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Abstract. The risk of water erosion on the Tibetan Plateau (TP), a typical fragile ecological area, is increasing
with climate change. A rainfall erosivity map is useful for understanding the spatiotemporal pattern of rain-
fall erosivity and identifying hot spots of soil erosion. This study generates an annual gridded rainfall erosivity
dataset on a 0.25◦ grid for the TP in 1950–2020. The 1 min precipitation observations at 1787 weather stations
for 7 years and 0.25◦ hourly European Center for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) pre-
cipitation data for 71 years are employed in this study. Our results indicate that the ERA5-based estimates have
a marked tendency to underestimate annual rainfall erosivity when compared to the station-based estimates, be-
cause of the systematic biases of ERA5 precipitation data including the large underestimation of the maximum
contiguous 30 min peak intensity and relatively slight overestimation of event erosive precipitation amounts. The
multiplier factor map over the TP, which was generated by the inverse distance-weighted method based on the
relative changes between the available station-based annual rainfall erosivity grid values and the corresponding
ERA5-based values, was employed to correct the ERA5-based annual rainfall erosivity and then reconstruct the
annual rainfall erosivity dataset. The multiyear average correction coefficient over the TP between the station-
based annual rainfall erosivity values and the newly released data is 0.67. In addition, the probability density
and various quantile values of the new data are generally consistent with the station-based values. The data of-
fer a view of large-scale spatiotemporal variability in the rainfall erosivity and address the growing need for
information to predict rainfall-induced hazards over the TP. The dataset is available from the National Tibetan
Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.271833; Chen, 2021).

1 Introduction

Precipitation is the main driver of water erosion because it
directly affects the detachment of soil particles, breakdown
of aggregates, and transport of eroded particles via runoff
(Wischmeier and Smith, 1965, 1978). The R factor, i.e.,
the multiyear average rainfall erosivity, which is described
by the universal soil loss equation (USLE; Wischmeier and
Smith, 1965, 1978) and revised USLE (RUSLE; Renard et
al., 1997), is an indicator of the potential ability of rain-

fall and runoff to affect soil erosion. Generally, the R factor
is calculated by using the classical (Wischmeier and Smith,
1965) or statistical algorithms (e.g., Liu et al., 2002) accord-
ing to the temporal resolution of the available precipitation
data.

The classical algorithm for rainfall erosivity requires a
continuous precipitation data series with < 15 min temporal
resolution (Angulo-Martínez and Beguería, 2009). As net-
works of weather stations and observation platforms have
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matured considerably in the past two decades, rainfall ero-
sivity has been calculated using the classical algorithm at the
local level (Agnese et al., 2006; Ma et al., 2014; Wang et al.,
2017), and the application of the algorithm has been gradu-
ally extended to the national (Panagos et al., 2015; Kim et
al., 2020; Yue et al., 2022) and global levels (Panagos et
al., 2017; Liu et al., 2020). Despite substantial progress, it
is still notable that the relative error of the estimated rainfall
erosivity increases rapidly with increasing time interval of
the precipitation data. For example, the relative error based
on hourly data was more than 80 %, compared with the re-
sults based on 1 min data (Lobo and Bonilla, 2015; Yin et
al., 2015; Shin et al., 2019). In addition, the accuracy of
the rainfall erosivity map is greatly reduced by inadequate
weather station coverage, especially in areas with complex
climates and terrains (Yue et al., 2021). Therefore, the accu-
racy of rainfall erosivity estimation strongly depends on both
the temporal and spatial resolution of the precipitation data
(Panagos et al., 2017; Kim et al., 2020).

Compared with in situ observations, gridded precipitation
data (e.g., satellite-based, reanalysis and fused datasets) are
not subjected to topographical limitations and could supply
continuous precipitation data (Beck et al., 2017). These data
have been widely used to estimate the rainfall erosivity in
China, especially in the regions with scarce in situ observa-
tions (Teng et al., 2018), Germany (Risal et al., 2018), Africa
(Vrieling et al., 2010), the USA (Kim et al., 2020), and other
regions. They have greatly contributed to our knowledge of
the spatiotemporal patterns of rainfall erosivity; however, the
uncertainties in rainfall erosivity directly calculated by using
gridded precipitation data have not been quantified, although
obvious biases between gridded and observed precipitation
values have been demonstrated (Freitas et al., 2020).

