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Abstract. This paper describes a 16-year dataset of air pollution concentrations and air quality indicators over
France. Using a kriging method that combines background air quality measurements and modeling with the
CHIMERE chemistry transport model, hourly concentrations of NO2, O3, PM10 and PM2.5 are produced with
a spatial resolution of about 4 km. Regulatory indicators (annual average, SOMO35 (sum of ozone means over
35 ppb), AOT40 (accumulated ozone exposure over a threshold of 40 ppb), etc.) are also calculated from these
hourly data. The NO2 and O3 datasets cover the period 2000–2015, as well as the annual PM10 data. Hourly PM10
concentrations are not available from 2000 to 2007 due to known artifacts in PM10 measurements. PM2.5 data
are only available from 2009 onwards due to the limited number of measuring stations available before this date.
The overall dataset was evaluated over all years by a cross-validation process against background stations (rural,
sub-urban and urban) to take into account the data fusion between measurement and models in the method.
The results are very good for PM10, PM2.5 and O3. They show an overestimation of NO2 concentrations in
rural areas, while NO2 background values in urban areas are well represented. Maps of the main indicators are
presented over several years, and trends are calculated. Finally, exposure and trends are calculated for the three
main health-related indicators: annual averages of PM2.5, NO2 and SOMO35. The DOI link for the dataset is
https://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). We hope that the publication of this open dataset
will facilitate further studies on the impacts of air pollution.

1 Introduction

Air pollution is a major environmental risk for human health
and ecosystems in Europe. Over the past decades the Euro-
pean Union (EU) has put in place several measures to re-
duce anthropogenic emissions of pollutants. In response to
emissions reductions, concentrations of SO2, NO2 and parti-
cles measured over Europe have shown a clear decrease since
1990 (EEA, 2018; EMEP, 2016).

The evolution of O3 trends is less clear despite the
decrease in its precursors. The magnitude of high ozone
episodes decreased, while annual average ozone levels mea-
sured at EMEP (European Monitoring and Evaluation Pro-
gramme) stations were increasing in the 1990s and show
a limited negative trend from 2002 onwards. As shown in

the Tropospheric Ozone Assessment Report (Tarasick et al.,
2019), this feature is generally attributed to the changing
global tropospheric ozone baseline for which further hemi-
spheric control strategies are needed. The same conclusions
could be drawn from the Malherbe et al. (2017) study, which
focused on France, with significant reductions in NO2 and
particle concentrations and an increase in average O3 offset
by a slight decrease in peak O3. Despite these reductions in
emissions and pollutant concentrations (with the exception
of the annual average O3), a proportion of French citizens
are still exposed to concentrations above the EU limit and
target value, and air quality in EU remains one of the main
reasons for premature deaths (IHME, 2013).
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As a complement to observations (which provide only
partial spatial information), accurate, high-spatial-resolution
and up-to-date air pollution maps are important information
for assessing air pollution trends and exposure. They should
provide geographically detailed information on the concen-
trations of air pollutants over the whole territory. These maps
serve as a basis for informing citizens, designing and strati-
fying monitoring networks, supporting policy strategies, and
measuring their impact. They are also used to estimate pop-
ulation exposure to air pollutants, which is essential for epi-
demiological studies.

On a European scale, different mapping approaches have
been used to produce maps of pollutant concentrations.
These maps can be obtained by modeling using a regional
chemistry transport model (CTM) that simulates the con-
centration of pollutants over Europe. However, these mod-
els cannot always be used over the whole of Europe with
a high resolution and have some biases and limitations in
spatial representativeness. Regression methods (Briggs et al.,
2000; Beelen et al., 2009) are also used at different scales.
These stochastic modeling techniques develop statistical as-
sociations between potential “predictor variables” (land use,
emission sources, topography) and measured pollutant con-
centrations in order to predict concentrations at an unsam-
pled site. Other frequently used techniques are kriging tech-
niques. These geostatistical techniques are based on the as-
sumption that the data are spatially autocorrelated and there-
fore take into account the distances between measurements
and the spatial structure of the variable. Different types of
kriging are used to map the concentrations of air pollutants.
Over France, kriging methods combining information from a
regional CTM (CHIMERE; Mailler et al., 2017) and obser-
vations are produced daily by the Prev’air operational fore-
casting and mapping system for air quality (Rouïl et al.,
2009). Since 2003 (for ozone) and 2005 (for PM10), the
concentration maps simulated for the day before in Prev’air
have been corrected each morning using observations. The
kriging technique used in Prev’Air has evolved over time,
and PM2.5 and NO2 concentrations are now also corrected
for the day before. Today, a kriging of hourly observations
with CHIMERE as external drift is applied to map NO2 and
O3 concentrations. Since 2017, for the mapping of PM10
and PM2.5 concentrations, the method used is an hourly co-
kriging of PM10 and PM2.5 data with CHIMERE as external
drift. These choices are the results of successive studies that
compared different kriging techniques (Malherbe and Ung,
2009, Beauchamp, 2015). A similar methodology was imple-
mented for an earlier reconstruction of outdoor air pollution
in Europe for the period 1989–2008 in Bentayeb et al. (2014).
There are also ambient air pollution maps produced at Euro-
pean scale at 1 km resolution by the European Environment
Agency but only for selected annual indicators and without
consistency for multi-year reconstructions (Horálek et al.,
2012, 2020). The Copernicus Atmosphere Monitoring Ser-
vice has also produced European analyses since 2015, but

again there is no multi-year consistency as these European
maps are produced on an annual basis with gradually im-
proving methodologies (Marécal et al., 2015). At the global
scale, the Global Burden of Disease also makes available air
pollution exposure maps; a recent update of the methodology
was presented in (Shaddick et al., 2017), but the resolution is
0.1◦ or about 10 km.

