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Abstract. Drought indices are hard to balance in terms of versatility (effectiveness for multiple types of
drought), flexibility of timescales, and inclusivity (to what extent they include all physical processes). A lack of
consistent source data increases the difficulty of quantifying drought. Here, we present a global monthly drought
dataset with a spatial resolution of 0.25◦ from 1948 to 2010 based on a multitype and multiscalar drought index,
the standardized moisture anomaly index incorporating snow dynamics (SZIsnow), driven by systematic fields
from an advanced data assimilation system. The proposed SZIsnow dataset includes different physical water–
energy processes, especially snow processes. Our evaluation of the dataset demonstrates its ability to distinguish
different types of drought across different timescales. Our assessment also indicates that the dataset adequately
captures droughts across different spatial scales. The consideration of snow processes improved the capability of
SZIsnow, and the improvement is particularly evident over snow-covered high-latitude (e.g., Arctic region) and
high-altitude areas (e.g., Tibetan Plateau). We found that 59.66 % of Earth’s land area exhibited a drying trend
between 1948 and 2010, and the remaining 40.34 % exhibited a wetting trend. Our results also indicate that the
SZIsnow dataset can be employed to capture the large-scale drought events that occurred across the world. Our
analysis shows there were 525 drought events with an area larger than 500 000 km2 globally during the study
period, of which 68.38 % had a duration longer than 6 months. Therefore, this new drought dataset is well suited
to monitoring, assessing, and characterizing drought and can serve as a valuable resource for future drought
studies. The database is available at http://doi.org/10.5281/zenodo.5627369 (Wu et al., 2021).

1 Introduction

Drought is one of the most costly and complex natural haz-
ards, commonly causing significant and widespread adverse
impacts on many sectors of society (Aghakouchak et al.,
2015; He et al., 2020). The severity, extent, and duration of
drought are likely to intensify across the world under the ef-

fects of climate change (Ault, 2020; Mann and Gleick, 2015).
There has been increasing global interest in measures to im-
prove the capability of drought quantification, and various
drought indices have been proposed over the past several
decades (Liu et al., 2018; Esfahanian et al., 2017; Zhang
et al., 2021). However, current drought indices struggle to
reconcile versatility (ability to quantify multiple types of
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drought), flexibility of temporal scale (effective across dif-
ferent timescales), and comprehensiveness (to what extent
they include all hydrological processes). Additionally, these
drought indices are derived from multifarious data sources,
rather than systematic and consistent physical data from the
same source (Ahmadalipour and Moradkhani, 2017; Hoff-
mann et al., 2020; Zheng et al., 2019). As a result, different
sectors of society have rarely collaborated to synergistically
fight against drought using a comprehensive drought index.

The propagation of drought is related to changes in numer-
ous interconnected variables of hydrometeorological pro-
cesses (e.g., precipitation, evapotranspiration, streamflow,
and soil moisture). Yet a major portion of currently avail-
able drought indices focus on only one aspect of drought
evolution. For example, the rainfall anomaly index (RAI;
Zhu et al., 2021), streamflow drought index (SDI; Nalbantis
and Tsakiris, 2009), and soil moisture deficit index (SMDI;
Narasimhan and Srinivasan, 2005) focus only on precip-
itation (meteorological drought), streamflow (hydrological
drought), and soil moisture (agricultural drought), respec-
tively (Fig. 1, top row). Additionally, these indices merely
consider water supply in drought and neglect water demand,
but a drought is a condition of the water deficit between
water supply and demand (Mishra and Singh, 2010). Thus,
these indices do not provide sufficient information to enable
decision-makers to organize a comprehensive anti-drought
approach that balances all sectors of society affected by
drought.

Some indices were developed with the purpose of applica-
tion to all types of droughts (Fig. 1, second row). The Palmer
drought severity index (PDSI; Alley, 1984; Wells et al., 2004)
can be applied to different types of drought by consider-
ing water supply and demand with a simplified two-layer
bucket model, but it has a fixed temporal scale and does not
work well over snow-covered areas (Dai, 2011a). In addition,
the self-calibrated PDSI (scPDSI) can dynamically compute
the constants in PSDI on the basis of the characteristics
at each interested location, producing more representative
model constants. However, the scPDSI has the same issues
as the PDSI in terms of the temporal scale and performance
over snow-covered areas. Although the standardized precipi-
tation evapotranspiration index (SPEI; Vicente-Serrano et al.,
2010) overcomes the PDSI’s weakness of fixed temporal
scale, it oversimplifies complex relationships and neglects
several important hydrological processes associated with the
development of drought (Zhang et al., 2015). Moreover, cur-
rent indices usually use physical variables from different data
sources, which inevitably introduces bias and leads to an im-
balanced calculation (Naumann et al., 2014). The develop-
ment of the data assimilation system brings an option of sys-
tematic input for drought indices (Xu et al., 2020). Therefore,
there is a need to develop a multitype and multiscalar drought
index that considers various key processes related to drought
and can take full advantage of output from the data assimila-
tion system.

Given the abovementioned deficiency of current drought
indices, Zhang et al. (2015) proposed a universal drought in-
dex, the standardized moisture anomaly index (SZI), to de-
termine and monitor different types of droughts (Fig. 1, third
row). Absorbing the strengths of the SPEI and PDSI, the SZI
is available at flexible temporal scales and involves relatively
sophisticated land surface processes. It builds a bridge be-
tween drought monitoring and the data assimilation system.
In the SZI, the atmospheric water demand is calculated by us-
ing variables related to evapotranspiration, runoff, soil mois-
ture infiltration, and soil moisture loss, while water supply
is taken as actual precipitation. Thus, the difference between
water supply and atmospheric water demand is used to scale
the water deficit and surplus. Additionally, there are two main
limitations of the SZI. The first one is that its computation is
more difficult than the standardized precipitation index (SPI)
or SPEI. Another limitation is that it needs a long-term se-
rial of hydrometeorological records, making it unsuitable for
short-term drought studies. Although the SZI has been eval-
uated and achieved acceptable performance, it ignores the
effects of snow in drought characterization, similar to the
PDSI and SPEI. Such negligence in the SZI can impair its
capability to monitor and identify droughts, particularly for
those snow-covered regions with considerable amounts of
snowfall (Huning and Aghakouchak, 2020; Staudinger et al.,
2014). To address this deficiency, Zhang et al. (2019) modi-
fied the SZI by adding snow dynamics for drought character-
ization into a new version of the drought index called SZIsnow
(Fig. 1, final row). This is the drought index used to construct
the drought dataset in this study.

Drought is mainly characterized by severity, spatial extent,
duration, and timing. The traditional method for drought in-
vestigation is to explore the variability of its severity over
a fixed study area (Hao et al., 2017). This method is also
widely used to evaluate the ability of a drought index (Peng
et al., 2020). Although this method can provide certain in-
formation regarding the regional drought condition, it cannot
analyze the change of spatial extent with time for a drought
event (Zhai et al., 2017). As drought is a spatiotemporal pro-
cess, the ability of a drought index to explore the joint evo-
lution of drought events in space and time should be given
increased attention (Herrera-Estrada et al., 2017). Thus, we
utilized the severity–area–duration method (Andreadis et al.,
2005; Sheffield et al., 2009), which can monitor drought in
space and time, to comprehensively evaluate the drought in-
dex dataset proposed by our work.