The Tibetan Plateau (TP) referred to as the Third Pole is
one of the highest plateaus worldwide and has an average
altitude of more than 4000 m (Yao et al., 2012). Since the
mid-1950s, the TP has experienced significant warming ex-
ceeding that of other regions in the same latitude zone (Liu
and Chen, 2000). Owing to increasing snowmelt and more
frequent heavy precipitation events, which may cause more
severe soil erosion, knowledge of the rainfall erosivity on the
TP is highly important for soil sustainability and thus water
and food security. The accuracy of the rainfall erosivity es-
timation depends mainly on the spatiotemporal accuracy of
the precipitation data, especially on the TP, where the sea-
sonal and regional precipitation patterns exhibit significant
variability owing to westerly winds, the Indian monsoon, and
land-atmosphere interaction.

Many efforts have been made to study the rainfall erosivity
on the TP (Table 1). Most studies employed empirical meth-
ods; however, our study has demonstrated that these empir-
ical methods always resulted to obvious biases over the TP,
when compared with the values based on the 1 min precipi-
tation data by using the standard method (paper submitted).
In terms of the type of precipitation data, dozens of station-

based precipitation data were commonly used to calculate
the rainfall erosivity (e.g., Qin et al., 2016; Gu et al., 2020).
Yue et al. (2022) reported that the scarce weather stations
can significantly reduce the estimation accuracy of the rain-
fall erosivity in the regions with complex terrains and cli-
mates, especially on the TP. Therefore, the accuracy of the
estimated rainfall erosivity on the TP is largely reduced by
the current empirical estimation models and the scarcity of
historical weather stations. In other words, the precipitation
data with high spatiotemporal resolution are essential to cal-
culate the rainfall erosivity on the TP.

To expand the spatial coverage and extend the time series
of rainfall erosivity over the TP, the various gridded precip-
itation datasets, for example, satellite-based Tropical Rain-
fall Measuring Mission (TRMM) and station-based Climatic
Research Unit Time Series 4 gridded precipitation datasets
(CRU_TS4), have also been introduced into the soil ero-
sion study of the TP in recent decades (Yan et al., 2010;
Teng et al., 2017; Cao et al., 2018). The performances of
these gridded precipitation datasets mainly depend on the
spatiotemporal accuracy of the gauge observations, and thus
these datasets always present obvious biases due to insuf-
ficient density of the weather station network over the TP
(Yuan et al., 2021). It is notable that the significant biases of
various gridded precipitation datasets have also been widely
identified (Sun et al., 2018), and their impacts on the rainfall
erosivity estimation have not been assessed.

In recent hydrometeorology studies, the model-based grid-
ded precipitation datasets are taken into consideration (Li
et al., 2020; Zhou et al., 2021), because they could resolve
the complex topography and climate effects over the TP
and provide long-term data by setting simulation periods.
The European Center for Medium-Range Weather Forecasts
Reanalysis 5 (ERA5) as the new generation is one of the
most widely used precipitation datasets in the world (Hers-
bach et al., 2019). Compared with other gridded precipitation
datasets, ERA5 succeeded in reproducing the interannual and
decadal variabilities of precipitation reflecting the spatiotem-
poral patterns (Yuan et al., 2021), and performed marginally
better in detecting daily precipitation over the whole TP for
long-term periods (Jiang et al., 2021), despite the fact that a
bias in precipitation amounts was also reported (Jiang et al.,
2021; Jiao et al., 2021). Therefore, this study aims to recon-
struct the historical annual rainfall erosivity with 0.25◦ spa-
tial resolution in 1950–2020 over the TP, by employing the
0.25◦ hourly ERA5 precipitation data for 71 years to gener-
ate long-term background values and utilizing the 1 min pre-
cipitation observations at 1787 weather stations for 7 years
to identify and correct the biases of the estimates. In detail,
this paper describes (1) the performance of ERA5 precipi-
tation data at the weather stations, (2) the performance of
the ERA5-based annual rainfall erosivity calculated by using
the standard method recommended by the USLE model and
(3) the correction of the ERA5-based annual rainfall erosivity
and the validation of the newly generated dataset.
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Table 1. R factor of TP in previous studies.

