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Abstract. One of the challenges in studying desert dust aerosol along with its numerous interactions and im-
pacts is the paucity of direct in situ measurements, particularly in the areas most affected by dust storms. Satel-
lites typically provide column-integrated aerosol measurements, but observationally constrained continuous 3D
dust fields are needed to assess dust variability, climate effects and impacts upon a variety of socio-economic
sectors. Here, we present a high-resolution regional reanalysis data set of desert dust aerosols that covers North-
ern Africa, the Middle East and Europe along with the Mediterranean Sea and parts of central Asia and the
Atlantic and Indian oceans between 2007 and 2016. The horizontal resolution is 0.1° latitude x 0.1° longitude
in a rotated grid, and the temporal resolution is 3 h. The reanalysis was produced using local ensemble trans-
form Kalman filter (LETKF) data assimilation in the Multiscale Online Nonhydrostatic AtmospheRe CHem-
istry model (MONARCH) developed at the Barcelona Supercomputing Center (BSC). The assimilated data are
coarse-mode dust optical depth retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS)
Deep Blue Level 2 products. The reanalysis data set consists of upper-air variables (dust mass concentrations
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and the extinction coefficient), surface variables (dust deposition and solar irradiance fields among them) and
total column variables (e.g. dust optical depth and load). Some dust variables, such as concentrations and wet
and dry deposition, are expressed for a binned size distribution that ranges from 0.2 to 20 ym in particle diam-
eter. Both analysis and first-guess (analysis-initialized simulation) fields are available for the variables that are
diagnosed from the state vector. A set of ensemble statistics is archived for each output variable, namely the
ensemble mean, standard deviation, maximum and median. The spatial and temporal distribution of the dust
fields follows well-known dust cycle features controlled by seasonal changes in meteorology and vegetation
cover. The analysis is statistically closer to the assimilated retrievals than the first guess, which proves the con-
sistency of the data assimilation method. Independent evaluation using Aerosol Robotic Network (AERONET)
dust-filtered optical depth retrievals indicates that the reanalysis data set is highly accurate (mean bias = —0.05,
RMSE =0.12 and r =0.81 when compared to retrievals from the spectral de-convolution algorithm on a 3-
hourly basis). Verification statistics are broadly homogeneous in space and time with regional differences that
can be partly attributed to model limitations (e.g. poor representation of small-scale emission processes), the
presence of aerosols other than dust in the observations used in the evaluation and differences in the number
of observations among seasons. Such a reliable high-resolution historical record of atmospheric desert dust will
allow a better quantification of dust impacts upon key sectors of society and economy, including health, so-
lar energy production and transportation. The reanalysis data set (Di Tomaso et al., 2021) is distributed via
Thematic Real-time Environmental Distributed Data Services (THREDDS) at BSC and is freely available at

http://hdl.handle.net/21.12146/c6d4a608-5de3-47f6-a004-67cb1d498d98 (last access: 10 June 2022).

1 Introduction

Desert (or mineral) dust is the most abundant aerosol by mass
in the global atmosphere (Textor et al., 2006) and plays a key
role in the Earth system (Knippertz and Stuut, 2014). It is
emitted from the surface by aeolian processes an doriginates
predominantly — but not only — from desert regions. Dust
affects weather and climate by perturbing the radiative bal-
ance directly through scattering and absorption of solar and
thermal radiation (Pérez et al., 2006; Boucher et al., 2019;
Miller et al., 2014) and indirectly by altering cloud forma-
tion and cloud chemistry (Cziczo et al., 2013; Harris et al.,
2013; Kiselev et al., 2017). It also contributes to the fertil-
ization of the ocean (Jickels et al., 2005; Kanakidou et al.,
2018) and the land (Yu et al., 2015; Rizzolo et al., 2017)
through the deposition of iron and phosphorus, thus affect-
ing the global carbon cycle. All in all, the amount of, spa-
tial distribution of and variability in desert dust have impli-
cations on climate, the environment, air quality (Rodriguez
etal.,2001; Pey et al., 2013; Barnaba et al., 2017) and human
health (Mallone et al., 2011; Morman and Plumlee, 2013;
Pérez Garcia-Pando et al., 2014; Pandolfi et al., 2014; Ter-
radellas et al., 2015; Stafoggia et al., 2016; Querol et al.,
2019), and a variety of socio-economic sectors such as avi-
ation and solar energy production (Schroedter-Homscheidt
et al., 2013; Votsis et al., 2020). Due to the nature of its emis-
sion and transport and its relatively short lifetime (Glif3 et al.,
2021), dust varies strongly in space and time, which requires
continuous monitoring both in situ and remotely by satel-
lite, airborne and ground-based sensors (Barnaba and Gobbi,
2004; Kaufman et al., 2005; Marticorena et al., 2010; Kim
et al., 2011; Mona et al., 2012; Pey et al., 2013; Luo et al.,
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2015). A major challenge in studying desert dust along with
its impacts is the paucity of direct in situ measurements in the
regions most affected by dust storms. There are some opera-
tional visibility observations providing qualitative estimates
of dust presence (Mahowald et al., 2007), but there is a severe
lack of routine surface aerosol concentration measurements
(Benedetti et al., 2018). In addition to the lack of in situ ob-
servations, there is limited information on aerosol speciation,
which is essential to distinguish dust from other aerosol types
(Rodriguez et al., 2012). Satellites mostly provide column-
integrated aerosol information, but spatially and temporally
resolved surface dust concentration and deposition estimates
are needed to enable detailed impact assessments. Dust ob-
servations or retrievals are therefore best exploited in combi-
nation with model simulations either to provide optimal ini-
tial conditions (analyses) to forecast models (Benedetti et al.,
2014) or to monitor current and past states of the atmosphere
through the production of reanalyses, i.e. complete and con-
sistent four-dimensional reconstructions of the atmosphere.
There are several available global aerosol reanalyses that
include desert dust, such as MERRA-2 (Modern-Era Retro-
spective analysis for Research and Applications, Version 2;
Gelaro et al., 2017; Randles et al., 2017; Buchard et al., 2017)
and CAMSRA (Copernicus Atmosphere Monitoring Service
Reanalysis; Inness et al., 2019) along with their predeces-
sors MERRAero (Modern-Era Retrospective analysis for Re-
search and Applications Aerosol Reanalysis; Buchard et al.,
2015) and MACC-II (Monitoring Atmospheric Composition
and Climate-II; Inness et al., 2013; Cuevas et al., 2015), re-
spectively, and the JRAero (Japanese Reanalysis for Aerosol;
Yumimoto et al., 2017) and the NAAPS (Navy Aerosol Anal-
ysis and Prediction System; Lynch et al., 2016) reanaly-
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ses. These global data sets have been produced at relatively
coarse spatial resolution and by assimilating total aerosol op-
tical depth (AOD). MERRA-2 is NASA’s latest reanalysis.
It has been produced at a spatial resolution of 0.58° lati-
tude x 0.6258° longitude, with 72 hybrid eta layers and by
assimilating bias-corrected, neural-network-retrieved AOD
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and from the Advanced Very High Resolution Ra-
diometer (AVHRR; over ocean only), as well as AOD from
the Multi-angle Imaging SpectroRadiometer (MISR; over
bright surfaces only) and from the Aerosol Robotic Net-
work (AERONET) of Sun photometers. The latest reanaly-
sis for atmospheric composition produced by the Copernicus
Atmosphere Monitoring Service (CAMS) CAMSRA covers
the period January 2003 to 2020 and is extended by adding
1 year each year. It has been produced at a spatial resolu-
tion of ~80km and with 60 hybrid sigma—pressure levels
in the vertical, by assimilating Collection 6 MODIS AOD
produced with Deep Blue (DB; over land) and Dark Tar-
get (over land and ocean) algorithms and by additionally as-
similating the Advanced Along-Track Scanning Radiometer
(AATSR) AOD from 2003 to March 2012. JRAero is a global
5-year (2011-2015) reanalysis product constructed by the
Meteorological Research Institute of the Japan Meteorolog-
ical Agency. It has been produced assimilating the MODIS
6-hourly Level 3 AOD product provided by the US Naval Re-
search Laboratory (NRL) and the University of North Dakota
(UND) for the purpose of aerosol data assimilation and is
based on the NASA operational MODIS Level 2 Collection 5
(Dark Target) AOD data set. This same data set has been pre-
viously used, together with MISR AOD, by NRL to produce
the NAAPS 11-year (2003-2013) global gridded aerosol re-
analysis product at a resolution of 1° latitude x 1° longitude.