The purpose of this paper and the associated datasets is
to present and provide mapped data of O3, NO2, PM10 and
PM2.5 concentrations at high spatial and temporal resolu-
tion and associated regulatory indicators covering the French
metropolitan territory for the period 2000–2015 (2007–2015
and 2009–2015 for hourly concentrations of PM10 and
PM2.5). The same kriging technique as in the Prev’air sys-
tem is used to combine modeled and observed concentra-
tions. Hourly concentrations of PM10, PM2.5, NO2 and O3
are produced and mapped over France, and these hourly data
are then used to calculate and map European and French air
quality standards.

2 Methods

Model outputs and measurements from the permanent moni-
toring network were combined by external drift kriging (Mal-
herbe and Ung, 2009; Benmerad et al., 2017) to construct
hourly concentration maps over France for a long period:
2000 to 2015. Details on the input data and methods used are
described in the following paragraphs. From these corrected
hourly concentration data, annual regulatory air quality maps
are then constructed over France.

2.1 Monitoring data

Hourly measurements are extracted from validated reference
datasets. For France, observations are extracted from the
national air quality databases: BDQA (Base de Données de
Qualité de l’Air) before 2013 and GEODAIR (https://www.
lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair,
last access: 19 May 2022) after 2013, as well as
from the Airbase database (https://www.eea.europa.
eu/themes/air/air-quality/map/airbase, last access:
19 May 2022) for other European countries from
2000 to 2012 and from air quality e-reporting (https:
//www.eea.europa.eu/data-and-maps/data/aqereporting-9,
last access: 19 May 2022) from 2013 to 2015. All back-
ground monitoring data over the spatial domain are used in
the kriging procedure except for stations with measurements
above the 95 percentiles. This includes rural, suburban and
urban stations but excludes industrial and traffic stations
that are representative of very local concentrations and are
difficult to reproduce in a national-scale mapping system.
The number of background monitoring sites for each type of
station and for each year is summarize in Table 1.

Until 1 January 2007, operational monitoring of PM10
and PM2.5 was carried out in France by automatic measur-
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Table 1. Number of background French monitoring sites for the years 2000 to 2015.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

O3 284 310 337 362 378 396 404 405 399 385 376 360 347 318 319 331
NO2 274 290 299 322 337 353 353 350 352 337 334 316 299 284 282 300
PM10 119 125 171 212 219 238 126 219 252 241 249 245 240 218 173 251
PM2.5 62 69 74 84 89 90 105

ing systems of the TEOM (tapered element oscillating mi-
crobalance; PM10, PM2.5) or Beta (PM10) type. However,
compared to the reference method EN 12341 (gravimetry),
these systems underestimate the concentrations of particles.
This is a known artifact related to the loss of semi-volatile
compounds. To correct PM10 concentrations measured be-
fore 2007, a simple approach consists of applying a uni-
form correcting factor over France. This method is not suit-
able for correcting hourly or daily concentrations, but it has
been shown to work well for annual average PM10 concen-
trations (Malherbe et al., 2017, Bessagnet et al., 2008). The
factor (1.36) is a median value calculated on the PM10 data
from “reference” sites (Bessagnet et al., 2008). As a conse-
quence, for the period 2000 to 2006, the only PM10 indica-
tor available is the annual average concentration. Concern-
ing PM2.5, given the few reference measurements available
before 2009, the reliability of even annual measurements is
low. It was therefore decided to apply the kriging method-
ology only from the year 2009 onwards, which is when the
change in measurement method had become widespread.

2.2 CHIMERE simulations

The CHIMERE chemistry transport model (Couvidat et al.,
2018) is used to estimate air pollution levels for metropoli-
tan France with a resolution of about 4 km (0.06◦× 0.03◦)
over the years 2000 to 2015. This model has long been im-
plemented and assessed in France as the main component
of the national air quality forecasting and monitoring system
PREV’AIR (Honoré et al., 2007). Two types of input data are
used to simulate concentrations.

Prior to 2010, a configuration similar to the one used in the
EURODELTA-Trends project (Colette et al., 2017) is used.
The methodology of Colette et al. (2017) is used to recon-
struct the emissions of the main air pollutants (non-methane
volatile organic compound (NMVOC), NOx, CO, SO2, NH3
and primary PM): the annual emissions of each country, bro-
ken down by SNAP (Selected Nomenclature for reporting
of Air Pollutants) sectors, are estimated using the GAINS
(Greenhouse gases and Air pollution Interactions and Syner-
gies) model (Amann et al., 2011) for the years 2000, 2005
and 2010 . To derive emissions for intervening years, secto-
rial results for 5-year periods are linearly interpolated. Mete-
orological data are simulated with the Weather Research and
Forecast Model (WRF version 3.3.1; Skamarock et al., 2008)
from 2000 to 2010.

For the period 2011 to 2015, year-to-year emissions
of the main pollutants are taken from the cooperative
program for the monitoring and evaluation of the long-range
transmission of air pollutants in Europe (EMEP) avail-
able at https://www.ceip.at/webdab-emission-database/
emissions-as-used-in-emep-models (last access:
19 May 2022). Annual meteorological data were pro-
vided by ECMWF with the Integrated Forecasting System
(IFS) model with data assimilation.