Study scale Type of precipitation Number of weather Temporal Calculation Spatial R factor Reference
data stations resolution method characteristics (MJ mm ha−1 h−1 yr−1)

China Weather station China: 2381 TP: < 100 1 h Standard Kriging TP: 273 Yue et al. (2022)

Southwestern CRU_TS4 Monthly Empirical Grid, no bias Tibet: 3407 Cao et al. (2018)
China correction

China TRMM, weather China: 650 TP: < 50 Daily Empirical Grid, bias No value Teng et al. (2017)
station correction of

TRMM
precipitation

China Weather station China: 756 TP: < 50 Daily Empirical Kriging TP: 408 Qin et al. (2016)

China Weather station China dryland Daily Empirical HASM Most of TP: 1–500 Yang and Lu (2015)
dryland region 298 interpolation
region

China Weather station China: 590 TP: < 50 Daily Empirical Kriging Central and eastern TP: 147 Liu et al. (2013)

China Weather station China: 564 Daily Empirical Kriging Cold zone of TP: 368 Zhang et al. (2003)
Sub-cold zone of TP: 427

Tibet Weather station Tibet: 38 Daily Empirical Station-averaged Tibet: 714 Gu et al. (2020)

Tibet TRMM 3B42 Daily Empirical Grid, no bias Tibet: 768 Yan et al. (2010)
gridded correction

CRU_TS4: Climatic Research Unit Time Series 4 gridded precipitation product. TRMM: Tropical Rainfall Measuring Mission gridded precipitation product. HASM: High accuracy surface modeling. Empirical method
means the rainfall erosivity values are calculated by using the empirical equations based on daily or monthly precipitation data. The standard method is proposed by USLE or RUSLE. The boundaries of the TP used in
these studies have some slight differences.

2 Study area and data source

2.1 Tibetan Plateau

The study area is the TP (26–40◦ N, 73–105◦ E), which is
located in southwestern China and covers an area of approx-
imately 2.5 million km2. The elevation of the TP ranges from
84 to 8246 m, with an average value of 4379 m. Precipitation
in the southeastern TP is influenced by warm, humid Indian
monsoons, whereas in the western TP, it is influenced more
strongly by the mid-latitude westerlies (Yao et al., 2012). The
annual precipitation is concentrated in the period from May
to October (Gu et al., 2020), and shows a spatial pattern of a
wet east and west with a dry middle (Li et al., 2020). Along
with the significant climate change and a very fragile eco-
logical environment, the TP has high potential for soil loss,
especially in the eastern TP and Hengduan Mountains, which
are among the most severely eroded areas in China (Teng et
al., 2019).

2.2 Precipitation data

Previous studies of the TP have used in situ precipitation ob-
servations with < 50 stations and coarse temporal resolution,
e.g., hourly (Yue et al., 2021), daily (Wang et al., 2017), or
half-monthly (Teng et al., 2018; Gu et al., 2020; Liu et al.,
2020). By contrast, this study estimated the rainfall erosiv-
ity on the TP using precipitation observations at 1 min inter-
vals in 2013–2020 at 1787 weather stations obtained from
the National Meteorology Information Center of the China
Meteorological Administration (Fig. 1a).

To ensure the accuracy of the in situ precipitation data,
we evaluated their quality. The data integrity of each sta-
tion was first checked using quality control codes at 1 min
intervals by month. Because precipitation on the TP occurs
mainly from May to September, observed data with an in-
tegrity of > 90% from May to September in a year can be
used to calculate the annual rainfall at the station. The num-
ber of stations with data suitable for calculating the annual
rainfall erosivity for each year is shown in the lower left cor-
ner of Fig. 1a; it ranges from 628 to 1472, with an average
of 1114 stations for 2013–2020 (excluding 2017, because a
disruption in data reception caused the loss of precipitation
observations in August 2017). Moreover, we examined the
station density in each 0.25◦ grid, which is consistent with
the spatial resolution of the ERA5 data (Fig. 1b). The num-
ber of stations in each grid varies from 1 to 29, and the mean
value is 2.1. A total of 836 grids (20 % of the grids covering
the TP) have observed precipitation values. Because the data
quality varies, the available grids with observations change
annually; on average, there are 589 available grids with ob-
servation records for 2013–2020, excluding 2017.