This work aims to construct a long-term global SZIsnow
dataset for various temporal scales. The SZIsnow is here de-
veloped to characterize multitype and multiscalar drought
by accounting for different physical water–energy processes,
especially snow processes. This paper is organized as fol-
lows. We first introduce the data and metrics for forcing and
evaluation of the proposed drought dataset (Sect. 2). The
method behind the derivation of the SZIsnow is summarized
in Sect. 3. In Sect. 4 we present a comprehensive evalua-
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Figure 1. Development path of the SZIsnow. Dark green boxes denote the strengths of each drought index, while pink boxes denote the
weaknesses of each drought index. The top row shows indices that can only account for one type of drought, with three indices listed for each
type of drought. The second row shows indices that can account for multiple types of drought. Full names of the listed indices are shown in
Table S1 in the Supplement.

tion of the SZIsnow to assess its ability to capture different
drought types across the world, particularly over the Arctic
region and Tibetan Plateau. Based on the dataset, we fur-
ther analyze the spatiotemporal changes of global drought
and focus on the variability of large-scale drought events.
Section 5 briefly introduces how to download the proposed
drought index dataset. Finally, in Sect. 6, we discuss the ad-
vancement of the SZIsnow and its potential applicability and
implications, and we present our conclusions.

2 Data

2.1 Data for producing the SZIsnow drought index

Hydrometeorological variables from numerical models are
commonly used as the source data to compute drought in-
dices at the global scale, due to limited observational data
(Sawada and Koike, 2016). Thus, in this study, the Global

Land Data Assimilation System (GLDAS) provided vari-
ables to calculate the SZIsnow globally. The SZI was also
calculated for the purpose of comparison. The GLDAS is a
state-of-the-art assimilation system using advanced land sur-
face modeling and data assimilation techniques. It incorpo-
rates satellite- and ground-based monitoring data and aims
to produce optimal land surface and flux variables (Rodell
et al., 2004). Currently, two versions of the GLDAS prod-
uct are available: GLDAS version 1 (GLDAS-1) and GLDAS
version 2 (GLDAS-2). The better performance of GLDAS-2
compared to that of GLDAS-1 has been verified by previ-
ous work (Wang et al., 2016; Zhang et al., 2019). This is
mainly attributed to the fact that GLDAS-1 has serious dis-
continuity problems in its meteorological forcing dataset due
to switches in its forcing data. In contrast, GLDAS-2 has a
better temporal continuity, using the bias-corrected Prince-
ton meteorological forcing dataset. Additionally, evaluations
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for the high-altitude regions indicate that GLDAS-2 performs
better in streamflow simulation because GLDAS-2 considers
streamflow from glacier melt in its simulation, but GLDAS-1
did not. Therefore, we adopted GLDAS-2 to provide water–
energy-related variables to derive the SZIsnow.

GLDAS-2 drives the Noah land surface model (LSM),
forced by the global Princeton meteorological forcing data,
to approximate the observed land surface state (Rui and
Beaudoing, 2019). The fields of land surface states and fluxes
of GLDAS-2 in this study have a 0.25◦ spatial resolution
and monthly temporal resolution. The ability of the assim-
ilation system to capture the real state of the land surface is
a main concern of its users. Numerous studies have assessed
the meteorological forcing fields (e.g., precipitation and near-
surface temperature) and modeling outputs (e.g., soil mois-
ture and evapotranspiration) of GLDAS-2 over different re-
gions around the world (Bi et al., 2016; Spennemann et al.,
2015). The GLDAS-2 product has generally been recognized
as acceptable in spite of any biases and uncertainties. Addi-
tionally, GLDAS-2 provides abundant hydrometeorological
information to areas with limited observations or ungauged
areas. In particular, it bridges the gap between the scarce data
available for the three poles (i.e., North Pole, South Pole,
and Tibetan Plateau) and the increasing attention of the sci-
ence community on these areas because of their crucial role
in Earth system science.

2.2 Data for evaluating the performance of the SZIsnow

We firstly assessed the capability of the SZIsnow at a basin
scale across the world by using the closed terrestrial wa-
ter budget dataset developed by Pan et al. (2012). This is a
monthly dataset for 32 major river basins, measured globally
from 1982 to 2006. The drainage areas of these basins range
from 230 000 to 600 000 km2, and their locations are shown
in Fig. S1 in the Supplement. This dataset was produced
based on multisource data including in situ observations, re-
mote sensing products, land surface model simulations, and
reanalysis datasets. Through a systematic assimilation strat-
egy, the errors and biases of the multisource data were greatly
compensated for, which guarantees the assimilated data have
the highest possible confidence. This dataset has thus served
as a baseline dataset for large basin-scale studies related to
water and energy cycles and has been widely used by previ-
ous researchers (Zeng and Cai, 2016). Additionally, the vari-
ables in this dataset include precipitation, evapotranspiration,
streamflow, total terrestrial water storage, and snow depth.
The comprehensive variables in the dataset facilitate the cal-
culation of different drought indices as references to evaluate
the SZIsnow.

We applied a drought index, the standardized wetness
index (SWI), to evaluate the performance of the SZI and
SZIsnow at the global scale. The details of the SWI will be
introduced in Sect. 2.3. The datasets used to calculate the
SWI include the Climatic Research Unit Time Series (CRU

TS) Version 4.01 and the Global Land Evaporation Ams-
terdam Model (GLEAM) Version 3.1a. The CRU TS sup-
plies monthly precipitation (P) and potential evapotranspira-
tion (PET) data at a spatial resolution of 0.5◦ (https://crudata.
uea.ac.uk/cru/data/hrg/, last access: 11 May 2022). These
PET data are computed by the Penman–Monteith equation.
GLEAM provides monthly actual evapotranspiration (ET)
data at a spatial resolution of 0.25◦ (https://www.gleam.eu/,
last access: 11 May 2022). The CRU TS and GLEAM cover
a period from 1980 to 2010. In addition, the GLEAM dataset
was interpolated from the spatial resolution of 0.25◦ to that
of 0.5◦ to facilitate the computation of the SWI.

2.3 Evidence of different drought types for the SZIsnow
evaluation

We evaluated the ability of the SZIsnow and SZI to capture
different types of droughts based on drought evidence. First,
meteorological, hydrological, and agricultural drought evi-
dence was identified based on precipitation, streamflow, and
soil water storage, respectively, from the dataset of Pan et al.
(2012) (as mentioned in Sect. 2.2) over 32 large basins. Then,
the evidence was compared with the SZIsnow and SZI, calcu-
lated based on the GLDAS-2 product. In addition, for the
convenience of comparison, we adopted the log-logistic dis-
tribution to standardize precipitation, streamflow, and soil
water storage for the computation of the SPI (Mckee et al.,
1993), standardized streamflow index (SSI; Vicente-Serrano
et al., 2012), and standardized water storage index (SWSI;
Aghakouchak, 2014).