For these two datasets, the spatialization of emissions
over France is performed with a 1 km proxy based on the
national bottom-up emission inventory (available at http:
//emissions-air.developpement-durable.gouv.fr/, last access:
19 May 2022) which feeds the CHIMERE emission pre-
processor described in Mailler et al. (2017). Furthermore,
Denier van der Gon et al. (2015) showed that primary PM
emissions from residential wood burning can be underesti-
mated by up to a factor of 2–3 over Europe because the emis-
sions largely lack semi-volatile compounds. To compensate
for this underestimation, a country correction factor deter-
mined from Denier van der Gon et al. (2015) is applied over
the whole period.

2.3 Kriging

Hourly atmospheric concentration fields are estimated by
universal kriging, a geostatistical method. Kriging aims to es-
timate the value of a random variable (random process which
describes the observations) at locations from the measure-
ments. Kriging relies on the concept of spatial continuity,
which implies that measurements that are close to each other
will be more similar than distant measurements. In addition,
kriging requires a good knowledge of the spatial structure
of the interpolation domain which is represented by the var-
iogram or co-variogram (second-order properties) of a ran-
dom function (Goovaerts, 1997; Wackernagel, 1996; Chiles
and Delfiner, 2012; Lichtenstern, 2013). Kriging involves de-
riving the linear combination of the observations which en-
sures the minimal estimation variance under a non-bias con-
dition. At a point s0, the concentration estimate ŷ(s0) is given
by Eq. (1).

ŷ(s0)=
N∑
i=1

λiy(si), (1)
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Figure 1. PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and estimated over
rural background stations for the years 2007 to 2015. (a) Number of rural stations for each year. (b) Mean bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

Figure 2. PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and estimated over
URBAN background stations for the years 2007 to 2015. (a) Number of rural stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

where y(si), i = 1. . .N , are the observed concentrations at
sampling locations through the entire domain (unique neigh-
borhood) or within a limited neighborhood of s0 (moving
neighborhood), and λi , i = 1. . .N , are the kriging weights.

Among the kriging methods, the universal kriging (espe-
cially external drift kriging) allows us to consider additional
information to make estimates more accurate. This approach
is based on a linear regression with auxiliary variables and a
spatial correlation of the residuals, and it allows us to com-
bine simultaneously observations and additional information.
The main hypothesis is that the global mean of the random
variable is not constant through the domain, and it relies on

explanatory variables. This kriging technique has been used
for several years in monitoring air quality systems for spatial
interpolation at the regional scale (PREV’AIR; Malherbe and
Ung, 2009). For y(s0), which is the pollutant concentration to
be estimated at a location s0, the hypothesis is a linear rela-
tion between y(s0) and the considered auxiliary variables as
explained by Eqs. (2) and (3).

y(s0)=m(s0)+ ε(s0), (2)
m(s0)= b0+ b1x1(s0)+ b2x2(s0)+ . . .+ bpxp(s0), (3)

where m(s0) is the drift of the mean, b0,b1, . . .bp are the co-
efficients of the linear regression, and x0,x1, . . .xp are the
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Figure 3. PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and estimated over
rural background stations for the years 2009 to 2015. (a) Number of rural stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

Figure 4. PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and estimated over
URBAN background stations for the years 2009 to 2015. (a) Number of rural stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (dotted horizontal lines).

auxiliary variables. ε corresponds to the stationary random
process which is associated with a semi-variogram. In ad-
dition, the kriging weights must satisfy the drift condition
described in Eq. 4.

∀xp : xp(s0)=
N∑
i=1

λixp(si) (4)

In this work, kriging is performed with surface monitoring
observations, and the drift is described by the outputs from

the CHIMERE chemistry transport model. European stations
located outside the French domain are included in the krig-
ing to increase accuracy at the borders. The kriging is per-
formed using a moving neighborhood as this allows for lo-
cal adjustment of the relationship between the measurements
and CHIMERE. The concentration at each grid point is es-
timated within a window of 80 monitoring sites. This num-
ber has been adjusted in previous studies by sensitivity tests
(Benmerad et al., 2017; Beauchamp et al., 2017). In addi-
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Figure 5. O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated over ru-
ral background stations for the years 2000 to 2015. (a) Number of rural stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

tion, smoothing is applied to avoid discontinuities in the map
(Beauchamp et al., 2015); the smoothing methodology was
adapted from Rivoirard and Romary (2011). The final output
resolution is the same as for the CHIMERE model: approxi-
mately 4 km resolution (0.06◦× 0.03◦).

For PM10 (particles with a radius < 10 µm) and PM2.5
(particles with a radius < 2.5 µm) a co-kriging with external
drift is applied. Co-kriging is an extension of kriging to the
multivariate case. It allows the estimate of PM10 or PM2.5
concentrations by a linear combination of the two-variable
data. The particularity of co-kriging is the use of the cross
variance or semi-variance between the principal variable and
the secondary variable. In the case of co-kriging with exter-
nal drift, the simple and cross variograms are built based on

residuals (De Fouquet et al., 2007). Co-kriging allows us to
take into account the correlation between PM10 and PM2.5
and to improve consistency between PM10 and PM2.5 esti-
mates (Beauchamp et al., 2015). This co-kriging also allows
the PM2.5 estimate to benefit from the higher density of PM10
monitoring stations.