At the European level, air quality regional reanalyses (in-
cluding dust) are produced by nine different operational
systems and the associated multi-model ensemble through
the CAMS regional services of the Copernicus programme.
These models assimilate surface observations of Oz, SO»,
NO; and CO and particulate matter (PM; 5 and PMj() opera-
tionally, and one of the models additionally assimilates AOD
in research mode. These products are restricted to an ex-
tended European domain, which excludes major desert dust
sources in Northern Africa and the Middle East. These re-
analyses are produced as an improved product compared to
the daily CAMS analyses, by using the latest validated ob-
servations, but we note they may not be consistent over the
different production periods as they are not necessarily pro-
duced with the same model version.

We present here a regional reanalysis focusing specifically
on desert dust aerosols that overcomes some of the potential
limitations of existing global and regional reanalysis prod-
ucts. The data set was obtained by combining satellite remote
sensing dust retrievals with a dynamical model. It spans a 10-
year period, from 2007 to 2016; has a horizontal resolution
of 0.1° latitude x 0.1° longitude in a rotated grid; and has 3-
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hourly output. It provides a regional reconstruction of past
dust conditions across Northern Africa, the Middle East and
Europe, including the Mediterranean Sea and parts of central
Asia, and the Atlantic and Indian oceans. The reanalysis con-
sists of a set of dust geophysical variables (and their uncer-
tainties) produced with a consistent model and data assimila-
tion scheme, i.e. a frozen version of the code used during the
whole simulation period, including emission schemes, input
data sets and the retrieval algorithm for the assimilated ob-
servations. This ensures the production of a consistent data
set avoiding the introduction of spurious trends that could be
associated with model or assimilation changes.

We have adopted an ensemble-based data assimilation
scheme for the estimation of the dust analysis. The use of
ensemble model simulations has allowed for the estimation
of flow-dependent background uncertainty, which is other-
wise difficult to estimate due to the highly varying nature of
dust concentrations. Assimilating AOD may not necessarily
constrain individual aerosol components because the aerosol
attribution in the analysis increments is typically determined
by the model first guess (Tsikerdekis et al., 2021). To at least
partly overcome this limitation, we have directly assimilated
dust retrievals, namely satellite-derived coarse-mode dust op-
tical depth (DODgarse) at 550 nm over land surfaces, includ-
ing bright surfaces such as desert areas. The assimilated re-
trievals are based on the MODIS DB algorithm (Hsu el al.,
2013; Sayer et al., 2013), which uses measurements at differ-
ent wavelengths with a different contrast between the surface
and atmospheric aerosols. In particular, the algorithm capi-
talizes on the much lower surface reflectance at ultraviolet
wavelengths than at longer wavelengths.

This new reanalysis data set can be used to support the
provision of climate services and monitoring. It can also
contribute to the development of dust impact mitigation
strategies. For instance, the design of the reanalysis output
fields has been tailored to the specific needs in three socio-
economic sectors affected by mineral dust, which are air
quality and health, energy production, and transport. In addi-
tion to the 3D fields of dust mass concentration, the reanaly-
sis data set includes dust extinction and deposition variables,
along with other variables associated with meteorology and
radiation. In summary, we present here a regional dust reanal-
ysis at an unprecedented resolution using for the first time
specific dust retrievals over dust source regions and includ-
ing grid-level uncertainty estimates.

The following sections describe the different aspects re-
lated to the production of the reanalysis: the dust modelling
aspect, including the dust sources and emission schemes is
outlined in Sect. 2; the generation of ensemble perturba-
tions to best characterize model uncertainty is explained in
Sect. 3; the assimilated dust retrievals and the data assimila-
tion scheme are described in Sects. 4 and 5, respectively. Ad-
ditionally, Sect. 6 describes the details of the reanalysis simu-
lation settings, while Sect. 7 describes the content and struc-
ture of the reanalysis data set. Section 8 provides an evalua-
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tion of the column-integrated dust optical depth (DOD) and
DOD¢oarse in terms of geographical distribution, the study
of analysis increments, data assimilation inner diagnostics
and comparison against independent observations. Informa-
tion about the data set availability is provided in Sect. 9. Fi-
nally, conclusions are drawn in Sect. 10.

2 MONARCH modelling system

The reanalysis has been produced using the Multiscale
Online Nonhydrostatic AtmospheRe CHemistry model
(MONARCH; Pérez et al., 2011; Haustein et al., 2012; Jorba
et al., 2012; Spada et al., 2013; Badia et al., 2017; Klose
et al.,, 2021), which consists of advanced chemistry and
aerosol packages coupled online with the Nonhydrostatic
Multiscale Model on the B grid (NMMB; Janjic et al., 2001;
Janjic and Gall, 2012). MONARCH is able to work across
a wide range of spatial scales thanks to its unified non-
hydrostatic dynamical core. In the global setup, MONARCH
is run on a latitude—longitude grid, while the regional ver-
sion used in this work runs on a rotated latitude—longitude
grid. Different physics schemes are available in the NMMB
to resolve turbulence, convection, soil, radiation and clouds.
The exact configuration used in this work is reported in Ta-
ble 1, where the key configuration settings are summarized
for both modelling and data assimilation aspects.

