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Abstract. One of the challenges in studying desert dust aerosol along with its numerous interactions and im-
pacts is the paucity of direct in situ measurements, particularly in the areas most affected by dust storms. Satel-
lites typically provide column-integrated aerosol measurements, but observationally constrained continuous 3D
dust fields are needed to assess dust variability, climate effects and impacts upon a variety of socio-economic
sectors. Here, we present a high-resolution regional reanalysis data set of desert dust aerosols that covers North-
ern Africa, the Middle East and Europe along with the Mediterranean Sea and parts of central Asia and the
Atlantic and Indian oceans between 2007 and 2016. The horizontal resolution is 0.1◦ latitude× 0.1◦ longitude
in a rotated grid, and the temporal resolution is 3 h. The reanalysis was produced using local ensemble trans-
form Kalman filter (LETKF) data assimilation in the Multiscale Online Nonhydrostatic AtmospheRe CHem-
istry model (MONARCH) developed at the Barcelona Supercomputing Center (BSC). The assimilated data are
coarse-mode dust optical depth retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS)
Deep Blue Level 2 products. The reanalysis data set consists of upper-air variables (dust mass concentrations
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and the extinction coefficient), surface variables (dust deposition and solar irradiance fields among them) and
total column variables (e.g. dust optical depth and load). Some dust variables, such as concentrations and wet
and dry deposition, are expressed for a binned size distribution that ranges from 0.2 to 20 µm in particle diam-
eter. Both analysis and first-guess (analysis-initialized simulation) fields are available for the variables that are
diagnosed from the state vector. A set of ensemble statistics is archived for each output variable, namely the
ensemble mean, standard deviation, maximum and median. The spatial and temporal distribution of the dust
fields follows well-known dust cycle features controlled by seasonal changes in meteorology and vegetation
cover. The analysis is statistically closer to the assimilated retrievals than the first guess, which proves the con-
sistency of the data assimilation method. Independent evaluation using Aerosol Robotic Network (AERONET)
dust-filtered optical depth retrievals indicates that the reanalysis data set is highly accurate (mean bias=−0.05,
RMSE= 0.12 and r = 0.81 when compared to retrievals from the spectral de-convolution algorithm on a 3-
hourly basis). Verification statistics are broadly homogeneous in space and time with regional differences that
can be partly attributed to model limitations (e.g. poor representation of small-scale emission processes), the
presence of aerosols other than dust in the observations used in the evaluation and differences in the number
of observations among seasons. Such a reliable high-resolution historical record of atmospheric desert dust will
allow a better quantification of dust impacts upon key sectors of society and economy, including health, so-
lar energy production and transportation. The reanalysis data set (Di Tomaso et al., 2021) is distributed via
Thematic Real-time Environmental Distributed Data Services (THREDDS) at BSC and is freely available at
http://hdl.handle.net/21.12146/c6d4a608-5de3-47f6-a004-67cb1d498d98 (last access: 10 June 2022).

1 Introduction

Desert (or mineral) dust is the most abundant aerosol by mass
in the global atmosphere (Textor et al., 2006) and plays a key
role in the Earth system (Knippertz and Stuut, 2014). It is
emitted from the surface by aeolian processes an doriginates
predominantly – but not only – from desert regions. Dust
affects weather and climate by perturbing the radiative bal-
ance directly through scattering and absorption of solar and
thermal radiation (Pérez et al., 2006; Boucher et al., 2019;
Miller et al., 2014) and indirectly by altering cloud forma-
tion and cloud chemistry (Cziczo et al., 2013; Harris et al.,
2013; Kiselev et al., 2017). It also contributes to the fertil-
ization of the ocean (Jickels et al., 2005; Kanakidou et al.,
2018) and the land (Yu et al., 2015; Rizzolo et al., 2017)
through the deposition of iron and phosphorus, thus affect-
ing the global carbon cycle. All in all, the amount of, spa-
tial distribution of and variability in desert dust have impli-
cations on climate, the environment, air quality (Rodríguez
et al., 2001; Pey et al., 2013; Barnaba et al., 2017) and human
health (Mallone et al., 2011; Morman and Plumlee, 2013;
Pérez García-Pando et al., 2014; Pandolfi et al., 2014; Ter-
radellas et al., 2015; Stafoggia et al., 2016; Querol et al.,
2019), and a variety of socio-economic sectors such as avi-
ation and solar energy production (Schroedter-Homscheidt
et al., 2013; Votsis et al., 2020). Due to the nature of its emis-
sion and transport and its relatively short lifetime (Gliß et al.,
2021), dust varies strongly in space and time, which requires
continuous monitoring both in situ and remotely by satel-
lite, airborne and ground-based sensors (Barnaba and Gobbi,
2004; Kaufman et al., 2005; Marticorena et al., 2010; Kim
et al., 2011; Mona et al., 2012; Pey et al., 2013; Luo et al.,

2015). A major challenge in studying desert dust along with
its impacts is the paucity of direct in situ measurements in the
regions most affected by dust storms. There are some opera-
tional visibility observations providing qualitative estimates
of dust presence (Mahowald et al., 2007), but there is a severe
lack of routine surface aerosol concentration measurements
(Benedetti et al., 2018). In addition to the lack of in situ ob-
servations, there is limited information on aerosol speciation,
which is essential to distinguish dust from other aerosol types
(Rodríguez et al., 2012). Satellites mostly provide column-
integrated aerosol information, but spatially and temporally
resolved surface dust concentration and deposition estimates
are needed to enable detailed impact assessments. Dust ob-
servations or retrievals are therefore best exploited in combi-
nation with model simulations either to provide optimal ini-
tial conditions (analyses) to forecast models (Benedetti et al.,
2014) or to monitor current and past states of the atmosphere
through the production of reanalyses, i.e. complete and con-
sistent four-dimensional reconstructions of the atmosphere.

There are several available global aerosol reanalyses that
include desert dust, such as MERRA-2 (Modern-Era Retro-
spective analysis for Research and Applications, Version 2;
Gelaro et al., 2017; Randles et al., 2017; Buchard et al., 2017)
and CAMSRA (Copernicus Atmosphere Monitoring Service
Reanalysis; Inness et al., 2019) along with their predeces-
sors MERRAero (Modern-Era Retrospective analysis for Re-
search and Applications Aerosol Reanalysis; Buchard et al.,
2015) and MACC-II (Monitoring Atmospheric Composition
and Climate-II; Inness et al., 2013; Cuevas et al., 2015), re-
spectively, and the JRAero (Japanese Reanalysis for Aerosol;
Yumimoto et al., 2017) and the NAAPS (Navy Aerosol Anal-
ysis and Prediction System; Lynch et al., 2016) reanaly-
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ses. These global data sets have been produced at relatively
coarse spatial resolution and by assimilating total aerosol op-
tical depth (AOD). MERRA-2 is NASA’s latest reanalysis.
It has been produced at a spatial resolution of 0.58◦ lati-
tude× 0.6258◦ longitude, with 72 hybrid eta layers and by
assimilating bias-corrected, neural-network-retrieved AOD
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and from the Advanced Very High Resolution Ra-
diometer (AVHRR; over ocean only), as well as AOD from
the Multi-angle Imaging SpectroRadiometer (MISR; over
bright surfaces only) and from the Aerosol Robotic Net-
work (AERONET) of Sun photometers. The latest reanaly-
sis for atmospheric composition produced by the Copernicus
Atmosphere Monitoring Service (CAMS) CAMSRA covers
the period January 2003 to 2020 and is extended by adding
1 year each year. It has been produced at a spatial resolu-
tion of ∼ 80 km and with 60 hybrid sigma–pressure levels
in the vertical, by assimilating Collection 6 MODIS AOD
produced with Deep Blue (DB; over land) and Dark Tar-
get (over land and ocean) algorithms and by additionally as-
similating the Advanced Along-Track Scanning Radiometer
(AATSR) AOD from 2003 to March 2012. JRAero is a global
5-year (2011–2015) reanalysis product constructed by the
Meteorological Research Institute of the Japan Meteorolog-
ical Agency. It has been produced assimilating the MODIS
6-hourly Level 3 AOD product provided by the US Naval Re-
search Laboratory (NRL) and the University of North Dakota
(UND) for the purpose of aerosol data assimilation and is
based on the NASA operational MODIS Level 2 Collection 5
(Dark Target) AOD data set. This same data set has been pre-
viously used, together with MISR AOD, by NRL to produce
the NAAPS 11-year (2003–2013) global gridded aerosol re-
analysis product at a resolution of 1◦ latitude× 1◦ longitude.

At the European level, air quality regional reanalyses (in-
cluding dust) are produced by nine different operational
systems and the associated multi-model ensemble through
the CAMS regional services of the Copernicus programme.
These models assimilate surface observations of O3, SO2,
NO2 and CO and particulate matter (PM2.5 and PM10) opera-
tionally, and one of the models additionally assimilates AOD
in research mode. These products are restricted to an ex-
tended European domain, which excludes major desert dust
sources in Northern Africa and the Middle East. These re-
analyses are produced as an improved product compared to
the daily CAMS analyses, by using the latest validated ob-
servations, but we note they may not be consistent over the
different production periods as they are not necessarily pro-
duced with the same model version.

We present here a regional reanalysis focusing specifically
on desert dust aerosols that overcomes some of the potential
limitations of existing global and regional reanalysis prod-
ucts. The data set was obtained by combining satellite remote
sensing dust retrievals with a dynamical model. It spans a 10-
year period, from 2007 to 2016; has a horizontal resolution
of 0.1◦ latitude× 0.1◦ longitude in a rotated grid; and has 3-

hourly output. It provides a regional reconstruction of past
dust conditions across Northern Africa, the Middle East and
Europe, including the Mediterranean Sea and parts of central
Asia, and the Atlantic and Indian oceans. The reanalysis con-
sists of a set of dust geophysical variables (and their uncer-
tainties) produced with a consistent model and data assimila-
tion scheme, i.e. a frozen version of the code used during the
whole simulation period, including emission schemes, input
data sets and the retrieval algorithm for the assimilated ob-
servations. This ensures the production of a consistent data
set avoiding the introduction of spurious trends that could be
associated with model or assimilation changes.