We also selected the residual water–energy ratio (WER) as
a comprehensive drought indicator to evaluate the SZIsnow.
The WER is defined as the ratio of residual available water
(P −ET) to residual energy (PET−ET) and can integrally
reflect drought conditions by depicting variation in water–
energy balance. The WER was first suggested by Liu et al.
(2017) as many studies found that the ratio of sensible heat
(the residual energy supply after dissipating through latent
heat) to net radiation (total energy supply) is always raised
under drought. Meanwhile, the ratio of residual available wa-
ter to precipitation (total water supply) is always lowered
under drought. Consequently, the WER is lowered during
drought and can be used as a comprehensive drought indi-
cator. Again, we used independent datasets (i.e., the CRU TS
and GLEAM datasets) to globally calculate the WER and
compare it with the SZIsnow and SZI. As for the SSI and
SWSI, the WER was standardized for the calculation of the
SWI.
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Figure 2. Schematic diagram of the relative physical processes included in the construction of the SZIsnow. The upper right subplot shows
the variables used in the SZIsnow calculations at the pixel level. Full names of all the abbreviations in this figure are listed in Table S2.

3 Methodology

3.1 Derivation of the SZIsnow

3.1.1 Physical representation of the SZIsnow and its
derivation

The physical processes included in the construction of the
SZIsnow are shown in Fig. 2. Six water budget components
are involved in the procedure of hydrological accounting to
determine the water demand over a region. The related vari-
ables comprise ET, PET, runoff, potential runoff, soil infil-
tration, potential soil infiltration, soil moisture loss, potential
soil moisture loss, snow water equivalent (SWE) accumula-
tion, potential SWE accumulation, snowmelt, and potential
snowmelt. The monthly values of these variables were de-
rived from land surface models, for instance, the GLDAS-2
Noah LSM in the present study. The prominent improvement
of the SZIsnow is that it accounts for the influence of snowfall
on hydrological processes (Zhang et al., 2019, 2015).

Both the soil moisture storage and snow storage are con-
sidered reservoirs in the SZIsnow. Changes in soil mois-
ture storage (soil infiltration or soil moisture loss) and snow
(SWE accumulation or snowmelt) can alter the regional wa-
ter balance (water supply or water demand) and then affect
the drought condition. Consequently, the SZIsnow contains
more comprehensive hydrological processes than the SZI.
The improvement of the SZIsnow makes it applicable to a
wider variety of climatic regions, especially for regions that

belong to the three poles where more snow is stored than at
any other place on Earth.

We provide a procedure flowchart as shown in Fig. 3 to
show the production and validation of the SZIsnow. There
are four steps for SZIsnow production: hydrologic account-
ing, climatic coefficients, water demand, and standardization.
Hydrologic accounting is to calculate the monthly six com-
ponents relevant to the local water budget. Climatic coeffi-
cients are the weighting factors of these components for the
calculation of the local water demand. The local water de-
mand in the SZIsnow is represented by the precipitation that
is climatically appropriate for existing conditions (CAFEC,
referred as P̂snow). The last step is the standardization of the
moisture anomaly (Zsnow), which is the difference between
the actual precipitation (rainfall and snowfall). After achiev-
ing the SZIsnow dataset, its ability to identify different types
of drought can be validated not only at basin scale, but also
across different regions worldwide, especially snow-covered
regions, at grid scale. Detailed equations for the hydrologic
accounting in the SZIsnow are listed in Table 1. All full names
for abbreviations contained in the equations are supplied in
Table S2 in the Supplement.

3.1.2 Hydrologic accounting

The regional water supply firstly meets water demand from
soil layers. The soil infiltration (R) was estimated by monthly
changes (1St and 1Su) in available soil moisture of the top
(St) and bottom (Su) soil layers. The potential soil infiltration
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Figure 3. The procedure flowchart describing the production and validation of SZIsnow. Variables derive the SZIsnow from GLDAS-2 (or
other LSM and DAS). The production of SZIsnow includes four steps. The SZIsnow is validated at basin scale for three types of drought and at
grid scale across different regions worldwide. The cloud-shape annotation shows the advantages of the SZIsnow.

(PR) was calculated as the difference between the available
soil water capacity (AWC) and the available soil moisture of
the entire soil. AWC is estimated as the maximum soil water
of the two soil layers (Fig. 2) in the Noah LSM. Then, the
rest of the regional water supply satisfies water demand from
runoff (RO). RO consists of surface runoff (ROs), baseflow
(ROb), and snowmelt runoff (ROsm), which are directly ob-
tained from the GLDAS-2. The potential runoff (PRO) is the
difference between AWC and PR, because soil moisture stor-
age is considered a water reservoir in the SZIsnow. Addition-
ally, water supply is partly consumed by ET, including bare
soil evaporation (Eb), transpiration (Et), and canopy water
evaporation (Ei) that can be found in the output of GLDAS-
2. The PET is computed with output fields from GLDAS-2
using the Penman–Monteith equation. Moreover, the mois-
ture loss (L) from the soil layers is considered in the SZIsnow.
The equations for L and its potential values are shown in

Eq. (4) of Table 1. Lastly, calculations of variables related
to snow processes underscored by the SZIsnow are given in
Eqs. (5) and (6) of Table 1. The potential snow accumulation
(PSA) equals the monthly amount of snowfall (Psnow), and
the monthly SWE change completely reflects snow accumu-
lation (SA) and snowmelt (SM).

3.1.3 Climatic coefficients and precipitation that are
climatically appropriate for existing conditions
(CAFEC)

Similar to the PDSI, the SZIsnow applies the CAFEC (P̂snow)
to quantify the regional water demand. The amount of P̂snow
is the result of interaction among the six water budget com-
ponents as shown in Eq. (8) of Table 1. The weighting factor
for each component is the climatic coefficient, which is de-
fined as the ratio of the monthly climatic averages of actual
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Table 1. The procedures, variables, and associated equations used to calculate the SZIsnow.

Procedures Variables Equations

Hydrological accounting R/PR R =

{
1St+1Su 1St+1Su ≥ 0

0 1St+1Su < 0
PR= AWC− (St+ Su) (1)

RO/PRO RO= ROs+ROb+ROsm
PRO= AWC−PR (2)

ET/PET ET= Eb+Et+Ei
PET is computed with Penman–Monteith equation (3)

L/PL



L=

{
0 1St+1Su ≥ 0

−(1St+1Su) 1St+1Su < 0
PL= PLt+PLs{

PLt =Min(PET,St)

PLs = (PET−PLt) Su
AWC

(4)

SA/PSA


{

0 1SWE< 0

1SWE 1SWE≥ 0
PSA= Psnow

(5)

SM/PSM

SM=

{
−1SWE 1SWE< 0

0 1SWE≥ 0
PSM= SWE

(6)

Climatic coefficients αj = ETj /PETj
βj = Rj /PRj
γj = ROj /PROj
δj = Lj /PLj
εj = SAj /PSAj
ϕj = SMj /PSMj (7)

CAFEC P̂snow = αjPET+βjPR+ γjPRO+ δjPSA− εjPL−ϕjPSM (8)

Standardization

{
P = Prainfall+Psnowfall

Zsnow = P − P̂snow
(9)

(water supply) to potential (water demand) values. The equa-
tions used to compute these climatic coefficients are listed in
Eq. (7) of Table 1. The j in Eq. (7) denotes months of a year;
that is, each water budget component has 12 values of cli-
matic coefficient covering all months. In addition, our equa-
tions can be applied in regions and seasons without snow-
fall. For regions without snowfall (e.g., tropics), the items
relevant to snow in the equations of Table 1 are set to zero
for the calculation of SZIsnow. For example, δjPSA, ϕjPSM,
and Psnowfall are set to zero when they are used for situations
without snowfall.

