2 ppm), and significant positive BIAS
(∼ 0.9 ppm) values below 1000 m, at 1000–1500 m, and at
1500–2000 m height, respectively, indicating that there are
considerable vertical transport errors, and the carbon sinks
over tropical S. America may have systematic biases.

Figure 13 shows the comparisons against the HIPPO ob-
servations at different heights and latitudes. Overall, most
BIAS values are within ±0.5 ppm, showing a good agree-
ment between the simulations and observations. Relatively
large BIAS occurs over northern high latitudes, which is con-
sistent with the comparisons against the surface observations
as shown in Fig. 10 and also reveals an overestimation of
carbon releases at high latitudes.

7 Data availability

The GCAS2021 data are available at
https://doi.org/10.5281/zenodo.5829774 (Jiang, 2022).
The regional aggregated fluxes are provided as .xlsx files
with a file size of ∼ 135 KB, and the gridded fluxes and
ensemble members are provided in NetCDF format with a
file size ∼82 MB and 5.8 GB, respectively.

8 Summary

A global NEE dataset is essential for estimating the regional
terrestrial carbon budget and understanding the responses
of carbon fluxes to extreme climates. Here, by assimilating
the GOSAT ACOS v9 XCO2 product, we generate a 10-
year global monthly terrestrial NEE dataset from 2010 to
2019 (GCAS2021) using the GCASv2 system. GCAS2021
includes monthly and annual gridded (1◦×1◦) prior and pos-
terior NEE and OCN flux, prescribed FIRE and FFC emis-
sions, and globally, latitudinally, and regionally aggregated
fluxes and their uncertainties. Globally, the decadal mean
NBE and AGR as well as their IAVs match well with the
estimates of GCP2020. Regionally, our product shows car-
bon sinks over eastern N. America, the Amazon, the Congo
Basin, Europe, boreal forests, southern China, and South-
east Asia and carbon sources over the western United States,
African grasslands, Brazilian plateau, and parts of South
Asia. In the 11 TRANSCOM land regions, the NBEs of tem-
perate N. America, northern Africa, and boreal Asia are be-
tween the results of CMS-Flux NBE 2020 and CT2019B,
and those in temperate Asia, Europe, and tropical Asia are
very close to CMS-Flux NBE 2020 but significantly differ-
ent from CT2019B. In the RECCAP2 regions, except for
Africa and South Asia, the NBEs are comparable with the lat-
est bottom-up estimate of Ciais et al. (2021). The IAVs and
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seasonal cycles of NEE could clearly reflect the impact of
extreme climates or large-scale climate anomalies. We also
qualitatively evaluate the NEE estimates by comparing pos-
terior CO2 concentrations with independent CO2 measure-
ments from surface flask and aircraft CO2 observations, and
the results show that the simulated remote site and regional
average CO2 concentrations, as well as the vertical CO2 pro-
files, are all consistent with the observations. We believe that
this dataset will be useful in the estimates of regional- or
national-scale terrestrial carbon budgets, the study of car-
bon sink evolution mechanisms, the evaluation of ecosystem
models, and the assessments of carbon neutrality strategies.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-3013-2022-supplement.

Author contributions. FJ, JMC, and WJ designed the research.
FJ ran the model, analyzed the results, and wrote the paper. HW
handled the GOSAT XCO2 retrievals. WH analyzed the products of
CMS-Flux and CT2019B. WJ ran the BEPS model. MJ, SF, and LZ
participated in evaluations. JMC, WJ, MW, and HW participated in
the discussions of the inversion results and provided inputs on the
paper for revision before submission.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We acknowledge all atmospheric data
providers for obspack_co2_1_GLOBALVIEWplus_v6.0_2020-09-
11. CarbonTracker CT2019B results are provided by NOAA ESRL,
Boulder, Colorado, USA, from the website at http://carbontracker.
noaa.gov (last access: 29 June 2022). The GOSAT data are pro-
duced by the OCO project at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, and obtained from the data archive
at the NASA Goddard Earth Science Data and Information Services
Center. We are also grateful for the High-Performance Computing
Center (HPCC) of Nanjing University for doing the numerical cal-
culations in this paper on its blade cluster system.

Financial support. This research has been supported by the Na-
tional Key Research and Development Program of China (grant
nos. 2020YFA0607504 and 2016YFA0600204) and the Funda-
mental Research Funds for the Central Universities (grant nos.
090414380030, 090414380027, and 020714380179).

Review statement. This paper was edited by Hanqin Tian and re-
viewed by three anonymous referees.

References

Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and
Boden, T. A.: Monthly, global emissions of carbon diox-
ide from fossil fuel consumption, Tellus B, 63, 309–327,
https://doi.org/10.1111/j.1600-0889.2011.00530.x, 2011.

Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White,
J. W. C.: Increase in observed net carbon dioxide uptake by
land and oceans during the past 50 years, Nature, 488, 70–72,
https://doi.org/10.1038/nature11299, 2012.

Bastos, A., Friedlingstein, P., Sitch, S., Chen, C., Mialon, A.,
Wigneron, J.-P., Arora, V. K., Briggs, P. R., Canadell, J.
G., and Ciais, P.: Impact of the 2015/2016 El Niño on the
terrestrial carbon cycle constrained by bottom-up and top-
down approaches, Philos. T. Roy. Soc. B, 373, 20170304,
https://doi.org/10.1098/rstb.2017.0304, 2018.

Bastos, A., Fu, Z., Ciais, P., Friedlingstein, P., Sitch, S., Pon-
gratz, J., Weber, U., Reichstein, M., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A., Joetzjer, E., Knauer, J., Lienert, S.,
Loughran, T., McGuire, P. C., Obermeier, W., Padrón, R. S.,
Shi, H., Tian, H., Viovy, N., and Zaehle, S.: Impacts of extreme
summers on European ecosystems: a comparative analysis of
2003, 2010 and 2018, Philos. T. Roy. Soc. B, 375, 20190507,
https://doi.org/10.1098/rstb.2019.0507, 2020a.

Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan,
L., Wigneron, J., Weber, U., Reichstein, M., Fu, Z., Anthoni,
P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J.,
Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N.,
and Zaehle, S.: Direct and seasonal legacy effects of the 2018
heat wave and drought on European ecosystem productivity,
Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724,
2020b.

Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben,
I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S.,
Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes
estimated from GOSAT retrievals of total column CO2, At-
mos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-
13-8695-2013, 2013.

Basu S., Lehman S. J., Miller J. B., Andrews A. E., Sweeney C.,
Gurney K. R., Xu X., Southon J., and Tans P. P.: Estimating
US fossil fuel CO2 emissions from measurements of 14C in at-
mospheric CO2, P. Natl. Acad. Sci. USA, 117, 13300–13307,
https://doi.org/10.1073/pnas.1919032117, 2020.

Betts, R. A., Burton, C. A., Feely, R. A., Collins, M., Jones,
C. D., and Wiltshire, A. J.: ENSO and the Carbon Cy-
cle, in: El Niño Southern Oscillation in a Changing Cli-
mate, edited by: McPhaden, M. J., Santoso, A., and Cai, W.,
American Geophysical Union and John Wiley & Sons, Inc.,
https://doi.org/10.1002/9781119548164.ch20, 2020.

Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P.,
and Tans, P. P.: Regional Changes in Carbon Dioxide Fluxes
of Land and Oceans Since 1980, Science, 290, 1342–1346,
https://doi.org/10.1126/science.290.5495.1342, 2000.

Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M.,
Jiang, Z., Menemenlis, D., Gierach, M. M., Collatz, G. J., Gur-
ney, K. R., and Wunch, D.: Global and Brazilian carbon response

Earth Syst. Sci. Data, 14, 3013–3037, 2022 https://doi.org/10.5194/essd-14-3013-2022

https://doi.org/10.5194/essd-14-3013-2022-supplement
http://carbontracker.noaa.gov
http://carbontracker.noaa.gov
https://doi.org/10.1111/j.1600-0889.2011.00530.x
https://doi.org/10.1038/nature11299
https://doi.org/10.1098/rstb.2017.0304
https://doi.org/10.1098/rstb.2019.0507
https://doi.org/10.1126/sciadv.aba2724
https://doi.org/10.5194/acp-13-8695-2013
https://doi.org/10.5194/acp-13-8695-2013
https://doi.org/10.1073/pnas.1919032117
https://doi.org/10.1002/9781119548164.ch20
https://doi.org/10.1126/science.290.5495.1342


F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset 3031

to El Niño Modoki 2011–2010, Earth Space Sci., 4, 637–660,
https://doi.org/10.1002/2016EA000204, 2017.

Buitenhuis, E., Le Quéré, C., Aumont, O., Beaugrand, G.,
Bunker, A., Hirst, A., Ikeda, T., O’Brien, T., Piontkovski,
S., and Straile, D.: Biogeochemical fluxes through meso-
zooplankton, Global Biogeochem. Cy., 20, GB2003,
https://doi.org/10.1029/2005GB002511, 2006.

Byrne, B., Liu, J., Bloom, A. A., Bowman, K. W., Butterfield,
Z., Joiner, J., Keenan, T. F., Keppel-Aleks, G., Parazoo, N. C.,
and Yin, Y.: Contrasting regional carbon cycle responses to sea-
sonal climate anomalies across the east-west divide of temperate
North America, Global Biogeochem. Cy., 34, e2020GB006598,
https://doi.org/10.1029/2020GB006598, 2020.

Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki,
K., Norton, A. J., Joiner, J., Pollard, D. F., Griffith, D. W. T.,
Velazco, V. A., Deutscher, N. M., Jones, N. B., and Paton-
Walsh, C.: The carbon cycle of southeast Australia during 2019–
2020: Drought, fires and subsequent recovery, AGU Advances, 2,
e2021AV000469, https://doi.org/10.1029/2021AV000469, 2021.

Cervarich, M., Shu, S., Jain, A. K., Arneth, A., Canadell, J.,
Friedlingstein, P., Houghton, R. A., Kato, E., Koven, C., Pa-
tra, P., Poulter, B., Sitch, S., Stocker, B., Viovy, N., Wilt-
shire, A., and Zeng, N.: The terrestrial carbon budget of
South and Southeast Asia, Environ. Res. Lett., 11, 105006,
https://doi.org/10.1088/1748-9326/11/10/105006, 2016.

Chen, J. M., Liu, J., Cihlar, J., and Goulden, M. L.: Daily
canopy photosynthesis model through temporal and spatial scal-
ing for remote sensing applications, Ecol. Modell., 124, 99–119,
https://doi.org/10.1016/S0304-3800(99)00156-8, 1999.

Chen, J. M., Mo, G., and Deng, F.: A joint global car-
bon inversion system using both CO2 and 13CO2 atmo-
spheric concentration data, Geosci. Model Dev., 10, 1131–1156,
https://doi.org/10.5194/gmd-10-1131-2017, 2017.

Chen, J. M., Ju, W., Ciais, P., Viovy, N., Liu, R. G., Liu, Y., and
Lu, X. H.: Vegetation structural change since 1981 significantly
enhanced the terrestrial carbon sink, Nat. Commun., 10, 4259,
https://doi.org/10.1038/s41467-019-12257-8, 2019.

Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O’Dell, C.
W., and Bousquet, P.: Toward robust and consistent regional
CO2 flux estimates from in situ and spaceborne measure-
ments of atmospheric CO2, Geophys. Res. Lett., 41, 1065–1070,
https://doi.org/10.1002/2013GL058772, 2014.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Al-
lard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara,
A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein,
P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krin-
ner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F.,
Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert,
G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T.,
and Valentini, R.: Europewide reduction in primary productivity
caused by the heat and drought in 2003, Nature, 437, 529–533,
https://doi.org/10.1038/nature03972, 2005.

Ciais, P., Borges, A. V., Abril, G., Meybeck, M., Folberth, G.,
Hauglustaine, D., and Janssens, I. A.: The impact of lateral car-
bon fluxes on the European carbon balance, Biogeosciences, 5,
1259–1271, https://doi.org/10.5194/bg-5-1259-2008, 2008.

Ciais, P., Yao, Y., Gasser, T., Baccini, A., Wang, Y., Lauerwald, R.,
Peng, S., Bastos, A., Li, W., Raymond, P. A., Canadell, J. G.,
Peters, G. P., Andres, R. J., Chang, J., Yue, C., Dolman, A. J.,

Haverd, V., Hartmann, J., Laruelle, G., Konings, A. J., King, A.
W., Liu, Y., Luyssaert, S., Maignan, F., Patra, P. K., Peregon, A.,
Regnier, P., Pongratz, J., Poulter, B., Shvidenko, A., Valentini,
R., Wang, R., Broquet, G., Yin, Y., Zscheischler, J., Guenet, B.,
Goll, D. S., Ballantyne, A. P., Yang, H., Qiu, C., and Zhu, D.:
Empirical estimates of regional carbon budgets imply reduced
global soil heterotrophic respiration, Nat. Sci. Rev., 8, nwaa145,
https://doi.org/10.1093/nsr/nwaa145, 2021.

Ciais, P., Bastos, A., Chevallier, F., Lauerwald, R., Poulter, B.,
Canadell, J. G., Hugelius, G., Jackson, R. B., Jain, A., Jones,
M., Kondo, M., Luijkx, I. T., Patra, P. K., Peters, W., Pon-
gratz, J., Petrescu, A. M. R., Piao, S., Qiu, C., Von Randow,
C., Regnier, P., Saunois, M., Scholes, R., Shvidenko, A., Tian,
H., Yang, H., Wang, X., and Zheng, B.: Definitions and meth-
ods to estimate regional land carbon fluxes for the second
phase of the REgional Carbon Cycle Assessment and Pro-
cesses Project (RECCAP-2), Geosci. Model Dev., 15, 1289–
1316, https://doi.org/10.5194/gmd-15-1289-2022, 2022.

Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A.
M., Oyafuso, F. A., Frankenberg, C., O’Dell, C. W., Bruegge, C.
J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M.
R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K.,
Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit per-
formance of the Orbiting Carbon Observatory-2 (OCO-2) instru-
ment and its radiometrically calibrated products, Atmos. Meas.
Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.

Deng, F. and Chen, J. M.: Recent global CO2 flux inferred from
atmospheric CO2 observations and its regional analyses, Bio-
geosciences, 8, 3263–3281, https://doi.org/10.5194/bg-8-3263-
2011, 2011.

Deng, F., Jones, D. B. A., O’Dell, C. W., Nassar, R.,
and Parazoo, N. C.: Combining GOSAT XCO2 obser-
vations over land and ocean to improve regional CO2
flux estimates, J. Geophys. Res.-Atmos., 121, 1896–1913,
https://doi.org/10.1002/2015JD024157, 2016.

Detmers, R. G., Hasekamp, O., Aben, I., Houweling, S., van
Leeuwen, T. T., Butz, A., Landgraf, J., Köhler, P., Guan-
ter, L., and Poulter, B.: Anomalous carbon uptake in Aus-
tralia as seen by GOSAT, Geophys. Res. Lett., 42, 8177–8184,
https://doi.org/10.1002/2015GL065161, 2015.

Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amezquita,
F. F., Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E.,
Araujo-Murakami, A., da Costa, M. C., Rocha, W., Feldpausch,
T. R., Mendoza, A. L. M., da Costa, A. C. L., Meir, P.,
Phillips, O. L., and Malhi, Y.: Drought impact on forest car-
bon dynamics and fluxes in Amazonia, Nature, 519, 78–82,
https://doi.org/10.1038/nature14213, 2015.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfis-
ter, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison,
D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and eval-
uation of the Model for Ozone and Related chemical Trac-
ers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.