We have adopted an ensemble-based data assimilation
scheme for the estimation of the dust analysis. The use of
ensemble model simulations has allowed for the estimation
of flow-dependent background uncertainty, which is other-
wise difficult to estimate due to the highly varying nature of
dust concentrations. Assimilating AOD may not necessarily
constrain individual aerosol components because the aerosol
attribution in the analysis increments is typically determined
by the model first guess (Tsikerdekis et al., 2021). To at least
partly overcome this limitation, we have directly assimilated
dust retrievals, namely satellite-derived coarse-mode dust op-
tical depth (DODcoarse) at 550 nm over land surfaces, includ-
ing bright surfaces such as desert areas. The assimilated re-
trievals are based on the MODIS DB algorithm (Hsu el al.,
2013; Sayer et al., 2013), which uses measurements at differ-
ent wavelengths with a different contrast between the surface
and atmospheric aerosols. In particular, the algorithm capi-
talizes on the much lower surface reflectance at ultraviolet
wavelengths than at longer wavelengths.

This new reanalysis data set can be used to support the
provision of climate services and monitoring. It can also
contribute to the development of dust impact mitigation
strategies. For instance, the design of the reanalysis output
fields has been tailored to the specific needs in three socio-
economic sectors affected by mineral dust, which are air
quality and health, energy production, and transport. In addi-
tion to the 3D fields of dust mass concentration, the reanaly-
sis data set includes dust extinction and deposition variables,
along with other variables associated with meteorology and
radiation. In summary, we present here a regional dust reanal-
ysis at an unprecedented resolution using for the first time
specific dust retrievals over dust source regions and includ-
ing grid-level uncertainty estimates.

The following sections describe the different aspects re-
lated to the production of the reanalysis: the dust modelling
aspect, including the dust sources and emission schemes is
outlined in Sect. 2; the generation of ensemble perturba-
tions to best characterize model uncertainty is explained in
Sect. 3; the assimilated dust retrievals and the data assimila-
tion scheme are described in Sects. 4 and 5, respectively. Ad-
ditionally, Sect. 6 describes the details of the reanalysis simu-
lation settings, while Sect. 7 describes the content and struc-
ture of the reanalysis data set. Section 8 provides an evalua-
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tion of the column-integrated dust optical depth (DOD) and
DODcoarse in terms of geographical distribution, the study
of analysis increments, data assimilation inner diagnostics
and comparison against independent observations. Informa-
tion about the data set availability is provided in Sect. 9. Fi-
nally, conclusions are drawn in Sect. 10.

2 MONARCH modelling system

The reanalysis has been produced using the Multiscale
Online Nonhydrostatic AtmospheRe CHemistry model
(MONARCH; Pérez et al., 2011; Haustein et al., 2012; Jorba
et al., 2012; Spada et al., 2013; Badia et al., 2017; Klose
et al., 2021), which consists of advanced chemistry and
aerosol packages coupled online with the Nonhydrostatic
Multiscale Model on the B grid (NMMB; Janjic et al., 2001;
Janjic and Gall, 2012). MONARCH is able to work across
a wide range of spatial scales thanks to its unified non-
hydrostatic dynamical core. In the global setup, MONARCH
is run on a latitude–longitude grid, while the regional ver-
sion used in this work runs on a rotated latitude–longitude
grid. Different physics schemes are available in the NMMB
to resolve turbulence, convection, soil, radiation and clouds.
The exact configuration used in this work is reported in Ta-
ble 1, where the key configuration settings are summarized
for both modelling and data assimilation aspects.

MONARCH represents the atmospheric dust cycle in-
cluding emission, transport and deposition along with dust–
radiation interactions. A variety of dust emission schemes
and configurations are available as described in Klose et al.
(2021), ranging from strongly simplified to physics-based pa-
rameterizations. Dust transport is produced by horizontal ad-
vection, solved with the Adams–Bashforth scheme; vertical
advection, solved with the Crank–Nicolson scheme; and lat-
eral diffusion, which follows the Smagorinsky non-linear ap-
proach. Furthermore, dust is vertically mixed by turbulent
diffusion and deep and shallow convection. Sinks include
gravitational settling, dry deposition through turbulent dif-
fusion, and in-cloud and below-cloud scavenging from both
stratiform and convective clouds. MONARCH follows a sec-
tional approach for dust, i.e. the size distribution is decom-
posed into small size bins that range from 0.2 to 20 µm in
diameter. The particle size distribution (PSD) at emission ei-
ther can be chosen from a set of pre-defined PSDs or is calcu-
lated online, depending on the selected emission scheme. In
this work, we have used a PSD of emitted dust over sources
derived from Kok (2011).

A more detailed description of the dust module of
MONARCH can be found in Pérez et al. (2011) and Klose
et al. (2021), with the latter work including also advances
developed after the start of the dust reanalysis production.
Those recent developments were therefore not yet used in the
present work for which a frozen model version is important.

Below we provide further details on the configuration of the
emission and radiation schemes used in this work.

2.1 Dust emission schemes

MONARCH contains multiple dust emission schemes, of
which we used the following three to generate ensemble
perturbations for the production of the reanalysis: (i) a
scheme based on Marticorena and Bergametti (1995), here-
after called MB95, which is based on saltation flux and soil
texture and was combined with the topographic source mask
from Ginoux et al. (2001) as described in Pérez et al. (2011);
(ii) the GOCART dust emission scheme from Ginoux et al.
(2001) based mainly on a topographic source function, here-
after called G01; (iii) a scheme based on brittle fragmenta-
tion by saltation as in Kok et al. (2014), hereafter called K14.
The location of dust sources is identified by a climatology
of frequency of occurrence (FoO) of DOD greater than 0.2
derived from MODIS DB Collection 6 at the resolution of
0.1◦ latitude× 0.1◦ longitude (Hsu et al., 2004; Ginoux et al.,
2012 – see their Sect. 4.3.1) with a minimal threshold for
FoO equal to 0.05, below which there is no emission. Surface
roughness is accounted for in the dust emission calculation
using the drag partition parameterization from Marticorena
and Bergametti (1995) with input from MODIS Collection 5
monthly leaf area index for the specific year of simulation
from 2007 to 2015 and from a climatology for 2016, com-
bined with a static roughness length for arid regions (Prigent
et al., 2012) as described in Klose et al. (2021). The X pa-
rameter in the Marticorena and Bergametti (1995) drag par-
tition follows Pierre et al. (2014). The USGS climatological
database for vegetation is used by the meteorology and land
surface scheme. A soil moisture correction is used for MB95
and K14 as in Fecan et al. (1999) with a revised scaling fac-
tor as in Klose et al. (2021) and Zender et al. (2003). G01
uses the default GOCART soil moisture correction, which
is based on Belly et al. (1964) as described in Ginoux et al.
(2001), and a threshold friction velocity as described in Pérez
et al. (2011).

2.2 Radiation and dust optical properties

In MONARCH, dust is coupled online with the RRTMG ra-
diation scheme, which accounts for short-wave (SW) absorp-
tion and scattering and long-wave (LW) absorption (Iacono
et al., 2008). The input dust optical properties (extinction ef-
ficiency, single-scattering albedo and asymmetry factor) for
each particle size bin and wavelength are based on refractive
indices (RIs) that account for the variation in mineralogical
composition by size (Perlwitz et al., 2015a, b; Scanza et al.,
2015; Pérez García-Pando et al., 2016) in the SW and de-
rived from the OPAC data set (Hess et al., 1998) in the LW.
Optical properties are calculated using Mie scattering the-
ory (Mishchenko et al., 2002) assuming that dust is spherical
despite its well-known non-sphericity (Kok et al., 2017). Al-
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Table 1. Overview of the characteristics of the reanalysis.

Reanalysis configuration

Domain, resolution and output

Data set length 10 years (2007–1016)
Output frequency 3 h (starting at 03:00 UTC)
Geographical domain regional
Horizontal resolution 0.1◦ latitude× 0.1◦ longitude in a rotated grid
Vertical resolution 40 hybrid pressure–sigma layers interpolated to 15 standard pressure levels (1000–100 hPa)
Top pressure 50 hPa
Output variables 6 (surface), 3 (total column), 3 (upper air)
Uncertainty estimation based on the spread in the MONARCH ensemble (12 members)

Data assimilation (DA)

Assimilation algorithm ensemble-based DA (4D-LETKF; Hunt et al., 2007; Schutgens et al., 2010; Di Tomaso et al.,
2017)

Control vector 3D mixing ratio of dust coarse bins (ranging from 1.2 to 20 µm in dust particle diameter)
Assimilated observations MODIS DB DODcoarse at 550 nm (Ginoux et al., 2010, 2012; Pu and Ginoux, 2016)
Observation satellite platform NASA Aqua (EOS PM-1)
Observational coverage clear sky, snow-free, land and daytime
Length of the assimilation window 24 h

Chemical weather system

Aerosol model MONARCH (Multiscale Online Nonhydrostatic AtmospheRe CHemistry model v1.0,
with improvements; Pérez et al., 2011; Klose et al., 2021)

Dust emission scheme MB95 (Marticorena and Bergametti, 1995), G01 (Ginoux et al., 2001), K14 (Kok et al., 2014)

Particle size bins eight bins with ranges 0.2–0.36, 0.36–0.6, 0.6–1.2, 1.2–2, 2–3.6, 3.6–6, 6–12 and 12–20 µm
in particle diameter

Particle size distribution at emission
(before perturbation)

PSD as in Kok (2011)

Meteorological model NMMB (Nonhydrostatic Multi-scale Model on the B grid; Janjic and Gall, 2012)

Meteorological initialization ERA-Interim (Dee el al., 2011) and MERRA-2 (Gelaro et al., 2017)
with ERA5 soil information (Hersbach et al., 2020)

Radiation scheme RRTM (Iacono et al., 2008)
LW: OPAC RIs (Hess et al., 1998); SW: mineralogy-based RIs (Gonçalves et al., 2022)
spherical particle shape

Microphysics scheme Ferrier (Ferrier et al., 2002)
Surface layer NMMB similarity theory (Janjic, 1994, 1996b)

Land surface scheme Noah (Ek et al., 2003)

Turbulence scheme Mellor–Yamada–Janjić (Janjic, 1996a, 2001)

Convection scheme Betts–Miller–Janjić (Betts, 1986; Betts and Miller, 1986; Janjic, 1994, 2000)

Ensemble generation multi-parameter, multi-physics source perturbations, and multi-meteorological initial
and boundary conditions

though MONARCH now allows accounting for the effect of
dust non-sphericity upon the optical properties (Klose et al.,
2021), this option was not ready by the start of the reanalysis
production.

