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Abstract. Against the backdrop of global change, in terms of both climate and demography, there is a pressing
need for monitoring of the global water cycle. The publicly available global database is very limited in its spatial
and temporal coverage worldwide. Moreover, the acquisition of in situ data and their delivery to the database
have been in decline since the late 1970s, be it for economical or political reasons. Given the insufficient monitor-
ing from in situ gauge networks, and with no outlook for improvement, spaceborne approaches have been under
investigation for some years now. Satellite-based Earth observation with its global coverage and homogeneous
accuracy has been demonstrated to be a potential alternative to in situ measurements. This paper presents Hy-
droSat as a database containing geometric quantities of the global water cycle from geodetic satellites. HydroSat
provides time series and their uncertainty in water level from satellite altimetry, surface water extent from satel-
lite imagery, terrestrial water storage anomaly represented in equivalent water height from satellite gravimetry,
lake and reservoir water volume anomaly from a combination of satellite altimetry and imagery, and river dis-
charge from either satellite altimetry or imagery. The spatial and temporal coverage of these datasets varies and
depends on the availability of geodetic satellites. These products, which are complementary to existing products,
can contribute to our understanding of the global water cycle within the Earth system in several ways. They can
be incorporated for hydrological modeling, they can be complementary to current and future spaceborne obser-
vations, and they can define indicators of the past and future state of the global freshwater system. HydroSat is
publicly available through http://hydrosat.gis.uni-stuttgart.de (last access: 18 May 2022). Moreover, a snapshot
of all the data (taken in April 2021) is available in GFZ Data Services at https://doi.org/10.5880/fidgeo.2021.017
(Tourian et al., 2021).

1 Introduction

To understand the global hydrological cycle and the Earth
system in general, measurements are needed to estimate stor-
ages and fluxes on a spatial scale from local to continen-
tal and on a temporal scale sufficient to resolve even diur-
nal variations (Lettenmaier, 2006). However, current knowl-
edge of spatial and temporal dynamics of water storage and
fluxes on landmasses is limited (Alsdorf and Lettenmaier,
2003). The water surface elevation variation and bathymetry
of rivers and lakes are not sufficiently known. The depth of
soil moisture is not known on a global scale. Rain gauge

measurements are spatially not dense enough to represent
the input to the hydrological cycle. The number of discharge
gauge stations that contribute to the global database has been
declining steadily over the past decades. In fact, by today’s
knowledge, storage, fluxes and their changes over time can-
not be quantified properly. So they still remain our known
unknowns on a global scale (Famiglietti, 2012).

Given the abovementioned limitations, estimates from tra-
ditional in situ measurements are subject to large uncertainty
(Alsdorf and Lettenmaier, 2003; Strassberg et al., 2007; Yeh
et al., 2006; Rodell et al., 2006; Riegger et al., 2012). In
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the past, simple water balance analyses were used to as-
sess spatial patterns of precipitation and evapotranspiration
and to produce globally averaged fluxes. The average fluxes
were estimated simply as the difference in precipitation mi-
nus evapotranspiration, assuming that long-term change in
net water storage is negligible (Rodell et al., 2015; Lvovitch,
1973; Berner and Berner, 2012). With the emergence of land
surface representations in climate models (e.g., Dickinson,
1984) and large-scale hydrological models (e.g., Vörösmarty
et al., 2000), the limited ground-based observations were
augmented by model outputs, leading to a finer representa-
tion of water cycle on landmasses. The problem, however,
is that the model outputs themselves should usually be cali-
brated or constrained by observations (Rodell et al., 2015).

Spaceborne geodetic sensors, designed for a variety of
purposes, have established themselves as valuable tools for
oceanographic, cryospheric and also hydrological applica-
tions (Alsdorf et al., 2007). Satellite altimetry, originally aim-
ing at oceanography and geodesy, has demonstrated its po-
tential as virtual lake and river gauges (Alsdorf et al., 2007;
Papa et al., 2010a; Berry et al., 2005). The exciting possibil-
ity of surface water extent monitoring using satellite imagery
(optical and synthetic aperture radar, SAR) raises hopes of
better capturing surface water variability and providing a re-
alistic overview of hydrological behavior at the basin scale.
Since 2002 the satellite mission Gravity Recovery And Cli-
mate Experiment (GRACE) has been providing a fundamen-
tally new remote sensing tool for a wide spectrum of Earth
science applications (Tapley et al., 2004). GRACE is able to
monitor changes in the ocean and the global hydrological cy-
cle through measuring changes in the Earth’s gravitational
field from space.

The aforementioned missions promote novel approaches
in oceanography, geophysics, hydrology and hydro-
meteorology. Among these sciences, as stated above, there
is an urgent need for more observational data, particularly in
hydrology. This necessity arises from the abovementioned
limited knowledge of the spatial and temporal dynamics of
the freshwater variations and fluxes (Sneeuw et al., 2014).
Given such a pressing need, spaceborne geodetic sensors,
with their global coverage and homogeneous accuracy, are
viable choices over in situ measurements. It should be noted,
however, that despite being the only source of information
in data-poor regions, satellites do not yet provide the
desired spatio-temporal resolution. The spatio-temporal
resolution of spaceborne sensors is defined by their orbital
characteristics and their measurement concept. Satellite
altimetry missions are typically placed in repeat orbits with
a given number of revolutions within a certain number of
days, e.g., 35 d for ENVISAT, 10 d for Jason series and
27 d for Sentinel series (Fu and Cazenave, 2001). GRACE
can provide meaningful signals at its best spatial resolution
on the monthly timescale. The spatio-temporal resolution
problem is not as pronounced for optical and SAR satellite
imaging missions because they provide images with a

relatively high spatial resolution (about 250 m for MODIS
and 30 m for Landsat) at an acceptable temporal resolution.
However, cloud cover is a limiting factor in using the optical
images for generating a dense time series of surface water
area.

Space-based water cycle monitoring is entering a new era
in view of the wealth of present and future missions. Satel-
lite altimetry has already been put on an operational basis
by the Sentinel-3 satellites of the European Copernicus pro-
gram. At the same time, research satellites such as CryoSat-
2, SARAL/AltiKa and Jason-3 remain in orbit and pro-
vide complementary space–time measurements. On the other
hand, MODIS sensors on NASA’s Terra and Aqua satel-
lites have been acquiring medium-resolution satellite images
daily since 2000. In addition to the MODIS images, high-
resolution optical and SAR satellite images are available
from Landsat 8 and Sentinel 1 and 2. Moreover, the planned
SWOT (Surface Water and Ocean Topography) mission, due
for launch in 2022, will represent a paradigm change in mon-
itoring surface water, providing a 2-D swath as opposed to
conventional 1-D profiling. SWOT aims to monitor surface
water elevation, extent, slope and also river discharge for all
rivers wider than 100 m (Biancamaria et al., 2016). In ad-
dition, GRACE Follow-On was launched in 2018 to ensure
continuity of the GRACE mission after its successful 15-year
monitoring of water storage variation. The current constella-
tion addresses many existing limitations and opens a signif-
icant area of investigations into the operational use of satel-
lites for hydrological purposes.

Inspired by the increasing need to monitor the global hy-
drological cycle and by the potential offered by the existing
constellation, attempts have been made to monitor hydrolog-
ical cycle variables using geodetic satellites. The Hydroweb
(http://hydroweb.theia-land.fr, last access: 18 May 2022) ini-
tiated and monitored by LEGOS, the Database of Hydrologi-
cal Time Series of Inland Waters (DAHITI) developed by the
German Geodetic Research Institute at the Technical Uni-
versity of Munich (DGFI-TUM) (Schwatke et al., 2015a),
and the Global Reservoirs and Lakes Monitor (G-REALM)
(https://ipad.fas.usda.gov/cropexplorer/global_reservoir, last
access: 18 May 2022) are some examples of such attempts.
With the same motivation, the HydroSat database was ini-
tiated in 2016. HydroSat hosts geometric quantities of the
global water cycle from geodetic satellites: (1) surface water
extent of lakes and rivers; (2) water level of inland water bod-
ies; (3) water storage anomaly of hydrological basins, lakes
and reservoirs; and (4) river discharge for large and small
rivers. This is a unique set of products for understanding
global water cycle as it contains key elements of water cy-
cle for many ungauged basins around the world. These quan-
tities, which complement existing databases, can contribute
to the understanding of the global water cycle by incorporat-
ing them into hydrological models, serving as the basis for
indicators of the past and future state of the global freshwa-
ter system to assess risks under global warming and support
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decision-making and also complementing current and future
spaceborne observations. Moreover, they can effectively be
used as potential prior information for future mission prod-
ucts that rely on prior hydrological data for their monitoring
concepts, such as the SWOT mission. HydroSat products are
the results of research studies and projects on the application
of spaceborne geodetic sensors for hydrology conducted at
the Institute of Geodesy (GIS), University of Stuttgart. This
paper describes HydroSat data products with a detailed ex-
planation of the algorithm behind them: water level time se-
ries from satellite altimetry in Sect. 2; river width estimation
from satellite imagery in Sect. 3; water storage anomaly for
hydrological river basins, lakes and reservoirs in Sect. 4; and,
finally, river discharge estimation from satellite altimetry and
imagery in Sect. 5. For each data product, some representa-
tive examples are given to support the product description.