3.2 Standardization of moisture anomaly

The comparison between the actual precipitation (P ) and
P̂snow can reflect the drought condition. When the actual P is
less than P̂snow, the regional water supply will remain in

deficit, and vice versa for a surplus. Thus, the difference be-
tween the actual P and P̂snow is an appropriate indicator for
regional water deficiency or surplus. Such difference is de-
fined as the moisture anomaly Zsnow (Eq. 9 of Table 1) in the
drought assessment system of the SZIsnow. In addition, the
Zsnow can be aggregated at different temporal scales (e.g., 1–
48 months) with the same processes as for the SPEI. For a de-
tailed procedure, readers should refer to the paper of Vicente-
Serrano et al. (2010). Moreover, we standardized theZsnow to
SZIsnow to realize the comparability of the Zsnow with other
Zsnow or other drought indices over space and time. A three-
parameter log-logistic distribution was adopted to standard-
ize Zsnow time series and derive the SZIsnow. This follows
the same approach used for the SPEI and SWI to standard-
ize Zsnow at different temporal scales. The average value of
the SZIsnow is 0, and the standard deviation is 1. Finally, we
scaled the SZIsnow categorization levels to the corresponding
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Table 2. Categorization of wetness and drought conditions in the
SZIsnow.

Categories SZIsnow values

Wetness categorization

Extreme wetness ≥ 2.0
Severe wetness 1.5–2.0
Moderate wetness 1.0–1.5
Mild wetness 0.5–1.0
Near normal −0.5 to 0.5

Drought categorization

Mild drought −1.0 to −0.5
Moderate drought −1.5 to −1.0
Severe drought −2.0 to −1.5
Extreme drought <−2.0

SPEI drought severity categories in Table 2 because the same
standardization method is used for both.

3.3 Metrics for the SZIsnow evaluation

This study applied the SPI (a meteorological drought index),
SSI (a hydrological drought index), SWSI (an agricultural
drought index), and SWI (a comprehensive drought index)
as references to evaluate the performance of the SZIsnow and
SZI. The four referenced drought indices were computed
with datasets that were independent from the dataset used for
calculating the SZIsnow and SZI. We utilized Pearson correla-
tion coefficients (r) of SPI-SZI /SZIsnow, SSI-SZI /SZIsnow,
SWSI-SZI /SZIsnow, and SWI-SZI /SZIsnow to compare the
performance of the SZI and SZIsnow in terms of their capacity
to capture multitype and multiscalar drought across different
geographical parts of the world.

3.4 Identification of large-scale drought events in space
and time

Using the SZIsnow dataset constructed by this study, we per-
formed a global and continental drought analysis for the pe-
riod 1948–2010. We focused on the temporal variability of
large-scale drought events through a severity–area–duration
(SAD) drought diagnosis method (Andreadis et al., 2005;
Herrera-Estrada et al., 2017). In contrast to traditional studies
which analyze the intensity, severity, and duration of drought
over a fixed region, the SAD method specializes in simulta-
neously tracking the development of droughts in space and
time based on a gridded dataset. This method proposes a
Lagrangian approach by aggregating grids (under specified
drought levels) of contiguous areas into clusters. These clus-
ters are then tracked and archived as they propagate through
space and time. The main steps of the SAD method are out-
lined as follows.

The SAD method firstly uses a monthly three-dimensional
(3D, month× latitude× longitude) gridded drought
index dataset to identify two-dimensional (2D, lati-
tude× longitude) drought clusters in each time step. This
drought cluster identification procedure is built on a cluster-
ing algorithm that merges spatial contiguity. Then, a median
filter is utilized to smooth out noise (i.e., small-scale hetero-
geneity) in the 2D clusters in each time step. Specifically, we
regarded a grid with a SZIsnow value below −1.0 as being
under drought and considered connected areas within which
all the grids had a SZIsnow below −1.0 as a drought cluster.
The last step of the clustering procedure is to remove clusters
with an area less than 500 000 km2. The remaining clusters
are regarded as separate drought events for each time step.
Additionally, droughts in the Sahara were not concerned in
our study. During the SAD analysis, clusters were allowed
to propagate into the Sahara (20–25◦ N, 17◦W–34◦ E), and
these clusters would be retained if their centroids fell outside
the Sahara. In contrast, drought clusters were discarded
if their centroids locate in the Sahara. More importantly,
these identified drought clusters are allowed to split or
merge through time in the SAD method. The tracking
algorithm links clusters that have overlapping grid cells and
records the merging or splitting date, areas, and centroids
of clusters. These functions in the SAD method make it
possible for us to monitor the spatiotemporal evolution of
large-scale drought events. A large-scale drought event in
North America identified by the SAD method is given as
an example in Fig. S2 in the Supplement to illustrate this
method.

4 Results

4.1 Evaluation of the SZIsnow

4.1.1 Evaluation of the SZIsnow for different drought
types

We firstly evaluated the capability of the SZIsnow to cap-
ture meteorological drought at different temporal scales over
the 32 large basins from 1948 to 2010 and compared this
to the capability of the SZI. The observation-based mete-
orological drought index, SPI, was used as a reference. As
shown in Fig. 4a, the blue boxes represent the statistical dis-
tribution of the Pearson correlation coefficient (r) between
the SZI and SPI for 1–48-month timescales in each basin,
while the red boxes represent that between the SZIsnow and
SPI. The SZIsnow generally outperformed the SZI over these
large basins with an average improvement of 3.19 % (rang-
ing from 0.01 % to 6.45 %). It is clear that the extent of im-
provement in the SZIsnow increases as the SWE increases.
For instance, the r of the SZIsnow–SPI is 5.51 % higher than
that of the SZI–SPI in the Pechora basin that has an SWE
of 47.5 mmyr−1. In contrast, the r of the SZIsnow–SPI is
only 0.11 % higher than that of the SZI–SPI in the Indus
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Figure 4. Comparisons between the SZIsnow and SZI with regard to their performance in quantifying different types of drought. The SZIsnow
and SZI were correlated with observed drought indices across the 32 basins. The Pearson correlation coefficient (r) was applied to evaluate
the correlation. (a) Performance of the SZIsnow in quantifying meteorological drought. The blue boxes represent the statistical distribution
of r between the SZI and SPI for timescales from 1 to 48 months in each basin, while the red boxes represent that between the SZIsnow and
SPI. (b) Performance of the SZIsnow in quantifying hydrological drought (boxes represent same parameters as in (a) but correlations are with
the SSI instead of the SPI). (c) Performance of the SZIsnow in quantifying agricultural drought (boxes represent same parameters as in (a)
but correlations are with the SWSI instead of the SPI). Basins were ranked in descending order based on their SWE. The green dots along
the top of each x axis denote the SWE of each basin, and their sizes were scaled by the green SWE values given along the bottom of each
x axis.