Enting, I. G. and Newsam, G. N.: Atmospheric constituent inver-
sion problems: Implications for baseline monitoring, J. Atmos.
Chem., 11, 69–87, https://doi.org/10.1007/BF00053668, 1990.

Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., Shen, Y.,
Zheng, Y., Wu, Z., and Ding, A.: NOx Emission Changes over

https://doi.org/10.5194/essd-14-3013-2022 Earth Syst. Sci. Data, 14, 3013–3037, 2022

https://doi.org/10.1002/2016EA000204
https://doi.org/10.1029/2005GB002511
https://doi.org/10.1029/2020GB006598
https://doi.org/10.1029/2021AV000469
https://doi.org/10.1088/1748-9326/11/10/105006
https://doi.org/10.1016/S0304-3800(99)00156-8
https://doi.org/10.5194/gmd-10-1131-2017
https://doi.org/10.1038/s41467-019-12257-8
https://doi.org/10.1002/2013GL058772
https://doi.org/10.1038/nature03972
https://doi.org/10.5194/bg-5-1259-2008
https://doi.org/10.1093/nsr/nwaa145
https://doi.org/10.5194/gmd-15-1289-2022
https://doi.org/10.5194/amt-10-59-2017
https://doi.org/10.5194/bg-8-3263-2011
https://doi.org/10.5194/bg-8-3263-2011
https://doi.org/10.1002/2015JD024157
https://doi.org/10.1002/2015GL065161
https://doi.org/10.1038/nature14213
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1007/BF00053668


3032 F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset

China during the COVID-19 Epidemic Inferred from Surface
NO2 Observations, Geophys. Res. Lett., 47, e2020GL090080,
https://doi.org/10.1029/2020GL090080, 2020.

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Ma-
hecha, M. D., Smith, P., van der Velde, M., Vicca, S., Babst, F.,
Beer, C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W.,
Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S.
I., Walz, A., Wattenbach, M., Zavala, M. A., and Zscheischler,
J.: Effects of climate extremes on the terrestrial carbon cycle:
concepts, processes and potential future impacts, Glob. Change
Biol., 21, 2861–2880, https://doi.org/10.1111/gcb.12916, 2015.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin,
S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R.,
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan,
S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie,
L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritza-
lis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V.,
Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K.,
Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,
Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poul-
ter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger,
J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tan-
hua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G.,
Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.:
Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–
3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

Gahlot, S., Shu, S., Jain, A. K., and Roy, S. B.: Estimating trends
and variation of net biome productivity in India for 1980–2012
using a land surface model, Geophys. Res. Lett., 44, 11573–
11579, https://doi.org/10.1002/2017GL075777, 2017.

Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P.,
and Obersteiner, M.: Historical CO2 emissions from land use
and land cover change and their uncertainty, Biogeosciences, 17,
4075–4101, https://doi.org/10.5194/bg-17-4075-2020, 2020.

Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y.,
Domingues, L. G., Basso, L. S., Martinewski, A., Correia, C. S.
C., Borges, V. F., Freitas, S., Braz, R., Anderson, L. O., Rocha,
H., Grace, J., Phillips, O. L., and Lloyd, J.: Drought sensitivity
of Amazonian carbon balance revealed by atmospheric measure-
ments, Nature, 506, 76–80, https://doi.org/10.1038/nature12957,
2014.

Gatti, L. V., Correa, C. C. S., Domingues, L. G., Miller, J. B.,
Gloor, M., Martinewski, A., Basso, L. S., Santana, R., Crispim,
S. P., Marani, L., and Neves, R. L.: CO2 Vertical Profiles
on Four Sites over Amazon from 2010 to 2018, PANGAEA,
https://doi.org/10.1594/PANGAEA.926834, 2021.

Ghimire, B., Williams, C. A., Collatz, G. J., Vanderhoof, M.,
Rogan, J., Kulakowski, D., and Masek, J. G.: Large car-
bon release legacy from bark beetle outbreaks across West-
ern United States, Glob. Change Biol., 21, 3087–3101,
https://doi.org/10.1111/gcb.12933, 2015.

Graf, A., Klosterhalfen, A., Arriga, N., Bernhofer, C., Bogena,
H., Bornet, F., Brüggemann, N., Brümmer, C., Buchmann, N.,
Chi, J., Chipeaux, C., Cremonese, E., Cuntz, M., Dušek, J., El-

Madany, T. S., Fares, S., Fischer, M., Foltýnová, L., Gharun, M.,
Ghiasi, S., Gielen, B., Gottschalk, P., Grünwald, T., Heinemann,
G., Heinesch, B., Heliasz, M., Holst, J., Hörtnagl, L., Ibrom, A.,
Ingwersen, J., Jurasinski, G., Klatt, J., Knohl, A., Koebsch, F.,
Konopka, J., Korkiakoski, M., Kowalska, N., Kremer, P., Kruijt,
B., Lafont, S., Léonard, J., De Ligne, A., Longdoz, B., Lous-
tau, D., Magliulo, V., Mammarella, I., Manca, G., Mauder, M.,
Migliavacca, M., Mölder, M., Neirynck, J., Ney, P., Nilsson, M.,
Paul-Limoges, E., Peichl, M., Pitacco, A., Poyda, A., Rebmann,
C., Roland, M., Sachs, T., Schmidt, M., Schrader, F., Siebicke, L.,
Šigut, L., Tuittila, E.-S., Varlagin, A., Vendrame, N., Vincke, C.,
Völksch, I., Weber, S., Wille, C., Wizemann, H.-D., Zeeman, M.,
and Vereecken, H.: Altered energy partitioning across terrestrial
ecosystems in the European drought year 2018, Philos. T. Roy.
Soc. B, 375, 20190524, https://doi.org/10.1098/rstb.2019.0524,
2020.

Guerlet, S., Basu, S., Butz, A., Krol, M., Hahne, P., Houweling, S.,
Hasekamp, O. P., and Aben, I.: Reduced carbon uptake during
the 2010 Northern Hemisphere summer from GOSAT, Geophys.
Res. Lett., 40, 2378–2383, https://doi.org/10.1002/grl.50402,
2013.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker,
D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S.,
Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki,
T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B.
C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and
Yuen, C.-W.: Towards robust regional estimates of CO2 sources
and sinks using atmospheric transport models, Nature, 415, 626–
630, https://doi.org/10.1038/415626a, 2002.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J.,
Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H. Ciais,
P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi,
K., John, J., Kowalczyk, E., Maki, T., Maksyutov, S., Peylin,
P., Prather, M., Pak, B. C., Sarmiento, J., Taguchi, S., Taka-
hashi, T., and Yuen, C. W.: Transcom 3 CO2 Inversion Inter-
comparison: 1. Annual mean control results and sensitivity to
transport and prior flux information, Tellus B, 55, 555–579,
https://doi.org/10.3402/tellusb.v55i2.16728, 2003.

Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of
methodological choices for accounting of land use change
carbon fluxes, Global Biogeochem. Cy., 29, 1230–1246,
https://doi.org/10.1002/2014GB004997, 2015.

He, W., Ju, W., Schwalm, C. R., Sippel, S., Wu, X., He, Q., Song,
L., Zhang, C., Li, J., Sitch, S., Viovy, N., Friedlingstein, P., and
Jain, A.: Large-Scale Droughts Responsible for Dramatic Re-
ductions of Terrestrial Net Carbon Uptake Over North America
in 2011 and 2012, J. Geophys. Res.-Biogeo., 123, 2053–2071,
https://doi.org/10.1029/2018JG004520, 2018.