To calculate the mineralogy-based size-dependent RIs in
the SW, we applied the multi-component Maxwell Garnett

theory (Markel, 2016) to internal mixtures of eight domi-
nant dust minerals (Gonçalves et al., 2022) derived from the
soil mineralogical atlas of Claquin et al. (1999). The single-
mineral RIs were taken from Scanza et al. (2015). The min-
eral fractions in each size bin are estimated for each of the
28 soil types considered in the atlas based on brittle fragmen-
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Figure 1. Example of assimilated observations for 9 July 2012:
DODcoarse retrieved from the Aqua MODIS DB Level 2 products
(Collection 6; a) and the associated observation uncertainty used in
the assimilation algorithm (b).

tation theory (Kok, 2011). For each size bin and wavelength,
we finally retain the median real and imaginary RIs across
the 28 soil types. In the visible band, the obtained median
RIs compare well with recent chamber-based retrievals (Di
Biagio et al., 2019) and in situ aircraft measurements (Den-
jean et al., 2016), as shown in Gonçalves et al. (2022).

The dust–radiation coupling allows the computation of the
direct radiative effect at each radiation time step with a sim-
ple double-call approach. We also calculate direct normal ir-
radiance (DNI) and global horizontal irradiance (GHI) at the
surface, under all-sky conditions, from downward fluxes in
ultraviolet–visible–near-infrared bands of the model. While
GHI includes direct and diffuse beams collected by a hori-
zontal unit surface, DNI accounts for the direct beam hitting
a normal surface. These variables are useful for applications
in the context of solar energy production.

3 Generation of ensemble perturbations

We adopted an ensemble-based data assimilation scheme to
estimate dust. Hence model uncertainty, expressed as back-
ground error covariance in the data assimilation algorithm,
is estimated from the realizations of the dust fields in an en-
semble of MONARCH model calculations. The use of an en-
semble of model simulations allows the estimation of a flow-
dependent background uncertainty that would otherwise be
difficult to estimate due to the highly variable nature of dust
concentrations. We generated a 12-member ensemble using
different meteorological initial and boundary conditions and
dust emission schemes, along with additional perturbations
in the model emission parameters. Such perturbations aim
at representing the model uncertainty, mainly in dust emis-
sion, which is one of the major contributors to model error
(Huneeus et al., 2011), but also in other aspects of the dust
cycle where meteorology has a role, such as transport and
deposition. The characteristics of each ensemble member are
listed in Table S1 in the Supplement and described below.

The benefit of combining meteorological and aerosol
source perturbations is shown in Rubin et al. (2016) and

Figure 2. Maps of counts of assimilated observations for the whole
period (2007–2016; top row) and for the different seasons (DJF,
MAM, JJA, SON; rows 2 to 5) of the 10-year period.

Escribano et al. (2022). The meteorology in our reanalysis
is re-initialized every day using global reanalyses. Our en-
semble uses two different meteorological reanalyses as ini-
tial conditions at the start of every daily run (at 00:00 UTC)
and as boundary conditions every 6 h. ERA-Interim (Berris-
ford et al., 2011; Dee el al., 2011) is used in six ensemble
members, and MERRA-2 (Gelaro et al., 2017) together with
ERA5 soil information (Hersbach et al., 2020) is used in the
remaining six members.

Experiments conducted in Escribano et al. (2021) showed
that using different dust emission schemes provides a better
characterization of the background covariance than a single
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scheme with parameter perturbations due to the large vari-
ability in the modelled emissions. The ensemble uses three
different emission schemes briefly introduced in Sect. 2,
namely MB95 (as in Pérez et al., 2011), G01 (as in Ginoux
et al., 2001) and K14 (as in Kok et al., 2014). Each emis-
sion scheme was used four times (twice in each of the two
six-member groups driven by the different meteorological re-
analyses). In addition, each of the 12 ensemble members was
run with a different value for one or more parameters in the
corresponding emission scheme following Di Tomaso et al.
(2017). Specifically, we perturbed the threshold friction (or
threshold wind velocity for one of the emission schemes),
which is soil-moisture-dependent and determines the friction
or wind velocity above which soil particles begin to move in
saltation, and the dust emission flux across each of the eight
dust model bins. The threshold friction or wind velocity was
perturbed by drawing a multiplicative random factor from a
normal distribution with mean 1 and spread 0.4. The dust
emission flux was perturbed imposing a physical constraint.
Correlated noise was used across the bins so that noise corre-
lation decreases with increased difference in the normalized
cubic radius between the bins; the noise has mean 1 and a
standard deviation of 30 % of the unperturbed value in each
bin. These emitted size distribution perturbations used here
are analogous to those in Fig. 1 in Di Tomaso et al. (2017)
but departing from Kok (2011) instead of D’Almeida (1987).
The structure of the emission parameter perturbations is tem-
porally and spatially constant.

4 Assimilated observations

We have used for assimilation an innovative DOD data set
derived from the MODIS DB aerosol products (Collection 6),
which covers all cloud-free and snow-free land surfaces. DB
aerosol retrievals are available over areas not easily covered
by other observational data sets, e.g. very bright reflective
surfaces such as deserts, and are therefore particularly rel-
evant for dust applications. The MODIS Dark Target prod-
uct, for example, has a limited coverage over land since the
retrieval algorithm assumes low surface albedo. The DB al-
gorithm uses top-of-the-atmosphere reflectances at 412 and
470 nm, and, in the presence of a heavy dust load, also at
650 nm. It exploits the fact that, over most surfaces, a darker
surface and stronger aerosol signal are seen in the blue wave-
length range than at longer wavelengths. The quality of the
MODIS DB AOD product is improved in Collection 6 com-
pared to previous releases, as shown by the work of Sayer
et al. (2014) and Gkikas et al. (2015), based on Level 2
and Level 3 retrievals, respectively. Furthermore, a recent
study by Schutgens et al. (2020) showed that DB AOD from
MODIS (on board the Aqua satellite) is one of the best prod-
ucts when compared to other satellite products.

More specifically, we have assimilated DODcoarse re-
trieved from MODIS DB Level 2 aerosol products as de-

scribed in Ginoux et al. (2010, 2012) and Pu and Ginoux
(2016). The generation of the dust retrievals includes the dif-
ferent steps of formatting, dust filtering and retrieval. First,
aerosol products such as AOD, single-scattering albedo and
the Ångström exponent are interpolated to a regular grid of
0.1◦ latitude× 0.1◦ longitude using the algorithm described
by Ginoux et al. (2010). The DOD is then derived from AOD
following the methods of Ginoux et al. (2012) with adaptions
to MODIS Collection 6 aerosol products. To separate dust
from other aerosols, two variables are used: the Ångström ex-
ponent, which is highly sensitive to particle size (Ångström,
1929; Eck et al., 1999), and a single-scattering albedo at
412 nm less than 0.95 for dust due to its absorption of solar
radiation (Takemura et al., 2002). Subsequently, an empirical
continuous function relating the Ångström exponent to fine-
mode AOD (Anderson et al., 2005, their Eq. 5) is applied to
retrieve the dust fine-mode fraction of optical depth.

Since the retrievals are based on visible reflectances, their
availability is limited to the daytime only. The MODIS in-
strument is on board two NASA polar-orbiting satellites,
namely Aqua and Terra. However, we have considered for as-
similation only DODcoarse retrievals based on measurements
from MODIS on board the Aqua platform. The equatorial
crossing local time of the Aqua satellite is at 13:30 in an as-
cending orbit. In our 3-hourly discretization of the assimila-
tion window, the assimilated observations are associated with
the time slot (or interval) centred at 12:00 UTC and, due to
the 4D extension of the implemented LETKF scheme, affect
the whole assimilation window.

We have used 0.07+ 0.075 DODcoarse to characterize the
observation uncertainty in the assimilated observations, fol-
lowing the linear model of previous studies (Hsu el al., 2013;
Sayer et al., 2013) with the coefficients adjusted for our
application by inflating the uncertainty for low DODcoarse
values, which were otherwise detrimental for the analy-
sis. We have assumed a diagonal observation error covari-
ance matrix, i.e. uncorrelated error between the different re-
trievals. Observation coordinates were pre-processed to be
mapped on the rotated longitude–latitude regional grid of
MONARCH. Figure 1 shows an example of the extent of the
daily observational coverage on a given date (9 July 2012)
together with the associated observational uncertainty.

Maps of observation counts are shown in Fig. 2 for the
whole reanalysis period (top row of Fig. 2) and for the differ-
ent seasons (rows 2 to 5 of Fig. 2), namely the winter seasons
represented by December, January and February (DJF); the
spring season represented by March, April and May (MAM);
the summer season represented by June, July and August
(JJA); and the autumn season represented by September, Oc-
tober and November (SON). As expected, there is a higher
number of dust retrievals closer to sources than far from
them. The total number of retrievals is bigger in the SON
and JJA seasons than in the other seasons. During the bo-
real winter the number of retrievals inland from the Gulf of
Guinea increases compared to other times of the year due to
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Figure 3. Schematic of the 24 h assimilation window for the production of the reanalysis. The ensemble member analyses are used to
initialize the corresponding ensemble member first guess in the subsequent simulation/state estimation window.

transport of dust by northeasterly harmattan winds. The num-
ber of dust retrievals decreases in the north of Europe and
Asia in the DJF season as MODIS DB covers only snow-free
surfaces. Yearly observation counts are consistent throughout
the whole period (see Fig. S1 in the Supplement).