basin that has an SWE of 3.70 mmyr−1. The relationship be-
tween the enhancement in the SZIsnow and SWE implies that
the SZIsnow brings advantages in accounting for snow pro-
cesses. It also demonstrates that the SZIsnow appropriately
reflects the fact that snow accumulation and melt have con-
siderable impacts on the seasonal and inter-annual variation
in streamflow in snow-covered areas. In addition to the SPI,

we adopted two other mainstream drought indices (SPEI and
scPDSI) to compare their performance in monitoring mete-
orological drought. As shown in Fig. S3 in the Supplement,
the performance of SZIsnow is prominent and superior to SZI,
SPEI, and scPDSI in identifying meteorological drought at
multiple temporal scales. The selection of reference drought
indices did not influence the reliability of our conclusion. In
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summary, the SZIsnow has a satisfactory performance to cap-
ture meteorological drought.

We then evaluated the capability of the SZIsnow to cap-
ture hydrological drought (Fig. 4b). The observation-based
hydrological drought index, SSI, was used as a reference.
The SZIsnow generally outperformed the SZI over these large
basins, with an average improvement of 3.13 % (ranging
from 0.25 % to 17.53 %). The extent of improvement in the
SZIsnow increases as the SWE increases. For instance, the r
of the SZIsnow–SSI is 17.53 % higher than that of the SZI–
SSI in the Pechora basin that has an SWE of 47.5 mmyr−1.
In contrast, the r of the SZIsnow–SSI is only 1.18 % higher
than that of the SZI–SSI in the Indus basin that has an
SWE of 3.70 mmyr−1. Moreover, among the multiple tem-
poral scales over which it was tested, the SZIsnow performs
best at the 12-month scale for hydrological droughts. At
the 12-month scale, the SZIsnow performs 17.53 %, 11.46 %,
19.40 %, and 4.88 % better than the SZI in the Pechora,
Northern Dvina, Yenisei, and Kolyma basins, respectively.
Thus, the SZIsnow performs well in the context of capturing
hydrological drought.

The capability of the SZIsnow and SZI to capture agricul-
tural drought was also assessed in our study. We conducted
the same steps of assessment as those for assessing hydro-
logical drought, but the reference drought index was an agri-
cultural drought index, SWSI, derived from a dataset based
on observations. As shown in Fig. 4c, the average r of the
SZIsnow-SWSI for all the basins is 0.51 (ranging from 0.19
to 0.79), which indicates the ability of the SZIsnow to reliably
capture agricultural drought. Additionally, the SZIsnow per-
forms better than the SZI in almost all basins, and the average
improvement of the SZIsnow is 6.46 % (ranging from 0.14 %
to 38.96 %). Again, larger improvements occurred in basins
with a larger SWE. This comparison, in terms of agricul-
tural drought, again emphasizes the strength of the SZIsnow in
high-latitude and high-altitude regions with relatively greater
SWE. The SZIsnow thus performs sufficiently well to cap-
ture agriculture drought. Besides the outperformance of the
SZIsnow, it should be noted that the SZIsnow has a similar
performance with SZI over the snow-free basins. Such simi-
lar performance is mainly owing to the fact that the values of
Psnow, PSM, and PSA are close to zero over basins at low-
latitude and low-altitude (snow-free) areas, leading to the
calculation of SZIsnow converging to the snow-free basins.
Therefore, the performance of SZIsnow and SZI is consistent
over snow-free areas.

4.1.2 Evaluation of the SZIsnow across different spatial
scales

The SZIsnow can be computed and used to characterize
drought for an individual grid, although we evaluated its ca-
pability at a basin scale in Sect. 4.1.1. In this section we
apply the SWI drought index as a reference to assess the
SZIsnow at the global scale (Fig. 5a and b). The Hovmöller

diagram (Fig. 5a) shows the distribution of the difference be-
tween the r of the SZIsnow–SWI and that of the SZI–SWI for
1–48-month timescales across different latitudes. It is clear
that the high-value zonal mean difference mainly centers in
the interval of 50–65◦ N. This indicates that the SZIsnow out-
performed the SZI within this 15◦ interval in high-latitude
areas. In contrast, the remaining regions, outside of this in-
terval, show only small magnitude differences. In addition, as
shown in Fig. 5b, the improvement of the SZIsnow varies over
different timescales; it performs better over timescales in the
range of 3–12 months. Such spatial patterns, as shown in
Fig. 5a and b, emphasize the physical improvement in terms
of snow processes in the SZIsnow construction compared to
the SZI. This evaluation shows the appropriate performance
of the SZIsnow at the global scale.

As the three-pole region is a focus of this study, we specif-
ically compared the SZIsnow and SZI over the Arctic region,
where the latitude is larger than 66◦33′ N. Figure S4a and b in
the Supplement present the spatial distributions of the r of the
SZIsnow–SWI and SZI–SWI, respectively, over a 12-month
timescale. The two maps show similar spatial patterns for
the SZIsnow and SZI, yet the r of the SZIsnow–SWI is larger
than that of the SZI–SWI over the majority of the Arctic re-
gion, indicated by the positive difference shown in Fig. 5c.
Once again, the SZIsnow is seen to outperform the SZI over
the Arctic region, which is consistent with the findings from
the global evaluation shown in Fig. 5a and b. Additionally,
the relationship of area-averaged r and timescales is shown
in Fig. 5d. The maximum r appears when the timescale is
12 months, and the relative difference between the r of the
SZIsnow–SWI and that of the SZI-SW (i.e., the improvement
of the SZIsnow) shows a rapid growth moving from 1- to 12-
month timescales (Fig. 5d, insert plot). The results demon-
strate that the SZIsnow dataset performs well over the Arctic
region.