He, W., Jiang, F., Ju, W., Nguyen, T. N., Fang, M., He, Q.,
and Zhang, C.: Ensemble Satellite Land Products Deepen
the Interpretation of Drought Impacts on Terrestrial Car-
bon Cycle in Europe Over 2001–2015, 2019 IEEE In-
ternational Geoscience and Remote Sensing Symposium,
Yokohama, Japan, 28 July–2 August 2019, 9273–9276,
https://doi.org/10.1109/IGARSS.2019.8898928, 2019.

Houghton, R. A. and Nassikas, A. A.: Global and re-
gional fluxes of carbon from land use and land cover
change 1850–2015, Global Biogeochem. Cycle, 31, 456–472,
https://doi.org/10.1002/2016GB005546, 2017.

Earth Syst. Sci. Data, 14, 3013–3037, 2022 https://doi.org/10.5194/essd-14-3013-2022

https://doi.org/10.1029/2020GL090080
https://doi.org/10.1111/gcb.12916
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.1002/2017GL075777
https://doi.org/10.5194/bg-17-4075-2020
https://doi.org/10.1038/nature12957
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1111/gcb.12933
https://doi.org/10.1098/rstb.2019.0524
https://doi.org/10.1002/grl.50402
https://doi.org/10.1038/415626a
https://doi.org/10.3402/tellusb.v55i2.16728
https://doi.org/10.1002/2014GB004997
https://doi.org/10.1029/2018JG004520
https://doi.org/10.1109/IGARSS.2019.8898928
https://doi.org/10.1002/2016GB005546


F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset 3033

Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Cheval-
lier, F., Deng, F., Dlugokencky, E. J., Feng, L., Ganshin, A.,
Hasekamp, O., Jones, D., Maksyutov, S., Marshall, J., Oda, T.,
O’Dell, C. W., Oshchepkov, S., Palmer, P. I., Peylin, P., Poussi,
Z., Reum, F., Takagi, H., Yoshida, Y., and Zhuravlev, R.: An in-
tercomparison of inverse models for estimating sources and sinks
of CO2 using GOSAT measurements, J. Geophys. Res.-Atmos.,
120, 5253–5266, https://doi.org/10.1002/2014JD022962, 2015.

Ishizawa, M., Mabuchi, K., Shirai, T., Inoue, M., Morino, I.,
Uchino, O., Yoshida, Y., Belikov, D., and Maksyutov, S.: Inter-
annual variability of summertime CO2 exchange in Northern
Eurasia inferred from GOSAT XCO2, Environ. Res. Lett., 11,
105001, https://doi.org/10.1088/1748-9326/11/10/105001, 2016.

Jacobson, A. R., Schuldt, K. N., Miller, J. B., Oda, T., Tans, P.,
Andrews, A., Mund, J., Ott, L., Collatz, G. J., Aalto, T., Afshar,
S., Aikin, K., Aoki, S., Apadula, F., Baier, B., Bergamaschi, P.,
Beyersdorf, A., Biraud, S. C., Bollenbacher, A., Bowling, D.,
Brailsford, G., Abshire, J. B., Chen, G., Chen, H., Chmura, L.,
Climadat, S., Colomb, A., Conil, S., Cox, A., Cristofanelli, P.,
Cuevas, E., Curcoll, R., Sloop, C. D., Davis, K., Wekker, S. D.,
Delmotte, M., DiGangi, J. P., Dlugokencky, E., Ehleringer, J.,
Elkins, J. W., Emmenegger, L., Fischer, M. L., Forster, G., Fru-
mau, A., Galkowski, M., Gatti, L. V., Gloor, E., Griffis, T., Ham-
mer, S., Haszpra, L., Hatakka, J., Heliasz, M., Hensen, A., Her-
manssen, O., Hintsa, E., Holst, J., Jaffe, D., Karion, A., Kawa,
S. R., Keeling, R., Keronen, P., Kolari, P., Kominkova, K., Kort,
E., Krummel, P., Kubistin, D., Labuschagne, C., Langenfelds, R.,
Laurent, O., Laurila, T., Lauvaux, T., Law, B., Lee, J., Lehner, I.,
Leuenberger, M., Levin, I., Levula, J., Lin, J., Lindauer, M., Loh,
Z., Lopez, M., Luijkx, I. T., Lund Myhre, C., Machida, T., Mam-
marella, I., Manca, G., Manning, A., Manning, A., Marek, M. V.,
Marklund, P., Martin, M. Y., Matsueda, H., McKain, K., Meijer,
H., Meinhardt, F., Miles, N., Miller, C. E., Mölder, M., Montzka,
S., Moore, F., Morgui, J.-A., Morimoto, S., Munger, B., Necki,
J., Newman, S., Nichol, S., Niwa, Y., O’Doherty, S., Ottosson-
Löfvenius, M., Paplawsky, B., Peischl, J., Peltola, O., Pichon, J.-
M., Piper, S., Plass-Dölmer, C., Ramonet, M., Reyes-Sanchez,
E., Richardson, S., Riris, H., Ryerson, T., Saito, K., Sargent,
M., Sasakawa, M., Sawa, Y., Say, D., Scheeren, B., Schmidt,
M., Schmidt, A., Schumacher, M., Shepson, P., Shook, M., Stan-
ley, K., Steinbacher, M., Stephens, B., Sweeney, C., Thoning, K.,
Torn, M., Turnbull, J., Tørseth, K., Bulk, P. V. D., Laan-Luijkx,
I. T. V. D., Dinther, D. V., Vermeulen, A., Viner, B., Vitkova, G.,
Walker, S., Weyrauch, D., Wofsy, S., Worthy, D., Young, D., and
Zimnoch, M.: Carbontracker CT2019B, Model published 2020
by NOAA Earth System Research Laboratory, Global Monitor-
ing Division, https://doi.org/10.25925/20201008, 2020.

Jiang, F.: A ten-year (2010–2019) global terrestrial NEE inferred
from the GOSAT v9 XCO2 retrievals (GCAS2021), Zenodo
[data set], https://doi.org/10.5281/zenodo.5829774, 2022.

Jiang, F., Wang, H. M., Chen, J. M., Machida, T., Zhou, L. X., Ju,
W. M., Matsueda, H., and Sawa, Y.: Carbon balance of China
constrained by CONTRAIL aircraft CO2 measurements, Atmos.
Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-
10133-2014, 2014.

Jiang, F., Chen, J. M., Zhou, L. X., Ju, W. M., Zhang, H. F.,
Machida T., Ciais, P., Peters, W., Wang, H. M., Chen, B. Z.,
Liu, L. X., Zhang, C. H., Matsueda, H., and Sawa, Y.: A com-
prehensive estimate of recent carbon sinks in China using both

top-down and bottom-up approaches, Sci. Rep.-UK, 6, 22130,
https://doi.org/10.1038/srep22130, 2016.

Jiang, F., Wang, H., Chen, J. M., Ju, W., Tian, X., Feng, S., Li, G.,
Chen, Z., Zhang, S., Lu, X., Liu, J., Wang, H., Wang, J., He, W.,
and Wu, M.: Regional CO2 fluxes from 2010 to 2015 inferred
from GOSAT XCO2 retrievals using a new version of the Global
Carbon Assimilation System, Atmos. Chem. Phys., 21, 1963–
1985, https://doi.org/10.5194/acp-21-1963-2021, 2021.

Jung, M., Reichstein, M., and Bondeau, A.: Towards global
empirical upscaling of FLUXNET eddy covariance obser-
vations: validation of a model tree ensemble approach
using a biosphere model, Biogeosciences, 6, 2001–2013,
https://doi.org/10.5194/bg-6-2001-2009, 2009.

Koren, G., Van Schaik, E., Araújo, A. C., Boersma, K. F., Gärt-
ner, A., Killaars, L., Kooreman, M. L., Kruijt, B., Van der
Laan-Luijkx, I. T., Von Randow, C., Smith, N. E., and Peters,
W.: Widespread reduction in sun-induced fluorescence from the
Amazon during the 2015/2016 El Niño, Philos. T. Roy. Soc. B,
373, 20170408, https://doi.org/10.1098/rstb.2017.0408, 2018.