MONARCH represents the atmospheric dust cycle in-
cluding emission, transport and deposition along with dust—
radiation interactions. A variety of dust emission schemes
and configurations are available as described in Klose et al.
(2021), ranging from strongly simplified to physics-based pa-
rameterizations. Dust transport is produced by horizontal ad-
vection, solved with the Adams—Bashforth scheme; vertical
advection, solved with the Crank—Nicolson scheme; and lat-
eral diffusion, which follows the Smagorinsky non-linear ap-
proach. Furthermore, dust is vertically mixed by turbulent
diffusion and deep and shallow convection. Sinks include
gravitational settling, dry deposition through turbulent dif-
fusion, and in-cloud and below-cloud scavenging from both
stratiform and convective clouds. MONARCH follows a sec-
tional approach for dust, i.e. the size distribution is decom-
posed into small size bins that range from 0.2 to 20 um in
diameter. The particle size distribution (PSD) at emission ei-
ther can be chosen from a set of pre-defined PSDs or is calcu-
lated online, depending on the selected emission scheme. In
this work, we have used a PSD of emitted dust over sources
derived from Kok (2011).

A more detailed description of the dust module of
MONARCH can be found in Pérez et al. (2011) and Klose
et al. (2021), with the latter work including also advances
developed after the start of the dust reanalysis production.
Those recent developments were therefore not yet used in the
present work for which a frozen model version is important.
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Below we provide further details on the configuration of the
emission and radiation schemes used in this work.

2.1 Dust emission schemes

MONARCH contains multiple dust emission schemes, of
which we used the following three to generate ensemble
perturbations for the production of the reanalysis: (i) a
scheme based on Marticorena and Bergametti (1995), here-
after called MB95, which is based on saltation flux and soil
texture and was combined with the topographic source mask
from Ginoux et al. (2001) as described in Pérez et al. (2011);
(i) the GOCART dust emission scheme from Ginoux et al.
(2001) based mainly on a topographic source function, here-
after called GO1; (iii) a scheme based on brittle fragmenta-
tion by saltation as in Kok et al. (2014), hereafter called K14.
The location of dust sources is identified by a climatology
of frequency of occurrence (FoO) of DOD greater than 0.2
derived from MODIS DB Collection 6 at the resolution of
0.1° latitude x 0.1° longitude (Hsu et al., 2004; Ginoux et al.,
2012 — see their Sect. 4.3.1) with a minimal threshold for
FoO equal to 0.05, below which there is no emission. Surface
roughness is accounted for in the dust emission calculation
using the drag partition parameterization from Marticorena
and Bergametti (1995) with input from MODIS Collection 5
monthly leaf area index for the specific year of simulation
from 2007 to 2015 and from a climatology for 2016, com-
bined with a static roughness length for arid regions (Prigent
et al., 2012) as described in Klose et al. (2021). The X pa-
rameter in the Marticorena and Bergametti (1995) drag par-
tition follows Pierre et al. (2014). The USGS climatological
database for vegetation is used by the meteorology and land
surface scheme. A soil moisture correction is used for MB95
and K14 as in Fecan et al. (1999) with a revised scaling fac-
tor as in Klose et al. (2021) and Zender et al. (2003). GO1
uses the default GOCART soil moisture correction, which
is based on Belly et al. (1964) as described in Ginoux et al.
(2001), and a threshold friction velocity as described in Pérez
etal. (2011).

2.2 Radiation and dust optical properties

In MONARCH, dust is coupled online with the RRTMG ra-
diation scheme, which accounts for short-wave (SW) absorp-
tion and scattering and long-wave (LW) absorption (Iacono
et al., 2008). The input dust optical properties (extinction ef-
ficiency, single-scattering albedo and asymmetry factor) for
each particle size bin and wavelength are based on refractive
indices (RIs) that account for the variation in mineralogical
composition by size (Perlwitz et al., 2015a, b; Scanza et al.,
2015; Pérez Garcia-Pando et al., 2016) in the SW and de-
rived from the OPAC data set (Hess et al., 1998) in the LW.
Optical properties are calculated using Mie scattering the-
ory (Mishchenko et al., 2002) assuming that dust is spherical
despite its well-known non-sphericity (Kok et al., 2017). Al-
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Table 1. Overview of the characteristics of the reanalysis.

Reanalysis configuration

Domain, resolution and output

Data set length

Output frequency
Geographical domain
Horizontal resolution
Vertical resolution
Top pressure

Output variables
Uncertainty estimation

10 years (2007-1016)

3 h (starting at 03:00 UTC)

regional

0.1° latitude x 0.1° longitude in a rotated grid

40 hybrid pressure—sigma layers interpolated to 15 standard pressure levels (1000-100 hPa)
50hPa

6 (surface), 3 (total column), 3 (upper air)

based on the spread in the MONARCH ensemble (12 members)

Data assimilation (DA)

Assimilation algorithm

Control vector

Assimilated observations
Observation satellite platform
Observational coverage

Length of the assimilation window

ensemble-based DA (4D-LETKF; Hunt et al., 2007; Schutgens et al., 2010; Di Tomaso et al.,
2017)

3D mixing ratio of dust coarse bins (ranging from 1.2 to 20 um in dust particle diameter)
MODIS DB DOD¢garse at 550 nm (Ginoux et al., 2010, 2012; Pu and Ginoux, 2016)

NASA Aqua (EOS PM-1)

clear sky, snow-free, land and daytime

24h

Chemical weather system

Aerosol model

MONARCH (Multiscale Online Nonhydrostatic AtmospheRe CHemistry model v1.0,
with improvements; Pérez et al., 2011; Klose et al., 2021)

Dust emission scheme

MBO95 (Marticorena and Bergametti, 1995), GO1 (Ginoux et al., 2001), K14 (Kok et al., 2014)

Particle size bins

eight bins with ranges 0.2-0.36, 0.36-0.6, 0.6-1.2, 1.2-2, 2-3.6, 3.6-6, 612 and 12-20 um
in particle diameter

Particle size distribution at emission
(before perturbation)

PSD as in Kok (2011)

Meteorological model

NMMB (Nonhydrostatic Multi-scale Model on the B grid; Janjic and Gall, 2012)

Meteorological initialization

ERA-Interim (Dee el al., 2011) and MERRA-2 (Gelaro et al., 2017)
with ERAS soil information (Hersbach et al., 2020)

Radiation scheme

RRTM (Iacono et al., 2008)
LW: OPAC RIs (Hess et al., 1998); SW: mineralogy-based RIs (Gongalves et al., 2022)
spherical particle shape

Microphysics scheme
Surface layer

Ferrier (Ferrier et al., 2002)
NMMB similarity theory (Janjic, 1994, 1996b)

Land surface scheme

Noah (Ek et al., 2003)

Turbulence scheme

Mellor—Yamada—Janji¢ (Janjic, 1996a, 2001)

Convection scheme

Betts—Miller—Janji¢ (Betts, 1986; Betts and Miller, 1986; Janjic, 1994, 2000)

Ensemble generation

multi-parameter, multi-physics source perturbations, and multi-meteorological initial
and boundary conditions

though MONARCH now allows accounting for the effect of
dust non-sphericity upon the optical properties (Klose et al.,
2021), this option was not ready by the start of the reanalysis
production.