2.4 Output: regulatory air quality indicators

From the hourly kriged concentrations, several air quality in-
dicators (regulatory and used in health impact assessments)
are calculated and mapped over France. The complete list
and definition of these indicators are given in Table 2.
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Figure 6. O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated over UR-
BAN background stations for the years 2000 to 2015. (a) Number of urban stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

3 Data validation

Usually the quality of the estimated concentration maps is as-
sessed using statistical indicators that compare observations
and estimated concentrations at the monitoring stations in
the domain. Here, information of all background stations in
the domain is already used to produce the maps. Therefore,
for a fair comparison, the cross-validation method is used.
The cross-validation method calculates the quality of the spa-
tial interpolation for each measurement station point from
all available information except the selected station point;
i.e., it retains one data point and then makes a prediction at
the spatial location of this point. This procedure is repeated
for all measurement points in the available set, thus allow-
ing the quality of the predicted values to be assessed at lo-

cations without measurements (provided they are within the
area covered by the measurements).

It was noticed that the scores are systematically different at
rural and urban stations (even though the kriging technique
used here is not differentiated by the type of station). This
is why the results of the cross-validation are described by
pollutant and differentiated by station type (rural and urban
types are presented here). Three statistical indicators are cal-
culated on the basis of the daily average concentration: the
mean bias, the root mean squared error (RMSE) and the Pear-
son correlation (r2). For each year, they are first calculated
for the “left out” station, and then the median values over all
stations are calculated.

Leave-one-out validation is a commonly used method in
the air quality community (see, for example, ETC reports
on air quality mapping (Horálek et al. 2017)) which is
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Table 2. Yearly regulatory air quality indicators from EU legislation or French legislation and usual indicators.

ID Pollutant Statistics Threshold Threshold origin Target to
protect

NO2_avgannual NO2 Yearly average 40 µg m−3 Limit value (EU) Human health

O3_avgannual O3 Yearly average

O3_AOT40 O3 AOT40∗ from May to July 6000 µg m−3 Long-term
objective

Vegetation

O3_AOT40_5years O3 AOT40∗ from May to July (5-year average) 18 000 µg m−3 Target value (EU) Vegetation

O3_SOMO35 O3 Sum of excess of max daily 8 h averages
over 35 ppb (= 70 µg m−3) calculated for
all days in a year; SOMO35 (sum of means
over 35 ppb)

Health impact
assessment

Human health

O3_T120 O3 Number of days for which the running
average over 8 h exceeds 120 µg m−3

Quality objective
(EU)

Human health

O3_T120_3years O3 Number of days for which the running 8 h
average exceeds 120 µg m−3 (averaged over
3 years)

Not to exceed more than 25 d a year Target value (EU) Human health

O3_T180 O3 Number of hours exceeding the average
value of 180 µg m−3

Recommendation
and information
threshold (France)

Human health

O3_T240 O3 Number of hours exceeding the average
value of 240 µg m−3

Alert threshold
(France)

Human health

PM10_avgannual PM10 Yearly average 40 µg m−3 Limit value (EU) Human health

PM10_t50 PM10 Number of days exceeding the average
value of 50 µg m−3

Not to exceed more than 35 d a year Limit value (EU) Human health

PM10_t80 PM10 Number of days exceeding the average
value of 80 µg m−3

Alert threshold
(France)

Human health

PM25_avgannual PM25 Yearly average 25 µg m−3 Limit value (EU) Human health
∗ AOT40 (expressed in µg m−3 h−1) means the sum of differences between hourly concentrations greater than 80 µg m−3 (= 40 ppb or parts per billion) and 80 µg m−3 for a given period using only the 1 h
values measured daily between 08:00 and 20:00 CET.

presently recommended by FAIRMODE (Janssen and Thu-
nis, 2020). However, scores derived from the results of the
leave-one-out validation might be influenced by areas where
the density of sampling points is highest. For this reason,
during the FAIRMODE project (Riviere et al., 2019), for
which a kriging method similar to the one conducted here
was conducted, a comparison has been performed between
cross-validation results obtained by the leave-one-out cross-
validation and cross-validation results obtained by the 5-
fold cross-validation (cross-validation leaving 20 % of sta-
tions out). Results and related scores were very similar. We
therefore decided to continue with the leave-one-out cross-
validation process for the validation of our kriging results.

3.1 PM10

The scores show a good representation of the observations by
the kriged data with correlations between 0.77 and 0.86 and
RMSE of about 7 µg m−3, i.e., between 30 % and 50 % of the
annual mean PM10 concentration. The mean biases are par-
ticularly low for urban stations with values below −1 %. For
rural stations the average bias is less than + 3 µg m−3, i.e.,
less than + 15 %. The proportion between rural and urban

stations varies between 1/3 and 1/10. The larger number of
urban stations allows a better capture of the spatial variability
in concentrations in urban environments.

Looking at the evolution of the scores over the years for
rural stations, the number of stations available first increases
from 2009 to 2012 before decreasing until 2014. In 2015 a
new increase in the number of stations in France begins. For
urban stations, the decrease starts earlier (2010), but the evo-
lution is the same. The temporal evolution of the scores gen-
erally follows the number of stations with higher correlations
and smaller relative mean biases and RMSE when more sta-
tions are available. Indeed, the greater the number of stations
there are, the more representative the kriging technique will
be of the real spatial variability. There are exceptions, how-
ever, like in 2015 for rural stations, which had the second
worst scores even though that year has the largest number of
stations.