The risk of drought on the Tibetan Plateau, the world’s
third pole, can affect the water supplies of billions of peo-
ple. Figure 6 shows the capability of the SZIsnow and SZI to
capture drought at various temporal scales over the Tibetan
Plateau. Both the SZIsnow and SZI have high r values with
the SWI over a large part of the Tibetan Plateau. The r of the
SZIsnow–SWI is larger than 0.6 across 68.96 % of the entire
Tibetan Plateau, and for the SZI–SWI this value is 61.93 %
(Fig. 6, left and central columns). The area-averaged r of
the SZIsnow–SWI is 0.72, and that of the SZI–SWI is 0.65
over a 12-month timescale, equating to an improvement of
10.77 % for the SZIsnow. Moreover, the phenomenon that the
SZIsnow outperforms the SZI is clearly shown in the right
column of Fig. 6. The largest improvement is seen mainly
in the northwest corner and southeastern part of the Tibetan
Plateau, where the largest snow depths are also seen (Dai
et al., 2017). Thus, the SZIsnow dataset is a reliable resource
to quantify drought across the Tibetan Plateau.
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Figure 5. Performance of the SZIsnow over different latitudes (a, b) and specifically over the Arctic region (c, d). Here the differences between
the correlation coefficients of the SZIsnow–SWI and those of the SZI–SWI for different timescales were used to compare their performance.
(a) The Hovmöller diagram (timescale× latitude) shows the differences averaged by latitude from 55◦ S to 85◦ N for timescales ranging
from 1 to 48 months. (b) Distribution of the difference for specific timescales (6, 9, 12, and 15 months) with changing latitude. (c) Spatial
distribution of the differences between the correlation coefficients of the SZIsnow–SWI and those of the SZI–SWI over a 12-month timescale
in the Arctic region. (d) Variations in correlation coefficients averaged over the Arctic region for various temporal scales. The shading denotes
the range of correlation coefficients. The upper (lower) boundary is the maximum (minimum) value. The inset shows the change of relative
difference (%) for these temporal scales.

4.2 Historical trends in global drought

The proposed SZIsnow dataset was applied to investigate the
historical changes in global drought between 1948 and 2010.
The spatial distribution of the linear annual trend in the
SZIsnow over different timescales (i.e., 3, 6, 12, 15 months) is
shown in Fig. 7. The SZIsnow at each temporal scale demon-
strates a similar global pattern, except for differences in the
magnitude of dryness or wetness trends. Overall, 59.66 % of
the land area of the Earth displays a drying trend, and the re-
maining 40.34 % exhibits a wetting trend. As shown in Fig. 7,
the SZIsnow shows a drying trend over eastern Asia, north-
ern India, most of the Arabian Peninsula and Africa, eastern
Australia, and central and southern Europe; increased wet-
ness was found over most of the United States, a large part
of South America, and central Australia. Our study excluded

Greenland due to its sizable ice-capped area, about 80 % of
the island. Additionally, the drying trend tends to increase as
the timescale becomes longer. For instance, the drying rate of
the SZIsnow over eastern Asia becomes larger as its timescale
increases. Moreover, our results are broadly consistent with
the findings of Dai (2013), who analyzed the trend of global
drought using the self-calibrated PDSI. This also implies that
the SZIsnow is a useful proxy of aridity changes.

We further examined variations in the area of global land
under drought (Fig. 8a). The area under drought shows
an increasing trend with an average rate of increase of
0.05 %yr−1. Large fluctuations began to emerge from 1975,
and Earth’s drought area increased rapidly in the early 1980s.
This growth was largely attributed to the leap in temperature
caused by the 1982–1983 El Niño (Timmermann et al., 1999;
Dai, 2011b). The maximum extent of drought area appeared

https://doi.org/10.5194/essd-14-2259-2022 Earth Syst. Sci. Data, 14, 2259–2278, 2022



2270 L. Tian et al.: A global drought dataset of standardized moisture anomaly index

Figure 6. Spatial distribution of correlation coefficients of the SZIsnow–SWI (left column, a, d, g, j) and those of the SZI–SWI (middle
column, b, e, h, k), and the differences between the two (right column, c, f, i, l show the left column minus middle column) over the Tibetan
Plateau at different timescales (6, 9, 12, and 15 months).

in 1991. Moreover, the temporal change in the global mois-
ture anomaly Zsnow is shown in Fig. 8b. The Zsnow displays
a global downward trend of −0.11 mmyr−1 for the period
1948–2010, which indicates the increasing global deficit be-
tween water supply and water demand. Overall, our analysis
based on the SZIsnow dataset revealed increased aridity over
many land areas and severe and widespread droughts over
the Earth since 1948.

4.3 Global and continental large-scale drought events

4.3.1 Statistics of large-scale drought events

Using the SZIsnow dataset proposed in this study, we an-
alyzed global and continental large-scale drought events
(hereinafter referred to as drought) from 1948 to 2010 by
leveraging the SAD drought diagnosis method. There have
been 525 droughts with an area larger than 500 000 km2

globally during the study period, as shown in Table 3. Also
outlined in Table 3 is detailed information for the droughts

with the longest duration and the largest area, respectively,
for each continent. Droughts with a duration longer than
6 months account for nearly 70 % of all droughts. The longest
drought that occurred in North America lasted 37 months
from 1964 to 1967. The most spatially extensive drought
occurred over Asia in August 2008 (drought lasted from
November 2007 to June 2009) and covered an area of ap-
proximately 11× 106 km2 (roughly 100 times Guatemala’s
national territory area of 108 889 km2). For comparison, the
most extensive drought in Oceania covered nearly 66 % of
its continental area (roughly 54 times the size of Guatemala).
Here Oceania is defined as Australia, New Zealand, Papua
New Guinea, and the Pacific Islands.

We further ranked the top five droughts in terms of du-
ration and maximum spatial extent for each continent (Ta-
ble 4). For Asia, the longest drought lasted 28 months, and
its droughts commonly extend across larger areas compared
to other continents. The top five longest droughts in Europe
had a relatively short duration compared to other continents.
In Africa, the longest drought lasted 27 months, and the max-
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Figure 7. Spatial distribution of the linear annual trend (changes per 50 years) in the SZIsnow during the period 1948–2010, at various
timescales. The stippling denotes the trend being statistically significant at the 95 % confidence level.

Table 3. Summary of large-scale drought occurrence for each continent. In the fourth column, the duration of the drought is shown in months,
and the period is listed in parentheses. In the final column, the spatial extent is given as a percentage of the total continental area, and the
date at which the maximum spatial extent occurred is listed in parentheses.

Region Number of droughts Number of droughts Longest duration Maximum spatial extent (km2)
≥ 6 months (months)

Asia 168 108 28 (1983–86) 10 828 203 (24.3 %, Aug 2008)
Europe 30 19 11 (2005) 3 667 854 (36.1 %, Sep 1992)
Africa 98 66 27 (1993–95) 9 953 960 (32.9 %, Aug 1984)
Oceania 39 30 21 (1976–78) 5 897 639 (65.7 %, Sep 1994)
North America 104 71 37 (1964–67) 7 339 018 (30.3 %, Apr 2000)
South America 86 65 29 (1957–59) 9 510 882 (53.3 %, Oct 1963)

imum extent was 10× 106 km2. Of all analyzed droughts,
60 % occurred in the period from the mid-1980s to the mid-
1990s; it is clear that there was a prolonged drought spell
over this period. Moreover, the droughts in North America
always have a longer duration compared to other continents.