To calculate the mineralogy-based size-dependent RIs in
the SW, we applied the multi-component Maxwell Garnett

https://doi.org/10.5194/essd-14-2785-2022

theory (Markel, 2016) to internal mixtures of eight domi-
nant dust minerals (Gongalves et al., 2022) derived from the
soil mineralogical atlas of Claquin et al. (1999). The single-
mineral RIs were taken from Scanza et al. (2015). The min-
eral fractions in each size bin are estimated for each of the
28 soil types considered in the atlas based on brittle fragmen-
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(a) MODIS DOD coarse (b) Uncertainty for MODIS DOD coarse

Figure 1. Example of assimilated observations for 9 July 2012:
DODcoarse retrieved from the Aqua MODIS DB Level 2 products
(Collection 6; a) and the associated observation uncertainty used in
the assimilation algorithm (b).

tation theory (Kok, 2011). For each size bin and wavelength,
we finally retain the median real and imaginary RIs across
the 28 soil types. In the visible band, the obtained median
RIs compare well with recent chamber-based retrievals (Di
Biagio et al., 2019) and in situ aircraft measurements (Den-
jean et al., 2016), as shown in Gongalves et al. (2022).

The dust-radiation coupling allows the computation of the
direct radiative effect at each radiation time step with a sim-
ple double-call approach. We also calculate direct normal ir-
radiance (DNI) and global horizontal irradiance (GHI) at the
surface, under all-sky conditions, from downward fluxes in
ultraviolet—visible—near-infrared bands of the model. While
GHI includes direct and diffuse beams collected by a hori-
zontal unit surface, DNI accounts for the direct beam hitting
a normal surface. These variables are useful for applications
in the context of solar energy production.

3 Generation of ensemble perturbations

We adopted an ensemble-based data assimilation scheme to
estimate dust. Hence model uncertainty, expressed as back-
ground error covariance in the data assimilation algorithm,
is estimated from the realizations of the dust fields in an en-
semble of MONARCH model calculations. The use of an en-
semble of model simulations allows the estimation of a flow-
dependent background uncertainty that would otherwise be
difficult to estimate due to the highly variable nature of dust
concentrations. We generated a 12-member ensemble using
different meteorological initial and boundary conditions and
dust emission schemes, along with additional perturbations
in the model emission parameters. Such perturbations aim
at representing the model uncertainty, mainly in dust emis-
sion, which is one of the major contributors to model error
(Huneeus et al., 2011), but also in other aspects of the dust
cycle where meteorology has a role, such as transport and
deposition. The characteristics of each ensemble member are
listed in Table S1 in the Supplement and described below.
The benefit of combining meteorological and aerosol
source perturbations is shown in Rubin et al. (2016) and

Earth Syst. Sci. Data, 14, 2785-2816, 2022
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DJF 2007-2016

MAM

JA

SON

0° 20°E  40°E
100 10! 102 103

observation counts

Figure 2. Maps of counts of assimilated observations for the whole
period (2007-2016; top row) and for the different seasons (DJF,
MAM, JJA, SON; rows 2 to 5) of the 10-year period.

Escribano et al. (2022). The meteorology in our reanalysis
is re-initialized every day using global reanalyses. Our en-
semble uses two different meteorological reanalyses as ini-
tial conditions at the start of every daily run (at 00:00 UTC)
and as boundary conditions every 6 h. ERA-Interim (Berris-
ford et al., 2011; Dee el al., 2011) is used in six ensemble
members, and MERRA-2 (Gelaro et al., 2017) together with
ERAS soil information (Hersbach et al., 2020) is used in the
remaining six members.

Experiments conducted in Escribano et al. (2021) showed
that using different dust emission schemes provides a better
characterization of the background covariance than a single

https://doi.org/10.5194/essd-14-2785-2022
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scheme with parameter perturbations due to the large vari-
ability in the modelled emissions. The ensemble uses three
different emission schemes briefly introduced in Sect. 2,
namely MB95 (as in Pérez et al., 2011), GO1 (as in Ginoux
et al., 2001) and K14 (as in Kok et al., 2014). Each emis-
sion scheme was used four times (twice in each of the two
six-member groups driven by the different meteorological re-
analyses). In addition, each of the 12 ensemble members was
run with a different value for one or more parameters in the
corresponding emission scheme following Di Tomaso et al.
(2017). Specifically, we perturbed the threshold friction (or
threshold wind velocity for one of the emission schemes),
which is soil-moisture-dependent and determines the friction
or wind velocity above which soil particles begin to move in
saltation, and the dust emission flux across each of the eight
dust model bins. The threshold friction or wind velocity was
perturbed by drawing a multiplicative random factor from a
normal distribution with mean 1 and spread 0.4. The dust
emission flux was perturbed imposing a physical constraint.
Correlated noise was used across the bins so that noise corre-
lation decreases with increased difference in the normalized
cubic radius between the bins; the noise has mean 1 and a
standard deviation of 30 % of the unperturbed value in each
bin. These emitted size distribution perturbations used here
are analogous to those in Fig. 1 in Di Tomaso et al. (2017)
but departing from Kok (2011) instead of D’ Almeida (1987).
The structure of the emission parameter perturbations is tem-
porally and spatially constant.