3.2 PM2.5

There are between a half and a third as many PM2.5 stations
as PM10 stations. However, by using a co-kriging technique,
the PM2.5 mapping also benefits from PM10 information so
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Figure 7. NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated over
rural background stations for the years 2000 to 2015. (a) Number of rural stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

that the correlations, mean bias and RMSE are almost sim-
ilar to the PM10 scores. The mean biases for rural stations
do not exceed 20 % of the mean concentrations and are very
low for urban stations (between 0 and − 3 %). As for PM10,
this bias is systematically positive for rural stations (overes-
timation) and slightly negative over urban stations (underes-
timation). This is mainly related to the resolution of the data
which smoothes the concentration gradients, giving a unique
value for each grid (about 4 km horizontal resolution). For ur-
ban station, located close to PM2.5 precursor emissions and
generally having high concentration values, this smoothing
effect leads to an underestimation. For rural areas far from
emission precursors, the opposite is observed.

The correlation is generally higher than 0.8, and the RMSE
does not exceed 7 µg m−3 (at most 50 % of the annual mean
concentration).

3.3 O3

The comparison between estimated and observed ozone at
rural stations shows good correlations (0.8 to 0.87), small rel-
ative mean negative biases (−4 % to −8 %) and low RMSE
(around 20 % of the annual mean concentration). Between
2000 and 2007, the number of rural stations increased, re-
sulting in improved modeled concentration maps. The small
decrease in the number of stations after 2007 does not penal-
ize the scores for these years.
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Figure 8. NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated over
URBAN background stations for the years 2000 to 2015. (a) Number of urban stations for each year. (b) Bias (black circles), RMSE (colored
rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines).

The same conclusions can be drawn for the urban ozone
scores. The higher number of urban stations even leads to
slightly better scores, with correlations above 0.9 for all years
and relative mean positive biases not exceeding 5 %. A sat-
isfactory RMSE is also obtained for all years with values
around 20 % of the annual mean concentration. It can be seen
that the positive and negative biases are reverse with respect
to the PM scores. Indeed, the highest O3 values are generally
observed in rural areas where precursors have had time to
produce O3 and where O3 destruction is lower than in urban
areas. Therefore, the smoothing effect has the opposite effect
to that of PM.

3.4 NO2

Rural scores for NO2 are worse for particles and O3. The cor-
relations are between 0.55 and 0.7, but above all, strong pos-
itive biases are observed for all years with an overestimation
of the observations of 60 % to 80 %. This also affects RMSE
scores that can exceed 100 % of the annual mean concentra-
tion. This poor performance can be explained by the strong
spatial gradients in NO2 concentrations due to its shorter at-
mospheric lifetime than O3 or particles. There are too few
rural stations to properly capture this variability in the krig-
ing technique used here, so the urban stations have too much
weight, and the raw model concentrations also overestimate
rural concentrations.

The urban scores for NO2 are much better than the rural
scores. The correlations are around 0.8, the biases do not ex-
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Figure 9.
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Figure 9. PM10 annual mean concentrations from 2000 to 2015. Concentrations are obtained through a combination of regional modeling
and observations.
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Figure 10. Trends in PM10 annual mean concentration. Sen slope
coefficient (µg m−3 yr−1) calculated over the period 2000–2015.

ceed −3.5%, and the RMSE is between 10 and 12 µg m−3

(less than 25 % of the annual mean concentration). The high
number of urban background stations seems satisfactory to
allow the kriging technique to correctly reproduce the spa-
tial variability in NO2 in urban background environments. It
should be noted, however, that traffic stations are not used
in the present analysis (whether as observational data to be
compared with or included in kriging).

3.5 Comparison with other scores

In order to evaluate the added value of the kriging tech-
nique compared to the raw CHIMERE model simulations,
the cross-validation scores can be compared to the raw model
scores. Table 3 shows the scores averaged over all years and
all observations without distinction of typology.

All scores are strongly improved by the kriging method
of observations with CHIMERE in external drift. However,
as can be seen in the previous figures, this improvement is
more pronounced in urban areas than in rural areas due to the
much larger number of stations in urban areas, which makes
the kriging more representative of these areas.

The cross-validation scores can also be compared with
those obtained in Europe with other mapping methods. Chen
et al. (2019) compared 16 algorithms to develop Europe-wide
spatial models of PM2.5 and NO2, included linear stepwise
regression, regularization techniques and machine learning
methods. Those models were developed based on the 2010
routine monitoring data from the Airbase dataset, satellite
observations, dispersion model estimates and land-use vari-
ables as predictors. De Hoogh et al. (2018) also performed

Table 3. Validation scores for the raw data and the kriged con-
centrations (cross-validation). Annual scores (bias, RMSE and the
Pearson correlation coefficient r2) are calculated over France for all
years and all stations and are averaged.

NO2 O3 PM10 PM2.5

Raw

Bias −3.51 3.46 −8.91 −4.02
RMSE 12.97 17.26 12.63 8.73
r2 0.55 0.73 0.71 0.75

Kriged concentration

Bias −0.51 −0.07 −0.04 −0.15
RMSE 10.41 12.54 7.64 5.83
r2 0.81 0.92 0.85 0.87

cross-validation of their fine-spatial-scale land-use regres-
sion models (also based on Airbase dataset, satellite obser-
vations, dispersion model estimates and land-use variables
as predictors) used in Europe for the year 2010. Results
from their cross-validation are compared to our own cross-
validation results in Table 4.

