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Abstract. The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of
heat in the climate system. Monitoring the EEI is therefore necessary to better understand the Earth’s warming
climate. Measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5–
1 Wm−2) compared to the amount of energy entering and leaving the climate system (∼ 340 Wm−2). Since the
ocean absorbs more than 90 % of the excess energy stored by the Earth system, estimating the ocean heat content
(OHC) change provides an accurate proxy of the EEI. This study provides a space geodetic estimation of the
OHC changes at global and regional scales based on the combination of space altimetry and space gravimetry
measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its
uncertainty. The mean EEI value is estimated at +0.74± 0.22 Wm−2 (90 % confidence level) between August
2002 and August 2016. Comparisons against estimates based on Argo data and on CERES measurements show
good agreement within the error bars of the global mean and the time variations in EEI. Further improvements
are needed to reduce uncertainties and to improve the time series, especially at interannual timescales. The space
geodetic OHC-EEI product (version 2.1) is freely available at https://doi.org/10.24400/527896/a01-2020.003
(Magellium/LEGOS, 2020).

1 Introduction

Over the last decades, greenhouse gases and aerosol concen-
trations have been increasing in the atmosphere, disrupting
the balance in the Earth system between incoming and out-
going radiation fluxes. Part of the outgoing longwave radia-
tion being blocked, the system has reemitted less energy to-
wards space than it has received from the Sun (Hansen et al.,
2011; Trenberth et al., 2014). This imbalance at the top of
the atmosphere, known as the Earth energy imbalance (EEI),
is about 0.5–1 Wm−2 (von Schuckmann et al., 2016). It is

challenging to estimate the EEI from top-of-atmosphere ra-
diation fluxes since it is 2 orders of magnitude smaller than
the mean incoming solar radiation (340 Wm−2) (L’Ecuyer et
al., 2015).

Positive values of the EEI indicate that an excess of energy
is stored in the climate system. With its high thermal inertia
and its large volume, the ocean acts as a buffer, accumulat-
ing most of the excess of energy (more than 90 %; e.g. von
Schuckmann et al., 2020b) in the form of heat. The other cli-
mate reservoirs, the atmosphere, land, and cryosphere, play
a minor role in the energy storage at seasonal and longer
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timescales (von Schuckmann et al., 2020b). As a result, the
ocean heat uptake (OHU) prevails in the global energy bud-
get on timescales longer than several months. The global
OHU (GOHU) is therefore a good proxy of the EEI varia-
tions.

The OHU is positive when heat enters the ocean and neg-
ative when heat leaves the ocean. It is the time derivative
of the ocean heat content (OHC). OHC change time series
may be inferred by different approaches: (1) direct measure-
ment of temperature–salinity profiles mainly derived from
the Argo float network (von Schuckmann et al., 2020b),
(2) re-analysis which combines in situ measurements of
temperature–salinity and space measurements of sea level
with ocean modelling (Stammer et al., 2016), (3) the ocean
surface net flux from satellite observations (Kato et al., 2018;
L’Ecuyer et al., 2015), and (4) the space geodetic approach
(introduced in Meyssignac et al., 2019, and this study; see
also Hakuba et al., 2021). These methods are complemen-
tary, with their own advantages and limitations (Meyssignac
et al., 2019). The direct measurement approach relies on in
situ measurements which are unevenly spatially distributed
with poor sampling of the deep ocean (below 2000 m depth),
marginal seas, and below seasonal sea ice. Re-analyses pro-
vide a more complete description of the ocean’s state that is
consistent with the dynamics of the ocean but is subject to
large biases in the polar oceans, spurious drifts in the deep
ocean, and inaccurate initial conditions that may obfuscate a
significant part of the OHC signal related to EEI (Palmer et
al., 2017). The ocean net flux approach assesses the radiative
and turbulent fluxes from satellite observations to provide the
spatial distribution of net heat fluxes at the ocean surface, but
it is tainted with large residuals and uncertainties (Kato et al.,
2018; L’Ecuyer et al., 2015). The space geodetic approach
aims at measuring the sea level changes due to the thermal
expansion and saline contraction of the ocean (also called
steric sea level changes) based on differences between the
total sea level changes derived from satellite altimetry mea-
surements and the barystatic sea level changes from satellite
gravity measurements. This approach offers consistent spa-
tial and temporal sampling of the ocean, with a nearly global
coverage of the oceans, except for the polar regions (above
82◦). It also provides OHC change estimates over the entire
ocean water column.

The EEI shows time variations in response to an-
thropogenic emissions and natural variability like ocean–
atmosphere interactions or volcanic eruptions. The coupled
natural variability of the ocean and of the atmosphere leads
to monthly to interannual variations of the order of a few
Wm−2 (e.g. Loeb et al., 2018a). Decadal and longer-term
variations of the order of a few tenths of Wm−2 are asso-
ciated with the anthropogenic and the natural forcing of the
climate system (e.g. von Schuckmann et al., 2016). To eval-
uate these variations and particularly the small decadal and
longer-term response of EEI to anthropogenic or natural forc-
ing, EEI should be estimated with an accuracy better than

0.1 Wm−2. This is particularly challenging, and it requires
a fine characterisation of the errors associated with the EEI
estimates.

The originality of this study is to provide the OHC change
and EEI from space altimetry and space gravimetry with
a comprehensive description of the uncertainty. This space
geodetic approach has three major advantages: it covers the
ocean down to the bottom, the spatial coverage is nearly
global (until 82◦ poleward), and it is based on a few in-
struments, which enables an exhaustive description of error
sources and a robust propagation of errors from the mea-
surements to the global OHC (GOHC) change estimate. A
preliminary estimate of the GOHC 10-year-trend uncertainty
of ±0.32 Wm−2 (90 % confidence level, CL) has been pub-
lished with this approach (Meyssignac et al., 2019). A central
objective of this study is to revisit this uncertainty estimate
with a realistic and robust uncertainty propagation scheme to
enable its computation over any time span and help reduce
uncertainty. First, we provide regional and global estimates
of OHC change over the period from 2002 to 2016. Second,
we rigorously and accurately assess the uncertainty in GOHC
change and EEI, propagating the errors from the sea level
and ocean mass change estimates and taking into account the
time correlations in errors. To reach these objectives, innova-
tive algorithms have been developed. We present them in this
paper.

The physical assumptions underlying the estimation of the
EEI from space geodetic measurements are introduced in
Sect. 2. Section 3 describes the sea level and ocean mass
variations and thermal expansion data used as input for the
computation of OHC changes and the EEI over the 15-year
period from August 2002 to August 2016 (Sect. 4.1). Error
propagation and uncertainty calculations are performed in-
dependently (Sect. 4.2). Results are gathered in Sects. 5 and
6 for the OHC change and the EEI respectively, including
comparisons with estimates mainly based on the in situ Argo
network. Conclusions and perspectives for improvement of
the EEI record are given in Sect. 7.

In this article, all uncertainties are reported with a 5 %–
95 % confidence level interval (also noted 90 % CL).