Kulawik, S. S., Crowell, S., Baker, D., Liu, J., McKain, K.,
Sweeney, C., Biraud, S. C., Wofsy, S., O’Dell, C. W., Wennberg,
P. O., Wunch, D., Roehl, C. M., Deutscher, N. M., Kiel, M., Grif-
fith, D. W. T., Velazco, V. A., Notholt, J., Warneke, T., Petri,
C., De Mazière, M., Sha, M. K., Sussmann, R., Rettinger, M.,
Pollard, D. F., Morino, I., Uchino, O., Hase, F., Feist, D. G.,
Roche, S., Strong, K., Kivi, R., Iraci, L., Shiomi, K., Dubey,
M. K., Sepulveda, E., Rodriguez, O. E. G., Té, Y., Jeseck,
P., Heikkinen, P., Dlugokencky, E. J., Gunson, M. R., Elder-
ing, A., Crisp, D., Fisher, B., and Osterman, G. B.: Charac-
terization of OCO-2 and ACOS-GOSAT biases and errors for
CO2 flux estimates, Atmos. Meas. Tech. Discuss. [preprint],
https://doi.org/10.5194/amt-2019-257, 2019.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Ther-
mal and near infrared sensor for carbon observation Fourier-
transform spectrometer on the Greenhouse Gases Observing
Satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716,
https://doi.org/10.1364/AO.48.006716, 2009.

Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway,
T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ra-
monet, M., Nakazawa, T., Metzl, N., Gillett, N., and
Heimann, M.: Saturation of the southern ocean CO2 sink
due to recent climate change, Science 316, 1735–1738,
https://doi.org/10.1126/science.1136188, 2007.

Li, X., Xiao, J., Kimball, J. S., Reichle, R. H., Scott, R. L., Lit-
vak, M. E., Bohrer, G., and Frankenberg, C.: Synergistic use of
SMAP and OCO-2 data in assessing the responses of ecosystem
productivity to the 2018 U.S. drought, Remote Sens. Environ.,
251, 112062, https://doi.org/10.1016/j.rse.2020.112062, 2020.

Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Bousserez, N., Brix,
H., James Collatz, G., Menemenlis, D., Ott, L., Pawson, S., and
Jones, D.: Carbon monitoring system flux estimation and attribu-
tion: impact of ACOS-GOSAT XCO2 sampling on the inference
of terrestrial biospheric sources and sinks, Tellus B, 66, 22486,
https://doi.org/10.3402/tellusb.v66.22486, 2014.

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang,
Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun,
Y., O’Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M.,
Crisp, D., and Eldering, A.: Contrasting carbon cycle responses

https://doi.org/10.5194/essd-14-3013-2022 Earth Syst. Sci. Data, 14, 3013–3037, 2022

https://doi.org/10.1002/2014JD022962
https://doi.org/10.1088/1748-9326/11/10/105001
https://doi.org/10.25925/20201008
https://doi.org/10.5281/zenodo.5829774
https://doi.org/10.5194/acp-14-10133-2014
https://doi.org/10.5194/acp-14-10133-2014
https://doi.org/10.1038/srep22130
https://doi.org/10.5194/acp-21-1963-2021
https://doi.org/10.5194/bg-6-2001-2009
https://doi.org/10.1098/rstb.2017.0408
https://doi.org/10.5194/amt-2019-257
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1126/science.1136188
https://doi.org/10.1016/j.rse.2020.112062
https://doi.org/10.3402/tellusb.v66.22486


3034 F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset

of the tropical continents to the 2015–2016 El Niño, Science,
358, eaam5690, https://doi.org/10.1126/science.aam5690, 2017.

Liu, J., Bowman, K., Parazoo, N. C., Bloom, A A., Wunch, D.,
Jiang, Z., Gurney, K. R., and Schimel, D.: Detecting drought
impact on terrestrial biosphere carbon fluxes over contiguous
US with satellite observations, Environ. Res. Lett., 13, 095003,
https://doi.org/10.1088/1748-9326/aad5ef, 2018.

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A.
A., Parazoo, N. C., Oda, T., Carroll, D., Menemenlis, D.,
Joiner, J., Commane, R., Daube, B., Gatti, L. V., McKain, K.,
Miller, J., Stephens, B. B., Sweeney, C., and Wofsy, S.: Car-
bon Monitoring System Flux Net Biosphere Exchange 2020
(CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299–330,
https://doi.org/10.5194/essd-13-299-2021, 2021.

Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K.,
Kondo, N., Goto, K., Ishikawa, K., Nakazawa, T., and Ogawa, T.:
Worldwide measurements of atmospheric CO2 and other trace
gas species using commercial airlines, J. Atmos. Ocean. Tech.,
25, 1744–1754, https://doi.org/10.1175/2008JTECHA1082.1,
2008.

Machida, T., Ishijima, K., Niwa, Y., Tsuboi, K., Sawa, Y., Matsueda,
H., and Sasakawa, M.: Atmospheric CO2 mole fraction data
of CONTRAIL-CME, ver.2020.1.0, Center for Global Environ-
mental Research, NIES, https://doi.org/10.17595/20180208.001,
2018.

Maksyutov, S., Takagi, H., Valsala, V. K., Saito, M., Oda, T.,
Saeki, T., Belikov, D. A., Saito, R., Ito, A., Yoshida, Y., Morino,
I., Uchino, O., Andres, R. J., and Yokota, T.: Regional CO2
flux estimates for 2009–2010 based on GOSAT and ground-
based CO2 observations, Atmos. Chem. Phys., 13, 9351–9373,
https://doi.org/10.5194/acp-13-9351-2013, 2013.

Matsueda, H., Machida, T., Sawa, Y., Nakagawa, Y., Hirotani,
K., Ikeda, H., Kondo, N., and Goto, K.: Evaluation of atmo-
spheric CO2 measurements from new flask air sampling of
JAL airliner observations, Pap. Meteorol. Geophys., 59, 1–17,
https://doi.org/10.2467/mripapers.59.1, 2008.

Matsueda, H., Machida, T., Sawa, Y., and Niwa, Y.: Long-
term change of CO2 latitudinal distribution in the up-
per troposphere, Geophys. Res. Lett., 42, 2508–2514,
https://doi.org/10.1002/2014GL062768, 2015.

McKinley, G. A., Takahashi, T., Buitenhuis, E., Chai, F., Chris-
tian, J.R., Doney, S. C., Jiang, M. S., Lindsay, K., Moore, J.
K., Le Quéré, C., Lima, I., Murtugudde, R., Shi, L., and Wetzel,
P.: North Pacific carbon cycle response to climate variability on
seasonal to decadal timescales, J. Geophys. Res., 111, C07S06,
https://doi.org/10.1029/2005JC003173, 2006.

Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasib-
hatla, P., Morton, D., Collatz, G. J., Defries, R. S., Hyer, E. J.,
Prins, E. M., Griffith, D. W. T., Wunch, D., Toon, G. C., Sher-
lock, V., and Wennberg, P. O.: Daily and 3-hourly variability in
global fire emissions and consequences for atmospheric model
predictions of carbon monoxide, J. Geophys. Res.-Atmos., 116,
D24303, https://doi.org/10.1029/2011JD016245, 2011.

Nayak, R. K., Patel, N. R., and Dadhwal, V. K.: Spatio-temporal
variability of net ecosystem productivity over India and its re-
lationship to climatic variables, Environ. Earth Sci., 74, 1743–
1753, https://doi.org/10.1007/s12665-015-4182-4, 2015.

Niwa, Y., Machida, T., Sawa, Y., Matsueda, H., Schuck, T. J., Bren-
ninkmeijer, C. A. M., Imasu, R., and Satoh, M.: Imposing strong

constraints on tropical terrestrial CO2 fluxes using passenger
aircraft based measurements, J. Geophys. Res., 117, D11303,
https://doi.org/10.1029/2012JD017474, 2012.