4 Assimilated observations

We have used for assimilation an innovative DOD data set
derived from the MODIS DB aerosol products (Collection 6),
which covers all cloud-free and snow-free land surfaces. DB
aerosol retrievals are available over areas not easily covered
by other observational data sets, e.g. very bright reflective
surfaces such as deserts, and are therefore particularly rel-
evant for dust applications. The MODIS Dark Target prod-
uct, for example, has a limited coverage over land since the
retrieval algorithm assumes low surface albedo. The DB al-
gorithm uses top-of-the-atmosphere reflectances at 412 and
470 nm, and, in the presence of a heavy dust load, also at
650 nm. It exploits the fact that, over most surfaces, a darker
surface and stronger aerosol signal are seen in the blue wave-
length range than at longer wavelengths. The quality of the
MODIS DB AOD product is improved in Collection 6 com-
pared to previous releases, as shown by the work of Sayer
et al. (2014) and Gkikas et al. (2015), based on Level 2
and Level 3 retrievals, respectively. Furthermore, a recent
study by Schutgens et al. (2020) showed that DB AOD from
MODIS (on board the Aqua satellite) is one of the best prod-
ucts when compared to other satellite products.

More specifically, we have assimilated DODgoyrse re-
trieved from MODIS DB Level 2 aerosol products as de-
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scribed in Ginoux et al. (2010, 2012) and Pu and Ginoux
(2016). The generation of the dust retrievals includes the dif-
ferent steps of formatting, dust filtering and retrieval. First,
aerosol products such as AOD, single-scattering albedo and
the Angstrém exponent are interpolated to a regular grid of
0.1° latitude x 0.1° longitude using the algorithm described
by Ginoux et al. (2010). The DOD is then derived from AOD
following the methods of Ginoux et al. (2012) with adaptions
to MODIS Collection 6 aerosol products. To separate dust
from other aerosols, two variables are used: the Angstr(jm ex-
ponent, which is highly sensitive to particle size (Angstrom,
1929; Eck et al., 1999), and a single-scattering albedo at
412 nm less than 0.95 for dust due to its absorption of solar
radiation (Takemura et al., 2002). Subsequently, an empirical
continuous function relating the Angstrém exponent to fine-
mode AOD (Anderson et al., 2005, their Eq. 5) is applied to
retrieve the dust fine-mode fraction of optical depth.

Since the retrievals are based on visible reflectances, their
availability is limited to the daytime only. The MODIS in-
strument is on board two NASA polar-orbiting satellites,
namely Aqua and Terra. However, we have considered for as-
similation only DOD,ggrse retrievals based on measurements
from MODIS on board the Aqua platform. The equatorial
crossing local time of the Aqua satellite is at 13:30 in an as-
cending orbit. In our 3-hourly discretization of the assimila-
tion window, the assimilated observations are associated with
the time slot (or interval) centred at 12:00 UTC and, due to
the 4D extension of the implemented LETKF scheme, affect
the whole assimilation window.

We have used 0.07 + 0.075 DOD¢parse to characterize the
observation uncertainty in the assimilated observations, fol-
lowing the linear model of previous studies (Hsu el al., 2013;
Sayer et al., 2013) with the coefficients adjusted for our
application by inflating the uncertainty for low DOD¢oarse
values, which were otherwise detrimental for the analy-
sis. We have assumed a diagonal observation error covari-
ance matrix, i.e. uncorrelated error between the different re-
trievals. Observation coordinates were pre-processed to be
mapped on the rotated longitude—latitude regional grid of
MONARCH. Figure 1 shows an example of the extent of the
daily observational coverage on a given date (9 July 2012)
together with the associated observational uncertainty.

Maps of observation counts are shown in Fig. 2 for the
whole reanalysis period (top row of Fig. 2) and for the differ-
ent seasons (rows 2 to 5 of Fig. 2), namely the winter seasons
represented by December, January and February (DJF); the
spring season represented by March, April and May (MAM);
the summer season represented by June, July and August
(JJA); and the autumn season represented by September, Oc-
tober and November (SON). As expected, there is a higher
number of dust retrievals closer to sources than far from
them. The total number of retrievals is bigger in the SON
and JJA seasons than in the other seasons. During the bo-
real winter the number of retrievals inland from the Gulf of
Guinea increases compared to other times of the year due to
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Figure 3. Schematic of the 24 h assimilation window for the production of the reanalysis. The ensemble member analyses are used to
initialize the corresponding ensemble member first guess in the subsequent simulation/state estimation window.

transport of dust by northeasterly harmattan winds. The num-
ber of dust retrievals decreases in the north of Europe and
Asia in the DJF season as MODIS DB covers only snow-free
surfaces. Yearly observation counts are consistent throughout
the whole period (see Fig. S1 in the Supplement).

5 Data assimilation algorithm

The reanalysis was produced using a local ensemble trans-
form Kalman filter (LETKF) data assimilation scheme (Hunt
et al., 2007; Miyoshi and Yamane, 2007; Schutgens et al.,
2010; Tsikerdekis et al., 2021) coupled to the MONARCH
ensemble. We have used an implementation of the LETKF
scheme with four-dimensional extension (4D-LETKF) as de-
scribed in Hunt et al. (2007) in order to estimate the dust
analysis over a 24 h assimilation window. The overall scheme
implements an iterative approach consisting of a forward
simulation of the MONARCH ensemble for 24 h and a state
estimation step. The two steps are coupled at each iteration.
The state estimation step is an execution of the LETKF which
combines information from the dust observations and the
model ensemble simulations. The forward simulation of the
MONARCH ensemble is named first guess (or background)
to indicate a simulation initialized from an analysis and thus
incorporates information from past observations. As a result
of the estimation step, the analysis is estimated at each assim-
ilation window using both concurrent and past observations.

The LETKEF is well suited to computationally demanding
calculations such as the estimation of a high-resolution anal-
ysis carried out in this work. The analysis at each model grid
point can be calculated independently, and at each grid point
only observations within a certain distance are assimilated.
Furthermore, the use of a dynamic characterization of model
background uncertainty, through ensemble forward simula-
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tions, is well suited for highly varying dust fields. A detailed
description of the scheme can be found in Hunt et al. (2007).
Below we discuss the basic concepts behind the LETKF al-
gorithm.

Consider a state vector x of the dynamic variables of a sys-
tem, in our case the dust mass mixing ratio. The mean anal-
ysis increment at a grid point is estimated as a linear combi-
nation of the background ensemble perturbations X°:

@ =x"+X w, 1)

where we use the superscripts a and b to denote the analy-
sis and background state vector, respectively, and where the
ith column of the matrix X? is x?® —%°, {i =1,2,...,k}
with k ensemble members (12 in our case), i.e. the differ-
ence between the ith ensemble member x°® and the ensem-
ble mean x¥°. w is termed the “weight” vector, specifying
what linear combination of the background ensemble pertur-
bations is added to the background mean to obtain the analy-
sis ensemble. The weight vector is given by

w=[YRT'YP 4 (k — DIIT'YPR ™I (p° — 3, )

where Y is the background ensemble perturbation matrix in
observation space (or background observation ensemble per-
turbation matrix); R is the observation error covariance ma-
trix, which we assume is diagonal; I is the identity matrix;
y° is the vector of observations; and J° is the mean back-
ground observation ensemble. The background observation
ensemble is obtained applying the observation operator A(-)
to the ensemble members x°@); i.e. yP@ = p(xP®),

The 4D extension of the algorithm is coded such that back-
ground observation means y; and perturbation matrices Y
are formed at the various time slots j when the observations
are available; then they are concatenated to form a combined
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background observation mean y and perturbation matrix Y,
where the time slots are the time intervals into which the as-
similation window is split. y and Y are used for the calcu-
lation of a weight vector w using the standard LETKF; i.e.
we calculate a single w based on all innovations throughout
the day. This same w is then applied to the state vector at
different times throughout the assimilation window.