2 Physical principle

In the space geodetic approach, OHC changes are estimated
from steric sea level changes, which are due to the thermal
expansion and the haline contraction of the ocean column
of water. Steric sea level changes are calculated as the differ-
ence between total sea level changes and ocean mass changes
(e.g. Forget and Ponte, 2015; Meyssignac et al., 2017, and
references therein). It is expressed by the sea level budget
equation where the total sea level change (1SLtotal) is the
sum of the ocean mass change (1SLmass) and the ocean
steric sea level change. The latter is composed of two terms,
the ocean thermal expansion change (1SLthermosteric) and the

Earth Syst. Sci. Data, 14, 229–249, 2022 https://doi.org/10.5194/essd-14-229-2022



F. Marti et al.: OHC change and EEI from space 231

ocean halosteric change (1SLhalosteric) following Eq. (1):

1SLtotal =1SLmass+1SLthermosteric+1SLhalosteric. (1)

At the global scale, the ocean salinity change is negligible
(Gregory and Lowe, 2000; Llovel et al., 2019; Gregory et
al., 2019), as it only contributes to about 1 % of the global
mean sea level change (Gregory and Lowe, 2000). Therefore
Eq. (1) can be simplified, and the global mean thermosteric
sea level change (1GMTSL) is obtained from the difference
between the global mean sea level change (1GMSL) and the
global mean ocean mass change (1GMOM):

1GMTSL=1GMSL−1GMOM. (2)

Then, the GOHC change (1GOHC) is derived by dividing
the thermal expansion change by the expansion efficiency of
heat (EEH), denoted ε at a global scale as in Eq. (3) (see
Melet and Meyssignac, 2015, for more details):

1GOHC=
1GMTSL

ε
. (3)

(Note that, at a global scale, on multiannual timescales, be-
cause the current rate of ocean warming is greater than the
interannual variability in GOHC – see Cheng et al., 2021 –
1GOHC is always positive, and the EEH is always defined
and calculable as ε =1GMTSL/1GOHC.)

At a global scale, on annual and longer timescales, the heat
stored by the Earth in response to the EEI is essentially stored
in the ocean because the heat capacity of the ocean is much
larger than the heat capacity of the rest of the climate system
(Palmer and McNeall, 2014; Melet and Meyssignac, 2015).
The fraction of energy entering the ocean α is around 0.9.
The EEI can now be retrieved from the GOHU, the tempo-
ral derivative of GOHC, by dividing it by α the fraction of
energy entering the ocean (Eq. 4). α is set to 0.9, the recent
estimate from von Schuckmann et al. (2020b). Beforehand,
GOHC change is filtered out to remove the signals related
to the intrinsic ocean variability, mostly happening in the
mixed layer above the pycnocline. For short timescales (< 2–
3 years), this signal does not correspond to any response to
global warming (Palmer and McNeall, 2014) and therefore
must be removed to infer variations in the EEI:

EEI=
GOHU
α
=

1
α

dGOHC
dt

. (4)

At a regional scale the physical principles are identical to
those for the global scale except for two differences. First,
the regional sea level changes (1SL) depend on the salin-
ity changes, and thus to derive the regional thermosteric
sea level changes (1TSL), we need to correct for the re-
gional halosteric sea level change (1HSL) effect following
the equation

1TSL=1SL−1OM−1HSL. (5)

Second, at a regional scale, it occurs for a water column that
the OHC change over the entire column is null while the ther-
mosteric sea level change is not. A typical example is when
the heat uptake of a water column above the thermocline is
compensated for by an equivalent heat loss below the ther-
mocline. In such a case the total heat uptake of the entire
water column is by definition zero but the thermosteric sea
level change is strictly positive. This is because the expan-
sion of the sea water above the thermocline (which occurs
in warmer water) exceeds the contraction below the thermo-
cline (which occurs in colder water). In such a situation the
expansion efficiency of heat is not defined and cannot be cal-
culated. A way around this issue is to consider ocean heat
content (OHC) (rather than ocean content changes, 1OHC)
and thermosteric sea level (TSL) (rather than thermosteric
sea level changes, 1TSL) and to define an integrated expan-
sion efficiency of heat (IEEH) E as follows:

E =
TSL
OHC

. (6)

The IEEH is in mJ−1 like the EEH. At regional scale, the
IEEH is always calculable because the ocean heat content
is never null. Thus, the IEEH allows us to derive estimates
of regional OHU from estimates of the regional thermosteric
sea level (TSL) with the following equation:

OHU=
dOHC

dt
=

d(TSL/E)
dt

. (7)

In this work we use Eqs. (3) and (4) to derive estimates of
the GOHU and the EEI. We use Eqs. (6) and (7) to derive
estimates of the regional OHU. We verify the consistency of
the global and regional estimates of the ocean heat uptake by
comparing the global sum of OHU with GOHU (see Sect. 4).

In this study, total sea level change is observed from space
with radar altimetry missions (see Sect. 3.1), ocean mass
change is observed from space with the gravimetry missions
(see Sect. 3.2), and the global EEH and regional IEEH are
estimated from in situ observations of ocean temperature and
salinity (see Sect. 3.3). Although EEH and IEEH are derived
from in situ data, this approach is called “space geodetic
approach” because all dynamic variables are retrieved from
satellite remote sensing.

3 Data

3.1 Sea level

In this study we used a sea level daily gridded dataset for
the global ocean (Taburet et al., 2019; Legeais et al., 2021)
that is distributed by the Copernicus Climate Service (C3S)
and contains the sea level anomalies around a mean sea sur-
face above the reference mean sea surface computed over
1993–2012, also referred to as the total sea level change.
Data are available over the entire altimetry area from Jan-
uary 1993 onward. They are provided on a daily basis at a
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spatial resolution of 0.25◦× 0.25◦. Thanks to rigorous pro-
cessing of altimetry measurements based on a two-satellite
altimetry constellation, homogeneous altimetry standards ap-
plied over time (e.g. geophysical corrections, orbit solutions)
and solid validation activities carried out upstream, C3S sea
level products are dedicated to the monitoring of the long-
term sea level variations. As C3S sea level grids are not cor-
rected for the global isostatic adjustment (GIA), a correc-
tion is applied a posteriori. It is derived from an ensemble
mean of regional GIA corrections computed with the ICE-
5G model and with various viscosity profiles (27 profiles)
used in Prandi et al. (2021) (Spada and Melini, 2019). The
average GIA value over oceans is −0.28mmyr−1, close to
the generally accepted value of −0.3mmyr−1 (e.g. WCRP
Global Sea Level Budget Group, 2018). An additional cor-
rection of −0.1mm yr−1 (GRD) is considered for the defor-
mations of the ocean bottom in response to modern melt of
land ice (Frederikse et al., 2017).

The description of the errors and the uncertainties on the
long-term stability of the sea level estimate in these products
were provided by Ablain et al. (2019) and Prandi et al. (2021)
for the global and regional scales respectively. Over the
whole altimetry period (January 1993–December 2020), the
GMSL shows a significant rise of+3.52±0.35 mmyr−1. Fo-
cusing on the period of interest in this study (August 2002–
August 2016), the GMSL increase is +3.57± 0.40 mmyr−1

(AVISO GMSL indicator). At the regional scale, the sea level
rise distribution ranges between 0 and 6 mmyr−1, with un-
certainties ranging from±0.8 to±1.2 mmyr−1, pointing out
that the sea level is rising everywhere over the globe. Re-
cent studies also showed that sea level is accelerating at
0.12± 0.07 mmyr−2 at the global scale (Ablain et al., 2019)
and ranges between−1 and+1mmyr−2 at the regional scale
(Prandi et al., 2021).