5 Data assimilation algorithm

The reanalysis was produced using a local ensemble trans-
form Kalman filter (LETKF) data assimilation scheme (Hunt
et al., 2007; Miyoshi and Yamane, 2007; Schutgens et al.,
2010; Tsikerdekis et al., 2021) coupled to the MONARCH
ensemble. We have used an implementation of the LETKF
scheme with four-dimensional extension (4D-LETKF) as de-
scribed in Hunt et al. (2007) in order to estimate the dust
analysis over a 24 h assimilation window. The overall scheme
implements an iterative approach consisting of a forward
simulation of the MONARCH ensemble for 24 h and a state
estimation step. The two steps are coupled at each iteration.
The state estimation step is an execution of the LETKF which
combines information from the dust observations and the
model ensemble simulations. The forward simulation of the
MONARCH ensemble is named first guess (or background)
to indicate a simulation initialized from an analysis and thus
incorporates information from past observations. As a result
of the estimation step, the analysis is estimated at each assim-
ilation window using both concurrent and past observations.

The LETKF is well suited to computationally demanding
calculations such as the estimation of a high-resolution anal-
ysis carried out in this work. The analysis at each model grid
point can be calculated independently, and at each grid point
only observations within a certain distance are assimilated.
Furthermore, the use of a dynamic characterization of model
background uncertainty, through ensemble forward simula-

tions, is well suited for highly varying dust fields. A detailed
description of the scheme can be found in Hunt et al. (2007).
Below we discuss the basic concepts behind the LETKF al-
gorithm.

Consider a state vector x of the dynamic variables of a sys-
tem, in our case the dust mass mixing ratio. The mean anal-
ysis increment at a grid point is estimated as a linear combi-
nation of the background ensemble perturbations Xb:

xa
= xb

+Xbw, (1)

where we use the superscripts a and b to denote the analy-
sis and background state vector, respectively, and where the
ith column of the matrix Xb is xb(i)

− xb, {i = 1,2, . . .,k}

with k ensemble members (12 in our case), i.e. the differ-
ence between the ith ensemble member xb(i) and the ensem-
ble mean xb. w is termed the “weight” vector, specifying
what linear combination of the background ensemble pertur-
bations is added to the background mean to obtain the analy-
sis ensemble. The weight vector is given by

w = [YbR−1Yb
+ (k− 1)I]−1YbR−1(yo

− yb), (2)

where Yb is the background ensemble perturbation matrix in
observation space (or background observation ensemble per-
turbation matrix); R is the observation error covariance ma-
trix, which we assume is diagonal; I is the identity matrix;
yo is the vector of observations; and yb is the mean back-
ground observation ensemble. The background observation
ensemble is obtained applying the observation operator h(·)
to the ensemble members xb(i); i.e. yb(i)

= h(xb(i)).
The 4D extension of the algorithm is coded such that back-

ground observation means yj and perturbation matrices Yj

are formed at the various time slots j when the observations
are available; then they are concatenated to form a combined
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background observation mean y and perturbation matrix Y,
where the time slots are the time intervals into which the as-
similation window is split. y and Y are used for the calcu-
lation of a weight vector w using the standard LETKF; i.e.
we calculate a single w based on all innovations throughout
the day. This same w is then applied to the state vector at
different times throughout the assimilation window.

Spatial covariance localization can be applied in the
LETKF algorithm through R localization; i.e. the localiza-
tion is performed in the observation error covariance matrix,
making the influence of an observation on the analysis decay
gradually towards zero as the distance from the analysis lo-
cation increases. The use of spatial localization reduces the
effect of spurious long-range covariances due to sampling er-
rors produced by a low dimensionality of the ensemble. To
achieve this, the observation error is divided by a distance-
dependent function that decays to zero with increasing dis-

tance: e
−

dist2

l2 , where dist is the distance in the grid space be-
tween an observation and the model grid and l is a horizon-
tal localization factor. The localization factor was set to 15;
hence the observation influence practically fades to zero be-
fore 30 model grid points away from the observation location
(in the horizontal plane).

The control variable is formulated in terms of the total
mixing ratio over the five model prognostic variables (cor-
responding to different dust particle size bins) used to sim-
ulate coarse dust in MONARCH. Therefore an observation
operator is needed to map the ensemble mean control vec-
tor into the observation space. The observation operator has
two components: (i) a spatial interpolation of the model sim-
ulation to the observation location, which is done at the ob-
servation longitude and latitude, and (ii) the calculation of
simulated DODcoarse at the wavelength of 550 nm which is
calculated using the five coarse model size bins ranging from
1.2 to 20 µm in dust particle diameter. The analysis of the
model’s fine dust fraction (i.e. the three model size bins from
0.2 to 1.2 µm in dust particle diameter) is estimated propor-
tionally to the change (due to observation assimilation) of
the coarse fraction. This choice is motivated by the fact that
observations do not carry information about either fine dust
particles or particle size distribution. Hereafter, DOD and
DODcoarse refer to the wavelength of 550 nm.

6 Domain, resolution and other simulation settings

This section presents the key settings for the modelling, ob-
servational and data assimilation aspects that have been de-
scribed in Sects. 2 to 5 and that are summarized in Table 1.
The reanalysis extends over the period 2007–2016 and cov-
ers a regional domain centred around Northern Africa, the
Middle East and Europe (hereafter called the NAMEE re-
gion) that also includes parts of central Asia and the At-
lantic and Indian oceans. The domain has a horizontal res-
olution of 0.1◦ latitude× 0.1◦ longitude in a rotated grid and

40 hybrid pressure–sigma model layers in the vertical. The
model top was set to 5000 Pa. This domain configuration is
used operationally to deliver daily forecasts at the World Me-
teorological Organization Barcelona Dust Regional Center
(https://dust.aemet.es/, last access: 8 April 2022).

The model runs were conducted using a dynamics time
step of 20 s. Lateral diffusion is called every time step; ad-
vection every 2 time steps; turbulence, surface layer, dust
emission, sedimentation and dry deposition routines every
4 time steps; moist convection, microphysics and wet depo-
sition every eight time steps; and short- and long-wave ra-
diation routines every 180 time steps. The MONARCH en-
semble of forward simulations was run daily at 00:00 UTC
during 24 h, which was used as the first guess for the data as-
similation. Simulation outputs are provided every 3 h (03:00,
06:00, 09:00, 12:00, 15:00, 18:00, 21:00 and 00:00 UTC),
which is also the time resolution of the reanalysis product.
Figure 3 shows the scheme of the 24 h assimilation window
for the production of the reanalysis where each ensemble
member forward simulation is initialized at 00:00 UTC us-
ing the dust analysis produced in the previous window.

Simulations were run without inflating the background or
analysis covariance errors during the assimilation cycle. A
quality control has been applied as in Di Tomaso et al. (2017)
that rejects observations by a first-guess departure check (ob-
servations further than 1.4, in DODcoarse, from the first guess
are rejected). This quality control is applied since the obser-
vations have not been corrected before assimilation for possi-
ble systematic biases. After the estimation of total dust coarse
mixing ratio analysis, the analysis increments are partitioned
among the dust coarse size bins according to their fractional
contribution to the total coarse mixing ratio in the forward
simulation step (i.e. before assimilation).

A spin-up period was necessary for the soil variables that
need a longer period to adjust. We have run a 1-year spin-
up with a two-member experiment, each of them initialized
using either MERRA-2 or ERA-Interim meteorology with
ERA5 soil information. Furthermore, a 2-month spin-up pe-
riod was needed for the ensemble without data assimilation,
to have a good representation of the ensemble spread every-
where in the atmospheric domain.

6.1 Ensemble calibration

MONARCH uses a globally uniform, empirically con-
strained tuning (or calibration) factor for the total emitted
dust mass, referred to as dcal. This factor varies according
to the specified configuration settings for the simulation. In
particular, it depends on the emission scheme and the me-
teorological initial and boundary conditions used to initial-
ize the simulation. We calibrated six free-running experi-
ments, which cover all the different combinations between
the emission scheme and meteorological conditions. The cal-
ibration factors were obtained by rescaling initial values for
the calibration factors, namely dcal(m)old, by the ratio be-
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Table 2. List of reanalysis variables. For each variable the following ensemble statistics are calculated and archived: ensemble mean, standard
deviation, max and median. n/a – not applicable.

Variable description (name in archive) Unit Spatial di-
mension

Description of
dust particle size

First guess Analysis

Dust concentration (concdubin1-8) kgm−3 3D eight bins X X

Direct normal irradiance (dni) Wm−2 2D n/a X

Accumulated dry deposition over the previous 3 h (drydu) kgm−2 (3h)−1 2D eight bins X

Dust extinction coefficient at 550 nm (ec550du) m−1 3D total X X

Global horizontal irradiance (ghi) Wm−2 2D n/a X

Dust load (loaddu) kgm−2 2D eight bins X X
Dust optical depth at 550 nm (od550du) unitless 2D total X X
Coarse dust optical depth at 550 nm (od550ducoarse) unitless 2D total X X

Dust surface concentration (sconcdubin1-8) kgm−3 2D eight bins X X

Dust surface extinction coefficient (sec550du) m−1 2D total X X

Accumulated wet deposition over the previous 3 h (wetdu) kgm−2 (3h)−1 2D eight bins X
Height of pressure level above sea level (z) m 3D n/a X

Table 3. Averaged DOD of first guess (fg), analysis (an) and analy-
sis increments (an-fg) for the full period (2007–2016), for different
seasons (DJF, MAM, JJA, SON) and for individual years.

Period Mean fg DOD Mean an DOD Mean analysis
increments

2007–2016 0.1066 0.1 −0.0066
DJF 0.0806 0.0781 −0.0025
MAM 0.1353 0.1268 −0.0084
JJA 0.1364 0.1261 −0.0103
SON 0.0734 0.0681 −0.0053
2007 0.107 0.0994 −0.0076
2008 0.1185 0.1117 −0.0068
2009 0.1049 0.0993 −0.0056
2010 0.1091 0.1041 −0.005
2011 0.1056 0.0994 −0.0063
2012 0.1113 0.1055 −0.0058
2013 0.0986 0.091 −0.0076
2014 0.0943 0.0879 −0.0064
2015 0.1125 0.1046 −0.0079
2016 0.1044 0.0968 −0.0075

tween the MODIS DB mean DODcoarse and the ensemble
free-run mean DODcoarse calculated over the whole domain;
i.e.

dcal(m)new = dcal(m)old
DODcoarse,MODIS

DODcoarse,model

with m= 1, . . .,6, (3)

where m indicates an ensemble member. We have repeated
the estimation twice where the second simulation re-run has
used the calibration factors estimated from the first run. The
final estimated calibration factors for each of six ensemble
members are reported in Table S2.