The hourly 0.25◦ ERA5 data represent the most recent
generation of ECMWF global atmospheric reanalysis and
provide higher spatial resolution than ERA-Interim and other
improvements since 1979 (Hersbach et al., 2019). The pre-
cipitation data are the sum of large-scale precipitation and
convective precipitation consisting of rain and snow, as de-
termined by the ECMWF Integrated Forecasting System.
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Figure 1. (a) Spatial distribution of weather stations on TP; the inset shows the number of available weather stations by year. (b) Number of
available weather stations in each grid with 0.25◦ spatial resolution; the inset shows the number of available weather stations by year.

3 Methodology

Figure 2 shows the overall algorithm for generating the an-
nual rainfall erosivity dataset with the 0.25◦ spatial resolu-
tion over the TP in 1950–2020. We firstly calculated the an-
nual rainfall erosivity by using the standard method of rain-
fall erosivity based on the 1 min in situ precipitation obser-
vations and 0.25◦ hourly ERA5 precipitation data. Secondly,
the performances of the ERA5 were systematically assessed
in terms of the detection accuracy of the precipitation for ero-
sive events and the estimation accuracy of ERA5-based an-
nual rainfall erosivity. Finally, the historical annual rainfall
erosivity data for the TP were produced after correcting the
ERA5-based annual rainfall erosivity.

3.1 Algorithm of annual rainfall erosivity

A rainfall event is defined following Wischmeier and
Smith (1978) as having measurable rainfall with no interrup-
tion or at most a 6 h interruption. If a rainfall event is inter-
rupted for more than 6 h, subsequent rainfall is considered
to belong to a new rainfall event. Rainfall events of more

than 12 mm are selected as erosive events following Xie et
al. (2000), and the EI30 index of the erosive event is calcu-
lated. Specifically, the rainfall erosivity of an erosive rainfall
event is calculated as follows (Brown and Foster, 1987):

er = 0.29[1− 0.72exp(−0.05ir )], (1)

E =
∑n

r=1
(er ·Pr), (2)

revent = E · I30, (3)

where E (MJ ha−1) is the total energy of the erosive event,
and revent (MJ mm ha−1 h−1) is the event rainfall erosivity of
the event. For the 1 min precipitation data (ERA5 data), ir
(mm h−1) is the rainfall intensity for the rth minute (hour), er

(MJ ha−1 mm−1) is the unit energy for the rth minute (hour),
Pr (mm) is the rainfall amount for the rth minute (hour), n is
the rainfall duration, and I30 (mm h−1) is the maximum con-
tiguous 30 min (1 h) peak intensity. After the event rainfall
erosivity at all stations was calculated, we identified and re-
moved extreme outliers of the event rainfall erosivity at each
site, which resulted from temporary abnormalities in the au-
tomatic observation equipment and were not identified dur-
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Figure 2. Schematic representation of algorithm for generating annual rainfall erosivity dataset for 1950–2020. robs_year and rERA5_year rep-
resent the station-based and ERA5-based annual rainfall erosivity values, respectively. rcor_year means the corrected values of the rERA5_year
by using the multiplier factor map.

Table 2. Number of grids used in this study.

Year Total number of Number of Percentage of
grids with validation validation data

observations grids in total data (%)

2013 381 381 100
2014 477 104 22
2015 504 131 26
2016 562 189 34
2018 712 339 48
2019 745 372 50
2020 742 369 50

ing quality control of the precipitation data. We used box-
plots to detect extreme outliers. The lower and upper quar-
tiles were defined as the 25th percentile of event rainfall ero-
sivity (Q1) and the 75th percentile (Q2); the difference (Q2
− Q1) is called the interquartile range (IQR). Event rainfall
erosivity data at a station outside the lower and upper bounds
(Q1 − 3IQR, Q2 + 3IQR) are considered extreme outliers.

The observed annual rainfall erosivity values (rstation_year)
were obtained by summing the rainfall erosivity for all ero-
sive events per year by station. Next, the ERA5-based annual
rainfall erosivity (rERA5_year) for all the grids in the TP was

calculated. Notably, for easy comparison of rstation_year and
rERA5_year, the rstation_year values were upscaled to the grid
values (robs_year) with 0.25◦ spatial resolution by averaging
the station-based values in the same grid. Figure 1b shows
the spatial distribution of the available grids with robs_year.
Steps 2 and 3 in Fig. 2 are based on robs_year and rERA5_year
data at grid scale.