3.2 Ocean mass

The Gravity Recovery and Climate Experiment (GRACE)
mission, launched in 2002, allowed continuous monitoring
of ocean mass change over the study period (Tapley et al.,
2004). GRACE was decommissioned in 2017, and its suc-
cessor GRACE Follow-On (GRACE-FO) was launched in
May 2018. This study stands as a proof of concept, demon-
strating the capability to deliver space geodetic estimates of
the OHC change and EEI and their associated uncertainties.
The study period is therefore limited to April 2002–August
2016 when the GRACE data show the best quality. This re-
stricted period enables us to avoid (i) instrumental issues dep-
recating the quality of the GRACE data at the end of the
mission (e.g. Wouters et al., 2014), (ii) the 11-month data
gap between GRACE and GRACE-FO, (iii) instrumental is-
sues during the GRACE-FO mission on the accelerometers,
and (iv) eventual biases between the GRACE and GRACE-
FO missions (e.g. Chen et al., 2020; Landerer et al., 2020).
Ocean mass variations observed by GRACE are mainly due

to freshwater exchanges with the continents (including ice
melting and water cycle) at the global scale, and also to the
ocean circulation at the regional scale. However, estimat-
ing the rates of global and regional ocean mass change with
GRACE data remains a challenging task due to numerous
processing choices that can strongly affect the results and
lead to a large variety of solutions with significant uncer-
tainty (Uebbing et al., 2019). In this study, we considered the
GRACE LEGOS ensemble V1.4 (http://ftp.legos.obs-mip.fr/
pub/soa/gravimetrie/grace_legos/V1.4, last access: 19 Jan-
uary 2022) updated from Blazquez et al. (2018). This ensem-
ble version includes 216 solutions, based on fully normalised
spherical harmonic solutions from six different centres and a
large variety of choices for post-processing corrections in-
cluding the corrections of the geocentre motion, the oblate-
ness of the Earth, the atmosphere ocean dealiasing, the filter-
ing of the noise responsible for the characteristic stripes of
GRACE gravity data, the leakage correction, and the GIA.
More details of this update and the appropriate references
can be found in Appendix A. This ensemble approach allows
a robust estimation of the uncertainties associated with state-
of-the-art ocean mass change estimates based on GRACE
measurements (see Blazquez et al., 2018, for more details).
In addition to spherical harmonics, the ocean mass change
can also be estimated from mascon solutions provided by the
Jet Propulsion Laboratory (JPL RL06), the Center for Space
Research (CSR RL06), and the Goddard Space Flight Center
(GSFC RL06). These three mascon solutions use the same
post-processing corrections for the geocentre motion (Sun
et al., 2016), for the oblateness of the Earth (C20) and the
low harmonic degrees (C30) of the gravity field (Loomis et
al., 2019), for the dealiasing of the atmosphere and ocean
signals (AOB1B RL06 from Dobslaw et al., 2017), and for
GIA (ICE6G-D from Peltier et al., 2018). Comparing these
three mascons with the subset of the LEGOS ensemble that
uses the same post-processing corrections leads to similar
ocean mass change estimates (see Fig. A1 in Appendix A),
which confirms the consistency of the mascon solutions with
the spherical harmonics solutions and gives confidence in
their representation of mass transport. Within the LEGOS
ensemble, the subset which uses the mascon post-processing
choices shows ocean mass changes in the upper range of the
ensemble estimates. This corroborates the major role of post-
processing choices on the estimation of global ocean mass
change estimates and stresses the need to quantify the asso-
ciated uncertainty.

When considering the same mask as the altimetry product,
the GMOM trend in the LEGOS ensemble reaches 1.83±
0.21 mmyr−1 for the period from August 2002 to August
2016, in agreement with the state-of-the-art estimates. Re-
gional variations in ocean mass trends are fairly small (up to
3.66 mmyr−1) when considering the ensemble mean. Except
at high latitudes and for shallow seas, variations in the ocean
bottom pressure due to the ocean circulation or changes in the
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geoid are relatively small compared to the global ocean mass
increase (Piecuch and Ponte, 2011; Piecuch et al., 2013).

3.3 Expansion efficiency of heat (EEH) and integrated
expansion efficiency of heat (IEEH)

The EEH expresses the change in ocean density due to heat
uptake. It represents the ratio of the thermosteric sea level
change over the heat content change under a given heat up-
take. As such it allows estimation of changes in OHC from
changes in thermosteric sea level (following Eq. 3). The EEH
can be calculated from known ocean variables (IOC et al.,
2010) as the derivative of specific volume with respect to
temperature (m3 kg−1 ◦C−1) divided by specific heat capac-
ity (Jkg−1 ◦C−1). The EEH is dependent on temperature,
salinity, and pressure; it increases with temperature, salin-
ity, and pressure (Russell et al., 2000). Thus, integrated over
the entire water column the EEH is expected to mainly vary
with latitude, together with vertically integrated salt content
and temperature. In time, the change in EEH is expected to be
negligible over the study period, because the warming pattern
is unlikely to change much at decadal timescales (Russell et
al., 2000; Kuhlbrodt and Gregory, 2012).

The IEEH is different from the EEH. The IEEH expresses
the ratio of the thermosteric sea level over the heat content.
As such it allows estimation of OHC from thermosteric sea
level (following Eq. 6). The IEEH can be calculated from
known ocean variables (IOC et al., 2010) as the specific vol-
ume (m3 kg−1) divided by the specific enthalpy (Jkg−1). The
IEEH is dependent on temperature, salinity, and pressure; it
increases with temperature and pressure and decreases with
salinity (see Fig. B1 in Appendix B). Note that, because
IEEH decreases with salinity while EEH increases with salin-
ity, when integrated over the entire water column, the spatial
variations in the IEEH are expected to be different from the
spatial variations in EEH.

For the calculation of EEH at the global scale, monthly
gridded temperature and salinity fields from 11 Argo so-
lutions were used to compute the ratio between GMTSL
change and GOHC change. These monthly ratios are av-
eraged over time and then averaged together to provide a
global EEH estimate of 0.145± 0.001 mYJ−1 representa-
tive of the 0–2000 m ocean column for the period 2005–
2015, excluding marginal seas and areas located above 66◦ N
and 66◦ S. This regional extent corresponds to the spatial
extent that is regularly sampled by the in situ Argo net-
work. The global EEH estimated here is in good agreement
with previous estimates of 0.12± 0.01 mYJ−1 (equivalent
to 0.52 Wm−2 /mmyr−1) representative of the 0–2000 m
ocean column over 1955–2010 from in situ observations
(Levitus et al., 2012) and 0.15± 0.03 mYJ−1 for the full
ocean depth over 1972–2008 (Church et al., 2011). Its uncer-
tainty is however much smaller because the EEH computa-
tion is based on the Argo network that has a precise estimate
of ocean temperature and salinity down to 2000 m depth and

relies only on effective measurements that were processed
homogeneously (e.g. interpolated data are excluded, and the
same horizontal and vertical mask is used). Previous stud-
ies from Levitus et al. (2012) and Church et al. (2011) used
an ensemble of temperature and salinity products that cov-
ered the whole ocean over the past decades with in-filled data
where measurements are lacking. The differences in the in-
filled data explain the large uncertainty Levitus et al. (2012)
and Church et al. (2011) found in the estimate of the EEH.
Here we restricted the study to the region and the time span
covered by Argo. Our approach based on recent data products
that sample the global ocean provides a more accurate esti-
mate of the EEH, which enables us to significantly reduce the
uncertainties of the GOHC change estimate (see Sect. 4.2 on
the error propagation and uncertainty calculation). However,
as the sampling of Argo is not fully global (measurements are
sparser above 66◦ latitude and below 2000 m depth) our esti-
mate of the global EEH is likely biased by a few percent. It
is likely biased high because the bottom layer, below 2000 m
depth, is less salty than upper layers, which would result in a
slightly lower global EEH estimate if it was accounted for in
the computation.

For the calculation of the IEEH at a regional scale,
monthly gridded temperature and salinity fields from 11
Argo solutions were also used to compute the ratio between
local TSL and local OHC. Figure 1 shows the associated spa-
tial grid (3◦× 3◦) of the IEEH estimate (allowing us to visu-
alise its spatial availability at the same time). The value of the
IEEH for each cell is the temporal mean of the ratio between
the local TSL and the local OHC over the period 2005–2015.
The IEEH grid is applied in this study to calculate OHC at
regional scales (see Sect. 4.1. OHC change and EEI calcula-
tion) and further derive the regional OHU.