7 Reanalysis product description

The reanalysis data set consists of three-dimensional (3D)
and two-dimensional (2D) variables (see Table 2). The
3D, or upper-air, variables include dust mass concentration
[kgm−3] for each dust size bin, the dust extinction coefficient
at 550 nm [m−1] integrated over all size bins and the height
of the pressure level above sea level [m]. The 2D variables
are either surface fields or total column fields. The 2D vari-
ables for each dust size bin include dry and wet accumulated
dust deposition over the previous 3 h [kgm−2 (3h)−1] and in-
stantaneous total column dust load [kgm−2], dust mass sur-
face concentration [kgm−3], DOD [unitless] and DODcoarse
[unitless] at 550 nm. The set of archived 2D variables is com-
pleted by the surface extinction coefficient at 550 nm [m−1],
direct normal irradiance [Wm−2] and global horizontal irra-
diance [Wm−2]. These variables have been used to produce
dust-relevant information for different sectors (Votsis et al.,
2020, 2021) and related validation exercises (Mytilinaios
et al., 2022a, b). For example, a dust-PM10 field has been
derived from the 2D, bin-resolved dust mass surface concen-
tration for air quality applications. This field will be used to
evaluate the ability of the reanalysis to reproduce dust con-
centration values at the ground (Barnaba et al., 2022a). Over
Europe, the latter will be extracted from measured PM10 val-
ues following a procedure similar to that described (Barn-
aba et al., 2022b). Furthermore, visibility data from 3D dust-
extinction coefficient fields have been used for aviation ap-
plications (Basart et al., 2021), while soiling index based on
wet and dry dust deposition has been used to develop prod-
ucts for solar energy production (Rautio et al., 2022).

Both analysis and first-guess fields are available for the
variables that are diagnosed from the state vector. As men-
tioned earlier, the first guesses are model forward simulations
initialized with an analysis. When available, the analysis field
is the recommended output for that variable. A set of ensem-
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Figure 4. Maps of mean 3-hourly first guess of wet and dry accumulated (over the previous 3 h) dust deposition [kgm−2 (3h)−1] and
analysis of total column dust load [kgm−2] and of the dust surface extinction coefficient at 550 nm [m−1] calculated for the whole period
(2007–2016). Model fields are the ensemble mean.

ble statistics is calculated and archived for each output vari-
able, namely the ensemble mean, standard deviation, maxi-
mum and median. The spread among the ensemble members,
represented by the standard deviation with respect to the en-
semble mean, can be interpreted as a measure for the uncer-
tainty in the mean estimates. Figure 4 shows the ensemble
mean over the whole reanalysis period for the analysis or first
guess of some of the 2D variables. While model fields have
been produced on 40 vertical levels, the data are stored on
15 standard pressure levels between 1000 and 100 hPa (i.e.
1000, 975, 900, 850, 750, 700, 600, 500, 400, 350, 300, 250,
175, 150, 100 hPa), which were defined taking into account
regulatory standards in the aviation sector (in view of end-
user products developed from the reanalysis in this sector;
Votsis et al., 2020). In that way we reduced storage space
while easing the use of the vertical information.

The reanalysis data set is structured into individual Net-
work Common Data Form (NetCDF) files per variable and
type of ensemble statistics. Further details on the file struc-
ture of the data set are reported in Sect. 9, while the naming
convention for the data set files and folders is explained in
Appendix A.

Figure 5. A number of desert, arid and semi-arid regions of inter-
est for the description of the dust reanalysis. The underlying dust
field is the mean 3-hourly DOD analysis calculated for the whole
reanalysis period (2007–2016).
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Figure 6. Maps of mean 3-hourly DOD first guess (first column), analysis (second column) and analysis increments (third column) calculated
for the whole period (2007–2016; top row) and for different seasons (DJF, MAM, JJA, SON; rows 2 to 5). Model fields are the ensemble
mean.

8 DOD evaluation

In this section we validate the reanalysis DOD or DODcoarse
in terms of data assimilation inner diagnostics (analysis in-
crements and statistics of departures from assimilated ob-
servations) and verify it against independent ground-based
observations. We also discuss the DOD spatial and tem-
poral patterns over the reanalysis domain and period. Fig-
ure 5 highlights the location of major dust source areas that
will be used in the discussion. The verification of DOD
and DODcoarse against long-term ground-based observations
across the domain is a first step towards a more comprehen-

sive evaluation of the reanalysis data set that is planned in
follow-up papers (Barnaba et al., 2022a; Di Tomaso et al.,
2022; Mytilinaios et al., 2022a, b), which include the com-
parison against independent sets of in situ, column-based and
profile retrievals.

8.1 DOD geographical distribution

Figure 6 shows the ensemble annual and seasonal mean DOD
for the first guess (left column) and the analysis (central col-
umn) during the whole reanalysis period. In agreement with
observations, the highest DOD values are placed over the ma-
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Figure 7. Maps of mean 3-hourly DODcoarse first guess (first column), analysis (second column) and MODIS DB assimilated observations
(third column) calculated for the whole period (2007–2016; top row) and for different seasons (DJF, MAM, JJA, SON; rows 2 to 5). Model
fields are the ensemble mean and are collocated with the observations.

jor emission areas of the domain, in particular in the Bodélé
Depression in Chad, the Erg Chech in Algeria, and the El
Djouf between Mauritania and Mali, followed by the Arabian
Desert; the Taklamakan Desert in northwest China; and the
smaller areas of the Grand Erg Oriental in Algeria, the Grand
Sand Sea between Libya and Egypt; and the Kharan Desert
in southwestern Pakistan. Table 3 reports the averaged DOD
of first guess, analysis and analysis minus first guess (analy-
sis increments) when calculated for the whole domain for the
full period, for different seasons (DJF, MAM, JJA, SON) and
for individual years.

The decadal mean analysis DOD (top row of Fig. 6) is gen-
erally smaller than the first-guess DOD except in the Takla-
makan and Thar deserts and in areas where the mean DOD is
below 0.3. Therefore, on average, MONARCH emissions are
likely too strong for the configurations used, although a po-
tentially too weak deposition cannot be discarded. The latter
is strongly dependent upon the emitted size distribution that
evolves during transport.

Seasonal changes in the geographical distribution of the
analysis mean DOD (rows 2 to 5 of Fig. 6) are consistent
with well-known patterns (Prospero et al., 2002; Ginoux
et al., 2012): (i) dust peaks everywhere during spring and
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Figure 8. Maps of mean 3-hourly DODcoarse for first-guess departures (first column), analysis departures (second column), standard devi-
ation of first-guess departures (third column) and standard deviation of analysis departures (fourth column) calculated for the whole period
(2007–2016; top row) and for different seasons (DJF, MAM, JJA, SON; rows 2 to 5). Model fields are the ensemble mean and are collocated
with the observations.

summer, in particular, across the Taklamakan Desert during
spring when more dust-generating cold fronts arrive in the
area; (ii) dust from the south Sahara and Sahel is preferen-
tially transported by northeasterly harmattan winds towards
the Gulf of Guinea in winter and spring; (iii) the dust plume
that originated in western Africa and is transported across the
tropical North Atlantic is shifted towards northern latitudes
in summer along with the Intertropical Convergence Zone
(ITCZ; Moulin et al., 1997); (iv) dust is strongly mobilized
on the Arabian Peninsula and in the Tigris–Euphrates Basin

in summer by the north-northwesterly shamal winds; (v) the
lowest overall DOD is simulated everywhere in autumn.

8.2 DOD analysis increments

Figure 6 also shows the difference between DOD analysis
and first guess (namely analysis increments; right column)
averaged over the full reanalysis period (top row). Non-zero
systematic analysis increments are to be interpreted as sys-
tematic corrections to the model simulations and can serve
as a proxy for model bias. By applying these corrections,
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the analysis improves the underlying model. The patterns of
these systematic corrections vary with season and geographi-
cal location. While over the entire domain the mean analysis
and first guess are comparable, the biggest systematic neg-
ative corrections (removing mass from the atmosphere) are
linked to overestimation of sources’ strengths in the Bodélé
Depression in Chad; in the Saudi Arabia lowlands; and in the
Balochistan region of southwestern Asia that extends over
Iran, Afghanistan and Pakistan and contains, for example, the
Kharan Desert. Negative mean increments are also present
but to a lesser extent in other arid and semi-arid areas such as
the Erg Chech in Algeria, the Great Sand Sea in Libya, the
Nubian Desert in Sudan and eastwards of the Caspian Sea.
Positive mean increments calculated for the whole reanalysis
period are less widespread than the negative increments. The
strongest values are over the Thar Desert, in the northern part
of Syria, over a long stretch inland from the Mediterranean
Sea in the north of Africa, and in the desert of El Djouf be-
tween Mauritania and Mali. All in all, as expected, the largest
positive or negative analysis increments correspond to areas
with more dust load, i.e. to source regions and their vicinity.

The patterns of the mean increments depend upon the sea-
son (see rows 2 to 5 of Fig. 6). These patterns are clearly
linked to the seasonal changes in dust activities in the differ-
ent regions, as mean increments are, in absolute value, higher
in the presence of high mean DODs compared to low DOD
values. The areas that show the strongest seasonality with
respect to the analysis increments are the Bodélé Depression
and the Arabian and Taklamakan deserts. The overestimation
of the Bodélé source strength in the first guess is more pro-
nounced in winter and spring. In spring the emissions from
the Taklamakan Desert, Syria and the northern part of the
Arabian Desert are clearly underestimated, while in summer
strong negative increments are present all over the Arabian
Desert. Wide areas in the Sahara are affected by negative in-
crements in the spring and summer. The Balochistan region
and the Thar Desert show negative and positive increments,
respectively, throughout the year, but their magnitudes are
greater in spring and summer.