2 Inland water level from satellite altimetry

In the last 3 decades, satellite altimetry has been used as a
monitoring tool for inland water surfaces and the hydrologi-
cal cycle. In particular, monitoring water level of large rivers
and lakes has been the goal of research since the launch of
the TOPEX/Poseidon and Envisat missions (Table S1) (Bir-
kett, 1995; Crétaux et al., 2011). The use of satellite altimetry
for inland water monitoring has been facilitated by the ad-
vent of two different developments: (1) open-loop tracking
command (OLTC) (used in missions with gray background
in Table S1) and (2) operation in synthetic aperture radar
(SAR) mode (implemented in missions with bolded text in
Table S1).

Inspired by recent developments, and the SWOT mission
in view, the development of repositories and services to pro-
vide inland water level time series to supply data for Earth
system understanding, hydrological cycle monitoring and
hydraulic studies is becoming more important than ever. Ta-
ble 1 lists currently available websites or repositories for pro-
viding water level time series of inland water bodies.

Hydroweb was the first website providing altimetric wa-
ter level time series. The website, now hosted on THEIA, is
a CNES project, which was initiated and monitored by LE-
GOS in 2003 based on all existing and past altimetry mis-
sions, from TOPEX/Poseidon until Sentinel-3B. A substan-
tial portion of water level time series of lakes and rivers
are provided in near-real time (NRT). CNES, LEGOS and
CLS have further extended their monitoring services under
agreements with Copernicus. As a result, they provide water
level time series of 94 selected lakes within the context of
the Copernicus Climate Change Service, the so-called C3S
LWL. They further provide historical and NRT water level
time series of several lakes and rivers through the VITO Earth
Observation portal. In 2009, in a cooperation of ESA and De
Montfort University, the River & Lake website became avail-
able. On this website, which is no longer maintained, global

NRT products were available. Later in 2013, the Database for
HydrologIcal Time Series of Inland waters (DAHITI) was
developed by the Deutsches Geodätisches Forschungsinsti-
tut at the Technical University Munich (DGFI-TUM) to pro-
vide water level time series of inland waters (Schwatke et al.,
2015a). DAHITI provides a variety of hydrological informa-
tion on lakes, reservoirs, rivers and wetlands derived from
different satellite missions. Since 2017, the Global Reser-
voirs and Lakes Monitor (G-REALM) has provided time se-
ries of water level variations for some of the world’s largest
lakes and reservoirs. Unlike G-REALM, the Global River
Radar Altimeter Time Series (GRRATS) focuses on rivers
and provides water level time series over 39 rivers spanning
the time period 2002–2016 using Envisat series and Jason se-
ries (Coss et al., 2020). Within a rather unprecedented frame-
work, the open-source web application AlteEx allows for ex-
ploration of altimetry datasets and generation of water level
time series on the fly. AltEx is supported by the US Agency
for International Development (USAID) and NASA (Mark-
ert et al., 2019; Okeowo et al., 2017).

2.1 HydroSat products for water level

In HydroSat, water level time series are provided in two
modes – standard rate (SR) and high rate (HR):

– standard-rate water level time series from satellite al-
timetry

– high-rate altimetric water level over lakes and reservoirs

– high-rate altimetric water level over lakes and reser-
voirs

– high-rate altimetric water level over rivers.

A SR water level time series is the basic altimetry product
of HydroSat with a temporal resolution given by the repeat
period of the altimetry (e.g., 35 d for Envisat). It is the in-
put to algorithms which provide HR water level time series
over lakes, reservoirs and rivers. The HR products come with
an improved temporal resolution relying on multi-mission al-
timetry for both lakes and rivers. These products are available
over a multitude of lakes and rivers around the world. As an
example of SR time series, Fig. 1 shows a representative col-
lection of SR water level time series over Lake Bankim in
Cameroon and the Mississippi River in the US, the São Fran-
cisco River in Brazil, the Karun in Iran, the Yangtze River in
China and the Irrawaddy River in Myanmar. One shall notice
that AltEx, C3S LWL and VITO water level are excluded
from this comparison. In the case of AltEx, any compari-
son would have been subjective as the quality of the water
level time series is dependent on the geometric choice of a
virtual station by the user. As for the C3S LWL and VITO
Water Level, we have observed no difference between these
time series with those from Hydroweb (the same argument
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Table 1. Providers of water level time series from satellite altimetry.

Product Operated by Source Remark

Hydroweb CNES http://hydroweb.theia-land.fr∗ NRT available for some lakes and rivers

River & Lake ESA http://altimetry.esa.int/riverlake∗ No longer maintained

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de∗ Kalman filter approach
Forschungsinstitut (DGFI), TU Munich Schwatke et al. (2015a)

HydroSat Institute of Geodesy http://hydrosat.gis.uni-stuttgart.de∗ High-rate products are available
University of Stuttgart

G-REALM United States Department of Agriculture https://ipad.fas.usda.gov/cropexplorer/global_reservoir∗ Lakes and reservoirs only

GRRATS The Ohio State University https://doi.org/10.5067/PSGRA-SA2V1 Envisat and Jason series over 39 rivers
Coss et al. (2020)

AltEx USAID and NASA https://altex.servirglobal.net/∗ Web application for exploring altimetry data from
Markert et al. (2019) Jason-2, Jason-3 and SARAL/AltiKa

C3S LWL CLS on behalf of Copernicus https://doi.org/10.24381/cds.5714c668 94 selected lakes are available
and the European Commission

Water level Copernicus Global Land Operations https://land.copernicus.eu/global/products/wl∗ NRT time series are available
On VITO CNES, LEGOS and CLS
∗ Last access: 18 May 2022

holds for objects shown in Sect. 2.2.3). For the São Fran-
cisco (Fig. 1c) and Mississippi (Fig. 1f) rivers, the altimetric
heights agree with the in situ measurements with correlation
coefficients of 0.99 and 0.97, respectively. In the case of the
Karun river (Fig. 1a), the correlation falls off to 0.85, which
is satisfactory given the 250 m crossing width, mountainous
topography and high seasonality of its semiarid climate. The
SR water level time series are well representative of water
level dynamics, an example being the case of the Irrawaddy
River (Fig. 1d) showing the high rank correlation of 0.91 with
in situ discharge measurements. The results over the Yangtze
River (Fig. 1e) and Lake Bankim (Fig. 1b) agree well with
DAHITI, Hydroweb and G-REALM. Over these water bod-
ies – like many other water bodies around the world – no
in situ measurements are publicly available, highlighting the
critical contribution of spaceborne measurements and the ex-
isting repositories.

Figure 2 shows examples of HR water level time series
over a selection of five lakes and reservoirs presenting dif-
ferent behaviors. Lake water level time series provided by
HydroSat and other databases (DAHITI, Hydroweb and G-
REALM) are in acceptable agreement with in situ measure-
ments; however some differences are noticeable. Over Lake
Erie, for instance, HydroSat better captures measurements
at the tails of the water level distribution, meaning that the
actual fluctuations in lake level are better presented. This is
due to the fact that besides outlier rejection, as described in
Sect. 2.2.1, no further smoothing is applied. The HR water
level time series of Lake Urmia signals yet another differ-
ence. All altimetric time series seem to have captured the
long-term depletion of the lake level, followed by the recent
and ongoing restoration period (Saemian et al., 2020). The
majority, however, overestimate the lake level between late
2010 and early 2019. The altimetric measurements during

this period are mainly from Jason-2 and Jason-3 missions.
The satellite’s ground track happens to cross the shallow
southeast of the lake. During this 9-year low-water period,
the altimeters have measured the range to the salt pan that
remains in the southern part after the lake desiccation. Ex-
cluding such a measurement without incorporating auxiliary
sources of data is rather impossible. HydroSat can deal with
this issue within the inter-satellite bias estimation (Fig. S2)
by taking the surface area into account. Any SR water level
time series that exhibits inconsistency with an expected be-
havior fails to contribute to the HR lake water level time se-
ries.