3.4 Ancillary data

For comparison purposes, OHC change and EEI are also
estimated from in situ ocean temperature and salinity from
Argo datasets covering the first 2000 m depth range. We con-
sidered the IAP, IFREMER, IPRC, ISHII, EN4, JAMSTEC,
NOAA, and SIO datasets. Differences in ocean temperature
among these products are due to the different strategies in
data editing, temporal and spatial data gap filling, and in-
strument bias corrections (see Boyer et al., 2016). All Argo
products are post-processed homogeneously in the frame-
work of this study for integration of temperature and salin-
ity to derive the ocean heat content (e.g. one single inte-
gration scheme, climatology computed over the same pe-
riod 2005–2015). Regional OHC change is retrieved rely-
ing on the thermodynamic equation of seawater (McDougall
and Barker, 2011). Although IAP, IFREMER, ISHII, EN4,
and NOAA products extrapolate the temperature and salinity
profiles over the whole ocean, the ensemble of Argo-based
GOHC change is calculated here after applying the most re-
strictive Argo geographical mask among Argo products (it
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Figure 1. Integrated expansion efficiency of heat (IEEH) coefficients (mJ−1) at the regional scale (3◦× 3◦). See text.

corresponds to the Argo mask of the SIO product; see Fig. 1
for the spatial extent of the mask). This approach enables
us to get consistent and comparable GOHC change from the
different Argo products. A deep ocean contribution of heat
storage of+0.07±0.06 Wm−2 is added for the layers below
2000 m (following Purkey and Johnson, 2010; Desbruyères
et al., 2016). Argo-based EEI estimates are then derived from
Argo-based GOHC change with the same method as for the
space geodetic approach described in Sect. 4.1. The different
Argo products provide heterogeneous uncertainty estimates.
Different products consider different sources of uncertainty,
and none of the products provide a comprehensive estimate
of the uncertainties (see Table 1 in Meyssignac et al., 2019).
The absence of a common reference estimate of the uncer-
tainty in Argo gridded temperature products is an issue that
has been identified in the climate community. There is cur-
rently a community effort that is undertaken in the World
Climate Research Programme (the GEWEX EEI assessment,
see http://gewex-eei.org/, last access: 19 January 2022) to
tackle this problem. This effort should take a few years, and
the results are not available yet. For the time being uncer-
tainties on the Argo-based GOHC change and EEI are de-
rived from the ensemble dispersion. This type of uncertainty
mainly describes the discrepancy between the various cen-
tre products involved in the ensemble. It represents the un-
certainty associated with different approaches to develop the
data quality control and the data processing. It does not com-
prise any errors related to time and space correlation in tem-
perature measurements or potential systematic temperature
and salinity measurement biases among products and poten-
tial systematic sampling biases among products. So these un-
certainty estimates are likely underestimated.

OHC change estimate is also provided by the Ocean Mon-
itoring Indicator (OMI) from the Copernicus Marine Service
(CMEMS) (von Schuckmann et al., 2020a). The yearly indi-

cator is the ensemble mean of five GOHC change solutions
from reanalyses and optimal interpolations of altimetry data
and in situ measurements (including Argo data). The OMI in-
dicator is based on integrated temperature differences along a
vertical profile in the ocean, down to 700 m depth, and aver-
aged between 60◦ S and 60◦ N. Note that uncertainties on the
CMEMS GOHC change are also derived from the ensemble
dispersion.

EEI variations are also observed from space by the Clouds
and the Earth’s Radiant Energy System (CERES) instru-
ments. They enable monitoring of the incoming and outgoing
radiative fluxes at the top of the atmosphere. CERES instru-
ments allow retrieval of EEI variations (EBAF TOA fluxes,
2019) from weekly to decadal timescales with an uncertainty
of ±0.1 Wm−2, but the time-mean EEI is measured with an
accuracy of ±3.0 Wm−2 due to calibration issues (Loeb et
al., 2018b).

Our estimates of OHC change and EEI are compared with
OHC change and EEI estimates from Argo, reanalyses, and
CERES in Sects. 5 and 6.

4 Data processing

4.1 OHC change and EEI calculation

A dedicated data processing chain was specifically developed
in order to calculate the OHC change and the EEI from space
geodetic measurements, following the physical principle de-
scribed in Sect. 2. Changes in OHC at global and regional
scales and the EEI are provided in a dedicated product re-
ferred to as “MOHeaCAN v2.1” (see Sect. 7).

The first step consists in preprocessing the time series of
total sea level and ocean mass change over the specific pe-
riod. Total sea level and ocean mass change grids are down-
sampled to a 3◦× 3◦ spatial resolution (∼ 300 km) and av-
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eraged on a monthly basis to match the effective spatial and
temporal resolutions of GRACE products.

The second step is dedicated to the calculation of the
global time series of OHC change and the EEI. GMSL
and GMOM time series are calculated at each time step
(monthly) using a weighted average taking into account the
sea surface in each cell. The GOHC change is then obtained
by taking the difference between the GMSL and GMOM
time series (Eq. 2) and dividing by the global value of EEH
coefficient (Eq. 3). GOHC change is expressed per unit of
area (Jm−2), when divided by the surface of the Earth at the
top of the atmosphere (5.13×1014 m2), for a reference height
of the top of the atmosphere at 20 km altitude (the same as
EBAF; Loeb et al., 2018b). The EEI estimate is then derived
from the temporal variations in the GOHC, by calculating
the derivative, i.e. the GOHU, using numerical forward dif-
ferences and adjusting it to account for energy contributions
from other climate reservoirs (Eq. 4). Beforehand, GOHC
change time series is filtered out by applying a low-pass filter
(Lanczos) with a cut-off period of 3 years in order to remove
high-frequency content related to the intrinsic ocean variabil-
ity (Palmer and McNeall, 2014) and the mesoscale activity
that is visible in altimetry but not in gravimetry (described in
Sect. 2).

The last step aims at calculating changes in OHC at re-
gional scales. Monthly steric sea level grids are directly de-
duced at 3◦× 3◦ spatial resolution from the difference be-
tween the collocated sea level and ocean mass grids. Con-
trary to the global scale, the ocean salinity change cannot be
neglected at regional scales (see Eq. 1), and halosteric contri-
bution to sea level expansion should be removed to retrieve
the regional thermal expansion variations in the ocean. Nev-
ertheless, at this stage of the study, the regional OHC change
grids are obtained from the steric sea level grids divided by
the grid of IEEH coefficients without accounting for ocean
salinity change and therefore should be interpreted carefully.
This has no impact on the estimate of the OHC trend over
the full period 2005–2015 because the IEEH has been calcu-
lated over this period, and the salinity effect is thus implicitly
counted in the local IEEH coefficients. However, over other
periods or smaller periods included within 2005–2015, the
local IEEH is expected to be slightly different as the local
salinity changes with time, and this calculation of the OHC
should be considered an approximation. The approximation
is accurate at the level of a few percent because local changes
in salinity are small compared to the total salt content of the
water column (according to the Argo record). In this study
we have chosen this conservative approach with a constant
IEEH because the salinity anomaly data shows important in-
consistencies at annual and inter-annual timescales among
Argo products (e.g. Ponte et al., 2021). Instead of using low-
confidence salinity anomaly data, at this stage we prefer to
assume a constant IEEH estimated from salinity climatolo-
gies that are more reliable. This approach leads to an estimate
of regional OHC with a lower uncertainty, but the downside

is that the level of confidence in regional OHC is lower. Note
that the GOHC change can also be deduced from the regional
OHC grids by computing regional OHC anomalies and sum-
ming all cells weighted by their area. We checked this ap-
proach and found that it leads to similar estimates of GOHC
change and GOHU to those of the global approach described
before in Eq. (3).