3.2 Assessment of the performance of the ERA5
precipitation data

The performance of the ERA5 precipitation data was as-
sessed at 280 grid cells, which corresponded to 7 % of all
the grids over the TP. Given the importance of erosive rain-
fall events to soil erosion, we focused on the performance
of the ERA5 precipitation data in detecting characteristics of
erosive rainfall event, including multiyear averaged annual
erosive precipitation amount and frequency, and mean ero-
sive event precipitation amount and I30.

The mean values of rERA5_year for 2013–2020 were com-
pared with those of robs_year by station. The absolute bias
(AB) and correction coefficient (r) were used to evaluate the
accuracy of annual rainfall erosivity estimation using ERA5
data. The AB is calculated as shown in Eq. (4).

AB=
∑n

i=1
(rERA5_yeari − robs_yeari )/n, (4)
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Figure 3. Spatial distribution of validation grids covering the TP for 2013–2020 (excluding 2017).

where i is the ith annual rainfall erosivity value, rERA5_yeari
is the ERA5-based annual rainfall erosivity in the ith year,
robs_yeari is the observed annual rainfall erosivity in the ith
year, and n is the number of years of data. Moreover, the
empirical orthogonal function (EOF) was employed to as-
sess the spatiotemporal pattern of annual rainfall erosivity
revealed by the ERA5 reanalysis precipitation data by com-
paring it with the pattern revealed by the observed values.

3.3 Reconstruction and validation of annual rainfall
erosivity

For the soil erosion process it is known that not all the pre-
cipitation events but the erosive events have a close rela-
tionship with the water erosion process. Our study indicated
the precipitation characteristics derived from ERA5 data for
erosive events showed high correlation with those from in
situ precipitation observations over the TP (Fig. 4). In addi-
tion, there was a high correlation between the station-based
and ERA5-based annual rainfall erosivity (Fig. 5), and their
spatiotemporal distribution patterns also showed good agree-
ment (Fig. 7). These findings demonstrate that it is reason-
able to generate the rainfall erosivity dataset for the TP by us-

ing the ERA5 precipitation data, and the correction is also es-
sential because of the obvious biases identified in the ERA5-
based rainfall erosivity values.

Relative changes between the in situ and modeled precip-
itation are always used to correct the modeled precipitation
for accuracy improvement, such as the global precipitation
data from WorldClim (Fick et al., 2017), the gridded precipi-
tation data of the China Meteorological Forcing Dataset (He
et al., 2020) and the bias adjusted ERA5 precipitation data
(Cucchi et al., 2020). Given the close correlation between
the precipitation and rainfall erosivity, the relative changes
were also employed to correct the ERA5-based annual rain-
fall erosivity in this study. Here, we have used a hypothe-
sis that the bias of the ERA5-based annual rainfall erosiv-
ity resulting from ERA5 precipitation data at each grid re-
mains steady by year. In detail, the correction process can
be divided into three steps. Firstly, the robs_yearvalues were
divided by rERA5_year for each year, and then the calculated
results, i.e., the multiplier factor values, were averaged for
years. Secondly, inverse distance weighted (IDW) interpola-
tion was used to generate a multiplier factor map of the TP
with 0.25◦ spatial resolution. Thirdly, the corrected annual
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Figure 4. Scatterplots of the station-based multiyear average (a) annual erosive precipitation amount (Ptot), (b) annual erosive precipitation
frequency (PF), (c) mean erosive event precipitation amount (Pevent), (d) mean I30 for erosive events (I30) vs. those derived from ERA5
data at the corresponding grid cells in 2013–2020.

rainfall erosivity dataset (rcor_year) was obtained as the prod-
uct of rERA5_year and the multiplier factor for each grid.

Specifically, there are 373 grids with observed annual rain-
fall erosivity values from 2014 to 2020. The robs_year and
rERA5_year values in these grids were used to generate the
multiplier factor map. The robs_yearand rERA5_year values in
other grids for 2014–2020, which were not used before, are
available for assessing the accuracy. Moreover, the year 2013
was regarded as a complete verification year, in which the
assessment of the rcor_year was conducted in all the TP grids
with robs_year values. Table 2 lists the number of validation
grids in each year, and Fig. 3 shows the spatial distribution
of the validation grids for 2013–2020 (excluding 2017).