The comparison of performance in these three studies is
of course limited by the fact that the spatial coverage dif-
fers: in De Hoogh et al. (2018) and Chen et al. (2019), the
cross-validation is computed over the whole of Europe. In
this study, the performances are assessed over France.

For all pollutants the spatial correlation (r2) is better in our
study. At the same time, higher RMSEs are also found for our
study. This may be due to a larger bias, but we also demon-
strated in our paper that the bias was very small, except at ru-
ral NO2 stations. Since the RMSE score also depends on the
absolute concentrations, the different spatial coverage may
also play a role. The lower RMSE over Europe could be an
artifact of including areas where absolute concentrations of
NO2, PM2.5 or O3 are lower than over France.

The validation scores obtained, as well as the comparison
with raw data and with other mapping methods, allow us to
be confident about the validity of the concentrations obtained
and their good representativeness of background concentra-
tions, in particular in urban areas. A crucial step appears,
however, when it comes to the representativeness of rural
NO2 concentrations which are overestimated in our results.

4 Results and discussion

After ensuring the validation of the kriged concentration
data, yearly indicators, trend over years and human expo-
sition are calculated. Hourly concentrations fields are pro-
duced from 2000 to 2015 for NO2, O3 and PM10; however,
as explained in Sect. 2, for PM10 only annual mean indicator
maps are produced before 2007. PM2.5 hourly concentrations
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Figure 11. PM2.5 annual mean concentrations from 2009 to 2015. Concentrations are obtained through a combination (kriging) of regional
modeling and observations.
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Figure 12. Trends in PM2.5 annual mean concentration. Sen slope
coefficients (µg m−3 yr−1) calculated over the period 2009–2015.

are calculated for the years 2009 to 2015 due to the limited
number of background stations available before 2009.

4.1 Concentration maps and trends

All the indicators presented in Sect. 2 are calculated, but the
following sections focus on the annual averaged concentra-
tions of PM10, PM2.5, NO2 and O3, as well as SOMO35 and
AOT (two indicators associated with O3), for which mapped
data are presented. These indicators are presented in this pa-
per and available on a Zenodo repository and on an online
map library (see Sect. 5). A total of 34 trend analyses over
the period are performed by calculating the Sen–Theil regres-
sion slope for each grid point on the domain. To characterize
the significance of these trend slopes, the 95 % confidence
interval is calculated. This confidence interval represents the
lower and upper values above or below which there is 95 %
confidence that the trends will occur. The smaller the confi-
dence interval is, the more statistically significant the trend
will be. Large confidence intervals are considered as unrep-
resentative, especially those containing 0. Trend slopes and
confidence intervals are calculated for each grid point in the
domain, and country-averaged values are also given in Ta-
ble 5.

4.1.1 PM10

Maps of annual average PM10 concentration maps are pre-
sented in Fig. 9 for the period 2000–2015. The resolution
of the grid (around 4 km) allows us to see patterns such as
interconnected cities, especially in the latest years during

which the patterns of large inter-regional concentrations are
decreasing. The impact of meteorological conditions is also
visible through the interannual variability. For example, the
2003 heat wave year is associated with higher PM10 levels
due to the increased formation of secondary aerosols.

Figure 10 shows the mapped trends in annual average
PM10 expressed as Sen–Theil regression slope in micro-
grams per cubic meter per year and calculated over the period
2000–2015.

There is a downward trend in PM10 annual mean con-
centrations everywhere in France and in particular in the
regions with the highest PM10 concentrations at the begin-
ning of the period: the south of France (east and west), the
Auvergne–Rhône–Alpes region, the east (Grand Est) and
the extreme north of France. A country-averaged downward
trend in PM10 concentrations of −0.8 µg m−3 per year is es-
timated over the period 2000–2015 (spatial average of the
trends calculated on each grid point). This trend is statisti-
cally significant on average over France with a narrow 95 %
confidence interval – [−0.50, −1.09] – that does not include
zero (see Table 5) and applies to almost all grid points (maps
of confidence interval not shown here). Taking the year 2000
as the base year, this amounts to a 39 % reduction. In a study
conducted for France over the period 2000–2010, Malherbe
et al. (2017) estimated a downward trend that was twice as
small (0.4). This reflects the accelerated decline in concen-
trations in France in recent years.

This significant downward trend is the result of the
decrease in primary pollutant emissions over these
16 years in response to emission reduction measures.
From 2000 to 2015, primary PM10 emissions over
France were reduced by 39 %, as well as emissions of
PM10 precursors such as NOx emissions (−56 %) and
SOx emissions (−87 %) (data calculated by CITEPA
(Interprofessional Technical Centre for Studies on Air
Pollution) and extracted from the 2015 French national
air quality report: https://www.statistiques.developpement-
durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-
la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf,
last access: 19 May 2022).