4.2 Error propagation and uncertainty calculation at
global scale

One of our main objectives is to provide the uncertainty asso-
ciated with the OHC change and EEI estimates. In this study
the error propagation is performed only at the global scale.
It is much more complex to propagate the uncertainty at re-
gional scales because it requires the description of the spa-
tial correlation of the errors in satellite altimetry and space
gravimetry data, which is not a simple task. At this time es-
timates of these errors are not available in the literature, but
this work is currently ongoing and should be the subject of
further publications in the coming years. Meanwhile we fo-
cus on the uncertainty at a global scale. A rigorous approach
is proposed here, providing the variance–covariance matrix
(6) of the errors for the GOHC change and EEI time se-
ries at a global scale. To obtain the 6 matrices of the GOHC
change and EEI time series, errors must be propagated from
the GMSL and GMOM monthly time series as represented
in Fig. 2. The first step consists of estimating the variance–
covariance matrices for the sea level (6GMSL) and the ocean
mass (6GMOM) time series.
6GMSL is inferred from the GMSL error budget of Ablain

et al. (2019) over the period 2002–2016. In short, the elemen-
tary variance–covariance matrices (6errori ) corresponding to
each error described in the GMSL error budget (Ablain et
al., 2019) are first calculated independently of each other.
Each matrix is calculated from a large number of random
draws (> 1000) of simulated error signals whose correla-
tion is modelled. Their shape depends on the type of er-
rors prescribed, which can be of several kinds: jumps, time-
correlated errors, or long-term drifts. Assuming errors are
independent, 6GMSL is given by the sum of all 6errori (see
Ablain et al., 2019, for the details of the calculation).

For the calculation of 6GMOM, we use an ensemble ap-
proach where the ensemble of GMOM time series (Xi) is
directly used to calculate the covariance between each time
series:

6GMOM(i,j )=cov(Xi,Xj )
=E[(Xi −E[Xi])(Xj −E[Xj ])], (8)

whereE is the mean operator. This approach is reliable when
GMOM ensembles are large enough, so that the dispersion
between the members of the ensemble adequately represents
the GMOM uncertainties. We use this approach with the LE-
GOS ensemble of 216 ocean mass solutions, but we can not

https://doi.org/10.5194/essd-14-229-2022 Earth Syst. Sci. Data, 14, 229–249, 2022



236 F. Marti et al.: OHC change and EEI from space

Figure 2. Propagation of errors from the global mean sea level (GMSL) change and global mean ocean mass (GMOM) change time series
until the global ocean heat content (GOHC) change and Earth energy imbalance (EEI) time series.

apply it with the ensemble of mascon solutions which has
only three distinct members. For the mascon ensemble, the
uncertainty is simply computed as the standard deviation be-
tween the three solutions. The second step consists in cal-
culating the variance–covariance matrices for the GMTSL
time series (6GMTSL). The GMTSL is obtained by calcu-
lating the differences between the GMSL and the GMOM.
We consider the errors in GMSL independent from the errors
in GMOM and estimate 6GMTSL as the sum of 6GMSL and
6GMOM. Note that this assumption is not verified in reality as
some errors are correlated between GMSL and GMOM like
the errors related to the GIA correction and the error associ-
ated with the positioning of the reference system (in partic-
ular to the geocentre position). But the amplitude of these
errors is very different in altimetry and space gravimetry.
While the errors in GIA correction and in the geocentre po-
sition are important in space gravimetry (see Uebbing et al.,
2019; Blazquez et al., 2018), their effect on satellite altime-
try is small (see Ablain et al., 2019, and reference therein).
Thus, overall, the correlation in satellite altimetry and space

gravimetry of the GIA and the geocentre correction errors is
expected to be low, and we neglect it here.

In the third step we propagate the errors in the calculation
of the GOHC change. As the GOHC change is derived from
the GMTSL by dividing it by the global coefficient of EEH
ε, the uncertainty on ε (eε) also has to be considered:

GOHC(t)=
GMTSL(t)± eGMTSL(t)

ε± eε
. (9)

The error propagation for the division of the two uncorre-
lated variables GMTSL(t) and ε with a respective uncer-
tainty eGMTSL(t) and eε leads to the following form for the
variance–covariance matrix of GOHC change time series
(6GOHC) (see Taylor, 1997, Eq. 3.8):

6GOHC =
1
ε26GMTSL+

(
ε

eε

)2

GOHC ·GOHCt . (10)

This equation shows that GOHC errors depend on the uncer-
tainty eε but also on the value of ε.

The last step is the propagation of errors in the EEI, ob-
tained after filtering and deriving the GOHC with respect to
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time and adjusting it with α the fraction of energy entering
the ocean. These complex operations do not allow us to ex-
press the errors of the EEI with a literal expression as for
the GOHC change (Eq. 10). An empirical approach is then
proposed to first derive the variance–covariance matrix of
GOHU time series (6GOHU). It firstly consists in generat-
ing a set of GOHC error time series (ek) whose variance–
covariance matrix is 6GOHC. They are obtained by the prod-
uct of the Cholesky decomposition of 6GOHC (6GOHC =

AAt ) and a random vector (Rk) following a Gaussian vec-
tor of mean 0 and covariance matrix of the identity:

ek = AR
t
k. (11)

Each ek is then filtered by a low-pass filter at 3 years to
provide a set of GOHU error time series from which the
variance–covariance matrix 6GOHU is easily inferred (see
Eq. 8). Finally, 6EEI is obtained simply from 6GOHU tak-
ing into account the α fraction of energy stored in the ocean
but neglecting any of its errors:

6EEI =
1
α26GOHU. (12)

Once variance–covariance matrices are known, the statistical
parameters (e.g. trend, acceleration) can be fit at any time
spans from a linear regression model (y =Xβ + ε) applying
an ordinary least square (OLS) approach, where the estimator
of β with the OLS, noted β̂, is

β̂ ∼ (XtX)−1Xty, (13)

and where the distribution of the estimator β̂ takes into ac-
count 6 and follows a normal law:

β̂ =N (β, (XtX)−1(Xt6X)(XtX)−1) . (14)

This mathematical formalism was fully described in Ablain
et al. (2019) to estimate the uncertainties of the GMSL trend
and acceleration. It is applied in this study to derive the real-
istic uncertainties of GOHC and EEI trends. The uncertainty
envelope can also be derived from the square root of the di-
agonal terms of 6.

5 Ocean heat content change: results and
comparison

5.1 Global and regional OHC change

The GOHC trend is+0.70±0.20 Wm−2 for the period from
August 2002 to August 2016 (Fig. 3a). It indicates the rate
at which oceans accumulate heat and gives an estimate of
the average GOHU. This value is significant when com-
pared to its uncertainty of ±0.20 Wm−2. In this trend un-
certainty, the contribution from satellite altimetry uncertainty
is higher than the contribution from space gravimetry un-
certainty (see Table C1 in Appendix C). The GMSL error

budget provided by Ablain et al. (2019) is by construction
comprehensive and conservative (all choices are conserva-
tive; in particular the representation of the error in wet tro-
pospheric correction and its time correlation are probably
slightly overestimated) and leads to GMSL errors that are
likely slightly overestimated. In addition, the total GMSL er-
rors have been validated against independent measurements
from tide gauges (e.g. Watson et al., 2015), so there is high
confidence that the 90 % CL uncertainty in GMSL used here
is an upper bound of the real uncertainty in GMSL. GMOM
errors are deduced from an ensemble of GRACE solutions
(update of Blazquez et al., 2018) accounting for all known
sources of errors including instrumental errors (e.g. taking
into account using solutions from different centres) and post-
processing choices (e.g. geocentre, oblateness, filter, GIA).
Although we are confident the various post-processings used
in the solution set, which are currently state of the art, pro-
vide a reliable coverage of the real associated uncertainty,
we can not rule out the possibility that the resulting GMOM
uncertainty is slightly underestimated because of some un-
known small undetected systematic bias among state-of-the-
art post-processing. Another issue is that there is no valida-
tion of GMOM against independent data available yet. The
global freshwater budget offers a potential approach to vali-
date the GMOM estimates against independent estimates de-
rived from the sea ice volume changes and the ocean global
salinity estimates (e.g. Munk, 2003). But the first results
show that estimates of the global ocean salinity are not accu-
rate enough to provide an efficient validation (Llovel et al.,
2019). For these reasons, we have a smaller confidence in the
GMOM uncertainty estimate than in the GMSL uncertainty
estimate, leading to a confidence in our GOHC change uncer-
tainty estimate that is between medium and high. Note that
compared to previous estimates in Meyssignac et al. (2019)
the uncertainty in GOHC change is reduced here. This is es-
sentially due to the updated estimate of the global EEH coef-
ficient with Argo data that leads to a smaller uncertainty than
the estimate of Levitus et al. (2012) used in Meyssignac et al.
(2019) (see Sect. 3.3).