The patterns of the increments are consistent among the
different years (Figs. S2 and S3) and vary mostly in the am-
plitude of the mean corrections, although there are some ex-
ceptions. Positive increments over the Thar Desert, northern
Syria and the north of the Arabian Desert mainly appear in
the first part of the reanalysis, between 2007 and 2012, in
contrast to the small positive or even negative increments
in the case of the Arabian Desert in the subsequent years.
Strong negative increments east of the Caspian Sea are ap-
plied mainly through 2007 to 2010. Those yearly differences
suggest changes, for example in land use, that are not cap-
tured by the model. Negative corrections in the west of the
Sahara are more widespread in 2007 and 2008 than in other
years due to the higher mean DOD during those 2 years.

Table 4. Averaged DODcoarse of observation-collocated first guess
(fg), observation-collocated analysis (an) and assimilated MODIS
DB retrievals for the full period (2007–2016), for different seasons
(DJF, MAM, JJA, SON) and for individual years.

Period Mean fg Mean an Mean MODIS DB
DODcoarse DODcoarse DODcoarse

2007–2016 0.1914 0.1685 0.1912
DJF 0.1445 0.1374 0.1573
MAM 0.2323 0.2074 0.2337
JJA 0.2452 0.2073 0.2356
SON 0.1427 0.1228 0.1394
2007 0.1905 0.1644 0.1858
2008 0.2108 0.1877 0.2114
2009 0.1892 0.1682 0.1921
2010 0.1947 0.1772 0.202
2011 0.1894 0.1679 0.192
2012 0.195 0.1752 0.1989
2013 0.1832 0.1577 0.1771
2014 0.1768 0.1546 0.176
2015 0.1948 0.1697 0.1929
2016 0.1896 0.1621 0.1836

8.3 Statistics of departures from assimilated
observations

We compare here the reanalysis DODcoarse with the assim-
ilated observations. Figure 7 shows the DODcoarse for the
observation-collocated ensemble mean first guess and anal-
ysis and for the assimilated observations averaged over the
full reanalysis period (top row of Fig. 7) and over the DJF,
MAM, JJA and SON seasons (from the second to the fifth
row of Fig. 7). Table 4 reports the corresponding values av-
eraged over the whole domain for the full period, for differ-
ent seasons and for individual years. By visual inspection,
the analysis is closer to the assimilated observations in all
the time periods considered, which constitutes a good san-
ity check for the assimilation scheme. This is also confirmed
when the averages are calculated for individual years of the
reanalysis period (Figs. S4 and S5). The seasonality in the
model simulations closely resembles that in the observations,
with MAM and JJA being the most active dust seasons.

Figure 8 shows the mean (first and second column of
Fig. 8) and standard deviation (third and fourth column of
Fig. 8) of the first-guess and analysis DODcoarse departures
(respectively) from assimilated observations averaged over
the full reanalysis period (top row of Fig. 8) and over the
different four seasons (from the second to the fifth row of
Fig. 8). The corresponding values averaged over the whole
domain are reported in Table 5, together with the number
of observation counts and statistics calculated for individual
years. The departure statistics, in particular the reduction in
the standard deviation of the analysis departures compared
to the first guess everywhere in the domain of interest, prove
the consistency of our assimilation procedure. This is also
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Table 5. Statistics (mean and SD) of departures of DODcoarse first guess (fg) and analysis (an) from assimilated observations calculated for
the full period (2007–2016), for different seasons (DJF, MAM, JJA, SON) and for individual years. The number of observation counts is also
reported.

Period Observation Mean of fg Mean of an SD of fg SD of an
counts departures departures departures departures

2007–2016 4.373× 108 0.0002 −0.0227 0.1841 0.0985
DJF 1.008× 108

−0.0128 −0.0198 0.1502 0.0827
MAM 1.033× 108

−0.0014 −0.0262 0.212 0.1125
JJA 1.157× 108 0.0096 −0.0283 0.2159 0.112
SON 1.176× 108 0.0033 −0.0166 0.1357 0.0744
2007 4.522× 107 0.0047 −0.0214 0.1863 0.0961
2008 4.398× 107

−0.0006 −0.0237 0.1928 0.1023
2009 4.274× 107

−0.0029 −0.0239 0.1858 0.0984
2010 4.464× 107

−0.0073 −0.0248 0.1828 0.1011
2011 4.43× 107

−0.0026 −0.0240 0.1825 0.1008
2012 4.417× 107

−0.0039 −0.0237 0.1913 0.1554
2013 4.299× 107 0.006 −0.0194 0.1767 0.0969
2014 4.41× 107 0.0008 −0.0214 0.1762 0.0924
2015 4.348× 107 0.0019 −0.0232 0.1924 0.1047
2016 4.17× 107 0.0059 −0.0215 0.1823 0.0952

the case on a seasonal and yearly basis (Figs. S6 and S7).
With respect to the mean departures, the positive mean depar-
tures (model simulation minus observations) decrease con-
siderably in the analysis compared to the first guess, while
some of the negative mean departures remain unchanged in
specific regions or seasons. The latter is the case for example
in Europe and Russia, when considering the full reanalysis
period or the different seasons. The aforementioned regions
see on average much lower DODcoarse values than the rest of
the domain and are analysed less efficiently. This is likely due
to the ensemble not having a sufficient spread for low simu-
lated concentrations. A similar issue was previously identi-
fied in other assimilation systems (see Benedetti et al., 2009,
their Sect. 4) and attributed to the fact that aerosol mass is
a positive definite variable, which intrinsically deviates from
the assumed Gaussian conditions in the prior in the analy-
sis step. Negative mean departures are present in the sub-
Sahel region and in particular over a stretch along the Gulf
of Guinea in the summer season, with respect to both the
first guess and the analysis. This might be due to the con-
tamination of aerosols other than dust in the observational
data set, which might be of anthropogenic or natural origin,
e.g. aerosol produced by biomass burning in central Africa
advected northwards (Haslett et al., 2019). Due to the above
regional or seasonal issues, the total bias (i.e. mean depar-
ture from the observations calculated over the entire domain)
is higher in the analysis compared to the first guess.

8.4 Verification of DOD and DODcoarse against
AERONET

We compare here the reanalysis DOD and DODcoarse with
independent observations that have not been used in the as-
similation process. We employed products from the Aerosol
Robotic Network (AERONET) of ground-based Sun pho-
tometers (Holben et al., 1998; O’Neill et al., 2003; Giles
et al., 2019).

8.4.1 Verification methodology

We used AERONET version 3 quality-assured data. On the
one hand, the modelled DODcoarse at 550 nm is compared
with coarse-mode AOD retrievals at 500 nm from the spectral
de-convolution algorithm (SDA; O’Neill et al., 2003). In gen-
eral, AODcoarse is dominated by maritime/oceanic aerosols
and desert dust. However, sea salt is usually associated with
low AOD (< 0.03; Dubovik et al., 2002) and mainly affects
coastal stations, and therefore inland high AODcoarse val-
ues can be assumed to be mineral dust. On the other hand,
the modelled DOD at 550 nm is compared with dust-filtered
AOD values from the direct-Sun algorithm (Giles et al.,
2019). We used direct-Sun AOD retrievals between 440 and
870 nm to obtain the AOD at 550 nm using the Ångström
law. Dust-dominated conditions are identified using a spe-
cific set of dust filters based on the AERONET Ångström
exponent (AE). The AE is inversely related to the average
size of the particles: the smaller the particles, the larger the
AE. The AE ranges normally from 4, corresponding to pure
molecular extinction, down to close to null values, corre-
sponding to extinction dominated by coarse-mode aerosols
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Table 6. Dust filters applied to the AERONET retrievals.

Filter name Dust condition Dust presence Non-dust presence

DOD-dust1 Pure dust DOD=AOD when AE < 0.40 –
DOD-dust2 Pure dust DOD=AOD when AE < 0.60 –
DOD-mixed1 Mixed dust DOD=AOD when AE < 0.75 –
DOD-mixed2 Mixed dust DOD=AOD when AE < 0.75 DOD= 0 when AE > 1.2
DODcoarse Pure dust DODcoarse=AODcoarse –

Figure 9. Spatial distribution of the AERONET sites used in this study. The different colours indicate the sub-regions considered in the
discussion of the results: northwestern Africa (green), the Middle East (red) and the Mediterranean (blue). When validating the NAMEE
region, all the sites are considered, including the ones labelled “Others” (black). © OpenStreetMap contributors 2022. Distributed under the
Open Data Commons Open Database License (ODbL) v1.0; © CARTO (https://carto.com/attribution/, last access: 8 June 2022).

(sea salt and mineral dust), producing a spectral neutral AOD
(O’Neill et al., 2003). Values of AE > 1.2 typically indicate a
significant presence of fine-mode particles (biomass burning
or urban aerosols; Basart et al., 2009). Quantitative evalua-
tions of the modelled DOD are conducted for dust-dominated
conditions based on four different AE filters (Table 6) where
AE ranges from typical desert dust source values (AE < 0.4)
to values characteristic of dust long-range transport condi-
tions (AE < 0.75). Additionally, for one of the filter methods
(namely DOD-mixed2), DOD is assumed to be 0 when the
AE is greater than 1.2. These dust filters roughly represent
“pure” desert dust conditions (i.e. DOD-dust1, DOD-dust2
and DODcoarse) and long-range transport (i.e. mixed) dust
conditions (i.e. DOD-mixed1 and DOD-mixed2).

We focus our verification on the NAMEE region. We used
data from 140 AERONET stations (Fig. 9; see also Tables S3

to S8 for the list of AERONET sites used), which include all
the available AERONET sites in the NAMEE domain pro-
viding observations during the period of 2007–2016, with
the exception of those sites that are at high altitudes (i.e. al-
titudes greater than about 1850 m above sea level). Results
are presented for different sub-regions, namely the Middle
East, northwestern Africa and the Mediterranean, and for all
available AERONET stations including those sites outside
the three above-mentioned regions, and they are depicted in
Fig. 9. Model values are ensemble mean analysis fields.