Spatial covariance localization can be applied in the
LETKEF algorithm through R localization; i.e. the localiza-
tion is performed in the observation error covariance matrix,
making the influence of an observation on the analysis decay
gradually towards zero as the distance from the analysis lo-
cation increases. The use of spatial localization reduces the
effect of spurious long-range covariances due to sampling er-
rors produced by a low dimensionality of the ensemble. To
achieve this, the observation error is divided by a distance-
dependent function that decays to zero with increasing dis-

ist2
tance: eid% , where dist is the distance in the grid space be-
tween an observation and the model grid and [ is a horizon-
tal localization factor. The localization factor was set to 15;
hence the observation influence practically fades to zero be-
fore 30 model grid points away from the observation location
(in the horizontal plane).

The control variable is formulated in terms of the total
mixing ratio over the five model prognostic variables (cor-
responding to different dust particle size bins) used to sim-
ulate coarse dust in MONARCH. Therefore an observation
operator is needed to map the ensemble mean control vec-
tor into the observation space. The observation operator has
two components: (i) a spatial interpolation of the model sim-
ulation to the observation location, which is done at the ob-
servation longitude and latitude, and (ii) the calculation of
simulated DODcoarse at the wavelength of 550 nm which is
calculated using the five coarse model size bins ranging from
1.2 to 20 um in dust particle diameter. The analysis of the
model’s fine dust fraction (i.e. the three model size bins from
0.2 to 1.2 um in dust particle diameter) is estimated propor-
tionally to the change (due to observation assimilation) of
the coarse fraction. This choice is motivated by the fact that
observations do not carry information about either fine dust
particles or particle size distribution. Hereafter, DOD and
DODcoarse refer to the wavelength of 550 nm.

6 Domain, resolution and other simulation settings

This section presents the key settings for the modelling, ob-
servational and data assimilation aspects that have been de-
scribed in Sects. 2 to 5 and that are summarized in Table 1.
The reanalysis extends over the period 2007-2016 and cov-
ers a regional domain centred around Northern Africa, the
Middle East and Europe (hereafter called the NAMEE re-
gion) that also includes parts of central Asia and the At-
lantic and Indian oceans. The domain has a horizontal res-
olution of 0.1° latitude x 0.1° longitude in a rotated grid and
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40 hybrid pressure—sigma model layers in the vertical. The
model top was set to 5000 Pa. This domain configuration is
used operationally to deliver daily forecasts at the World Me-
teorological Organization Barcelona Dust Regional Center
(https://dust.aemet.es/, last access: 8 April 2022).

The model runs were conducted using a dynamics time
step of 20s. Lateral diffusion is called every time step; ad-
vection every 2 time steps; turbulence, surface layer, dust
emission, sedimentation and dry deposition routines every
4 time steps; moist convection, microphysics and wet depo-
sition every eight time steps; and short- and long-wave ra-
diation routines every 180 time steps. The MONARCH en-
semble of forward simulations was run daily at 00:00 UTC
during 24 h, which was used as the first guess for the data as-
similation. Simulation outputs are provided every 3 h (03:00,
06:00, 09:00, 12:00, 15:00, 18:00, 21:00 and 00:00 UTC),
which is also the time resolution of the reanalysis product.
Figure 3 shows the scheme of the 24 h assimilation window
for the production of the reanalysis where each ensemble
member forward simulation is initialized at 00:00 UTC us-
ing the dust analysis produced in the previous window.

Simulations were run without inflating the background or
analysis covariance errors during the assimilation cycle. A
quality control has been applied as in Di Tomaso et al. (2017)
that rejects observations by a first-guess departure check (ob-
servations further than 1.4, in DODgarse, from the first guess
are rejected). This quality control is applied since the obser-
vations have not been corrected before assimilation for possi-
ble systematic biases. After the estimation of total dust coarse
mixing ratio analysis, the analysis increments are partitioned
among the dust coarse size bins according to their fractional
contribution to the total coarse mixing ratio in the forward
simulation step (i.e. before assimilation).

A spin-up period was necessary for the soil variables that
need a longer period to adjust. We have run a 1-year spin-
up with a two-member experiment, each of them initialized
using either MERRA-2 or ERA-Interim meteorology with
ERAS soil information. Furthermore, a 2-month spin-up pe-
riod was needed for the ensemble without data assimilation,
to have a good representation of the ensemble spread every-
where in the atmospheric domain.

6.1 Ensemble calibration

MONARCH uses a globally uniform, empirically con-
strained tuning (or calibration) factor for the total emitted
dust mass, referred to as dc,. This factor varies according
to the specified configuration settings for the simulation. In
particular, it depends on the emission scheme and the me-
teorological initial and boundary conditions used to initial-
ize the simulation. We calibrated six free-running experi-
ments, which cover all the different combinations between
the emission scheme and meteorological conditions. The cal-
ibration factors were obtained by rescaling initial values for
the calibration factors, namely dc,(m)o1q, by the ratio be-
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Table 2. List of reanalysis variables. For each variable the following ensemble statistics are calculated and archived: ensemble mean, standard

deviation, max and median. n/a — not applicable.

Variable description (name in archive) Unit Spatial di-  Description of First guess  Analysis
mension dust particle size

Dust concentration (concdubinl-8) kgm ™3 3D eight bins v v
Direct normal irradiance (dni) Wm—2 2D n/a v

Accumulated dry deposition over the previous 3h (drydu) kg m2@3h)~! 2D eight bins v

Dust extinction coefficient at 550 nm (ec550du) m! 3D total v v
Global horizontal irradiance (ghi) Wm—2 2D n/a v

Dust load (Ioaddu) kgm—2 2D eight bins v v
Dust optical depth at 550 nm (0d550du) unitless 2D total v v
Coarse dust optical depth at 550 nm (od550ducoarse) unitless 2D total v v
Dust surface concentration (sconcdubin1-8) kg m3 2D eight bins v v
Dust surface extinction coefficient (sec550du) m~! 2D total v v
Accumulated wet deposition over the previous 3 h (wetdu) kg m23h~! 2D eight bins v

Height of pressure level above sea level (z) m 3D n/a v

Table 3. Averaged DOD of first guess (fg), analysis (an) and analy-
sis increments (an-fg) for the full period (2007-2016), for different
seasons (DJF, MAM, JJA, SON) and for individual years.