Figure 3 shows the HR altimetric water level over six se-
lected rivers of small, intermediate and large width: the Seine
in France, Missouri in the USA, Congo in the Republic of
Congo, Weser in Germany, Vistula in Poland and Po in Italy.
For the rivers with no in situ water level time series, the HR
water level time series are compared with in situ discharge
data, and rank correlations are reported. It is worth mention-
ing that the Weser is a river with an average width of ca. 50 m
and a maximum of ca. 150 m, over which the water level
agrees with the discharge, with a rank correlation coefficient
of 0.71. Similarly, the Vistula river, with its average width
of 50 m, is an utterly challenging river for satellite altime-
try. However, the HR water level time series shows a rank
correlation coefficient of 0.65 with in situ river discharge.
Note that the large uncertainty in the HR time series is due to
the large discrepancy between measurements from different
satellite missions along the river (see Fig. S4).

2.2 Data and methodology for generating water level
time series

HydroSat water level time series are generated using the fol-
lowing datasets from different satellites: (1) Envisat GDR-
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Figure 1. Standard-rate altimetric water level time series over the Karun river (Iran) from Jason-2, Lake Bankim (Cameroon) from Jason-2
and Jason-3, the São Francisco River (Brazil) from Jason-2 and Jason-3, the Irrawaddy River (Myanmar) from Jason-2 and Jason-3, the
Yangtze River (China) from Jason-2 and Jason-3, and the Mississippi River (US) from Sentinel-3A.

v3, (2) Saral GDR T, (3) ICESat-2 ATL13 v3, (4) CryoSat-2
SIR GDR, (5) Jason-1 GDR data, (6) Jason-2 (PISTACH)
GDR, (7) Jason-2 GDR data, (8) Jason-3 GDR data, (9)
Sentinel-3A NTC data and (10) Sentinel-3B NTC data. In
the following a detailed description of SR and HR products
is provided.

2.2.1 Standard-rate water level time series from satellite
altimetry

Whenever the satellite ground track crosses a hydrological
object, a so-called virtual station (VS) can be determined.
Boundaries of a VS are typically defined based on the type
of the water body and the disposition of the altimetry track
over the object. All measurements inside a lake or reservoir,
for instance, could belong to the same virtual station. This
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Figure 2. High-rate altimetric water level time series over lakes Ngoring in China (610 km2) from Envisat, SARAL/AltiKa, Jason-1, Jason-2,
Jason-3 and Sentinel-3A; Tana in Ethiopia (2156 km2) from Envisat, SARAL/AltiKa, Jason-1, Jason-2, Jason-3, Sentinel-3A and Sentinel-
3B; Urmia in Iran (5200 km2) from Envisat, Jason-1, Sentinel-3A and Sentinel-3B; Sobradinho in Brazil (4214 km2) from Envisat, SAR-
AL/AltiKa, Sentinel-3A and Sentinel-3B; and Erie in North America (25 744 km2) from Envisat, SARAL/AltiKa, Jason-1, Jason-2, Jason-3,
Sentinel-3A and Sentinel-3B.

is to assume that the along-track geoid height and altimetric
corrections are properly known. In the case of a river, the
assumption further implies that the spatial dynamics of the
water body is locally negligible. Defining a VS, in effect,

allows for reduction of random noise carried by the altimetric
measurements.

HydroSat follows a rather flexible approach in defining a
VS. The boundaries can be determined using static or dy-
namic shapefiles, a radial extent around a specific point of
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Figure 3. High-rate altimetric water level over six selected rivers with different average width: Seine river (with average width of 170 m and
67 VSs) in France, Missouri River in the US (with average width of 220 m and 61 VSs), Congo River in the Republic of the Congo (with
average width of 2700 m and 59 VSs), Weser river in Germany (with average width of 100 m and 47 VSs), Vistula river in Poland (with
average width of 50 m and 31 VSs) and Po River in Italy (with 350 m average with and 46 VSs). HydroSat IDs are provided in the bottom
right of the graphs.

interest, or an intersection of the two. Furthermore, HydroSat
employs auxiliary sources of information like the water oc-
currence frequency derived from Landsat imagery by Pekel
et al. (2016). This allows for removal of measurements over
areas with a water occurrence frequency below a certain
threshold. Figure S1 shows the block diagram for generat-
ing SR water level time series, where the properties of the
VS are the basic setup information to be introduced. Defin-
ing the VS setup is in fact the only subjective choice made
throughout the whole procedure. Nevertheless, flexibility in
defining a VS is tolerated as long as reproducibility of the
results is guaranteed.

The altimetric water level is initially determined for each
sample within the VS. First, range measurements are cor-
rected for geophysical effects (solid Earth tide and pole
tide) and path delays caused by the atmosphere (wet tropo-
spheric, dry tropospheric and ionospheric). The water level
is then calculated by subtracting the corrected range from
the satellite altitude. In the next step, the reference height
is changed to geoid according to static gravity field mod-
els from XGM2019e (Pail et al., 2018), EGM2008 (Pavlis
et al., 2012) or EIGEN6C3 (Förste et al., 2012). To ensure a
robust estimation at each overpass, the median of orthome-
tric heights inside the VS is chosen to be the representative
height.

It is important to notice that regardless of the choice of the
VS, retracker, corrections and statistics by which a typical al-
timetric water level time series is generated, the result may be
affected by many outliers. As already mentioned, missions
supporting OLTC and SAR mode are less likely to provide
erroneous range measurements. However, neither the OLTC
nor the delay Doppler concept is capable of compensating for
all unwanted radar processes over inland water bodies. Their

usefulness may even be restricted by a number of known fac-
tors, e.g., crossing angle for SAR missions. An outlier iden-
tification algorithm is, therefore, required to clean the final
water level time series from erroneous measurements.

In order to identify the outliers, HydroSat uses an
automated, data-driven outlier identification methodology
designed within an iterative, non-parametric adjustment
scheme. As indicated in Fig. S1, the inputs to the algo-
rithm are the water level time series and stochastic informa-
tion derived from a number of outlier indicators (e.g., stan-
dard deviation of along-track estimates within a VS). The
algorithm uses singular spectrum analysis (SSA) for gap-
filling, Savitzky–Golay filtering for smoothing and a spe-
cially developed outlier identification method. The identifi-
cation method benefits from applying a local kernel derived
based on a local definition of an outlier. The identified out-
liers are not discarded instantly. The overall scheme allows
for a possible correction of the outlying estimation through
a retracking method that identifies the leading edge by ben-
efiting from prior information. Such possibility is assessed
via comparison of the single water level estimations inside
the VS with the water level estimation coming from an en-
semble model. The model, which is a by-product of the out-
lier identification algorithm, is used to bound the search area
for identifying the true leading edge of the waveform. After
retracking, the newly estimated heights are verified by their
similarity to the along-track pattern of outlier-free cycles.

It is important to notice that after rejecting or correct-
ing the outlying measurements, HydroSat does not low-pass-
filter the water level time series. It can therefore fully capture
the high-frequency behavior within the limitations of satel-
lite sampling. However, this strategy may come at the cost
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of a higher error level for some stations, e.g., the Mississippi
River.

2.2.2 High-rate water level time series from satellite
altimetry

In order to obtain a HR product and cope with the limitation
of temporal sampling of single-satellite inland water moni-
toring, multi-mission altimetry is applied. The multi-mission
altimetry for lake monitoring is now a standard approach
practiced by various studies and data providers (Crétaux
et al., 2013). Assuming that a lake surface is an equipotential
surface allows even calibration studies to be performed over
lakes. However, for multi-mission altimetry one challenge is
posed by the inter-satellite biases, which impede a straight-
forward combination of water level measurements. More-
over, inaccurate atmospheric corrections (wet tropospheric)
may cause large biases of several decimeters, which is even
more pronounced for rivers due to inhomogeneous neighbor-
ing topography (Fernandes et al., 2014). Unlike lakes, multi-
mission studies over rivers are very limited. Only a few stud-
ies have been dedicated to water level monitoring of rivers
using a multi-mission approach with the focus on improv-
ing the temporal resolution (Tourian et al., 2016; Boergens
et al., 2017). Here the challenge is to combine measurements
from different missions at different locations with dissimi-
lar dynamic behavior and hydraulic parameters. In general,
HydroSat follows two different approaches for obtaining the
HR product over lakes and rivers, outlined in the following
sub-sections.

2.2.3 High-rate altimetric water level over lakes and
reservoirs

HR lake and reservoir level time series are provided based
on the well-known multi-mission concept. As already men-
tioned, however, the integration of single water level time se-
ries is hampered by unknown biases, typically referred to as
inter-satellite biases. Studies have been performed to tackle
the problem, some targeting the specific case of lakes and
reservoirs. Crétaux et al. (2009) provide an overview of re-
search studies aiming at quantifying the absolute altimeter
bias of each satellite. They also establish an absolute calibra-
tion site over Lake Issyk-Kul in central Asia for estimating
the absolute bias of altimetry satellites and retrackers. Bosch
et al. (2014) conduct a global cross-calibration analysis over
the oceans to estimate the so-called radial bias – defined as
the overall error in an altimeter system – in a relative manner.
These results are interpolated by Schwatke et al. (2015a) and
applied over inland altimetry water level time series. In order
to minimize other sources of bias, DAHITI applies identical
retracker and geophysical corrections to all measurements.
Wang et al. (2019) correct for inter-satellite biases based on
a maximum likelihood approach either for two missions with

overlapping periods or by introducing ICESat-2 as an inter-
mediary for non-overlapping ones.