OCO-2 Science Team (Gunson, M. and Eldering, A.): OCO-
2 Level 2 bias-corrected XCO2 and other select fields from
the full-physics retrieval aggregated as daily files, Retrospec-
tive processing V10r, Greenbelt, MD, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/E4E140XDMPO2, 2020.

Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data
Inventory for Anthropogenic CO2, version 2016 (ODIAC2016):
a global monthly fossil fuel CO2 gridded emissions data product
for tracer transport simulations and surface flux inversions, Earth
Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-
2018, 2018.

O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson,
M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Man-
drake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B.,
Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso,
F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S.,
Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey,
M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi,
R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M.,
Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Ve-
lazco, V. A.: Improved retrievals of carbon dioxide from Orbiting
Carbon Observatory-2 with the version 8 ACOS algorithm, At-
mos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-
11-6539-2018, 2018.

Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G.,
and Allen, M. R.: Reconciling two approaches to attribution of
the 2010 Russian heat wave, Geophys. Res. Lett., 39, L04702,
https://doi.org/10.1029/2011GL050422, 2012.

Palmer, P. I., Feng, L., Baker, D., Chevallier, F., Bösch, H., and
Somkuti, P.: Net carbon emissions from African biosphere dom-
inate pan-tropical atmospheric CO2 signal, Nat. Commun., 10,
3344, https://doi.org/10.1038/s41467-019-11097-w, 2019.

Patra, P. K., Canadell, J. G., Houghton, R. A., Piao, S. L., Oh, N.-
H., Ciais, P., Manjunath, K. R., Chhabra, A., Wang, T., Bhat-
tacharya, T., Bousquet, P., Hartman, J., Ito, A., Mayorga, E.,
Niwa, Y., Raymond, P. A., Sarma, V. V. S. S., and Lasco, R.:
The carbon budget of South Asia, Biogeosciences, 10, 513–527,
https://doi.org/10.5194/bg-10-513-2013, 2013.

Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O’Dell, C., Jacobson,
A. R., Chevallier, F., Liu, J., Eldering, A., Crisp, D., Deng, F.,
Weir, B., Basu, S., Johnson, M. S., Philip, S., and Baker, I.: Four
years of global carbon cycle observed from the Orbiting Carbon
Observatory 2 (OCO-2) version 9 and in situ data and compar-
ison to OCO-2 version 7, Atmos. Chem. Phys., 22, 1097–1130,
https://doi.org/10.5194/acp-22-1097-2022, 2022.

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson,
A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P.
J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.:
Global atmospheric carbon budget: results from an ensemble of
atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720,
https://doi.org/10.5194/bg-10-6699-2013, 2013.

Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F.,
Haynes, K. D., Henze, D. K., Liu, J., and Poulter, B.: Prior bio-
sphere model impact on global terrestrial CO2 fluxes estimated

Earth Syst. Sci. Data, 14, 3013–3037, 2022 https://doi.org/10.5194/essd-14-3013-2022

https://doi.org/10.1126/science.aam5690
https://doi.org/10.1088/1748-9326/aad5ef
https://doi.org/10.5194/essd-13-299-2021
https://doi.org/10.1175/2008JTECHA1082.1
https://doi.org/10.17595/20180208.001
https://doi.org/10.5194/acp-13-9351-2013
https://doi.org/10.2467/mripapers.59.1
https://doi.org/10.1002/2014GL062768
https://doi.org/10.1029/2005JC003173
https://doi.org/10.1029/2011JD016245
https://doi.org/10.1007/s12665-015-4182-4
https://doi.org/10.1029/2012JD017474
https://doi.org/10.5067/E4E140XDMPO2
https://doi.org/10.5194/essd-10-87-2018
https://doi.org/10.5194/essd-10-87-2018
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.1029/2011GL050422
https://doi.org/10.1038/s41467-019-11097-w
https://doi.org/10.5194/bg-10-513-2013
https://doi.org/10.5194/acp-22-1097-2022
https://doi.org/10.5194/bg-10-6699-2013


F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset 3035

from OCO-2 retrievals, Atmos. Chem. Phys., 19, 13267–13287,
https://doi.org/10.5194/acp-19-13267-2019, 2019.

Phillips, O. L., Aragão, L., Lewis, S. L., Fisher, J. B., Lloyd, J.,
López-González, G., Malhi, Y., Monteagudo, A., Peacock, J.,
Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I.,
Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L.,
Bonal, D., Brando, P., Chave, J., de Oliveira, A. C. A., Car-
dozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M.
A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P.,
Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S.,
Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva,
J., Silveira, M., Thomas, A. S., ter Steege, H., Stropp, J.,
Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., An-
drade, A., Chao, K. J., Erwin, T., Di Fiore, A., Honorio, E.,
Keeling, H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pit-
man, N. C. A., Vargas, P. N., Ramírez-Angulo, H., Rudas, A.,
Salamao, R., Silva, N., Terborgh, J., and Torres-Lezama, A.:
Drought sensitivity of the Amazon forest, Science, 323, 1344–
1347, https://doi.org/10.1126/science.1164033, 2009.

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G.,
Ciais, P., Friedlingstein, P., and Sitch, S.: Interannual variation of
terrestrial carbon cycle: Issues and perspectives, Glob. Change
Biol., 26, 300–318, https://doi.org/10.1111/gcb.14884, 2020.

Potter, C., Klooster, S., Hiatt, C., Genovese, V., and Castilla-
Rubio, J. C.: Changes in the carbon cycle of Amazon ecosys-
tems during the 2010 drought, Environ. Res. Lett., 6, 034024,
https://doi.org/10.1088/1748-9326/6/3/034024, 2011.

Quansah, E., Mauder, M., Balogun, A. A., Amekudzi, L. K.,
Hingerl, L., Bliefernicht, J., and Kunstmann, H.: Carbon
dioxide fluxes from contrasting ecosystems in the Sudanian
Savanna in West Africa, Carbon Balanc. Manag., 10, 1,
https://doi.org/10.1186/s13021-014-0011-4, 2015.

Raczka, B., Hoar, T. J., Duarte, H. F., Fox, A. M., Anderson,
J. L., Bowling, D. R., and Lin, J. C.: Improving CLM5.0
biomass and carbon exchange across the Western United States
using a data assimilation system, J. Adv. Model. Earth Sy.,
13, e2020MS002421, https://doi.org/10.1029/2020MS002421,
2021.

Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chu-
vieco, E., and van der Werf, G. R.: African burned area and fire
carbon emissions are strongly impacted by small fires undetected
by coarse resolution satellite data, P. Natl. Acad. Sci. USA, 118,
e2011160118, https://doi.org/10.1073/pnas.2011160118, 2021.

Räsänen, M., Aurela, M., Vakkari, V., Beukes, J. P., Tuovinen,
J.-P., Van Zyl, P. G., Josipovic, M., Venter, A. D., Jaars, K.,
Siebert, S. J., Laurila, T., Rinne, J., and Laakso, L.: Carbon bal-
ance of a grazed savanna grassland ecosystem in South Africa,
Biogeosciences, 14, 1039–1054, https://doi.org/10.5194/bg-14-
1039-2017, 2017.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D.,
Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N.,
Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K.,
van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.:
Climate extremes and the carbon cycle, Nature, 500, 287–295,
https://doi.org/10.1038/nature12350, 2013.

Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2
flux history 1982–2001 inferred from atmospheric data using a
global inversion of atmospheric transport, Atmos. Chem. Phys.,
3, 1919–1964, https://doi.org/10.5194/acp-3-1919-2003, 2003.

Saeki, T., Maksyutov, S., Saito, M., Valsala, V., Oda, T., An- dres, R.
J., Belikov, D., Tans, P., Dlugokencky, E., Yoshida, Y., Morino,
I., Uchino, O., and Yokota, T.: Inverse modeling of CO2 fluxes
using GOSAT data and multi-year ground-based observations,
SOLA, 9, 45–50, https://doi.org/10.2151/sola.2013-011, 2013.