Period Mean fg DOD  Mean an DOD  Mean analysis

increments
2007-2016 0.1066 0.1 —0.0066
DJF 0.0806 0.0781 —0.0025
MAM 0.1353 0.1268 —0.0084
JJA 0.1364 0.1261 —0.0103
SON 0.0734 0.0681 —0.0053
2007 0.107 0.0994 —0.0076
2008 0.1185 0.1117 —0.0068
2009 0.1049 0.0993 —0.0056
2010 0.1091 0.1041 —0.005
2011 0.1056 0.0994 —0.0063
2012 0.1113 0.1055 —0.0058
2013 0.0986 0.091 —0.0076
2014 0.0943 0.0879 —0.0064
2015 0.1125 0.1046 —0.0079
2016 0.1044 0.0968 —0.0075

tween the MODIS DB mean DOD.yyse and the ensemble
free-run mean DOD,se calculated over the whole domain;
ie.

DODcoarse, MODIS
DODcoarse, model

withm =1,...,6, 3

deal(M)new = deal(m)old

where m indicates an ensemble member. We have repeated
the estimation twice where the second simulation re-run has
used the calibration factors estimated from the first run. The
final estimated calibration factors for each of six ensemble
members are reported in Table S2.
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7 Reanalysis product description

The reanalysis data set consists of three-dimensional (3D)
and two-dimensional (2D) variables (see Table 2). The
3D, or upper-air, variables include dust mass concentration
[kgm~3] for each dust size bin, the dust extinction coefficient
at 550nm [m~!] integrated over all size bins and the height
of the pressure level above sea level [m]. The 2D variables
are either surface fields or total column fields. The 2D vari-
ables for each dust size bin include dry and wet accumulated
dust deposition over the previous 3 h [kgm~2 (3h)~!] and in-
stantaneous total column dust load [kg m~2], dust mass sur-
face concentration [kg m~3], DOD [unitless] and DOD¢oarse
[unitless] at 550 nm. The set of archived 2D variables is com-
pleted by the surface extinction coefficient at 550 nm [m~!],
direct normal irradiance [W m~2] and global horizontal irra-
diance [Wm~2]. These variables have been used to produce
dust-relevant information for different sectors (Votsis et al.,
2020, 2021) and related validation exercises (Mytilinaios
et al., 2022a, b). For example, a dust-PMjq field has been
derived from the 2D, bin-resolved dust mass surface concen-
tration for air quality applications. This field will be used to
evaluate the ability of the reanalysis to reproduce dust con-
centration values at the ground (Barnaba et al., 2022a). Over
Europe, the latter will be extracted from measured PM val-
ues following a procedure similar to that described (Barn-
aba et al., 2022b). Furthermore, visibility data from 3D dust-
extinction coefficient fields have been used for aviation ap-
plications (Basart et al., 2021), while soiling index based on
wet and dry dust deposition has been used to develop prod-
ucts for solar energy production (Rautio et al., 2022).

Both analysis and first-guess fields are available for the
variables that are diagnosed from the state vector. As men-
tioned earlier, the first guesses are model forward simulations
initialized with an analysis. When available, the analysis field
is the recommended output for that variable. A set of ensem-
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Figure 4. Maps of mean 3-hourly first guess of wet and dry accumulated (over the previous 3 h) dust deposition [kgm_2 (3h)~!7 and
analysis of total column dust load [kg m_2] and of the dust surface extinction coefficient at 550 nm [m_l] calculated for the whole period

(2007-2016). Model fields are the ensemble mean.

ble statistics is calculated and archived for each output vari-
able, namely the ensemble mean, standard deviation, maxi-
mum and median. The spread among the ensemble members,
represented by the standard deviation with respect to the en-
semble mean, can be interpreted as a measure for the uncer-
tainty in the mean estimates. Figure 4 shows the ensemble
mean over the whole reanalysis period for the analysis or first
guess of some of the 2D variables. While model fields have
been produced on 40 vertical levels, the data are stored on
15 standard pressure levels between 1000 and 100 hPa (i.e.
1000, 975, 900, 850, 750, 700, 600, 500, 400, 350, 300, 250,
175, 150, 100 hPa), which were defined taking into account
regulatory standards in the aviation sector (in view of end-
user products developed from the reanalysis in this sector;
Votsis et al., 2020). In that way we reduced storage space
while easing the use of the vertical information.

The reanalysis data set is structured into individual Net-
work Common Data Form (NetCDF) files per variable and
type of ensemble statistics. Further details on the file struc-
ture of the data set are reported in Sect. 9, while the naming
convention for the data set files and folders is explained in
Appendix A.
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mean.

8 DOD evaluation

In this section we validate the reanalysis DOD or DODcoarse
in terms of data assimilation inner diagnostics (analysis in-
crements and statistics of departures from assimilated ob-
servations) and verify it against independent ground-based
observations. We also discuss the DOD spatial and tem-
poral patterns over the reanalysis domain and period. Fig-
ure 5 highlights the location of major dust source areas that
will be used in the discussion. The verification of DOD
and DOD¢garse against long-term ground-based observations
across the domain is a first step towards a more comprehen-
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sive evaluation of the reanalysis data set that is planned in
follow-up papers (Barnaba et al., 2022a; Di Tomaso et al.,
2022; Mytilinaios et al., 2022a, b), which include the com-
parison against independent sets of in situ, column-based and
profile retrievals.

8.1 DOD geographical distribution

Figure 6 shows the ensemble annual and seasonal mean DOD
for the first guess (left column) and the analysis (central col-
umn) during the whole reanalysis period. In agreement with
observations, the highest DOD values are placed over the ma-
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jor emission areas of the domain, in particular in the Bodélé
Depression in Chad, the Erg Chech in Algeria, and the El
Djouf between Mauritania and Mali, followed by the Arabian
Desert; the Taklamakan Desert in northwest China; and the
smaller areas of the Grand Erg Oriental in Algeria, the Grand
Sand Sea between Libya and Egypt; and the Kharan Desert
in southwestern Pakistan. Table 3 reports the averaged DOD
of first guess, analysis and analysis minus first guess (analy-
sis increments) when calculated for the whole domain for the
full period, for different seasons (DJF, MAM, JJA, SON) and
for individual years.
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The decadal mean analysis DOD (top row of Fig. 6) is gen-
erally smaller than the first-guess DOD except in the Takla-
makan and Thar deserts and in areas where the mean DOD is
below 0.3. Therefore, on average, MONARCH emissions are
likely too strong for the configurations used, although a po-
tentially too weak deposition cannot be discarded. The latter
is strongly dependent upon the emitted size distribution that
evolves during transport.