HydroSat resolves biases in a relative, generic, regional
and mission-independent manner (see Fig. S2). First, SR wa-
ter level time series are categorized into groups of temporally
overlapping and non-overlapping time series. For a group of
overlapping time series, relative biases are estimated by min-
imizing a cost function for the merged time series. The cost
function represents the difference between the power content
of individual SR time series. If stationarity holds, minimiz-
ing such a cost function ensures the estimation of a correct
relative bias. If stationarity does not hold, or in the case that
any unresolved bias remains (scenario 2), remotely sensed
surface area time series are used to act as an anchor of bi-
ased time series, allowing for estimation of the relevant bi-
ases. Here, a 2-D cost function in surface-area–water-level
coordinates is minimized within a Gauss–Helmert adjust-
ment scheme. Such a cost function is also used in the case
that measurements have no overlap (scenario 1), leading to
bias-removed SR lake water level time series. It is important
to notice that relative biases are not necessarily estimated be-
tween missions but between time series. This allows for con-
sideration of the inaccuracies of geoid or altimetry correc-
tions within one lake and over different tracks.

A relative solution is preferred because absolute estima-
tion of biases requires along-track in situ measurements. The
absolute inter-satellite biases over a specific region, on the
other hand, are not necessarily applicable elsewhere due to
inhomogeneity of correction models at the global scale. It
shall also be mentioned that a great portion of lakes and
reservoirs are monitored by a few altimetry missions, of-
ten times with less-than-sufficient periods of overlap. For in-
stance, the long-term, overlapping, 10 d revisiting Jason se-
ries only monitor a small number of lakes given their coarse
ground-track pattern. Our proposed method is therefore de-
signed to be least affected by these restricting conditions.

2.2.4 High-rate altimetric water level over rivers

HR water level time series are obtained over rivers based on
a method developed by Tourian et al. (2016), in which SR
time series from individual altimetry missions are merged.
This method allows the combination of all VSs from mul-
tiple satellite altimeters along a river hydraulically and sta-
tistically. As an example, Fig. S4 shows individual SR time
series from different satellite missions along the Weser river
in Germany. The idea of a HR product is to combine all these
measurements for an arbitrary location along the river into a
time series with improved temporal resolution.

Figure S3 shows the main processing steps of the den-
sification method. Initially, the time lag due to streamflow
between the altimetric virtual stations and the selected loca-
tion is estimated. The average river width from satellite im-
agery together with the slope derived from satellite altime-
try is used as input to a simple empirical hydraulic equation,
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which ultimately estimates the average flow velocity and thus
the time lag (Tourian et al., 2016; Bjerklie et al., 2003)

Using the estimated time lag, the water level hydrographs
of all measurements are shifted and stacked at the selected lo-
cation. The stacked time series is then normalized according
to its statistical distribution with the 3rd percentile assigned
to 0 and the 85th percentile to 1. Outliers are then identified
and removed from the normalized time series by Student’s t

test for a sliding time window of 1 month. All measurements
outside the confidence limit are identified as outliers and re-
moved from the measurements. The outlier-free normalized
time series is then rescaled according to the statistical wa-
ter level distribution of the selected site. Details on the im-
plementation of the method can be found in Tourian et al.
(2016).

3 Surface water extent from satellite imagery

Surface water storage is an important component of the hy-
drological cycle, and its accurate monitoring requires a real-
istic representation of the surface water extent (Elmi et al.,
2016). Lack of such observations, however, has obscured
the proper quantification of the freshwater storage and its
spatio-temporal dynamics over many water bodies. With
their global coverage and fine temporal resolution, satellite
images provide an opportunity to monitor the surface water
extent on a global scale and for almost all river basins. To
this end, attempts have been made to generate dynamic wa-
ter masks from different spaceborne missions with various
temporal and spatial resolution. Some studies (Klein et al.,
2017; Zhang and Gao, 2016; Khandelwal et al., 2017) take
advantage of MODIS images to generate time series of sur-
face water mask with a fine temporal resolution. Due to the
coarse spatial resolution of MODIS images, however, small
water bodies are excluded from their dataset. On the other
hand, some studies (Donchyts et al., 2016; Yang et al., 2017;
Pickens et al., 2020; Yao et al., 2019; Schwatke et al., 2020)
use Landsat images to generate time series of surface wa-
ter bodies. In comparison to MODIS, Landsat images have
a better spatial resolution (30 m). Nevertheless, their coarse
temporal resolution is a limiting factor for monitoring the fast
dynamics of the water bodies.

Surface water area of any lake, reservoir and river reach
can be extracted from an available global inland water dataset
like the SRTM Water Body Data (SWBD) (NASA JPL,
2013), the Global Inundation Extent from Multiple Satellites
(GIEMS) (Papa et al., 2010b) or the Global Surface Water
Dataset (GSW) (Pekel et al., 2016). The derived surface wa-
ter estimates are restricted to the temporal and spatial lim-
itations of the initial dataset. In this vein, Zhao and Gao
(2018) present the Global Reservoir Surface Area Dataset
(GRSAD), which contains the monthly estimates of surface
water area of the 6817 reservoirs between the years 1984–
2015 obtained from the GSW dataset. The global reservoir

bathymetry dataset (Li et al., 2020) presents the 3-D reser-
voir bathymetry of 347 global reservoirs integrating surface
water area time series from the GRSAD and GSW dataset
and altimetric water level measurements from the Hydroweb
and G-REALM datasets and ICESat measurements.

Similar to altimetric water level time series, Hydroweb is
the first website to provide lake surface area time series (Cré-
taux et al., 2011). Recently DAHITI (Schwatke et al., 2019)
also boosted its database by the time series of lake area from
optical satellite images (Table 2). Moreover, in recent years
the Bluedot Observatory has provided reliable and timely in-
formation about surface area of lakes and reservoirs based on
Sentinel-2 imagery, globally.

While over lakes and reservoirs dynamic water masks ex-
ist (Table 2), to the best of our knowledge, no specific dataset
for dynamic river masks has been developed so far. Given the
complexities of extracting river water masks from stacks of
satellite imagery, most efforts have been limited to the de-
velopment of static water masks. Allen and Pavelsky (2018)
and Yamazaki et al. (2019), for instance, have extracted river
water masks through stacks of satellite images.

3.1 HydroSat products for surface water extent

HydroSat provides surface water extent time series of lakes,
reservoirs and river reaches from optical satellite images.
From the obtained river reach area an effective river width
can be determined by dividing the area by the length of the
river reach. Figure 4 shows examples of time series of sur-
face water extent for rivers and lakes derived from Landsat
imagery in the Mississippi River basin.

To support an analysis of the performance of the algo-
rithm, the time series of monthly river masks from nine river
sections (average length of 10 km) in the Mississippi River
basin are shown together with in situ discharge measure-
ments from nearby USGS stream gauging stations. In all
river reaches, we observe a relatively high rank correlation.
However, in some river sections, as in Fig. 4g and f, the sec-
tions are too narrow (about 25 and 40 m), even for Landsat
imagery with 30 m spatial resolution.

For lakes and reservoirs (second set of time series in
Fig. 4), the time series of surface water area are compared
with altimetric water level time series. For this comparison,
nine small to medium-sized lakes or reservoirs in the Mis-
sissippi River basin are selected. In general, water level time
series and surface water area show a good agreement repre-
sented by the reported rank correlation coefficients. For water
bodies with smaller size, it is expected that the rank correla-
tion decreases. As shown in Fig. 4, the rank correlation falls
off to 0.57 and 0.61 for Rathbun and Barren lakes with aver-
age areas below 30 and 50 km2.
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Table 2. List of sources for providing time series of surface water extent from satellite imagery.