4 Results

4.1 Detecting accuracy of ERA5 for erosive rainfall
events

Figure 4 compares the multiyear average annual erosive pre-
cipitation amount and frequency, and mean erosive event
precipitation amount and I30 derived from ERA5 precipi-

tation data with those from in situ observations. In detail,
the EA5-based multiyear average annual erosive precipita-
tion amount is three times more than the station-based value
across the TP. The overestimation of the multiyear average
annual precipitation amount was also reported by Jiao et
al. (2021). The ERA5 overestimated the annual erosive pre-
cipitation frequency by 1.6 times. For the erosive event rain-
fall amount, the ERA5 value was almost twice as much as the
station-based value, which differed from the findings of Jiao
et al. (2021) that the daily precipitation amounts with more
than 10 mm are underestimated by ERA5. This result demon-
strates that the erosive rainfall events in the TP cannot be sim-
ply equivalent to the daily precipitation events (Chen et al.,
2022). In addition, the mean I30 of ERA5 for erosive events
are only one ninth of the station-based value. Because the
relatively slight overestimation of ERA5 precipitation data
in the erosive event precipitation amount could not offset the
substantial underestimation in I30, the ERA5-based estimates
showed a marked tendency to underestimate the rainfall ero-
sivity when compared to the station-based estimates. Overall,
the comparison between the two data sources indicates that
there were significant biases of ERA5 data in detecting pre-
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Figure 5. Comparison of mean annual rainfall erosivity based on
observed and ERA5-based results for 7 years (2013–2020, exclud-
ing 2017). The dashed line is the result of an optimal model (with
an intercept of 0 and regression coefficient of 1). The red line
is the regression result. Colors of dots represent the grid density.
Unit: MJ mm ha−1 h−1 yr−1.

cipitation characteristics for erosive events in the TP, but also
presented high corrections with correlation coefficients being
0.33–0.84.

4.2 Evaluation of rainfall erosivity estimations using
ERA5 data

The accuracy of annual rainfall erosivity estimations using
the ERA5 precipitation data for 2013–2020 was assessed and
compared with the robs_year values in 280 grids covering the
TP. The correlation coefficient of the mean annual rainfall
erosivity based on the observed and ERA5 precipitation data
is 0.71. For most stations, the ERA5-based values were sig-
nificantly underestimated (Fig. 5).

To further evaluate the quality of the mean annual rain-
fall erosivity estimation using ERA5 data, the performance
of the ERA5 data in each grid was evaluated, as shown in
Fig. 6. The spatial pattern of the ERA5-based mean annual
rainfall erosivity is consistent with that of the observed val-
ues. Specifically, areas with large annual rainfall erosivity are
located mainly in the southeastern part of the plateau, espe-
cially at the southeast edge, whereas the mean annual values
in the northwestern part of the plateau are relatively small;
however, the observed mean annual rainfall erosivity on the
TP is 344 MJ mm ha−1 h−1 yr−1, and the ER5-based results
underestimate this value by 47 %. Moreover, except for most
of the grids in the northwest corner and individual grids in
the southeastern part of the plateau, the mean annual rainfall
erosivity values in most grids in the TP are lower than the
observed values.

Figure 6. Mean annual rainfall erosivity in 2013–2020 (excluding
2017) based on (a) in situ precipitation observations and (b) ERA5
reanalysis precipitation data. (c) Absolute bias between the val-
ues based on ERA5 reanalysis data and precipitation observations.
Unit: MJ mm ha−1 h−1 yr−1.

The accuracy of the spatiotemporal variability of the mean
annual rainfall erosivity on the TP obtained using the ERA5
dataset is also crucial for determining whether ERA5 is suit-
able for rainfall erosivity calculations. We used the first three
EOF modes, which are considered to provide the most valu-
able information, for evaluation. The spatial pattern of the
first three EOFs of the observed values accounts for 77 %
of the total variance, and that of the first three EOFs of the
ERA5-based values accounts for 84 % of the total variance
(Fig. 7). Clearly, ERA5 successfully captured the spatial pat-
tern of the EOF modes, especially the first two EOF modes,
revealed by the observed values. In addition, the correspond-
ing principal components of the EOF modes of the ERA5-
based values are also consistent with the temporal variation
trend of the observed values. Therefore, it can be concluded
that the ERA5-based mean annual rainfall erosivity generally
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Figure 7. First three empirical orthogonal function (EOF) modes of observed and ERA5-based mean annual rainfall erosivity on the TP in
2013–2020 (excluding 2017).