Schuldt, K., Mund, J., Luijkx, I. T., Jacobson, A. R., Aalto, T., Ab-
shire, J. B., Aikin, K., Andrews, A., Aoki, S., Apadula, F., Baier,
B., Bakwin, P., Bartyzel, J., Bentz, G., Bergamaschi, P., Beyers-
dorf, A., Biermann, T., Biraud, S. C., Bowling, D., Brailsford, G.,
Chen, G., Chen, H., Chmura, L., Clark, S., Climadat, S., Colomb,
A., Commane, R., Conil, S., Cox, A., Cristofanelli, P., Cuevas, E.,
Curcoll, R., Daube, B., Davis, K., De Mazière, M., De Wekker,
S., Coletta, J. D., Delmotte, M., DiGangi, J. P., Dlugokencky,
E., Elkins, J. W., Emmenegger, L., Fischer, M. L., Forster, G.,
Frumau, A., Galkowski, M., Gatti, L. V., Gheusi, F., Gloor, E.,
Gomez-Trueba, V., Goto, D., Griffis, T., Hammer, S., Hanson, C.,
Haszpra, L., Hatakka, J., Heliasz, M., Hensen, A., Hermanssen,
O., Hintsa, E., Holst, J., Jaffe, D., Joubert, W., Karion, A., Kawa,
S. R., Keeling, R., Keronen, P., Kolari, P., Kominkova, K., Kort,
E., Krummel, P., Kubistin, D., Labuschagne, C., Langenfelds, R.,
Laurent, O., Laurila, T., Lauvaux, T., Law, B., Lee, J., Lehner, I.,
Leuenberger, M., Levin, I., Levula, J., Lin, J., Lindauer, M., Loh,
Z., Lopez, M., Machida, T., Mammarella, I., Manca, G., Man-
ning, A., Manning, A., Marek, M. V., Martin, M. Y., Matsueda,
H., McKain, K., Meijer, H., Meinhardt, F., Merchant, L., Mi-
halopoulos, N., Miles, N., Miller, J. B., Miller, C. E., Mitchell, L.,
Montzka, S., Moore, F., Morgan, E., Morgui, J.-A., Morimoto,
S., Munger, B., Myhre, C. L., Mölder, M., Müller-Williams,
J., Necki, J., Newman, S., Nichol, S., Niwa, Y., O’Doherty, S.,
Paplawsky, B., Peischl, J., Peltola, O., Pichon, J. M., Piper, S.,
Plass-Duelmer, C., Ramonet, M., Ramos, R., Reyes-Sanchez, E.,
Richardson, S., Riris, H., Rivas, P. P., Ryerson, T., Saito, K., Sar-
gent, M., Sawa, Y., Say, D., Scheeren, B., Schmidt, M., Schu-
macher, M., Sha, M. K., Shepson, P., Shook, M., Sloop, C. D.,
Smith, P., Steinbacher, M., Stephens, B., Sweeney, C., Tans, P.,
Thoning, K., Torn, M., Trisolino, P., Turnbull, J., Tørseth, K.,
Vermeulen, A., Viner, B., Vitkova, G., Walker, S., Weyrauch,
D., Wofsy, S., Worthy, D., Young, D., Zimnoch, M., van
Dinther, D., and van den Bulk P.: Multi-laboratory compilation
of atmospheric carbon dioxide data for the period 1957–2019,
obspack_co2_1_GLOBALVIEWplus_v6.0_2020-09-11, NOAA
Earth System Research Laboratory, Global Monitoring Labora-
tory, https://doi.org/10.25925/20200903, 2020.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,
C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-
ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis,
R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
sources and sinks of carbon dioxide, Biogeosciences, 12, 653–
679, https://doi.org/10.5194/bg-12-653-2015, 2015.

Sleeter, B. M., Liu J., Daniel, C., Rayfield, B., Sherba, J., Hawbaker,
T. J., Zhu, Z., Selmants, P. C., and Loveland, T. R.: Effects of con-
temporary land-use and land-cover change on the carbon balance
of terrestrial ecosystems in the United States, Environ. Res. Lett.,
13, 045006, https://doi.org/10.1088/1748-9326/aab540, 2018.

Swathi, P. S., Indira, N. K., and Ramonet M.: Estimation of Car-
bon dioxide fluxes between land, ocean and atmosphere during

https://doi.org/10.5194/essd-14-3013-2022 Earth Syst. Sci. Data, 14, 3013–3037, 2022

https://doi.org/10.5194/acp-19-13267-2019
https://doi.org/10.1126/science.1164033
https://doi.org/10.1111/gcb.14884
https://doi.org/10.1088/1748-9326/6/3/034024
https://doi.org/10.1186/s13021-014-0011-4
https://doi.org/10.1029/2020MS002421
https://doi.org/10.1073/pnas.2011160118
https://doi.org/10.5194/bg-14-1039-2017
https://doi.org/10.5194/bg-14-1039-2017
https://doi.org/10.1038/nature12350
https://doi.org/10.5194/acp-3-1919-2003
https://doi.org/10.2151/sola.2013-011
https://doi.org/10.25925/20200903
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1088/1748-9326/aab540


3036 F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset

2006–2011 with a 4-D variational assimilation scheme and spe-
cial reference to Asia, Climate Change and Green Chemistry of
CO2 sequestration, edited by: Goel, M., Satyanarayana, T., and
Agrawal, D. P., Springer-Nature Pte Ltd, Singapore, 289–310,
https://doi.org/10.1007/978-981-16-0029-6_17, 2021.

Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D.,
Saito, R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J.,
Yokota, T., and Maksyutov, S.: On the Benefit of GOSAT Ob-
servations to the Estimation of Regional CO2 Fluxes, SOLA, 7,
161–164, https://doi.org/10.2151/sola.2011-041, 2011.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C.,
Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez,
F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl,
N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnar-
son, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R.,
Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Cli-
matological mean and decadal change in surface ocean pCO2,
and net sea-air CO2 flux over the global oceans, Deep-Sea Res.
Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009,
2009.

Taylor, T. E., O’Dell, C. W., Crisp, D., Kuze, A., Lindqvist, H.,
Wennberg, P. O., Chatterjee, A., Gunson, M., Eldering, A.,
Fisher, B., Kiel, M., Nelson, R. R., Merrelli, A., Osterman, G.,
Chevallier, F., Palmer, P. I., Feng, L., Deutscher, N. M., Dubey,
M. K., Feist, D. G., García, O. E., Griffith, D. W. T., Hase,
F., Iraci, L. T., Kivi, R., Liu, C., De Mazière, M., Morino, I.,
Notholt, J., Oh, Y.-S., Ohyama, H., Pollard, D. F., Rettinger, M.,
Schneider, M., Roehl, C. M., Sha, M. K., Shiomi, K., Strong, K.,
Sussmann, R., Té, Y., Velazco, V. A., Vrekoussis, M., Warneke,
T., and Wunch, D.: An 11-year record of XCO2 estimates de-
rived from GOSAT measurements using the NASA ACOS ver-
sion 9 retrieval algorithm, Earth Syst. Sci. Data, 14, 325–360,
https://doi.org/10.5194/essd-14-325-2022, 2022.

Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law,
R. M., Ziehn, T., van der Laan-Luijkx, I. T., Peters, W., Gan-
shin, A., Zhuravlev, R., Maki, T., Nakamura, T., Shirai, T.,
Ishizawa, M., Saeki, T., Machida, T., Poulter, B., Canadell,
J. G., and Ciais, P.: Top–down assessment of the Asian car-
bon budget since the mid 1990s, Nat. Commun., 7, 1–10,
https://doi.org/10.1038/ncomms10724, 2016.