Product Operated by Source Remark

Hydroweb CNES http://hydroweb.theia-land.fr∗ Available for lakes

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de∗ Available for lakes
Forschungsinstitut (DGFI)

HydroSat Institute of Geodesy, http://hydrosat.gis.uni-stuttgart.de∗ Available over rivers and lakes
University of Stuttgart

Bluedot Observatory Copernicus, European Commission, https://blue-dot-observatory.com∗ Available for lakes and reservoirs
ESA, USGS, Amazon Web Services

∗ Last access: 18 May 2022

Figure 4. Time series of river reach area of selected river reaches in the Mississippi River basin are in the middle panel.
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3.2 Data and methodology for generating surface water
extent time series

HydroSat estimates of surface water extent are obtained from
(1) MODIS MOD09Q1 imagery data and (2) the Monthly
Water History product from the Global Surface Water dataset
(Pekel et al., 2016). A classic approach to extract the water
mask from optical images is to use pixel-based image seg-
mentation algorithms, which are typically based on defining
a threshold in the image pixel value histogram. While pixel-
based algorithms are easy to implement, they fail to pro-
vide accurate water masks, especially over river reaches. The
method performs well when the pixel values of the object and
background create a combination of two normal distributions
in the image histogram. This assumption, however, does not
hold for the complicated river medium where the water body
occupies only a small portion of the whole image. In fact,
for a river reach, pixel values depend on several factors like
water quality, roughness of water surface, chemical proper-
ties, load of sediments, vegetation canopy and the depth of
the water column (Elmi, 2019). Therefore, along the shore-
lines the complicated combination of water, vegetation, and
wet and dry soil within a pixel makes it almost impossible to
find a unique threshold for distinguishing water from land.
Region-based segmentation techniques, on the other hand,
consider each pixel as an element of a larger region and use
spatial information as well as pixel value to assign labels to
the areas. Like other natural phenomena, water bodies show
a strong spatial correlation in satellite images. Therefore, in-
cluding contextual information can significantly improve the
resulting water mask. Moreover, every pixel has a certain be-
havior during the time of monitoring, dominated by the sea-
sonal cycle. Hence, in addition to spatial correlations, strong
temporal correlations can be used as an additional source of
information.

In order to derive a river mask, Elmi et al. (2016) estimate
a maximum a posterior solution of a Markov random field
(MAP-MRF), in which the spatial interactions between pix-
els and temporal variation in the pixel values are considered.
Figure S5 (top panel) presents the block diagram of the pro-
posed method. First, the cloud-covered images are removed.
Initial water masks are then generated by applying a dynamic
threshold. The procedure continues by developing the joint
conditional models, rearranging the problem as one of en-
ergy minimization and developing a graph. In the next step
the MAP solution is found by applying the graph cuts tech-
nique. Using the MAP solution, the initial water masks and
the frequency coverage map are updated, allowing for modi-
fication of the already-developed graph. The final river mask
is then obtained by finding the MAP solution for the modi-
fied graph. The uncertainty in the derived masks is estimated
by marginalizing the final residual graph (Elmi et al., 2016;
Elmi, 2019).

Although MODIS provides homogeneous daily snapshots
of the Earth’s surface for more than 20 years, its coarse spa-

tial resolution is a limiting factor for generating dynamic
river masks of relatively narrow river reaches and small
lakes. To tackle this limitation, we use the Global Surface
Water Dataset (GSWD) – developed by the European Com-
mission’s Joint Research Centre in the framework of the
Copernicus program (Pekel et al., 2016) – as an alternative to
MODIS data. Derived from Landsat data, GSWD is a unique
product for analyzing the spatial and temporal distribution of
water surfaces at the global scale over the past 3 decades. In
its estimate of the surface water area, however, the dataset is
subject to significant over- and underestimations. The main
reason for underestimating the surface water area is the pix-
els labeled as no observations in the dataset. In the GSWD’s
Monthly Water History product, some pixels are contami-
nated due to the scan line corrector (SLC) failure of Landsat
7 and cloud coverage. Discarding all pixels with the no ob-
servations label leads not only to an underestimation of the
area, but also to the generation of an erroneous water mask.
On the other hand, a high noise level in the Landsat images
might be the main reason for a possible overestimation of
surface water extent. To generate enhanced dynamic water
masks from this dataset, the algorithm described in Fig. S5
(bottom panel) is followed. The algorithm performs similar
steps as for MODIS, relying on the GSWD masks instead of
the original images.

4 Water storage anomaly

Global observation of total water storage change is vital for
understanding the water cycle and climate system dynamics.
The variations in water storage indirectly reflect the Earth’s
energy storage, ocean heat content, land surface water stor-
age, and biogeochemical and ice-sheet response to global
warming (Tapley et al., 2019; Famiglietti, 2004). Water stor-
age variation, both globally and regionally, influences our so-
cieties as it affects agricultural, industrial and domestic wa-
ter use. Moreover, the dynamics of lake and reservoir storage
are a key parameter in studies about the global hydrologi-
cal cycle. Nevertheless, for a long time, monitoring of terres-
trial and lake water storage changes relied on insufficient site
measurements, which was costly and time-consuming. More-
over, on continental scales, it was not possible to map wa-
ter storage because of the sparseness of the station networks
(Rodell and Famiglietti, 1999). Furthermore, measurements
of water storage changes by gauging groundwater level and
soil water saturation changes are not reliable due to the lack
of accurate storage coefficients (Strassberg et al., 2007; Rieg-
ger et al., 2012). Hydrological and land surface models have
alleviated the problem to some extent. Such models estimate
terrestrial water storage (TWS) and its components via sim-
plification of real-world systems. The model outputs, how-
ever, are subject to high uncertainty and low accuracy due
to the lack of global and systematic hydrological data (Jiang
et al., 2014).
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4.1 Terrestrial water storage anomaly

The GRACE launch in 2002 (Tapley et al., 2004) added un-
precedented observations to the existing Earth monitoring
system. The satellite program was jointly developed by the
National Aeronautics and Space Administration (NASA) of
the United States and the German Aerospace Center (DLR),
which allowed for the recovery of the time-variable grav-
ity field at catchment scales using the so-called low–low
satellite-to-satellite tracking concept. The GRACE mission
ended in October 2017 while providing over 15 years of near-
continuous measurements of the Earth’s gravity field. The
monthly gravity variations are used to track mass changes
in the hydrosphere, cryosphere and oceans, quantifying to-
tal water storage anomaly (TWSA). GRACE observations
paved the way to monitor continental water storage, in-
cluding deep soil water, for the first time. It contributed
to various applications, including determining the natural
and anthropogenic footprints in the global and regional wa-
ter changes (Saemian et al., 2022), ice-sheet mass balance
(Chen et al., 2009), ocean circulation, sea-level rise (Chen
et al., 2013a; Jacob et al., 2012), atmospheric circulation pat-
terns, drought monitoring (Long et al., 2013; Thomas et al.,
2014), and flood forecasting (Reager et al., 2014). GRACE
Follow-On (GRACE-FO), launched in May 2018, is contin-
uing GRACE’s legacy of monitoring Earth’s temporal grav-
ity field using the same constellation as GRACE while being
additionally equipped with an experimental laser ranging in-
terferometer (LRI).

The collected GRACE and GRACE-FO measurements of
each month are processed to estimate the Earth’s gravity field
in terms of spherical harmonics. The Science Data System
(SDS), a joint US–German cooperation consisting of the Jet
Propulsion Laboratory (JPL), the University of Texas Cen-
ter for Space Research (UT-CSR) and the German Research
Centre for Geosciences (GFZ), provides quality-controlled
data from Level 0 (K-band ranging, KBR, range data) to
Level 3 (grids). Moreover, Level 3 data from the mascon ap-
proach in terms of TWSA can be accessed from UT-CSR,
JPL and the NASA Goddard Space Flight Center (NASA-
GSFC), while the latter does not provide GRACE-FO ob-
servations. Other than Level 3 data, several centers help to
visualize GRACE TWSA. The JPL and GSFC mascons, for
instance, can be visualized using the Mascon Visualization
Tool from the University of Colorado Boulder, and the basin-
wise variability in TWS can be obtained from the Gravity
over basins Information Service (GravIS) website. Further-
more, several data browsers allow the interactive retrieval
of GRACE and GRACE-FO data, including the one devel-
oped within the International Center for Global Earth Models
(ICGEM) project, the GRACE Plotter and the NASA Data
Analysis Tool. Table 3 lists the abovementioned centers and
products, including HydroSat.

4.1.1 HydroSat products for terrestrial water storage
anomaly

HydroSat provides time series of terrestrial water storage
anomaly for major hydrological basins and also over 0.5◦×
0.5◦ grid cells. Figure 5 shows examples of terrestrial wa-
ter storage anomaly for some selected basins. Figure 5 (top)
shows the long-term trend of the major global hydrologi-
cal basins. Figure 5 (bottom) compares the time series of
GRACE and GRACE-FO TWSA estimation over the se-
lected basin from HydroSat (black) with two mascon prod-
ucts: CSRv2 (red) and JPLv2 (blue). For visual simplicity
and better comparison, only two common and updated mas-
con products have been selected. In general, in all catch-
ments, TWSA estimation follows the two mascon products
well. Minor discrepancies are observed over the Yangtze
River basin and Murray–Darling, which can be explained due
to the different GIA (glacial isostatic adjustment) models and
low signal-to-noise ratio, respectively.