Figure 8. (a) Spatial distribution of multiplier factors of 373 grids, (b) multiplier factor map of TP generated by IDW interpolation.

reproduces the spatiotemporal patterns of the rainfall erosiv-
ity on the TP.

4.3 Reconstruction and validation of corrected annual
rainfall erosivity

Using the observed and ERA5-based annual rainfall ero-
sivity, we calculated the multiplier factors for 373 grids
(Fig. 8a). The multiplier factors for the TP range from 0 to
23, with a mean value of 2.4. Multiplier factors of < 1 indi-
cate that the ERA5-based annual rainfall erosivity is overes-
timated, and conversely, the annual rainfall erosivity in the
grid is underestimated. Most of the areas with overestimated
ERA5-based mean annual rainfall erosivity are located in the

Tarim, Qaidam, and Yarlung Zangpo basins. In other areas,
the annual rainfall erosivity is typically underestimated, and
areas with greater underestimation appear east of the Qaidam
basin and in the source area of the Yellow River. We also pro-
duced a multiplier factor map of the TP by IDW interpolation
based on the multiplier factors of 373 grids (Fig. 8b).

The corrected annual rainfall erosivity in 2013–2020 (ex-
cluding 2017) was then calculated in the validation grids as
the product of the ERA5-based annual values and multiplier
factors from the map. Figure 9 compares the observed and
ERA5-based annual rainfall erosivity in the validation grids
by year. In 2014–2020 (excluding 2017), the multiyear av-
eraged correction coefficient between robs_year and rcor_year is
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Figure 9. Comparison of ERA5-based annual rainfall erosivity (MJ mm ha−1 h−1 yr−1) (left-hand graphs) and the corrected annual rainfall
erosivity (right-hand graphs) with observed values in validation grids for 2013–2020 (excluding 2017). The dashed line is the result of an
optimal model (with an intercept of 0 and a regression coefficient of 1). The solid black lines are the regression result. Colors of dots represent
the grid density.

0.67, which is 0.13 larger than the value between robs_year and
rERA5_year. Moreover, all of the data for 2013, which were not
used to produce the multiplier factor map, were used to con-
duct an independent assessment. The results show that the
correction coefficient also increases from 0.53 to 0.67 after

the ERA5-based annual rainfall erosivity is corrected, indi-
cating a significant improvement.

Violin plots are an alternative method of synthetically
evaluating the accuracy of the corrected annual rainfall ero-
sivity. Figure 10 compares the observed, ERA5-based, and
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Figure 10. Violin plots of observed, ERA5-based, and corrected annual rainfall erosivity in validation grids for 2013–2020 (excluding
2017). The Y axis shows the annual rainfall erosivity in MJ mm ha−1 h−1. The boxplot diagram of the median of the violin plots shows the
maximum value, 75 % quantile value, 50 % quantile value, 25 % quantile value, and minimum value. The horizontal lines represent average
values.

corrected annual rainfall erosivity in the validation grids for
2013–2020 (excluding 2017). The corrected annual rainfall
erosivity values for 2014–2020 are better than the ERA5-
based values in terms of both the probability density and
the values corresponding to different quantiles. Even in
2013, a completely independent verification year, the accu-
racy of the corrected annual rainfall erosivity is greatly im-
proved. Specifically, the observed grid-averaged multiyear
mean annual rainfall erosivity is 329 MJ mm ha−1 h−1 yr−1

in 2013–2020 (excluding 2017), where the ERA5-based
value is 190 MJ mm ha−1 h−1 yr−1, and the corrected value is
374 MJ mm ha−1 h−1 yr−1. The relative error is significantly
reduced, from −42 % to 14 %, by multiplier factor correc-
tion.