AERONET measurements are nominally taken at 15 min
intervals. Here we average observations within ± 30 min of
the 3-hourly model output times. These averaged observa-
tions are used to evaluate the model on a 3-hourly, daily and
monthly basis. For the daily and monthly average evaluation,
only coincident 3-hourly model output and observations are
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Figure 10. Density scatter plots of the reanalysis (MOD) DOD and DODcoarse versus AERONET (OBS) dust-filtered AOD, DOD-
mixed2 (a–c) and DODcoarse (d–f), during the whole reanalysis period (2007–2016). The results are calculated for the NAMEE domain
and for different time basis: 3-hourly (a, d), daily (b, e) and monthly (c, f). The dust filters applied to the AERONET observations are
described in Table 6. The bin size is 0.01.

Figure 11. Density scatter plots of the reanalysis (MOD) DOD and DODcoarse versus AERONET (OBS) dust-filtered AOD, DOD-
mixed2 (a–c) and DODcoarse (d–f), during the whole reanalysis period (2007–2016) and on a 3-hourly basis. The results are calculated
for three different sub-regions of the reanalysis domain: northwestern Africa (a, d), the Middle East (b, e) and the Mediterranean (c, f). The
dust filters applied to the AERONET observations are described in Table 6. The bin size is 0.01.
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Table 7. Verification statistics (r , RMSE, MB and MFB) and number of samples (NDATA) for the reanalysis versus AERONET AODs for
the entire period (2007–2016) and NAMEE region and for northwestern Africa, the Middle East and Mediterranean regions. AERONET
version 3, cloud-screened, 3-hourly, dust-filtered AOD and AODcoarse comprise the reference. The definition of each of the DOD filters is in
Table 6.

DOD-dust1 DOD-dust2 DOD-mixed1 DOD-mixed2 DODcoarse

NAMEE region

NDATA 68 493 99 821 122 145 260 622 242 582
r 0.74 0.75 0.76 0.82 0.81
RMSE 0.25 0.22 0.21 0.15 0.09
MB −0.10 −0.10 −0.10 −0.04 −0.03
MFB −0.43 −0.51 −0.58 0.79 −0.91

Northwestern Africa

NDATA 40 240 51 299 56 882 59 295 31 553
r 0.76 0.77 0.77 0.78 0.81
RMSE 0.26 0.25 0.24 0.23 0.15
MB −0.10 −0.10 −0.10 −0.09 −0.05
MFB −0.35 −0.40 −0.43 −0.33 −0.50

Middle East

NDATA 15 281 23 659 29 826 41 123 49 526
r 0.66 0.67 0.68 0.72 0.73
RMSE 0.24 0.22 0.21 0.19 0.13
MB −0.10 −0.09 −0.09 −0.04 −0.01
MFB −0.27 −0.29 −0.30 0.33 −0.04

Mediterranean Basin

NDATA 9415 17 593 24 487 89 887 90 451
r 0.57 0.61 0.64 0.75 0.72
RMSE 0.21 0.18 0.17 0.09 0.07
MB −0.12 −0.11 −0.10 −0.02 −0.03
MFB −0.68 −0.78 −0.88 1.22 −1.14

used. We use verification statistics such as the Pearson corre-
lation coefficient (r), mean bias (MB), root mean square error
(RMSE) and mean fractional bias (MFB) (see Appendix B)
to measure the skill of the model when performing diagnos-
tic analyses of DOD and DODcoarse where AERONET sites
are located.

8.4.2 Comparison with 3-hourly, daily and monthly
reference data

Overall, the dust reanalysis can reproduce the 3-hourly, daily
and monthly observed variability with Pearson correlation
coefficients ranging from 0.74 and 0.82, depending on the
dust filter, for 3-hourly DOD to up to 0.92 for monthly
DODcoarse. The reanalysis tends to underestimate the DOD
and DODcoarse compared to AERONET observations (see
Fig. 10). The model results are dominated by the results in
northwestern Africa, and the largest relative underestima-
tions are observed in the Mediterranean and the Middle East
(Fig. 11), likely because of marine aerosols at these sites.
Therefore some model underestimation is expected, in par-

ticular in proximity to coastal stations or when mixtures of
aerosols are present (Basart et al., 2009).

Tables 7 to 9 present the verification statistics on a 3-
hourly, daily and monthly basis when calculated using the
five dust-filtered reference data sets. The stricter the dust fil-
ter, the lower the correlation coefficient.

The verification results calculated using the DOD-mixed2
dust filter are comparable to those obtained with the
DODcoarse reference data set in terms of correlation (0.82
versus 0.81 for the entire region) and MB (−0.04 versus
−0.03). When considering regional results, the use of the
DOD-mixed2 dust filter shows a reduction in the MB to-
gether with an increase in MFB in the Mediterranean region
(Fig. 12). This is directly related to the assumption DOD= 0
for AE > 1.2 (Table 6), which increases the number of col-
locations particularly in the Mediterranean, where the pres-
ence of dust is sporadic. This is confirmed by the compar-
ison with the results obtained with the DOD-mixed1 filter
where this condition is neglected (see Fig. 12). The RMSE
obtained with DOD-mixed2 and DODcoarse reference data
shows a clear north-to-south gradient that scales with dust
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Table 8. Same as Table 7 but using daily reanalysis values and AERONET dust-filtered AOD and AODcoarse averaged on a daily basis as
reference.

DOD-dust1 DOD-dust2 DOD-mixed1 DOD-mixed2 DODcoarse

NAMEE region

NDATA 28 662 40 767 49 551 49 551 87 007
r 0.77 0.79 0.79 0.79 0.84
RMSE 0.23 0.21 0.20 0.20 0.09
MB −0.11 −0.10 −0.10 −0.10 −0.03
MFB −0.50 −0.59 −0.67 −0.67 −0.94

Northwestern Africa

NDATA 15 996 19 702 21 590 21 590 11 563
r 0.78 0.79 0.79 0.79 0.83
RMSE 0.25 0.24 0.23 0.23 0.15
MB −0.10 −0.10 −0.10 −0.10 −0.06
MFB −0.37 −0.42 −0.46 −0.46 −0.54

Middle East

NDATA 5930 8822 10 866 10 866 17 080
r 0.70 0.72 0.72 0.72 0.78
RMSE 0.22 0.20 0.19 0.19 0.12
MB −0.11 −0.10 −0.09 −0.09 −0.02
MFB −0.28 −0.29 −0.31 −0.31 −0.06

Mediterranean Basin

NDATA 4637 8199 11 192 11 192 32 439
r 0.62 0.65 0.67 0.67 0.75
RMSE 0.20 0.17 0.16 0.16 0.06
MB −0.12 −0.11 −0.10 −0.10 −0.03
MFB −0.78 −0.90 −1.00 −1.00 −1.15

concentrations with maximum values over sources (in north-
western Africa and the Middle East, RMSE > 0.12) and min-
imum values in the Mediterranean (RMSE < 0.12).

Monthly DOD and DODcoarse verification statistics are
sensitive to the number of AERONET observations, as
shown in Fig. 13. A clear seasonal trend is identified with
lower performance in the cloudy winter season than in sum-
mer when clear skies are more frequent. Time series of
the verification statistics for DODcoarse show a change af-
ter 2011, with reductions in MB and RMSE in comparison
to previous years. Also the MFB is closer to the MFB from
the different dust filters (see Fig. 13). This change is asso-
ciated with a decrease in DODcoarse in the Mediterranean
region (not shown here) that is captured by the reanaly-
sis. Underestimations are observed in northwestern Africa
and the Mediterranean regions when the DOD-mixed2 and
DODcoarse data are used as reference. In summertime in
northwestern Africa, we find the largest underestimations
(monthly MB <−0.10 for DOD-mixed2 and DODcoarse).
These underestimations are likely related to strong dust out-
breaks associated with mesoscale convective systems (called
haboobs) that the model is not able to capture. In the Middle

East, the model shows a systematic underestimation when
compared to DOD-mixed2 and DODcoarse reference data, al-
though some overestimation in particular years (2011–2012)
is observed. The observed DOD underestimations in com-
parison with AERONET in the Middle East can be partly at-
tributed to a poor representation of small-scale emission pro-
cesses such as the wind peak associated with the breakdown
of the nocturnal low-level jet, the meteorological effects of
orography, sea breezes and cold pools (Basart et al., 2016).

Overall, the comparison with AERONET observations
shows a good performance of the reanalysis in reproducing
the spatial and temporal distribution of mineral dust aerosols
over the entire domain and for the 10-year period.

9 Data availability

The reanalysis data set (Di Tomaso et al., 2021) is
distributed via Thematic Real-time Environmental Dis-
tributed Data Services (THREDDS) at BSC and is
made freely available at http://hdl.handle.net/21.12146/
c6d4a608-5de3-47f6-a004-67cb1d498d98 (last access:
10 June 2022). The data set (78 TB in size) is structured into
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Table 9. Same as Table 7 but using monthly reanalysis values and AERONET dust-filtered AOD and AODcoarse averaged on a monthly
basis as reference.

DOD-dust1 DOD-dust2 DOD-mixed1 DOD-mixed2 DODcoarse

NAMEE region

NDATA 4097 5011 5439 5439 4667
r 0.77 0.78 0.80 0.80 0.92
RMSE 0.19 0.17 0.15 0.15 0.05
MB −0.12 −0.11 −0.11 −0.11 −0.03
MFB −0.77 −0.83 −0.88 −0.88 −0.80

Northwestern Africa

NDATA 1181 1219 1231 1231 611
r 0.81 0.84 0.85 0.85 0.92
RMSE 0.19 0.17 0.16 0.16 0.09
MB −0.11 −0.11 −0.10 −0.10 −0.06
MFB −0.39 −0.41 −0.43 −0.43 −0.41

Middle East

NDATA 691 798 837 837 783
r 0.73 0.72 0.75 0.75 0.86
RMSE 0.17 0.15 0.13 0.13 0.07
MB −0.10 −0.09 −0.08 −0.08 −0.02
MFB −0.30 −0.32 −0.33 −0.33 −0.04

Mediterranean Basin

NDATA 1328 1750 1942 1942 1774
r 0.63 0.62 0.67 0.67 0.84
RMSE 0.18 0.16 0.14 0.14 0.04
MB −0.13 −0.12 −0.11 −0.11 −0.03
MFB −0.89 −0.95 −1.00 −1.00 −0.91

individual NetCDF files per geophysical variable and type
of ensemble statistics (ensemble mean, standard deviation,
maximum and median). Each individual file covers the time
period of one assimilation window (24 h) and contains 8 time
steps at a 3-hourly time frequency starting at 03:00 UTC.
The files are organized into folders, where each folder
contains the files relative to the whole reanalysis period
(10 years) for a given variable and type of statistics.