4.1.2 Data and methodology for generating terrestrial
water storage anomaly

As input data HydroSat uses the ITSG-Grace2018 uncon-
strained gravity field model from the Institute of Geodesy at
the Graz University of Technology (Mayer-Gürr et al., 2018;
Kvas et al., 2019).

Figure S6 presents the scheme of the data processing han-
dled in HydroSat to retrieve TWSA from GRACE Level 2
solutions. Each monthly solution contains the full hydrolog-
ical, cryospheric and GIA signal in the form of fully nor-
malized spherical harmonic (SH) coefficients, after remov-
ing the contributions from other phenomena like tides (ocean,
solid Earth and atmospheric) and atmospheric and non-tidal
oceanic mass changes.

To obtain TWSA, HydroSat applies several corrections
on GRACE solutions, known as post-processing steps. The
first-degree coefficients are added to the GRACE solutions,
accounting for the movement of the Earth’s center of mass
(Swenson et al., 2007). Since GRACE estimations of the
lowest-degree zonal harmonic coefficient are not accurate,
we replace GRACE C2,0 and C3,0 by the coefficients derived
from satellite laser ranging (SLR) data (Cheng et al., 2013).
The real shape of the Earth is much closer to an ellipsoid than
a sphere. Therefore, each solution is corrected from spheri-
cal to ellipsoidal coefficients following the method proposed
by Li et al. (2017). To calculate the geoid anomalies, we re-
move the long-term (2004–2010) mean of spherical harmon-
ics. Due to imperfect tidal models, GRACE SHs are con-
taminated by residual tidal aliasing error, a primary and a
secondary one (Tourian, 2013). Therefore, HydroSat elimi-
nates the primary and secondary tidal aliasing errors in the
main tidal constituents, S1, S2, P1, K1, K2, M2, O2, O1 and
Q1, from GRACE monthly solutions using a least-squares
Fourier analysis (Tourian, 2013).
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Table 3. List of centers which provide Level 3 TWSA from GRACE and GRACE-FO; d/o: degree and order.

Product Sensor Source Remark

Level 3 datasets
JPL GRACE Landerer (2020e); Landerer and Swenson (2012) Gridded (1◦ spatial resolution), up to d/o 60

GRACE-FO Landerer (2020d) Gridded (1◦ spatial resolution), up to d/o 60
GRACE/GRACE-FO Wiese et al. (2020) Mascon approach based on the Level 1 data

CSR GRACE Landerer (2020b) Gridded (1◦ spatial resolution), up to d/o 60
GRACE-FO Landerer (2020a) Gridded (1◦ spatial resolution), up to d/o 60
GRACE/GRACE-FO Save (2020); Save et al. (2016) Mascon approach based on the Level 1 data

GFZ GRACE Landerer (2020c) Gridded (1◦ spatial resolution), up to d/o 60
GRACE-FO Landerer (2020a) Gridded (1◦ spatial resolution), up to d/o 60
GRACE/GRACE-FO Boergens et al. (2020), http://gravis.gfz-potsdam.de/land∗ Basin-wise

HydroSat GRACE/GRACE-FO http://hydrosat.gis.uni-stuttgart.de∗ Corrected for leakage and tidal aliasing error

Visualization centers
University of Colorado Boulder GRACE/GRACE-FO https://ccar.colorado.edu/grace∗ JPL and GSFC mascons
GravIS GRACE/GRACE-FO http://gravis.gfz-potsdam.de/home∗ Basin-wise from COST-G solution
ICGEM GRACE/GRACE-FO http://icgem.gfz-potsdam.de/home∗ JPL and CSR Level 3
The GRACE Plotter GRACE/GRACE-FO http://thegraceplotter.com∗ Level 3 from various Level 2 products
NASA GRACE/GRACE-FO https://grace.jpl.nasa.gov/data-analysis-tool∗ Level 3 product from JPL and CSR solutions
∗ Last access: 18 May 2022

Furthermore, the monthly solutions are contaminated by
noise from different sources including the high-frequency
noise in the spherical harmonic coefficients due to the or-
bit geometry and sensor noise. In order to reduce the high-
frequency noise and retrieve mass changes, Gaussian fil-
tering with a radius of 400 km is applied (Wahr et al.,
1998). Moreover, to correct for leakage due to filtering, ex-
isting methodologies are employed, e.g., a data-driven ap-
proach proposed by Vishwakarma et al. (2017) and forward-
modeling (Chen et al., 2013a). Finally, HydroSat corrects the
GIA signal following A et al. (2012). The uncertainty for the
GRACE-based TWSA at each month is estimated by prop-
agating the calibrated error in the GRACE and GRACE-FO
Level 2 solutions.

4.2 Lake and reservoir water storage anomaly

The variation in water height and surface area of lakes and
reservoirs has been successfully monitored using spaceborne
measurements, as demonstrated in previous studies. Table 4
lists some of these studies providing either time series of wa-
ter volume change or lake and reservoir bathymetry.

The mentioned studies follow almost the same strategy to
generate water volume anomaly time series or a bathymetry
map. In these studies, after collecting the simultaneous sur-
face water area and level measurements, the empirical re-
lationship between lake water level and area is developed.
Then the water volume variations are estimated using the so-
called end-area formula or pyramid formula.

4.2.1 HydroSat products for lake water storage anomaly

HydroSat estimates the water volume anomaly for lakes and
reservoirs by combining water level and surface water area
variation obtained from satellite altimetry and imaging mea-
surements. Figure 6 shows selected time series of water vol-

ume anomaly for some small, medium and large lakes with
different climate characteristics. A statistically representa-
tive joint time period for altimetry and imagery data is cru-
cial to obtain a reliable estimate of water volume. For the
Tana, Sobradinho and Dale Hollow lakes, for example, si-
multaneous surface water area and water level measurements
are available for more than 10 years, resulting in a reliable
area–volume model. Over Arkabutla Lake and Barren Lake,
the joint time period is rather short but representative as it
covers the entire statistical distribution of both variables. On
the other hand, the time series of lake volume anomaly of
the McConaughy, Harlan County, Rathbun and Mark Twain
lakes carry mismodeling error as their joint time periods are
short and non-representative of the entire distribution.

4.2.2 Data and methodology for generating lake and
reservoir water storage anomaly

HydroSat follows a straightforward approach relying on
a monotonic relationship of water level and surface area
(Fig. S7). The algorithm starts by acquiring the water area
from satellite imagery (explained in Sect. 3) and the time
series of the water level (explained in Sect. 2). To derive
the time series of the water volume anomaly and also the
water-level–area–volume model, the following steps are per-
formed:

– generating monthly water level time series with the
same temporal sampling as the surface area time series;

– creating the scatterplot of the simultaneous surface wa-
ter area and level and removing the blunders in the scat-
terplot;

– defining the water surface-area–level model through ei-
ther parametric or non-parametric approaches;
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Figure 5. Top: annual trend of TWSA over major global river basins from April 2002 to 2020. Selected basins are numbered on the map.
The borders are defined based on the major river basins of the world of the Global Runoff Data Centre (GRDC; https://www.bafg.de/GRDC,
last access: 18 May 2022). Bottom: time series of TWSA from GRACE and GRACE-FO for the selected basins, comparing the results from
HydroSat, JPLv02 global mascons and CSRv02 global mascons. The corresponding HydroSat number for each basin is provided in the gray
box.

– estimating the water volume variations by assuming that
between two successive pairs of measurements (water
level H and lake area S), the lake morphology is regular
and has a pyramidal shape (Abileah et al., 2011)

1V =
1
3

[
S(t)+ S(t − 1)+

√
S(t)S(t − 1)

]
×
[
H (t)−H (t − 1)

]
; (1)

– obtaining the water-area–level–volume model.

5 River discharge from space

Monitoring of river discharge, defined as the volume of wa-
ter passing a river section in a given time, is a critically im-
portant part to understanding a broad range of science ques-
tions focused on hydrology, hydraulics, biogeochemistry and
water resource management. Especially the river discharge
quantification in ungauged basins anywhere and anytime
is the holy grail of hydrology. River discharge reflects the
drainage basin dynamics and affects environmental condi-
tions like currents and hydrography in coastal waters; it is
a function of precipitation and meteorological elements con-
trolling evapotranspiration, geology, relief and vegetation.
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Table 4. Overview of studies providing time series of lake and reservoir water volume variations.