4.4 Rainfall erosivity in the TP and related uncertainties

Because of the large variability of the spatiotemporal patterns
of precipitation, the R factor, an essential input for soil loss
estimation, must be calculated using a minimum of 20 years
of precipitation data (Renard et al., 1997). In this study, the
annual rainfall erosivity values of the TP for 71 years based
on the 0.25◦ hourly ERA5 precipitation data were calculated
by the algorithm shown in Sect. 3.1. Next, after correction by
the multiplier factor map, the new annual rainfall erosivity
dataset for 1950–2020 and R factor map were produced.

The annual rainfall erosivity fluctuates considerably
within a range of 239–408 MJ mm ha−1 h−1 yr−1 (Fig. 11);
however, no obvious increasing or decreasing trend appears
in the past 71 years across the TP. Regarding the spatial dis-
tribution, the R factor generally shows a decreasing trend
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Figure 11. R factor map of TP with the 0.25◦ spatial resolution for 1950–2020. The inset represents the yearly change in annual rainfall
erosivity.

from southeast to northwest. The areas with R factors below
200 MJ mm ha−1 h−1 yr−1 are concentrated in the northwest-
ern part of the TP, whereas regions with high R factors appear
mainly in the southeastern TP, especially in the Bomi–West
Sichuan and Dawang–Chayu areas. The TP-averaged R fac-
tor is 307 MJ mm ha−1 h−1 yr−1, which is obviously lower
than those from previous studies (e.g., Qin et al., 2016; Cao
et al., 2018), excluding Liu et al. (2013) and Yue et al. (2022).

Compared with previous studies, there are two essen-
tial improvements by using the data-driven approach in this
study. One the one hand, the 1 min precipitation observations
from 1787 weather stations are firstly used to calculate the
accuracy of rainfall erosivity values by employing the stan-
dard algorithm. With the densely spaced rainfall erosivity
values, it is able to yield a realistic spatial distribution and
identify the high spatial heterogeneity of the rainfall erosivity
over the TP. On the other hand, apart from an R factor map,
we also produced a high-precision time series of annual rain-
fall erosivity for 71 years after correcting the ERA5-based
estimations, which may offer great help to reveal the spa-
tiotemporal evolution over the TP under the climate changes.

It is also notable that some uncertainties are also unavoid-
ably involved in the newly reconstructed dataset. As biases
of the ERA5 precipitation data in detecting the characteris-
tics of the erosive rainfall events have been revealed, we used
multiple factors to correct the ERA5-based rainfall erosivity
values by grid, to reduce the biases resulting from the ERA5
data. Limited by the scarcity of the in situ precipitation ob-
servations from weather stations before 2013 (less than 100
weather stations), it is hardly possible to yield a realistic spa-
tial distribution of the multiple factor map by year. Here, we
made a hypothesis that the biases of the ERA5-based annual
rainfall erosivity always remained steady in various years,

and thus the multiyear average annual multiple factor map
from 2014–2020 is used in the correction process. With the
improvement of the weather/climate forecast models in the
future, the biases of the estimated rainfall erosivity by using
gridded precipitation data will continue to be reduced.

5 Data availability

The dataset is available from the National Ti-
betan Plateau/Third Pole Environment Data Center
(https://doi.org/10.11888/Terre.tpdc.271833; Chen, 2021).

6 Conclusions

This study presents a new gridded dataset of annual rainfall
erosivity over the TP based on the 1 min in situ precipitation
data from 1787 weather stations and the long-term ERA5
precipitation data. The annual rainfall erosivity data are avail-
able over 71 years (from 1950 to 2020) on a 0.25◦ grid. The
TP-averaged correction coefficient between the station-based
annual rainfall erosivity and the newly released data is 0.67.
In addition, the probability density and various quantile val-
ues of the new data are generally consistent with the station-
based values across the TP.

This dataset provides a unique view of large-scale to local-
scale features in rainfall erosivity variability over the TP,
where it is hardly possible to obtain the long-term in situ pre-
cipitation data with sufficient spatiotemporal resolution. This
availability of new data opens up many interesting applica-
tions in soil erosion studies and disaster research, including

1. providing input data of the R factor for the TP, which is
needed for soil erosion modeling,
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2. understanding the present processes of water erosion
over the TP and improving future projections,

3. identifying the hot spots at high risk of landslide and
flooding hazards.

The data are available in Network Common (NC) data for-
mat that can be readily imported into standard geographical
information system software (e.g., ArcGIS) or accessed pro-
grammatically (e.g., MATLAB, Python).
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