Seasonal changes in the geographical distribution of the
analysis mean DOD (rows 2 to 5 of Fig. 6) are consistent
with well-known patterns (Prospero et al., 2002; Ginoux
et al., 2012): (i) dust peaks everywhere during spring and
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summer, in particular, across the Taklamakan Desert during
spring when more dust-generating cold fronts arrive in the
area; (ii) dust from the south Sahara and Sahel is preferen-
tially transported by northeasterly harmattan winds towards
the Gulf of Guinea in winter and spring; (iii) the dust plume
that originated in western Africa and is transported across the
tropical North Atlantic is shifted towards northern latitudes
in summer along with the Intertropical Convergence Zone
(ITCZ; Moulin et al., 1997); (iv) dust is strongly mobilized
on the Arabian Peninsula and in the Tigris—Euphrates Basin
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in summer by the north-northwesterly shamal winds; (v) the
lowest overall DOD is simulated everywhere in autumn.

8.2 DOD analysis increments

Figure 6 also shows the difference between DOD analysis
and first guess (namely analysis increments; right column)
averaged over the full reanalysis period (top row). Non-zero
systematic analysis increments are to be interpreted as sys-
tematic corrections to the model simulations and can serve
as a proxy for model bias. By applying these corrections,

https://doi.org/10.5194/essd-14-2785-2022



E. Di Tomaso et al.: MONARCH dust reanalysis

the analysis improves the underlying model. The patterns of
these systematic corrections vary with season and geographi-
cal location. While over the entire domain the mean analysis
and first guess are comparable, the biggest systematic neg-
ative corrections (removing mass from the atmosphere) are
linked to overestimation of sources’ strengths in the Bodélé
Depression in Chad; in the Saudi Arabia lowlands; and in the
Balochistan region of southwestern Asia that extends over
Iran, Afghanistan and Pakistan and contains, for example, the
Kharan Desert. Negative mean increments are also present
but to a lesser extent in other arid and semi-arid areas such as
the Erg Chech in Algeria, the Great Sand Sea in Libya, the
Nubian Desert in Sudan and eastwards of the Caspian Sea.
Positive mean increments calculated for the whole reanalysis
period are less widespread than the negative increments. The
strongest values are over the Thar Desert, in the northern part
of Syria, over a long stretch inland from the Mediterranean
Sea in the north of Africa, and in the desert of El Djouf be-
tween Mauritania and Mali. All in all, as expected, the largest
positive or negative analysis increments correspond to areas
with more dust load, i.e. to source regions and their vicinity.

The patterns of the mean increments depend upon the sea-
son (see rows 2 to 5 of Fig. 6). These patterns are clearly
linked to the seasonal changes in dust activities in the differ-
ent regions, as mean increments are, in absolute value, higher
in the presence of high mean DODs compared to low DOD
values. The areas that show the strongest seasonality with
respect to the analysis increments are the Bodélé Depression
and the Arabian and Taklamakan deserts. The overestimation
of the Bodélé source strength in the first guess is more pro-
nounced in winter and spring. In spring the emissions from
the Taklamakan Desert, Syria and the northern part of the
Arabian Desert are clearly underestimated, while in summer
strong negative increments are present all over the Arabian
Desert. Wide areas in the Sahara are affected by negative in-
crements in the spring and summer. The Balochistan region
and the Thar Desert show negative and positive increments,
respectively, throughout the year, but their magnitudes are
greater in spring and summer.

The patterns of the increments are consistent among the
different years (Figs. S2 and S3) and vary mostly in the am-
plitude of the mean corrections, although there are some ex-
ceptions. Positive increments over the Thar Desert, northern
Syria and the north of the Arabian Desert mainly appear in
the first part of the reanalysis, between 2007 and 2012, in
contrast to the small positive or even negative increments
in the case of the Arabian Desert in the subsequent years.
Strong negative increments east of the Caspian Sea are ap-
plied mainly through 2007 to 2010. Those yearly differences
suggest changes, for example in land use, that are not cap-
tured by the model. Negative corrections in the west of the
Sahara are more widespread in 2007 and 2008 than in other
years due to the higher mean DOD during those 2 years.
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Table 4. Averaged DOD¢oarse of observation-collocated first guess
(fg), observation-collocated analysis (an) and assimilated MODIS
DB retrievals for the full period (2007-2016), for different seasons
(DJE, MAM, JJA, SON) and for individual years.

Period Mean fg Mean an Mean MODIS DB

DODCOHI'SC DODcoarse DODCOHISC
2007-2016 0.1914 0.1685 0.1912
DJF 0.1445 0.1374 0.1573
MAM 0.2323 0.2074 0.2337
JJIA 0.2452 0.2073 0.2356
SON 0.1427 0.1228 0.1394
2007 0.1905 0.1644 0.1858
2008 0.2108 0.1877 0.2114
2009 0.1892 0.1682 0.1921
2010 0.1947 0.1772 0.202
2011 0.1894 0.1679 0.192
2012 0.195 0.1752 0.1989
2013 0.1832 0.1577 0.1771
2014 0.1768 0.1546 0.176
2015 0.1948 0.1697 0.1929
2016 0.1896 0.1621 0.1836

8.3 Statistics of departures from assimilated
observations

We compare here the reanalysis DODcggrse With the assim-
ilated observations. Figure 7 shows the DODggyrse for the
observation-collocated ensemble mean first guess and anal-
ysis and for the assimilated observations averaged over the
full reanalysis period (top row of Fig. 7) and over the DJF,
MAM, JJA and SON seasons (from the second to the fifth
row of Fig. 7). Table 4 reports the corresponding values av-
eraged over the whole domain for the full period, for differ-
ent seasons and for individual years. By visual inspection,
the analysis is closer to the assimilated observations in all
the time periods considered, which constitutes a good san-
ity check for the assimilation scheme. This is also confirmed
when the averages are calculated for individual years of the
reanalysis period (Figs. S4 and S5). The seasonality in the
model simulations closely resembles that in the observations,
with MAM and JJA being the most active dust seasons.
Figure 8 shows the mean (first and second column of
Fig. 8) and standard deviation (third and fourth column of
Fig. 8) of the first-guess and analysis DOD¢oqarse departures
(respectively) from assimilated observations averaged over
the full reanalysis period (top row of Fig. 8) and over the
different four seasons (from the second to the fifth row of
Fig. 8). The corresponding values averaged over the whole
domain are reported in Table 5, together with the number
of observation counts and statistics calculated for individual
years. The departure statistics, in particular the reduction in