Study Water level Surface area Remark

Crétaux et al. (2011) Hydroweb
MODIS, Aster,

Water volume variation for 100 lakes are provided in Hydroweb
Landsat, Cbers

Gao et al. (2012) Hydroweb MODIS Water volume variation in 34 reservoirs from 2000–2010

Yao et al. (2018)
Obtained from SRTM

Landsat, Huanjing Annual lake water storage changes across the Changtang Plateau from 2002–2015
and ASTER DEM

Wang et al. (2018)
DAHITI, Hydroweb, Obtained from lake water

Water storage changes in 142 large water bodies across endorheic basins
G-REALM area–stage functions

Li et al. (2019)
Jason 1–3, ENVISAT,

Landsat, Gaofen-2 Water volume variation in 52 large lakes on the Tibetan Plateau during 2000–2017
CryoSat, ICESat

Busker et al. (2019) DAHITI GSWD Water volume variation in 137 lakes are provided

Schwatke et al. (2020) DAHITI DAHITI Water volume variation in 62 lakes and reservoirs are available on 2021

Li et al. (2020)
ICESat, Hydroweb,

GSWD 3-D reservoir bathymetry of 347 global reservoirs are provided
G-REALM

Klein et al. (2021) DAHITI Global WaterPack
Water volume variations in 1267 reservoirs are analyzed;
the dataset is not publicly available

Figure 6. Time series of water volume change in selected lakes and reservoirs. The location of these lakes can be found in Figs. 2 and 4

Despite its importance, the publicly available in situ river
discharge database has been declining steadily over the past
decades due mainly to economic and political reasons. From
about 8000 (pre-1970), the number of available gauging sta-
tions has decreased to fewer than 1000 (around the year
2015) (Lorenz et al., 2014, 2015; Tourian et al., 2017b).

Given the insufficient monitoring from in situ gauge net-
works, and without any outlook for improvement, space-
borne approaches come to the rescue. Satellite-based Earth
observation with its global coverage has been demonstrated
to be a potential alternative to in situ measurements. In the
future, the SWOT mission with wide-swath altimetry is ex-
pected to attain global river discharge given its unprece-
dented temporal resolution; spatial coverage; and the syn-

chronous availability of river height, width and slope (Bian-
camaria et al., 2016; Durand et al., 2016).

5.1 HydroSat products for river discharge

In HydroSat, discharge estimates are available from both al-
timetric river water level and imagery-based effective river
width also in the two modes of standard rate (SR) and high
rate (HR). While the SR product relies on standard temporal
resolution of the spaceborne data, the HR data come with a
higher temporal resolution through an assimilation process.
To the best of our knowledge, there is no repository or web-
site providing similar space-based river discharge estimates.
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Figure 7 presents the discharge estimated from river width,
using the stochastic quantile mapping function algorithm
over four different river reaches along the Niger, Congo and
Po rivers (Elmi et al., 2021). High Nash–Sutcliffe model ef-
ficiency coefficient (NSE) values for the Niger River reaches
(Fig. 7a, b) show that the developed method can accurately
estimate the discharge given that both discharge and width
measurements have a representative statistical distribution in
the training period. The performance of the method signifi-
cantly decreases over the Congo River reach (Fig. 7c) mainly
because of the complex relationship between river width and
discharge in this part of the river. The performance of the al-
gorithm over the Po River reach is only minimally acceptable
(NSE= 0.13). Here, the discharge is not estimated accurately
due to insufficient width measurements at high discharge and
low signal-to-noise ratio of the same measurements. The ob-
tained rating curve over the Po River, however, highlights
the advantage of using a non-parametric model through the
quantile mapping function compared to choosing a paramet-
ric model. With the help of the proposed method, space-
borne discharge estimates can be obtained for all non-active
gauges in politically ungauged basins (see Gleason and Du-
rand, 2020).

Figure 8 shows an example of a HR river discharge time
series over Niger River at Lokoja. The inputs to the dynamic
system are the altimetric and in situ river discharges. During
the period when the only source of observations is the in situ
data (before 1992), the Kalman filter estimates a discharge
that matches the in situ data with a relative RMSE of less
than 2 % (not visible in the figure). After 1992, when alti-
metric river discharge is available, the Kalman filter is less
dependent on the in situ data, leading to a relative RMSE up
to 50 %. The validation over the entire Niger basin and 22
gauges along the main stem show an average correlation of
0.9, an average relative RMSE, a relative bias of about 15 %
and a NSE greater than 0.5 for 15 gauges.

The proposed method is applicable in all river networks
with available legacy in situ data. It allows a smoothed daily
discharge time series to be obtained without data outages at
any given location along a river.

5.2 Data and methodology for generating river
discharge time series

The input data for generating both SR and HR river discharge
are either SR or HR water level time series or the effective
river width obtained from satellite imagery. In the following
the methodology of generating discharge time series is de-
scribed.

5.2.1 Standard-rate river discharge

Standard-rate river discharge Q at selected gauges can be es-
timated from space-based water level H (or river width W )
measurements using an empirical relationship between river

height (or width) and discharge (Kouraev et al., 2004; Birkin-
shaw et al., 2010). The most common form of this relation-
ship is the so-called rating curve Q= F (H ) or Q= F (W ).
Rating curves are conventionally generated for simultaneous
measurements of space-based water level (or river width) and
in situ river discharge. Once the model is developed, the dis-
charge can be determined from water level or width mea-
surements. The restriction however remains that for deriv-
ing a rating curve, simultaneous measurements are required,
meaning the availability of in situ measurements during the
satellite era.

Globally a great portion of existing gauges are not active
during the satellite era, although they provide a wealth of
legacy data. For such gauges, Tourian et al. (2013) suggest
a statistical approach based on quantile mapping of in situ
discharge and altimetry water level measurements. Since the
quantile functions of discharge and river water level (width)
have the same x axis (cumulative probability), it is possible
to connect their y axis directly and obtain F (H ) or F (W ). As
this approach does not involve the time coordinate explicitly,
the requirement for synchronous datasets is obsolete. This is
to say that the pre-satellite river discharge data records can be
salvaged and turned into usable data for the satellite altimetry
or imagery time frame.

The method is further improved by Elmi et al. (2021) to
infer a non-parametric model for estimating the river dis-
charge and its uncertainty. The algorithm employs a stochas-
tic quantile mapping function scheme by iteratively (1) gen-
erating realizations of river discharge and height (width) time
series using a Monte Carlo simulation, (2) obtaining a collec-
tion of quantile mapping functions by matching all possible
permutations of simulated river discharge and height (width)
quantile functions, and (3) adjusting the measurement uncer-
tainties according to the point cloud scatter. The flowchart in
Fig. S8 describes the procedure of SR discharge estimation
using spaceborne river height or width.

5.2.2 High-rate river discharge

HydroSat provides high-rate (HR) river discharge time se-
ries based on the method developed by Tourian et al. (2017a)
that goes beyond the conventional one-on-one relationship
between virtual station (or reach) and (legacy) in situ station
explored in SR discharge products. A multitude of altimetric
discharge time series over a river network are used in this ap-
proach to estimate time series of daily river discharge. This
is fundamentally done via assimilation of multiple altimetric
discharge – the SR time series – and in situ measurements
using a linear dynamic system. The dynamic system consists
of a stochastic process model that benefits from the cyclosta-
tionarity of discharge. This model is informed by the covari-
ance and cross-covariance generated out of old in situ data.
The process model is then combined with observation equa-
tions fed by several altimetric and in situ discharge time se-
ries to form a linear dynamic system. Ultimately, the system
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Figure 7. Adopted from Elmi et al. (2021): four river reaches defined as case studies (a) and (b) are the river reaches over the Niger River;
(c) is part of the Congo River, and (d) is selected over the Po River. Each case shows the estimated discharge (green dots), scatterplots of the
simultaneous observations used for developing models and stochastic quantile mapping function.

Figure 8. Daily river discharge over the Niger River at Lokoja by assimilating altimetric discharge with available in situ data.

is solved using the Kalman filter, followed by smoothing of
the solutions using the Rauch–Tung–Striebel (RTS) scheme
(Rauch et al., 1965). In fact, the Kalman filter produces an
a posteriori discharge estimate with a likelihood function of
discharge based on the available observations and the prior
information derived from the stochastic process model. In
the case of an observation gap, the posterior estimates rely
on the stochastic process model and its cyclostationary mean
discharge. Figure S9 represents the flowchart for estimating
the HR river discharge. The implementation details of the
method can be found in Tourian et al. (2017a).