Regional OHC trends for the period from August 2002
to August 2016 are generally positive, ranging from −1 to
+2×10−3 Wm−2 (Fig. 4). As the OHC is an integrative vari-
able, it depends on the area considered in the computation. In
this case the difference between the surface considered in the
GOHC change and the surface considered in regional OHC
change is of the order of 2× 10−4, explaining the difference
of 3 orders of magnitude between the typical GOHC and the
typical regional OHC changes. The spatial patterns depicted
by the GOHC trends are highly correlated to climate mode
fingerprints retrieved for example in steric anomalies (e.g.
Pfeffer et al., 2018). These include for instance the Pacific
Decadal Oscillation, dividing the North Pacific along a typ-
ical northeast–southwest chevron pattern (e.g. Mantua and
Hare, 2002), and the El Niño–Southern Oscillation (e.g. En-
field and Mayer, 1997), consisting of a typical west–east os-
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Figure 3. Times series of (a) global ocean heat content (GOHC) change and (b) Earth energy imbalance (EEI) from a space geodetic approach
(MOHeaCAN v2.1) over the August 2002–August 2016 period. Data spatial distribution considered for the GOHC change computation is
presented in Fig. 1. The uncertainty envelopes are superimposed (at 1-sigma). Uncertainties on trends and means are reported within a
90 % confidence level (1.65-sigma). The GOHC change curve is shifted along the ordinate axis to start from the origin in 2002. Grey areas
correspond to data gaps in the gravimetry product used for the space geodetic GOHC change.

cillation of the temperature in the tropical and South Pacific.
The spatial patterns observed in the North Atlantic are likely
related to the warming of the Gulf Stream in the northeast
Atlantic and to the cooling of the Atlantic Meridional Over-
turning Circulation (AMOC), bringing warm waters from
the tropical Atlantic to the northwest Atlantic (e.g. Ruiz-
Barradas et al., 2018). The positive anomaly in the Indian
Ocean is likely related to the warm pool, recording higher
temperature increase during the last decades than the global
ocean (e.g. Rao et al., 2012; Weller et al., 2016; Lee et al.,
2015).

5.2 Comparison with estimates based on in situ
temperature profiles

To evaluate our GOHC change estimate, we compare it with
estimates over the period 2005–2015. The processing of the
Argo gridded ocean in situ temperature products into GOHC
change time series is described in Sect. 3.4. The compari-
son is restricted to the period January 2005–December 2015,
because the coverage of the Argo network becomes nearly
global only after 2005 and because afterwards issues in the
Argo salinity products lead to artefacts in the salinity cli-
matology and further in the GOHC change products. Over
2005–2015, the space geodetic GOHC trend of +0.71±

0.23 Wm−2 is in agreement within the uncertainties with the
Argo-based GOHC trend of +0.59± 0.13 Wm−2 and also
with the CMEMS GOHC trend of +0.60± 0.25 Wm−2 (Ta-
ble 1).

As an indication, the average GOHC trend deduced from
another combination of altimetry and gravity measurements
has also been calculated using three GRACE mascon solu-
tions (see Table 1). A low value of 0.56 Wm−2 is obtained
for the 2005–2015 time period, but it is still consistent with
the MOHeaCAN product as it is in the uncertainty range
of the GOHC trend estimated from the MOHeaCAN prod-
uct (+0.71±0.23 Wm−2). To more precisely check the con-
sistency between the mascon-based estimate of the GOHC
trend and the MOHeaCAN estimate, we re-estimate the MO-
HeaCAN GOHC trend over 2005–2015 using only the sub-
ensemble of GRACE spherical harmonic solutions that is
based on the same post-processing choices as the mascon so-
lutions. In this case we find a result (+0.61± 0.18 Wm−2)
that is closer by less than 0.05 Wm−2 to the mascon-based
estimate. This precise consistency at the level of 0.05 Wm−2

gives confidence in our estimate. The residual difference
could be due to sources of errors that were omitted in the
calculation of the spherical harmonic ensemble, such as in-
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Figure 4. Map of ocean heat content trends from the space geodetic approach (MOHeaCAN v2.1) computed over the August 2002–August
2016 period, 3◦× 3◦ resolution.

Table 1. Global ocean heat content (GOHC) trend and associated uncertainties as estimated from the various datasets depicted in this paper.
Uncertainties are given within a 90 % CL.

Data type Source Spatial coverage (a) GOHC trend (Wm−2)
Temporal sampling (b)
Depth range (c)

1/2005–12/2015 8/2002–8/2016

Temperature and Ensemble of OHC change solutions (a) Argo mask (Fig. 1) +0.59± 0.132 Not available
salinity profiles provided by several international (b) Monthly sampling
from Argo groups1 (c) 0–2000 m and deep ocean
network contribution of +0.07 Wm−2

Combination of Ensemble of OHC change solutions (a) Global 60◦ S–60◦ N +0.60± 0.253
+0.60± 0.253

in situ data from CMEMS (Ocean Monitoring (b) Annual sampling (2003–2016)
(Argo network) Indicator) (c) 0–700 m
and reanalyses

Space geodetic data Sea level Ensemble mean of 216 (a) Argo mask (Fig. 1) +0.71± 0.23 +0.70± 0.20
grids from solutions based on (b) Monthly sampling
C3S spherical harmonic (c) 0–bottom

approach (detailed in
this paper)

Ensemble mean of three +0.56± 0.214
+0.57± 0.185

solutions based on
mascon approach
(JPL, CSR, GSFC)

1 List of Argo international groups: EN4 dataset from the Met Office Hadley Centre (Good et al., 2013), including MBT and XBT data corrected by Gouretski and Reseghetti
(2010) and Levitus et al. (2012); IAP (Institute of Atmospheric Physics of the Chinese Academy of Sciences), including MBT and XBT data corrected by Gouretski and
Reseghetti (2010) and Levitus et al. (2012); IPRC (combined to altimetry data); IFREMER (Gaillard et al., 2016; Kolodziejczyk et al., 2017); Ishii et al. (2017); JAMSTEC
(Japan Agency for Marine-Earth Science and Technology) MILA GPV (Mixed Layer dataset of Argo, Grid Point Value) product dataset (Hosoda et al., 2010); NOAA
(National Oceanic and Atmospheric Administration) data (Huang et al., 2017); and SIO (Scripps Institution of Oceanography) climatology monthly gridded 1◦ × 1◦ data
(Roemmich and Gilson, 2009).
2 Uncertainty given by the dispersion of the ensemble and uncertainty on deep ocean contribution.
3 Uncertainty given by the dispersion of the ensemble.
4 Uncertainty derived from the approach described in this study (gravimetry data uncertainty is simply computed as the standard deviation between the three mascon
solutions). GOHC trends obtained with each mascon dataset – JPL: 0.60 W m−2, CSR: 0.55 W m−2, GSFC: 0.54 W m−2.
5 Uncertainty derived from the approach described in this study (gravimetry data uncertainty is simply computed as the standard deviation between the three mascon
solutions). GOHC trends obtained with each mascon dataset – JPL: 0.61 W m−2, CSR: 0.56 W m−2, GSFC: 0.54 W m−2.
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complete leakage errors or differences in the regularisation
process of the mascon solutions and the spherical solutions.