Tilmes, S.: GEOS5 Global Atmosphere Forcing Data, Research
Data Archive at the National Center for Atmospheric Re-
search, Computational and Information Systems Laboratory,
https://doi.org/10.5065/QTSA-G775, 2016.

Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti,
R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry,
M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y., May-
orga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin,
P., Poulter, B., Raymond, P. A., Santini, M., Sitch, S., Vaglio
Laurin, G., van der Werf, G. R., Williams, C. A., and Scholes,
R. J.: A full greenhouse gases budget of Africa: synthesis, un-
certainties, and vulnerabilities, Biogeosciences, 11, 381–407,
https://doi.org/10.5194/bg-11-381-2014, 2014.

Valsala, V., Maksyutov, S., Telszewski, M., Nakaoka, S., No-
jiri, Y., Ikeda, M., and Murtugudde, R.: Climate impacts on
the structures of the North Pacific air-sea CO2 flux variability,
Biogeosciences, 9, 477–492, https://doi.org/10.5194/bg-9-477-
2012, 2012.

van der Laan-Luijkx, I. T., van der Velde, I. R., Krol, M. C.,
Gatti, L. V., Domingues, L. G., Correia, C. S. C., Miller, J. B.,
Gloor, M., van Leeuwen, T. T., Kaiser, J. W., Wiedinmyer, C.,
Basu, S., Clerbaux, C., and Peters, W.: Response of the Ama-
zon carbon balance to the 2010 drought derived with Carbon-
Tracker South America, Global Biogeochem. Cy., 29, 1092–
1108, https://doi.org/10.1002/2014GB005082, 2015.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Veenendaal, M. E., Kolle, O., and Lloyd, J.: Seasonal variation in
energy fluxes and carbon dioxide exchange for a broad leaved
semi-arid savanna (Mopane woodland) in Southern Africa,
Glob. Change Biol., 10, 318–328, https://doi.org/10.1111/j.1365-
2486.2003.00699.x, 2004.

Wang, H., Jiang, F., Wang, J., Ju, W., and Chen, J. M.: Terres-
trial ecosystem carbon flux estimated using GOSAT and OCO-
2 XCO2 retrievals, Atmos. Chem. Phys., 19, 12067–12082,
https://doi.org/10.5194/acp-19-12067-2019, 2019.

Wang, J., Zeng, N., Wang, M., Jiang, F., Chen, J., Friedlingstein,
P., Jain, A. K., Jiang, Z., Ju, W., Lienert, S., Nabel, J., Sitch, S.,
Viovy, N., Wang, H., and Wiltshire, A. J.: Contrasting interannual
atmospheric CO2 variabilities and their terrestrial mechanisms
for two types of El Niños, Atmos. Chem. Phys., 18, 10333–
10345, https://doi.org/10.5194/acp-18-10333-2018, 2018.

Wang, J., Jiang, F., Wang, H., Qiu, B., Wu, M. S., He, W.,
Ju, W. M., Zhang, Y. G., Chen, J. M., and Zhou, Y. L.:
Constraining global terrestrial gross primary productivity in
a global carbon assimilation system with OCO-2 chlorophyll
fluorescence data, Agr. Forest Meteorol., 304–305, 108424,
https://doi.org/10.1016/j.agrformet.2021.108424, 2021a.

Wang, J., Wang, M. R., Kim, J. S., Joiner, J., Zeng, N., Jiang,
F., Wang, H., He, W., Wu, M. S., Chen, T. X., Ju, W.
M., and Chen, J. M.: Modulation of land photosynthesis
by the Indian Ocean Dipole: satellite-based observations and
CMIP6 future projections, Earth’s Future, 9, e2020EF001942,
https://doi.org/10.1029/2020EF001942, 2021b.

Wang, S., Zhang, Y., Ju, W, Porcar-Castell, A., Ye, S., Zhang,
Z., Brummer, C., Urbaniak, M., Mammarella, I., Juszczak,
R., and Boersma, K. F.: Warmer spring alleviated the im-
pacts of 2018 European summer heatwave and drought on
vegetation photosynthesis, Agr. Forest Meteorol., 295, 108195,
https://doi.org/10.1016/j.agrformet.2020.108195, 2020.

Whitaker, J. S. and Hamill, T. M.: Ensemble data assimi-
lation without perturbed observations, Mon. Weather
Rev., 130, 1913–1924, https://doi.org/10.1175/1520-
0493(2002)130<1913:Edawpo>2.0.Co;2, 2002.

Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): Fine-
grained, global-scale measurements of climatically important at-
mospheric gases and aerosols, Philos. T. Roy. Soc. A, 369, 2073–
2086, https://doi.org/10.1098/rsta.2010.0313, 2011.

Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai,
A. R., Richardson, A. D., Scott, R. L., Law, B. E., Litvak,
M. E., Brunsell, N. A., Peters, W., and van der Laan-Luijkx,
I. T.: Warm spring reduced carbon cycle impact of the 2012
US summer drought, P. Natl. Acad. Sci. USA, 113, 5880–5885,
https://doi.org/10.1073/pnas.1519620113, 2016.

Earth Syst. Sci. Data, 14, 3013–3037, 2022 https://doi.org/10.5194/essd-14-3013-2022

https://doi.org/10.1007/978-981-16-0029-6_17
https://doi.org/10.2151/sola.2011-041
https://doi.org/10.1016/j.dsr2.2008.12.009
https://doi.org/10.5194/essd-14-325-2022
https://doi.org/10.1038/ncomms10724
https://doi.org/10.5065/QTSA-G775
https://doi.org/10.5194/bg-11-381-2014
https://doi.org/10.5194/bg-9-477-2012
https://doi.org/10.5194/bg-9-477-2012
https://doi.org/10.1002/2014GB005082
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.1111/j.1365-2486.2003.00699.x
https://doi.org/10.1111/j.1365-2486.2003.00699.x
https://doi.org/10.5194/acp-19-12067-2019
https://doi.org/10.5194/acp-18-10333-2018
https://doi.org/10.1016/j.agrformet.2021.108424
https://doi.org/10.1029/2020EF001942
https://doi.org/10.1016/j.agrformet.2020.108195
https://doi.org/10.1175/1520-0493(2002)130<1913:Edawpo>2.0.Co;2
https://doi.org/10.1175/1520-0493(2002)130<1913:Edawpo>2.0.Co;2
https://doi.org/10.1098/rsta.2010.0313
https://doi.org/10.1073/pnas.1519620113


F. Jiang et al.: A 10-year global monthly averaged terrestrial NEE dataset 3037

Zeng, J., Matsunaga, T., Tan, Z. H., Saigusa, N., Shirai, T., Tang,
Y., Peng, S., and Fukuda, Y.: Global terrestrial carbon fluxes of
1999–2019 estimated by upscaling eddy covariance data with a
random forest, Sci. Data, 7, 313, https://doi.org/10.1038/s41597-
020-00653-5, 2020.

Zhao, M. S. and Running, S. W.: Drought-Induced Re-
duction in Global Terrestrial Net Primary Produc-
tion from 2000 Through 2009, Science, 329, 940–943,
https://doi.org/10.1126/science.1192666, 2010.

https://doi.org/10.5194/essd-14-3013-2022 Earth Syst. Sci. Data, 14, 3013–3037, 2022

https://doi.org/10.1038/s41597-020-00653-5
https://doi.org/10.1038/s41597-020-00653-5
https://doi.org/10.1126/science.1192666

	Abstract
	Introduction
	Methods and data
	The ACOS v9 GOSAT XCO2 retrievals
	Prior CO2 fluxes
	The Global Carbon Assimilation System (GCAS), version 2

	Evaluation data and method
	Dataset description
	Characteristics of the dataset
	Global carbon budgets
	Annual NEE averaged from 2010–2019
	Interannual variations and seasonal cycles

	Evaluations
	Against surface flask observations
	Against aircraft measurements

	Data availability
	Summary
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