10 Conclusions and further perspectives

A regional dust reanalysis has been produced using the
MONARCH chemical weather prediction system and satel-
lite retrievals of DODcoarse based on MODIS Aqua DB AOD
at 550 nm. The reanalysis data set spans the period 2007–
2016 at a horizontal resolution of 0.1◦ latitude× 0.1◦ longi-
tude in a rotated grid and a temporal resolution of 3 h. The
reanalysis covers a regional domain centred around North-
ern Africa, the Middle East and Europe (NAMEE region)
that also includes parts of central Asia and the Atlantic and
Indian oceans. This paper describes the modelling, observa-
tional and assimilation aspects related to the production of

the reanalysis, whose unprecedentedly high resolution has
required the use of advanced archiving and computing strate-
gies, which are also described in the paper (see Appendix
C). The assimilated observations have provided a total col-
umn optical constraint on the coarse fraction of dust parti-
cles over land, in cloud- and snow-free conditions, and in the
daytime, with one satellite overpass per day. Analysis incre-
ments were estimated over the whole assimilation window
through the 4D implementation of the assimilation algorithm
and, to a certain extent (limited by the observation radius of
influence), also over sea according to the model background
spatial covariance. Re-partitions of analysis increments in the
vertical dimension of the model control vector and across the
individual model coarse size bins have relied on the model
background.

The seasonal changes in the spatial distribution of the dust
reanalysis are well characterized and follow well-known,
region-dependent dust cycle features controlled by seasonal
changes in meteorology (mainly surface winds but also pre-
cipitation) and in vegetation cover. The most prominent sea-
sonal features that stand out in the reanalysis are the mo-
bilization of dust during the so-called Asian dust events in
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Figure 12. Maps of verification statistics (r , MB, RMSE, MFB, from top to bottom) of the analysis DOD (first and second columns) and
DODcoarse (third column) versus AERONET dust-filtered AOD (Table 6): DOD-mixed1 (left), DOD-mixed2 (middle) and DODcoarse (right)
calculated for the whole period (2007–2016). The results are obtained using 3-hourly collocated reanalysis and observation values (see also
Table 7).

the Taklamakan region in spring and by north-northwesterly
shamal winds on the Arabian Peninsula and in the Tigris–
Euphrates Basin during summer, the transport of south Saha-
ran dust southwest towards the Gulf of Guinea by northeast-
erly harmattan trade winds during winter and spring, and the
northward shift of the plume extending from western Africa
over the tropical Atlantic during summer due to movements
of the ITCZ.

Diagnostics based on departures of first guess and anal-
ysis from assimilated observations provided a sanity check
for the quality of our assimilation procedure. As expected,
the analysis is statistically closer to the assimilated observa-
tions than the first guess. The mean departures are larger in
the analysis than in the first guess only in specific regions
and seasons, which can be explained by the contamination
of aerosols other than dust in the observational data set (for
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Figure 13. Time series of monthly verification statistics (r , MB, RMSE, MFB) and number of samples (NDATA) for the reanalysis DOD and
DODcoarse versus dust-filtered AERONET observations for the period 2007–2016 for the NAMEE domain. Different colours are associated
with the results obtained with the different dust filters: DOD-dust1, DOD-dust2, DOD-mixed1, DOD-mixed2 and DODcoarse. The definition
of each dust filter is reported in Table 6. The results are obtained using 3-hourly collocated model and observation values.

example, biomass burning aerosols produced by fires in cen-
tral Africa that are advected further north during summer)
or by the presence of fairly low DODcoarse values (mainly
over Europe and western Russia) that are not analysed as ef-
ficiently by the assimilation scheme as the higher DODcoarse

values. Mean analysis increments suggest seasonally depen-
dent model biases that follow seasonal dust changes. By ap-
plying these corrections, the analysis improves the underly-
ing model. Overall, the spatial distribution of the analysis in-
crements over source regions, as well as in their proximity,
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highlights the pivotal role of the MODIS DB retrievals in
providing an observational constraint over the most critical
regions, confirming what previous studies have shown (Di
Tomaso et al., 2017; Benedetti et al., 2019).

The reanalysis DOD and DODcoarse have been vali-
dated with highly accurate ground-truth measurements from
AERONET on a 3-hourly, daily and monthly basis and with
the application of specific dust filters to the reference prod-
ucts or the use of the coarse-mode AOD product. When the
latter is used as reference, a Pearson correlation coefficient
as high as 0.81 with a MB of −0.05 and a RMSE of 0.12 are
estimated when considering the whole reanalysis period and
3-hourly AERONET retrievals. This confirms the good ac-
curacy of the reanalysis data set and its suitability to be used
in specific air quality/health and climate service applications.
By extending the existing observation-based information in-
tended for mineral dust monitoring, this reanalysis will allow
a better quantification of dust impacts upon key sectors of so-
ciety and the economy. This makes the data set a potentially
useful tool in support of climate research and service, includ-
ing the support to operational early warning systems and to
the development of mitigation strategies.

This desert dust reanalysis data set is intended to be the
first major endeavour towards the production of BSC aerosol
reanalyses over regional or global domains. Extensions of the
data set are planned for the near future. A series of com-
panion papers will provide a more comprehensive evaluation
of the reanalysis, an analysis of inter-annual variability and
trends, and a description of the data set’s application in dust-
tailored services.

Appendix A: Folder and file naming convention of
the reanalysis data set

As described in Sect. 9, the reanalysis data set is structured
into individual files per variable and type of ensemble statis-
tics (e.g. an individual file contains the ensemble mean anal-
ysis of DOD at 550 nm). The filenames include the following
terms separated by the underscore sign: the short name of the
variable (as reported in Table 2); the initial date and time of
the data included in the file; a suffix from among av, max, me-
dian and std indicating the ensemble mean, max, median and
standard deviation, respectively, for that variable and option-
ally the label an for the variables for which an analysis field
is produced. When the latter label is not present, the fields
are model first guess. The filenames end with the extension
suffix nc identifying NetCDF files. Each individual file con-
tains eight time steps at a 3-hourly time frequency starting
at 03:00 UTC. Therefore, for example, the filename for the
ensemble mean analysis of DOD at 550 nm for a given date
is od550du_YYYYMMDDHH_av_an.nc, where od550du is
the variable short name and YYYYMMDDHH can take val-
ues from 2007010103 to 2016123103. The files are orga-
nized into folders containing the whole 10-year period for

a given variable and type of statistics. Each folder is named
with the variable short name followed by the hyphen sign
and the suffix indicating the type of ensemble statistics and
optionally by the label an preceded by the underscore sign
for the variables for which there is an analysis field. Hence
the folder containing the files of the example above is named
od550du-av_an, while the corresponding ensemble mean
first guess data are stored in the folder named od550du-av. To
follow on with the same example, the ensemble mean analy-
sis of DOD at 550 nm for 9 July 2012 can be found in the file
path od550du-av_an/od550du_2012070903_av_an.nc.

Appendix B: Verification metrics

The definitions of the verification metrics used in this study
are reported in Table B1.

Table B1. Definitions of the verification statistics used in the study.
oi and ci are the observed and the modelled concentrations at time
and location i, respectively; o and c are their averages; n is the num-
ber of data.

Statistic parameter Formula

Pearson correlation
coefficient (r)

r =

∑n
i=1(ci−c)·(oi−o)√∑n

i=1(ci−c)2·
√∑n

i=1(oi−o)2

Mean bias (MB) MB= 1
n

n∑
i=1

(ci − oi )

Root mean square
error (RMSE)

RMSE=

√
1
n

n∑
i=1

(ci − oi )2

Mean fractional
bias (MFB)

MFB= 2
n

n∑
i=1

(
ci−oi
ci+oi

)

Appendix C: Simulation workflow

The reanalysis has been run on the BSC high-performance
computing (HPC) infrastructure using the Autosubmit work-
flow manager (Manubens et al., 2016; Uruchi et al., 2021),
a Python-based tool to create, manage and monitor experi-
ments running on one or multiple remote computing clus-
ters or HPC via the Secure Shell protocol. Scripts and tem-
plates to use Autosubmit were developed specifically for the
reanalysis to be able to easily run and monitor long simu-
lations by using the BSC HPC resources and store their re-
sults in the BSC archive. Autosubmit handles the job sub-
mission of the different workflow steps automatically, tak-
ing into account interruptions and failures. A functionality to
wrap the 12 daily model simulations (each using 768 com-
puting cores) and the data assimilation calculations (using
576 cores) was used to minimize the queuing times. This
allows processing a number of days in a row and increas-
ing the parallelism since a single job allocates the total sum
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of computing nodes required (i.e. 9792 cores were reserved
by each wrapper). The number of computing cores for each
job has been estimated to balance the execution time of a
model simulation and of the assimilation for these jobs to
share the computing resources. Additionally, the jobs of two
post-processing steps were also wrapped together with the
simulation and data assimilation jobs. The post-processing
steps are needed to compress and reduce the original model
and assimilation output and for the calculation of some basic
ensemble statistics (to be provided to the users as main out-
put of the reanalysis) before the final output is transferred to
a long-term archive. The job wrapper has been designed with
a crossing-date strategy to run two different starting dates
within the same experiment. This is done so that the model
ensemble simulations from the first starting date can be run in
parallel with the assimilation job of the second starting date.
This choice of design was made since model ensemble simu-
lations and data assimilation calculations from the same date
cannot be run simultaneously due to the obvious dependency
of the data assimilation job on the model output. This novel
workflow design was developed specifically for the produc-
tion of the dust reanalysis and has proven successful for such
highly computationally intensive calculations.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-2785-2022-supplement.
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