The space geodetic GOHC interannual variations of 5×
107 Jm−2 are presented in Fig. 5. We find the interannual
variations in GOHC change to be in agreement with Argo-
based estimates for timescales greater than 3 years, low dur-
ing the period from 2006 to 2011, and high during the period
from 2011 to 2015 (Fig. 5). At shorter timescales (lower than
3 years), variations in GOHC change are poorly correlated.
At these timescales, part of the signal is due to the internal
variability of climate (e.g. ENSO) that may not be detected
in the same way by both space geodetic and Argo-based es-
timates because of their different time and space resolution.
In addition, GOHC variations depicted by all datasets suffer
from a lack of accuracy at these timescales to analyse any
differences in a significant way (see the large uncertainty en-
velope at sub-annual timescales shown in Fig. 5).

At the regional scale, over the period 2005–2015, space
geodetic and Argo-based OHC trends are similar (Fig. 6).
Overall there is a fairly good spatial coherence of the ob-
served spatial structures as in the equatorial Pacific Ocean
and in the North Atlantic, but the amplitude of the signals
is systematically higher in the space geodetic OHC trend.
In addition some discrepancies are observed in the Indian
Ocean where space geodetic OHC trends are about 2 times
the Argo-based estimates. Although input data are similar,
the OHC trends based on the various Argo datasets also show
differences at regional scales up to 2.6×10−3 Wm−2 among
different Argo products. This is the same order of magni-
tude as the difference with the regional MOHeaCAN trends
(Fig. 6). These analyses on a regional scale provide insights
into the regional structure of the signal. They remain prelim-
inary and present several limitations. On the one hand, the
contribution of the regional halosteric signal is not taken into
account here in the calculation of the space geodetic OHC
change. Ocean salinity change may have a significant im-
pact in some local regions (as in the southeast Indian Ocean
(Llovel and Lee, 2015), in the northwest Indian Ocean, or
close to the Arctic Ocean). On the other hand, the regional
contribution of the deep ocean in the Argo data (restricted
to 0–2000 m) is not considered. These limitations will be the
subject of future work and may lead to a better agreement be-
tween the OHC trends observed by space geodetic data and
Argo data.

6 Earth energy imbalance: results and comparison

The space geodetic approach provides the mean EEI esti-
mate and also the temporal evolution of the EEI over the
15-year period from August 2002 to August 2016 (Fig. 3).
The mean EEI of +0.74± 0.22 Wm−2 is obtained from the
GOHC trend corrected to account for the energy uptake from
land, cryosphere, and atmosphere. This mean EEI value rep-
resents an enormous amount of energy when it is integrated

over the entire Earth’s surface at the top of the atmosphere. It
represents a total energy uptake of the Earth of about 350 TW
(i.e. about 1000 times the power of the world’s nuclear
power plants). Our EEI estimate indicates a positive trend
of 0.02±0.05 Wm−2 yr−1, representing a non-significant ac-
celeration of the energy uptake by the ocean over 2002–2016
(see also Table C1 in Appendix C). Longer time series or
more accurate data are needed to analyse this acceleration.
Our EEI estimate also shows large interannual variations in
EEI from−0.5 to 2.0 Wm−2 (Fig. 3) between 2002 and 2016
that are due to climate-change variations in GOHC change
or to internal variability. Further studies are needed to deter-
mine the causes of these variations. At 3-year timescales the
uncertainty of our EEI estimate varies from 0.8 to 1.0 Wm−2.
These uncertainties are too high to enable the monitoring of
the EEI response to anthropogenic or natural forcing that re-
quires an accuracy below 0.1 Wm−2 (e.g. Meyssignac et al.,
2019). Lower uncertainties would be necessary to explore the
EEI signal at shorter timescales.

A recent study applying the geodetic approach as well
shows a value of +0.77±0.27 Wm−2 over the period 2005–
2015 (Hakuba et al., 2021). This result agrees very well with
ours (+0.77±0.24 Wm−2) despite significant differences in
the input data, in particular the EEH and the ocean mass.

Our space geodetic EEI is also compared at interannual
timescales with Argo-based and CERES-based EEI estimates
(Fig. 7). Signals lower than 3 years are filtered out in all EEI
time series. EEI means and trends are also removed before-
hand from each dataset to compare EEI variations at interan-
nual scales.

The interannual signals are better correlated between the
time series from space geodetic and CERES data than with
the Argo-based data. Although the amplitude of the space
geodetic EEI signal is slightly higher (up to 0.8 Wm−2), they
appear to be fairly well phased between 2006 and 2013 (same
phase within a few months). In contrast, the Argo-based EEIs
have similar amplitudes to those of CERES, but are mostly
out of phase. The short time period of the in situ data in
particular limits the analysis of these signals. To date, the
origin of the discrepancies between these different EEI esti-
mates remains under investigation. They are all impacted by
internal variability, in particular ENSO (e.g. mid-2007–mid
2009 (Loeb et al., 2012), 2011) and the high-frequency sig-
nals (monthly to biannual). Regional signature of the inter-
nal variability may not be the same in the different observing
systems (owing to their different spatial and temporal reso-
lution), leading to discrepancies in EEI estimates. Observing
systems with incomplete coverage may miss some signals at
specific spatial and temporal scales that could have a major
impact on the global estimate. Another source of discrepancy
among EEI estimates is that we assumed for the geodetic
approach and the in situ approach that 90 % of the excess
of energy due to EEI is captured by the ocean. While this
assumption is reasonable at biannual and longer timescales
(Palmer and McNeall, 2014), it is probably not true at smaller
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Figure 5. Interannual variations in global ocean heat content (GOHC) change. A 13-month low-pass filter is applied after removing periodic
signals (annual and semi-annual) and trend. Red lines correspond to space geodetic estimates where estimates based on mascon ocean mass
are represented as dashed lines and MOHeaCAN v2.1 is represented by the mean value (solid red) and the uncertainty at 1-sigma (shaded
areas). Blue lines correspond to the Argo-based estimates from 2005. Grey areas correspond to the data gaps in the gravimetry product used
for the space geodetic GOHC change.

Figure 6. Maps of ocean heat content trends from the space geodetic approach for the period from January 2005 to December 2015 and at
3◦× 3◦ resolution.

timescales when the atmosphere and to a smaller extent land
and cryosphere exchange larger portions of energy with the
ocean. This too simple assumption may explain some dis-
crepancies between the CERES estimate on one side and the
geodetic and in situ estimates on the other side.

7 Data availability

Changes in OHC at global and regional scales and the
EEI are gathered in the “climate indicators from space
product”, or “MOHeaCAN” product v2.1, available on-
line at https://doi.org/10.24400/527896/a01-2020.003 (Mag-
ellium/LEGOS, 2020) with the complete associated docu-
mentation (product user manual and algorithm theoretical ba-
sis document).
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Figure 7. Interannual variations in Earth energy imbalance (EEI) time series. Mean and trend values have been removed for each time series,
and a filter has been applied to remove signals lower than 3 years. Red lines correspond to space geodetic estimates where estimates based on
mascon ocean mass are represented as dashed lines, and MOHeaCAN v2.1 is represented by the mean value (solid red) and the uncertainty
at 1-sigma (shaded areas). The green line corresponds to CERES-based estimates and blue lines to the Argo-based estimates.

8 Conclusions and outlook

This study provides the first space geodetic estimate with a
rigorous uncertainty propagation algorithm of the Earth en-
ergy imbalance and changes in ocean heat content at the
global scale. It is based on the assumption that monitor-
ing heat accumulation in the ocean, with a combination of
satellite altimetry and gravimetry measurements, is repre-
sentative of the vast majority (∼ 90 %) of the energy imbal-
ance observed at the top of the atmosphere. The mean value
of the EEI derived from this space geodetic approach over
the period from August 2002 to August 2016 is +0.74±
0.22 Wm−2. This figure is fully in agreement with data based
on in situ measurements (Argo network) within the confi-
dence level of the uncertainty. Furthermore, although this is
a preliminary calculation, the OHC change is also calculated
for the first time at the regional scale thanks to a set of ex-
pansion efficiency of heat coefficients estimated from in situ
Argo data. The spatial patterns retrieved in the OHC trends
look similar to climate mode fingerprints observed in steric
anomalies (e.g. Pfeffer et al., 2018). They also correlate well
with regional OHC trends derived from in situ Argo data, de-
spite known limitations in these regional estimates (e.g. deep
ocean in Argo data and salinity ocean change not corrected
in altimetry and gravimetry approach).