4.1.2 PM2.5

The highest PM2.5 values are observed at the beginning of
the period and are more concentrated in the main source
regions than PM10. Significant reductions in annual aver-
age background concentrations are observed over the years.
The Sen slope coefficients calculated for the annual aver-
age PM2.5 (Fig. 12) over the period show negative trends
over the whole territory and more pronounced ones over the
southeast region, the Auvergne–Rhône–Alpes region, north-
ern France and Brittany. A downward trend of−0.87 µg m−3

per year from a national average is calculated, again with sta-
tistical significance (95 % interval of [−0.48, −1.41] which
does not contain zero). Taking 2009 as a reference year, this
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Figure 13.
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Figure 13. SOMO35 indicator for the period 2000 to 2015. Ozone concentrations are obtained through a combination (kriging) of regional
modeling and observations.
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Figure 14. Trends in annual mean O3 concentrations (in µg m−3 yr−1) (a), as well as SOMO35 (in µg m−3 d−1 yr−1) (b) and AOT40 (in
µg m−3 h−1 yr−1) (c) indicators. Sen slope are calculated over the period 2000–2015.

amounts to a 35 % decrease in 7 years. As for PM10, this neg-
ative trend is associated with the reduction in primary PM2.5
emissions and in PM2.5 precursor emissions (SOx, NOx and
volatile organic compounds (VOCs)).

4.1.3 Ozone

The SOMO35 indicator shows strong interannual variability.
O3 is a photochemical pollutant produced by secondary re-
actions in the presence of NOx, VOCs and sunlight. The hot
year 2003 is distinguished by a very high SOMO35 over al-
most the entire territory. For each year, the highest SOMO35
is found in southeastern France and to a lesser extent in the
Alsace region. The trends in SOMO35, annual average O3

and AOT40 over the years are shown in Fig. 14 for the pe-
riod 2000–2015.

For the O3 average annual concentration, small posi-
tive trends are found over France. Two exceptions are the
southeast (Provence–Alpes–Côte d’Azur, or PACA, region)
and the Grand Est region (east of France), i.e., the regions
with the highest O3 concentrations, showing negative trends.
Averaging over France, this leads to a positive trend of
0.32 µg m−3 yr−1 which corresponds to an increase of 6.5 %
over 16 years. The same order of magnitude was found for
the period 2000–2010 by Malherbe et al. (2017). Both neg-
ative (in the south of France) and positive trends are signif-
icant according to the mapped 95 % confidence interval (not
shown). SOMO35 and AOT40 indicators, which are indica-
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Figure 15.
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Figure 15. NO2 annual mean concentrations for the period 2000 to 2015. NO2 concentrations are obtained through a combination of regional
modeling and observations.
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Figure 16. Trends in yearly mean NO2 concentrations. Sen slope
coefficients (µg m−3 yr−1) are calculated over the period 2000–
2015.

Table 4. Validation scores for De Hoogh et al. (2018), Chen et
al. (2019), and this study. The following scores are calculated by
cross-validation for the three studies: Pearson correlation coefficient
r2, the bias, and the root mean square error (RMSE).

De Hoogh et al. Chen et al. This
(2018) (2019) study

NO2 r2 0.57 0.57–0.62 0.81
RMSE 9.51 9–9.5 10.41
Bias −0.51

PM2.5 r2 0.58–0.68 0.48–0.63 0.87
RMSE 2.97–3.3 3.1–3.9 5.83
Bias −0.15

O3 r2 0.63 0.92
RMSE 6.87 12.54
Bias −0.07

tors with a threshold value below which concentrations are
not taken into account, show mostly negative trends. How-
ever, according to the value of the mapped 95 % confidence
interval (not shown here) on most grid points, the confidence
interval is wide and contains zero, indicating a lack of signif-
icance of the calculated trends. These results are consistent
with other European studies (EMEP, 2016; Malherbe et al.,
2017) that show an increase in background concentrations
and a decrease in O3 peaks.

Table 5. Country-averaged slope and its 95 % confidence interval.

Indicator Mean tendency slope Mean 95 %
(or mean trend; in confidence interval

µg m−3 yr−1) (in µg m−3 yr−1)

PM10 – avg annual −0.8 [−0.5, −1.09]
PM2.5 – avg annual −0.87 [−0.48, −1.41]
O3 – avg annual 0.32 [0.005, 0.59]
O3 – SOMO35 −5.52 [−102.7, 76.7]
O3 – AOT −142 [−641, 315]
NO2 – avg annual −0.32 [−0.3, −0.63]

4.1.4 NO2

NO2 is mainly emitted by road transport. All maps show
the same pattern, with cities and interconnected major roads
showing the highest NO2 concentrations. Trends over the
period 2000–2015 are shown in Fig. 15. Decreases in NO2
concentrations are observed in both rural and urban areas
throughout the country. However, we recall that rural lev-
els were found to be overestimated with our approach (see
Sect. 3.4). The decrease is more important when NO2 con-
centrations are high. As with PM2.5, these results highlight
the combined benefit of large-scale emission management
policies that target emission sectors and locally oriented poli-
cies.

On average, a significant negative trend of −0.46 µg m−3

is calculated over France with a narrow 95 % confidence in-
terval (see Table 3). This downward trend is slightly stronger
than that calculated in Malherbe et al. (2017) over the pe-
riod 2000–2010 over France (−0.37 µg m−3 yr−1) and corre-
sponds to a reduction of about 30 % (taking 2020 as the base
year).

4.2 Exposure trends

Population-weighted annual average concentrations are good
estimates of population exposure as they give more weight to
the air pollution where people mainly live. Here, the country-
averaged population-weighted concentrations of NO2, PM2.5
and SOMO35, which are the three main indicators used to
calculate health impacts, are calculated for each year from
the hourly kriged mapped data over France. For one pollu-
tant, it is obtained by adding the result of multiplying the
concentration by the population on all the country’s grids
and then dividing by the total population of the country.
The population database used in this study is the LCSQA
(L’expertise au service de la qualité de l’air) national popu-
lation database (Létinois et al., 2014) established for the year
2015. It is based on detailed files from the French Ministry
of Finance with information at building level. It is impor-
tant to note that the French population used here has not var-
ied over the years. The French population increased by about
10 % between 2000 and 2015. However, if we considered that
the demographic evolution is homogeneous over the country
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Figure 17. Yearly evolution of the country-averaged population-weighted (a) NO2 concentration, (b) PM2.5 concentration and (c) SOMO35.
Trends and 95 % confidence intervals are calculated (d).