4.3.2 Temporal variability of large-scale drought events

The temporal variation in area-averaged SZIsnow, the area
under drought (pixels with SZIsnow less than −1.0), and
contiguous areas under drought are shown and analyzed in
Fig. 9, in which the vertical pink dashed lines mark the
top five most extensive droughts in each continent. We also

selected three of the top five most extensive droughts to
show their spatial distribution (Fig. 10). The global averaged
SZIsnow displays a significant downward trend of −0.02 per
decade (95 % confidence level, Fig. 9a), which indicates a
global drying trend. This drying trend was closely related
to increases in temperature over the study period. Accord-
ingly, the global area under drought shows an upward trend
(0.31 % per decade) and approaches a plateau over the period
1985–1995. It is clear that the contiguous area under drought
demonstrates a similar pattern of variability to the area under
drought for each continent and globally. Such similarity im-
plies the large-scale drought identified by the SAD method
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Figure 8. Time series of (a) global dry land area (%yr−1) and
(b) Zsnow (mmyr−1) between 1948 and 2010. The dry land area
was calculated based on the SZIsnow at a 12-month timescale. The
dashed lines denote the linear trends.

can largely reflect the variability of the global area under
drought.

Asia experienced a drying trend, based on the area-
averaged SZIsnow, during the period 1948–2010 (Fig. 9b); the
contiguous area under drought ranges from 0 % to 29.30 %,
with an average of 10.14 %. With large fluctuation, droughts
in early 1990s are salient features of the time series of Asia,
and three of the five droughts with the largest spatial ex-
tent occurred during the 1990s. The drying trend in east Asia
was mainly caused by weakening summer monsoons owing
to changes in the El Niño–Southern Oscillation (ENSO) and
the Pacific Decadal Oscillation (Zhang and Zhou, 2015). The
large-scale severe droughts in the Middle East and southwest
Asia were closely related to La Niña (Barlow et al., 2016).
Additionally, the temporal variability within Asia is compa-
rably small, mainly due to the dampening effect of its large
spatial scale (Sheffield et al., 2009). In Europe, high variabil-
ity of the contiguous area in drought was detected in the first
half of the 1950s (Fig. 9c). The drought condition alleviated
somewhat between the mid-1950s and the mid-1970s. The
high variation was repeated in the 1990s and was associated
with multiple periods of droughts with large spatial extent.
In particular, large-scale droughts identified by the SZIsnow
occurred with a greater frequency over central Europe com-
pared to other parts of Europe. The leading driver behind
this pattern was the significant increase in potential evap-

Table 4. Top five drought events in each continent, ranked by dura-
tion, or by maximum spatial extent. The duration and spatial extent
are listed in parentheses after the period of each drought event.

Region Duration (months) Spatial extent (106 km2)

Asia 1983–1986 (28) 2007–2009 (10.8)
2005–2007 (27) 1988–1989 (10.8)
2007–2009 (20) 1990–1991 (8.8)
1996–1998 (20) 1972–1973 (8.4)
1992–1994 (20) 1996–1998 (8.0)

Europe 2005 (11) 1992–1993 (3.7)
1992–1993 (11) 1990–1991 (3.3)
1990–1991 (11) 1993 (3.2)

2009–2010 (9) 2005–2006 (3.1)
1993 (9) 1973 (2.5)

Africa 1993–95 (27) 1984–1985 (10.0)
1980–1982 (25) 1982–1984 (9.6)
1991–1993 (22) 1987–1988 (9.6)
1989–1991 (19) 1991–1992 (6.8)
1985–1987 (19) 1982–1983 (6.4)

Oceania 1976–1978 (21) 1994–1995 (5.9)
1951–1953 (21) 1964–1965 (5.4)
2006–2007 (16) 1961–1962 (5.1)
1961–1962 (14) 1951–1953 (5.0)
1972–1973 (13) 1972–1973 (5.0)

North
America

1964–1967 (37) 1998–2000 (7.3)
1959–1962 (27) 1976–1977 (6.6)
1979–1982 (26) 1962–1964 (6.6)
2001–2002 (24) 1952–1953 (6.3)
1998–2000 (24) 1979–1982 (6.1)

South
America

1957–1959 (29) 1963–1964 (9.5)
1960–1962 (25) 1997–1998 (7.0)
1995–1996 (24) 1988–1989 (6.5)
1991–1993 (23) 1991–1993 (5.8)
2008–2009 (20) 1957–1959 (5.2)

otranspiration (Spinoni et al., 2015a). The findings in Eu-
rope, based on SZIsnow, are broadly in agreement with other
studies (Lloyd-Hughes and Saunders, 2002; Spinoni et al.,
2015b).

In Africa, the area-averaged SZIsnow exhibits a visible dry-
ing trend from 1948 to 2010 (Fig. 9d). The time series of
drought areas underwent a gradual climb and achieved a
maximum value in the mid-1980s, with a severe drought pe-
riod then lasting until the mid-1990s. All top five spatially
extensive droughts are concentrated within this period and
are commonly located to the south of the Sahara (Fig. 10g–
i). Our results for Africa are generally similar to previ-
ous studies, which concluded that ENSO and sea surface
temperature (SST) are the main driving forces of droughts
across the entire continent (Masih et al., 2014). For Ocea-
nia, strong drought spells occurred frequently from the 1950s
to the 1970s (Fig. 9e). This continent is characterized by
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Figure 9. Temporal variation in monthly area-averaged SZIsnow
(black lines), the area in drought (pixels with SZIsnow<−1, red
lines), and contiguous area in drought (green lines) for the world,
Asia, Europe, Africa, Oceania, North America, and South America.
The vertical pink dashed lines mark the top five major large-scale
drought events in each continent.

its high percentage of large-scale drought areas, and multi-
ple droughts account for more than 40 % of the total conti-
nent (Fig. 10j–l). The characteristics of historical droughts
in Oceania are associated with variability of global climate,
for instance, the Interdecadal Pacific Oscillation and South-
ern Annular Mode (Askarimarnani et al., 2021; Kiem et al.,
2016).

In North America (Fig. 9f), the evident drought spells
in the 1950s were captured by the SZIsnow, and the largest
drought area covered 37 % of the entire continent. As shown
in Fig. 10o, the drought in March 1964 covered most of the
United States. Previous studies confirmed that the tropical
part of the SST anomalies was primarily related to the most
notable droughts of the 1950s in the United States (Schu-
bert et al., 2004). Another two obvious drought signals are
found in the late 1970s and 1990s. The droughts detected
here with the SZIsnow show close correspondence to the find-
ings of previous studies (Su et al., 2021; Andreadis et al.,
2005). Moreover, notable distinct dry spells emerged in the
1960s and 1990s in South America (Fig. 9g). For instance,
the largest drought in October 1963 covered up to 54 % of
this continental area (Fig. 10r) and covered nearly the whole
of Brazil. After a strong dry spell in 1998, South America
exhibited a low percentage of drought extent until the end of
the studied time series.