The rigorous uncertainty estimate proposed here still has a
few limitations. It also does not account for the loss of spa-
tial coverage imposed by the Argo geographical mask in the
computation of the expansion efficiency of heat. It does not
include the errors related to the estimation of the global EEH
value over the first 2000 m depth only (i.e. the effect of the
deep ocean on the EEH value is neglected). Furthermore, no
error on the fraction of energy entering the ocean α is in-

cluded in the EEI uncertainty. Finally, the approach depends
on the knowledge of the GMSL and GMOM error budget.
These error budgets can be improved further. In particular,
an effort must be made to better describe the errors in spa-
tial gravity measurements, especially to include the uncer-
tainties related to the differences in the harmonic and mas-
con approaches in the error budget. The consistency between
the processing of altimetry and gravimetry data could still
be improved for instance by homogenising the GIA datasets
used to correct the gravimetry signals and the sea level from
altimetry. Also, atmospheric effects should be harmonised.
Indeed, altimetry data are currently processed with the dy-
namical atmospheric correction (Carrère and Lyard, 2003)
while only the inverse barometer correction is applied in
gravimetry processing (Blazquez et al., 2018). Another area
for improvement is the extension of the spatial and tempo-
ral scales of the OHC change estimation. While altimetry
and GRACE data are available together since August 2002,
the datasets provided in this study are limited in time (Au-
gust 2002–August 2016) and space (Argo mask) as the ob-
jective of this study is to demonstrate the feasibility of such
an approach (proof of concept) using reliable GRACE mea-
surements and EEH/IEEH data over the Argo geographical
mask. However, in the future, the OHC change and EEI time
series could be extended in time using the GRACE-FO data
already available from August 2018. This requires manag-
ing issues related to the 11-month gap between GRACE and
GRACE-FO data (July 2017–June 2018) and the degradation
of GRACE data quality after August 2016. The OHC change
could also be estimated outside the current Argo mask by ex-
trapolating the EEH coefficient grid to the full ocean using
ocean reanalyses. At this stage of the study, OHC changes
and EEI are retrieved in a conservative way. Altimetry and
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gravimetry grids are resampled with a 3◦× 3◦ spatial reso-
lution, and the GOHC time series is filtered at 3 years with
the aim of mitigating the impact of high frequencies from the
input geodetic datasets and reducing signals related to inter-
nal variability on the EEI. Additional studies are necessary to
better apprehend how geodetic data can be combined on both
temporal and spatial dimensions so as to investigate regional
OHC changes.

This study emphasises that the synergy between spatial
data (altimetry and gravity) and in situ data (Argo network)
is essential to obtain accurate estimates of OHC change. The
former contributes to observing the total OHC variations over
the entire water column and with a very good spatial and
temporal resolution since 2002, while the latter provides a
quasi-global coverage since 2005 and allows access to the
vertical structure of the thermal expansion of the ocean down
to 2000 m depth. The capacity of both observing systems to
provide independent estimates of the EEI since 2005 is abso-
lutely essential. By pointing to discrepancies among different
EEI estimates from different observing systems, intercom-
parisons foster further development to understand the causes
for discrepancies. As we understand these discrepancies, the
different estimates will improve, and we can expect signif-
icantly more precise and more robust estimates of the EEI
in the coming decade. It is crucial that the space geodetic
observing system and the Argo network continue the moni-
toring and improve their coverage and accuracy in the years
to come to support this effort.

Appendix A: The GRACE LEGOS ensemble V1.4

GRACE LEGOS V1.4 is an ensemble of 216 global wa-
ter mass transfer solutions derived from the GRACE and
GRACE-FO mission covering the period from August 2002
to December 2020 at a monthly timescale and with a spa-
tial resolution of 1◦. The total amount of water remains con-
stant from one month to another for each solution. The en-
semble is based on L2 spherical harmonic solutions from
six different centres: COST-G RL1.2, CNES RL5.0, CSR
RL06, GFZ RL06, JPL RL06, and TUGRAZ ITSG2018. At-
mosphere and ocean dealiasing models are restored using
AOD1B RL06 (Dobslaw et al., 2017) except for the CNES
solution where ERA-Interim and TUGO models were used.
The ocean dealiasing model is restored, and C0 coefficients
are corrected in the spherical harmonics to compensate for
the total amount of water vapour in the atmosphere expressed
in C0 GAA (Chen et al., 2019). The ensemble also includes
a large variety of choices for post-processing corrections
including three geocentre motions (Lemoine and Reinquin,
2017; Uebbing et al., 2019; Sun et al., 2016), three oblateness
values of the Earth (Cheng et al., 2013; Lemoine and Rein-
quin, 2017; Loomis et al., 2019), and two GIA corrections
(ICE6G-D; Peltier et al., 2018, and Caron et al., 2018). In or-
der to reduce the anisotropic noise, DDK filters are applied

to the L2 solutions, including DDK5 and DDK6 (Kusche et
al., 2009), except for the CNES solution where a truncated
single-value decomposition scheme is used for the inversion
instead of a classical Cholesky inversion. This method re-
duces the noise drastically, but on the other hand the coef-
ficients of high degree where information is scarce are nor-
malised to the mean coefficients (Lemoine et al., 2016). Solid
Earth displacement due to the largest earthquakes (Sumatra
2004 and 2012, Tohoku 2010, and Chile 2010) is corrected
following (Tang et al., 2020). Moreover, a new method to
convert from spherical harmonics to equivalent water height
is applied. This method consists in using high spatial a priori
solutions to reduce leakage and Gibbs effects. The spheri-
cal harmonics solution is separated in the a priori part using
external data such as land–ocean masks, glacier mass trends
(Hugonnet et al., 2021), and lake volume change (Crétaux et
al., 2016) and the rest of the harmonics solution which con-
tains less signal and must be filtered.
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Figure A1. Comparison of global mean ocean mass changes from satellite gravimetry based on spherical harmonics solutions (LEGOS
ensemble V1.4, in grey) and mascon solutions over August 2002–August 2016 for the global ocean. The mean of the full spherical harmonic
ensemble is shown in red. The mean of the spherical harmonic ensemble subset consistent with mascons is shown in orange. The mean of
the three mascon solutions considered in this study is shown in blue.

Appendix B

Figure B1. Integrated expansion efficiency of heat (IEEH) dependence on in situ temperature and absolute salinity at 1 atm in mmJ−1.
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Appendix C

Table C1. Global mean sea level change components, global ocean
heat content changes, and Earth energy imbalance – trend and mean
values and associated uncertainties as estimated from the various
datasets depicted in this paper. Uncertainties are given within a 90 %
CL.

Period

8/2002–8/2016 1/2005–12/2015

Geocentric sea level +3.11± 0.41 +3.09± 0.50
change (mmyr−1)
Sea level change +3.49± 0.43 +3.47± 0.51
(after GIA and GRD
corrections) (mmyr−1)
Ocean mass change +1.83± 0.21 +1.80± 0.21
(mmyr−1)
Steric sea level change +1.66± 0.48 +1.67± 0.54
(mmyr−1)
Ocean heat content +0.70± 0.20 +0.71± 0.23
change (Wm−2)
Earth energy imbalance +0.74± 0.22 +0.77± 0.24
(Wm−2; Wm−2 yr−1) (mean) (mean)

+0.02± 0.05 +0.08± 0.09
(trend) (trend)
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