(the urban/rural ratio has only increased by about 2.5 % in
France over the same period), the population-weighted con-
centration on national average should be the same whatever
the year of the population database.

As for the concentrations, a very clear downward trend
is observed for population-weighted NO2 with a trend of
−0.5 µg m−3 yr−1 and a narrow 95 % confidence interval:
[−0.4, −0.6], i.e., a reduction of about 30 % in 16 years. A
downward trend of−1 µg m−3 yr−1 is also clearly calculated
for PM2.5 (95 % confidence interval: [−0.6, −1.5]) over the
period 2009–2015, i.e., a reduction of about 31 % in 7 years.
In contrast, there is no clear trend for the SOMO35 indicator
over the period 2000–2015.

When the abovementioned indicators are multiplied by the
total population (to obtain the total exposure, i.e., the sum
of the population-weighted concentrations over a country),
the outcome indicators are those used to calculate the health
impact assessment based on dose-response functions, as sug-
gested by the WHO review “Health Risks of Air Pollution
in Europe”, described in Holland (2014a, b). Exposure to

SOMO35, anthropic PM2.5 and NO2 (with or without thresh-
old depending on the health impact indicator) contributes
to both morbidity and mortality impacts. For example in
France, they were used in the PREPA (National Air Pollu-
tant Emissions Reduction Plan) evaluation study for which
about 50 political measures to be implemented in France
were evaluated and ranked on different criteria, such as air
quality impact, health impact and cost–benefit assessment
(Schucht et al., 2018). At constant population evolution, the
trends are similar between both indicators (total exposure
and population-weighted average concentration). However,
the evolution in population (even if it is homogeneous over
the territory) has an impact on the total exposure of the pop-
ulation. Therefore, we expected a reduced impact on health
compared to those on population-weighted concentrations.

5 Data availability

Mapped regulatory indicators and exposure data for
all 15 years and the four pollutants described here are
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available on a Zenodo repository in the Netcdf format
(version no. 4) and csv format for data at the munic-
ipal or regional level. The DOI link for the dataset is
https://doi.org/10.5281/zenodo.5043645 (Real et al., 2021).
It is also available through a web-based map library (https:
//www.ineris.fr/fr/recherche-appui/risques-chroniques/
mesure-prevision-qualite-air/20-ans-evolution-qualite-air,
Real et al., 2021). The web-based map library is intended
to be updated annually. Those data have been provided
to several research teams with different fields of expertise
ranging from epidemiology to environmental economics and
atmospheric science. Most of this work is still in progress,
but other papers on the subject have been submitted or are
being submitted (Favet et al., 2020; Mink, 2022; Cantrell
and Michoud, 2022).

6 Conclusions

A 16-year datasets of mapped air pollution concentrations
and indicators over France was constructed using a data fu-
sion technique (kriging) that combines measurements from
background surface monitoring stations and modeling from
the regional model CHIMERE. The resulting data are hourly
concentrations at a resolution of about 4 km over France for
the period 2000–2015 (shorter period for PM2.5 and PM10
hourly indicators).

The kriging technique implemented combines kriging
with external drift for NO2 and O3 and co-kriging with exter-
nal drift for particulate matter, allowing the PM2.5 estimation
to benefit from the highest density of PM10 monitoring sta-
tions. These datasets have been evaluated over several years
using a cross-validation process that takes into account the
incorporation of measurements in the correction process by
retaining a data point before calculating the score. The krig-
ing technique significantly improves the validation scores,
especially in urban areas with very low biases and high corre-
lations. However, a crucial point appears concerning the rep-
resentativeness of NO2 concentrations in rural areas which
are overestimated by the model. A new methodology is be-
ing developed to better map NO2 concentrations in these ru-
ral areas. It should be noted that the performance increases
with the number of measurements taken into account until
a threshold is reached at which the addition of stations no
longer seems to improve performance. This threshold de-
pends on the pollutant and is higher for pollutants with a
strong spatial gradient (i.e., NO2 which has a shorter life-
time).

The main annual indicators (mean NO2, PM10, PM2.5, O3,
SOMO35 and AOT40) are analyzed in this article, and the
annual trends are calculated. Significant downward trends are
calculated over the whole period for annual average concen-
trations of PM10, PM2.5 and NO2. They reflect the reduc-
tions in precursor emissions that have taken place in Europe
since the 1990s. The trends for O3 over the 16 years are less

significant. In general, the background O3 level is increas-
ing, mainly due to large-scale pollution, and high (peaks) O3
levels are decreasing due to reductions in local O3 precursor
emissions. This results in a positive trend for the annual aver-
age O3 concentration over most of France, but a small down-
ward trend is also observed in the regions with the highest
O3 levels (southeast and east). No significant trend is calcu-
lated for the two O3 indicators detailed here (SOMO35 and
AOT40). Population exposure is also calculated over France.
The average weight of NO2 and PM2.5 in the population of
the country decreases respectively by 30 % in 16 years and
31 % in 7 years. No clear trend was found for the population
weight of SOMO35.
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