5 Discussion and conclusions

This study proposes a drought index dataset on the basis of a
new drought index, SZIsnow, by incorporating snow dynam-
ics into the SZI. Results from the evaluation of the SZIsnow
dataset suggest that consideration of snow processes can im-
prove the performance of the SZIsnow. The improvement is
remarkable when the SZIsnow is applied in snow-covered ar-
eas, including high-latitude and high-altitude areas. Our re-
sults highlight the importance of snow in drought develop-
ment because it can greatly affect the onset, cessation, sever-
ity, location, and duration of drought (Huning and Aghak-
ouchak, 2020; Staudinger et al., 2014). Snow serves as the
main water resource for many regions of the world (e.g.,
western United States) through its accumulation in the cold
season and melting in the warm season. However, climate
change is altering the effect of snow on the availability of
water resources. Increasing temperature leads to less snow-
fall and earlier snowmelt and further results in a mismatch
between the peak of streamflow and that of water demand,
which can increase the drought risk over these regions (Adam
et al., 2009; Özdoğan, 2011). The results of the present work
underscore the importance of considering snow processes in
drought quantification under global climate change.

Using the proposed SZIsnow dataset, this study emphati-
cally analyzed the severity–area–duration of global and con-
tinental large-scale drought. The SZIsnow dataset achieved a
satisfactory performance in monitoring the propagation of
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Figure 10. Spatial distribution and severity of the major large-scale drought events for Asia, Europe, Africa, Oceania, North America, and
South America. Three out of the top five drought events were selected here for each continent. The geographic coordinate system is used in
this figure.
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large-scale contiguous droughts through space and time. Us-
ing the SAD drought diagnosis method, the SZIsnow dataset
appropriately captures the numbers and variability of histori-
cal large-scale contiguous droughts for each continent. These
captured drought events are broadly aligned with findings
from previous research (Zhang and Zhou, 2015; Mctainsh
et al., 1989; Kiem et al., 2016; Lloyd-Hughes and Saunders,
2002). Such performance implies the present dataset can be
applied globally to understand the mechanisms behind large-
scale droughts. It also raises confidence in the ability of the
SZIsnow to predict drought events, especially those with ex-
tensive spatiotemporal influence. Moreover, our results indi-
cate that large-scale contiguous droughts control, to a large
extent, the character of the variation in global drought. Thus,
the capacity to track the evolution of large-scale droughts in
space and time is a crucial aspect for the assessment of a
drought index.

The SZIsnow absorbs the advantages of both the PDSI and
SPEI and can be used to monitor multitype droughts at var-
ious temporal scales. Compared to the PDSI, it considers
more hydrological components related to water supply and
demand and quantifies their contribution to water demand
by weight. Such consideration enhances the physical realism
of drought quantification, particularly over high-latitude and
high-altitude regions that usually receive substantial snow-
fall (Zhang et al., 2019). The enhancement achieved by the
SZIsnow implies that more key physical processes should be
considered when constructing a drought index, rather than
using a simple generalization, although we admit that a so-
phisticated index is always limited by insufficient observa-
tion to some extent. However, data assimilation serves as a
new way to overcome the difficulty of insufficient observa-
tion (Mishra and Singh, 2011). This new method combines a
multi-source dataset and an advanced land surface model to
provide optimal values of variables related to drought, which
is the reason why we used GLDAS-2 as the forcing means of
SZIsnow calculation. Therefore, the improvement of SZIsnow
indicates that more attention should be paid to the combina-
tion of the drought index and the data assimilation system
(DAS) or LSM.

The combination of the SZIsnow and the DAS provides the
possibility to track droughts over ungauged areas. As more
models (e.g., crop model, wildfire model, root model) have
been coupled with the DAS, the combination between the
SZIsnow and the DAS has become more physically realis-
tic. Yet, uncertainties from the DAS will inevitably be in-
troduced into the SZIsnow, which undermines the reliability
of the SZIsnow. Previous studies have often obtained dissatis-
factory results during the validation of GLDAS-2 (e.g., Fa-
tolazadeh et al., 2020). These uncertainties originate from
incomplete model structure, forcing data biases, and biases
in parameter estimation (Qi et al., 2020). However, recent
developments in LSMs, DAS techniques, and computational
power are helpful in resolving issues associated with uncer-
tainty. Thus, determining how to introduce uncertainty quan-

tification when utilizing the SZIsnow to assess drought is a
future goal of ours.

The SZIsnow is a comprehensive drought index because it
incorporates different aspects of the hydrologic cycle, which
provides a clear-cut way to synthesize different kinds of in-
formation related to drought into a simple message. Such
synthesizing capacity is particularly crucial because droughts
have a broadly adverse influence on agricultural water, mu-
nicipal water, energy supply (hydropower), and human and
animal safety. Thus, the SZIsnow has a high potential to be
utilized for drought management. Currently, however, the
SZIsnow is mostly used only by the scientific community (Lu
et al., 2020; Ayantobo and Wei, 2019) and rarely used by
decision- and policy-makers. One reason for this is that the
acquisition of best-fit thresholds in the SZIsnow, for one type
of drought over an area with a specific climate regime, re-
quires a trial-and-error approach and takes time. On the other
hand, drought management is a synergistic effort involving a
variety of sectors and requires joint operations of these sec-
tors. Additionally, the complexity of calculations is a limita-
tion of the SZIsnow. Therefore, it is necessary to strengthen
the user-friendliness of the SZIsnow and collaborate closely
with government departments related to drought manage-
ment.

6 Data availability

All datasets used in this work are freely available. The
SZIsnow dataset proposed by this work is a good contribu-
tion to the study of climate change, ecology, and hydrology.
It is especially helpful for research focusing on spatiotem-
poral dynamics of drought, the underlying mechanisms of
drought evolution, and the development of drought indices.
The dataset contains 48 individual files with timescales of
1–48 months and has been archived in the Network Com-
mon Data Form (NetCDF) format. The monthly SZIsnow in
each file covers the Earth’s land area and has a spatial res-
olution of 0.25◦ from 1948 to 2010. The SZIsnow dataset
is freely downloadable from the Zenodo repository at the
following DOI: http://doi.org/10.5281/zenodo.5627369 (Wu
et al., 2021). In addition, we also published the dataset to
the National Tibetan Plateau/Third Pole Environment Data
Center, which has been accredited by the Earth System Sci-
ence Data and specializes in collecting, integrating, and pub-
lishing geoscientific data on and surrounding the Tibetan
Plateau and the three poles (Li et al., 2020; Pan et al.,
2021). The SZIsnow dataset can be downloaded from this
data center at the following URL: http://data.tpdc.ac.cn/en/
data/b039fde6-face-4d24-af45-d238a6af18b7/ (last access:
11 May 2022).
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7 Summary

In the current study, we have produced a global monthly
SZIsnow dataset over 1–48-month timescales from 1948–
2010. This dataset is an important contribution to drought
quantification and development of drought indices because it
is built on the SZIsnow, a multitype and multiscalar drought
index absorbing the strengths of the SPEI and PDSI. Our
SZIsnow dataset has achieved a remarkable improvement in
drought assessment across the world, particularly for high-
latitude and high-altitude areas. This improvement implies
that consideration of snow processes can improve the per-
formance of a drought index. Moreover, the SZIsnow dataset
can successfully monitor the spatiotemporal propagation of
large-scale drought events. We expect this dataset could serve
as a valuable resource for drought studies, further contribut-
ing to promoting our understanding of the mechanisms be-
hind global drought dynamics.
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