6 Data availability

The data are publicly available in the HydroSat database
via http://hydrosat.gis.uni-stuttgart.de (last access: 23 May
2022). All time series in this paper are assigned a number, the
so-called HydroSat ID, by which the time series can be found
in the HydroSat database via the search field. In this database
all data can be browsed, visualized and analyzed without reg-
istration. However, registration is required to download the
data. A snapshot of all data (taken in April 2021) with a total
of 10 810 time series (34 time series on surface water ex-
tent, 1323 time series on water level, 36 time series on river
discharge and 463 time series on water storage anomaly) is
available in GFZ Data Services, which is accessible at https:
//doi.org/10.5880/fidgeo.2021.017 (Tourian et al., 2021).
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Input data:

– Envisat GDR-v3 data from https://doi.org/10.5270/
EN1-ajb696a (European Space Agency, 2018)

– Saral GDR T data from ftp://ftp-access.aviso.altimetry.
fr/geophysical-data-record/ (last access: 18 May 2022)

– ICESat-2 ATL13 L3A Inland Water Surface Height,
Version 3 from https://nsidc.org/data/atl13 (last access:
18 May 2022)

– CryoSat-2 SIR GDR data from ftp://science-pds.
cryosat.esa.int/ (last access: 18 May 2022)

– Jason-1 GDR data from ftp://ftp-access.aviso.altimetry.
fr/geophysical-data-record/ (last access: 18 May 2022)

– Jason-2 (PISTACH) GDR data from ftp://ftpsedr.
cls.fr/pub/oceano/pistach/J2/IGDR/hydro/ (last access:
18 May 2022)

– Jason-2 GDR data from ftp://ftp-access.aviso.altimetry.
fr/geophysical-data-record/ (last access: 18 May 2022)

– Jason-3 GDR data from ftp://ftp-access.aviso.altimetry.
fr/geophysical-data-record/ (last access: 18 May 2022)

– Sentinel-3A NTC data from https://scihub.copernicus.
eu/ (last access: 18 May 2022)

– Sentinel-3B NTC data from https://scihub.copernicus.
eu/ (last access: 18 May 2022)

– GRACE monthly ITSG-Grace2018 data from https://
doi.org/10.5880/ICGEM.2018.003 (Mayer-Gürr et al.,
2018)

– GRACE-FO monthly ITSG-Grace2018 data from https:
//doi.org/10.5880/ICGEM.2018.003 (Mayer-Gürr et al.,
2018)

– MODIS MOD09Q1 data from https://ladsweb.modaps.
eosdis.nasa.gov/ (last access: 18 May 2022)

– Landsat-based water masks from https:
//global-surface-water.appspot.com/ (last access:
18 May 2022) (Pekel et al., 2016).

7 Summary, conclusion and outlook

The development of repositories and services to provide
global water cycle products from spaceborne sensors is get-
ting more attention than ever before, which is motivated by
the urgent need for more hydrological evidence, the absence
of perspective for improving in situ data, the existence of an
abundance of satellite missions, the prospect of cutting-edge
missions such as the SWOT mission and also the promise of
operational satellites in space. Such products support studies

focused on understanding the water cycle and the Earth sys-
tem in general. HydroSat provides the following water cycle
quantities.

– Surface water extent of lakes and rivers. HydroSat pro-
vides surface water extent time series of both lakes and
rivers from optical satellite images. For generating dy-
namic water masks, region-based classification is em-
ployed, which benefits from the spatio-temporal behav-
ior of pixel intensity. This allows us to deal with the
complexities in extracting dynamic river masks. More-
over, such an algorithm setup allows a probabilistic wa-
ter mask, leading to an estimate for surface water extent
uncertainty to be obtained. While datasets of surface
water extent variation over lakes are available from var-
ious data centers, HydroSat additionally provides time
series of river width for major river basins. For a qual-
ity assessment, time series of surface water extent over
lakes are compared with available in situ and or altimet-
ric water level time series. Over rivers, such a quality
assessment is predominantly done through comparing
the time series against in situ river discharge.

– Water level time series of lakes and river. HydroSat pro-
vides water level time series of rivers, lakes and reser-
voirs in two modes, standard rate (SR) and high rate
(HR), with their uncertainty estimates. For water level
time series HydroSat uses an automated, data-driven
outlier rejection methodology designed within an iter-
ative, non-parametric adjustment scheme. The outlier-
free measurements form the final time series without
any further smoothing. While water level time series
over inland water bodies are available from similar data
centers, HydroSat additionally provides HR water level
time series over rivers through densifying individual SR
time series along a river. For the HR products over the
lakes, inter-satellite biases are removed through a hy-
brid approach by incorporating lake surface area infor-
mation. The quality of water level time series is assessed
through a validation against in situ water level or proxy
data like river discharge, river width or lake surface area.

– Terrestrial water storage anomaly. HydroSat provides
terrestrial water storage anomaly (TWSA) time series
and its uncertainty in the form of equivalent water
height over major global river basins using GRACE and
GRACE-FO observations. To estimate TWSA time se-
ries from Level 2 data (spherical harmonics up to the
96th degree and order), the C2,0 and C3,0 are replaced,
and the first degree is added from the corresponding
SLR estimates. Moreover, ellipsoidal and GIA correc-
tion is followed by a smoothing Gaussian filter with a
radius of 400 km. The final TWSA in HydroSat is cor-
rected for tidal aliasing error and leaked signals. For the
field product, the Gaussian filtering is applied together
with a de-striping filter, and leakage is corrected using
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the forward modeling approach. The quality of TWSA
time series is assessed through a comparison with two
mascon products, CSR RL06 version 02 and JPL RL06
version 02.

– Water storage anomaly of lakes and reservoirs. Hy-
droSat provides time series of surface water storage
anomaly for lakes and reservoirs using the time series of
water level and surface area measurements. For devel-
oping the surface-water-level–area–volume model, the
scatterplot of simultaneous water level and area mea-
surements is obtained. HydroSat performs an iterative
data snooping procedure to obtain a reliable empirical
relationship between surface water level and area. In
this way, the quality of the obtained time series of water
storage anomaly is ensured since the non-representative
measurements are eliminated.

– River discharge estimates for large and small rivers.
HydroSat provides SR and HR river discharge esti-
mates together with their uncertainties. To obtain the
SR products, HydroSat relies on a non-parametric quan-
tile mapping approach that salvages gauging stations
that are no longer updated with in situ measurements.
Since no model assumptions are required under the non-
parametric approach, the HydroSat discharge time se-
ries are less contaminated by mismodeling. For the un-
certainty estimation HydroSat applies a stochastic quan-
tile mapping function algorithm supported by a Monte
Carlo simulation. The availability of enough SR time se-
ries over a river network allows the approximation of the
spatio-temporal dynamics of a river system by a linear
dynamical system. The HR products are the solutions of
such a dynamic system by Kalman filters obtained with
up to daily temporal resolution at potentially any loca-
tion along the river. For the quality assessment, SR and
HR discharge time series are compared with in situ and
spatial river discharges, water levels and river widths.

The above geometric hydrological variables are unique as
they provide key elements of the water cycle in many gauged
and ungauged regions around the world. They can directly
be used in hydrological modeling, either as inputs or for cal-
ibration purposes. Global hydrological modeling has been
improved in terms of modeled processes, leading to a bet-
ter recognition of modeling uncertainties. Such recognition
clearly signals that the modeling uncertainties are not re-
duced. To reduce the uncertainty, one solution is indeed to
use the best available input data for modeling. Space-based
data together with process knowledge allow realistic mod-
eling of water flows and storages in the different compart-
ments. Moreover, spaceborne measurements can be used to
calculate indicators of the past and future state of the global
freshwater system to assess risks under 1.5 and 2 ◦C global
warming and support decision-making (Döll et al., 2018).

In addition, variables of water level, surface water stor-
age anomaly and surface water extent support downscaling
of mass transport monitoring in time and space. The suc-
cess of GRACE has created a new demand for scientists
and decision-makers for a sustained observation of the ter-
restrial water storage change (Pail et al., 2015). Although
the utility of GRACE data has been mainly limited to large
catchments, understanding of water storage changes in re-
gions with some local weak signatures plays an important
role within the Earth system and the sustainable development
of water resources (Lorenz et al., 2015). Therefore, an ur-
gent priority is to mitigate the spatial resolution limitation of
GRACE through incorporating additional hydrological vari-
ables such as surface water storage and river and lake wa-
ter level variation. This will improve in particular our under-
standing of the water cycle in many small vulnerable catch-
ment areas with large populations.

Additional added value of the HydroSat data is their com-
plementary role in the SWOT mission. Over rivers, SWOT
will estimate discharge from multiple algorithms as well as
consensus values computed over multiple individual algo-
rithms (Stuurman and Pottier, 2020). The majority of algo-
rithms are Bayesian, relying on prior data. Hydrological vari-
ables provided by HydroSat can effectively be used as po-
tential prior information for each of the discharge algorithms
through available water levels (SR and HR), river width from
satellite imagery and discharge estimates (SR and HR). Over
lakes and reservoirs, our estimates of surface water extent
and volume anomaly will boost SWOT’s estimates in terms
of both temporal resolution and coverage. This supports stud-
ies aiming to understand long-term behavior of lakes and
reservoirs.
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