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Abstract. Central Asia (referred to as CA) is one of the climate change hot spots due to the fragile ecosystems,
frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need
of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments
in this region. In this study, a high-resolution (9 km) climate projection dataset over CA (the HCPD-CA dataset)
is derived from dynamically downscaled results based on multiple bias-corrected global climate models and con-
tains four geostatic variables and 10 meteorological elements that are widely used to drive ecological and hydro-
logical models. The reference and future periods are 1986–2005 and 2031–2050, respectively. The carbon emis-
sion scenario is Representative Concentration Pathway (RCP) 4.5. The evaluation shows that the data product
has good quality in describing the climatology of all the elements in CA despite some systematic biases, which
ensures the suitability of the dataset for future research. Main features of projected climate changes over CA in
the near-term future are strong warming (annual mean temperature increasing by 1.62–2.02 ◦C) and a significant
increase in downward shortwave and longwave flux at the surface, with minor changes in other elements (e.g.,
precipitation, relative humidity at 2 m, and wind speed at 10 m). The HCPD-CA dataset presented here serves
as a scientific basis for assessing the potential impacts of projected climate changes over CA on many sectors,
especially on ecological and hydrological systems. It has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759
(Qiu, 2021).

1 Introduction

Central Asia (referred to as CA, Fig. 1a) has complex terrain
and diverse climates and is among the most vulnerable re-
gions to climate change due to fragile ecosystems (Zhang et
al., 2016; Seddon et al., 2016; Gessner et al., 2013), frequent
natural hazards (Thurman, 2011; Burunciuc, 2020), strained
water resources (Frenken, 2013), and accelerated glacier
melting (Narama et al., 2010; Sorg et al., 2012), which un-
derscores the need to achieve high-resolution climate pro-
jection datasets for application to vulnerability, impacts, and
adaption assessments. Global climate models (GCMs) can
describe the response of the global circulation to large-scale
forcing, such as greenhouse gases and solar radiation (Giorgi,
2019). But their horizontal resolutions are too coarse to ac-
count for the effects of local-scale forcing and processes,

such as complex topography, land cover distribution, and dy-
namical processes occurring at the mesoscale (Giorgi et al.,
2016; Qiu et al., 2017; Torma et al., 2015). To obtain the ac-
curate information on region-scale climate change, dynami-
cal downscaling has been developed and widely applied in
regional climate projections over many areas, like eastern
Asia (Zou and Zhou, 2016; Tang et al., 2016; Jung et al.,
2015; Jiang et al., 2021; Ji and Kang, 2013; Hong et al., 2017;
Guo et al., 2021; Bao et al., 2015; Zou and Zhou, 2017),
North America (Wang and Kotamarthi, 2015; Racherla et al.,
2012; Pierce et al., 2013; Giorgi et al., 1994; Di Luca et al.,
2013, 2012; Wang et al., 2015), and Europe (Vautard et al.,
2013; Jacob et al., 2014; Kotlarski et al., 2014; Fischer et
al., 2015; Kotlarski et al., 2015; Torma et al., 2015; Giorgi et
al., 2016; Zittis et al., 2019; Jacob et al., 2020; Déqué et al.,
2007; Gao et al., 2006; Im et al., 2010). Some efforts have
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also been devoted to regional climate projection in CA with
the dynamical downscaling method (Zhu et al., 2020; Ozturk
et al., 2017; Mannig et al., 2013). However, their resolutions
are still low (≥ 30 km), especially for the mountainous areas
in the southeast. Moreover, most of the previous regional cli-
mate model (RCM) simulations in CA used a single GCM
as the lateral boundary conditions, which harbor high uncer-
tainties in the projected climate changes.

The present authors carried out a study that involves the
dynamical downscaling of multiple bias-corrected GCMs for
the CA region with an unprecedented horizontal resolution of
9 km. The future simulation period is set as 2031–2050 un-
der Representative Concentration Pathway (RCP) 4.5, with
the reference period of 1986–2005. The simulated surface
air temperature and precipitation have been evaluated in a re-
cent study (Qiu et al., 2021), and meanwhile basic features of
the projected climate changes have been demonstrated. The
results show that the high-resolution RCM simulations can
well capture the local temperature and precipitation in CA
and detect significant warming, severer heat waves, and drier
conditions in this region in the near-term future.

To satisfy the urgent need of high-resolution climate
data for assessing the potential impacts of the projected
climate changes over CA on many sectors, especially on
ecological and hydrological systems, the HCPD-CA (high-
resolution climate projection dataset in CA) dataset is de-
rived from the 9 km resolution downscaled results, which
includes 4 geostatic (time-invariant) variables and 10 me-
teorological elements (Table 1) that are widely used to
drive ecological and hydrological models. The geostatic
variables are terrain height (HGT, m), land use category
(LU_INDEX, 21 categories), land mask (LANDMASK, 1
for land and 0 for water), and soil category (ISLTYP, 16
categories). The meteorological elements are daily precipita-
tion (PREC, mm d−1), daily mean/maximum/minimum tem-
perature at 2 m (T2MEAN/T2MAX/T2MIN, K), daily mean
relative humidity at 2 m (RH2MEAN, %), daily mean east-
ward and northward wind at 10 m (U10MEAN/V10MEAN,
m s−1), daily mean downward shortwave/longwave flux at
surface (SWD/LWD, W m−2), and daily mean surface pres-
sure (PSFC, Pa). The present paper is to introduce this dataset
to the community. Section 2 describes the regional model and
experiments. Model evaluation and projected changes in the
meteorological elements are in Sect. 3. Added values of us-
ing 9 km resolution with respect to using coarser resolutions
are discussed in Sect. 4 as well as uncertainties of the evalu-
ation and the HCPD-CA dataset. Section 5 describes access
to the data product and all codes and tools. Main results are
concluded in Sect. 6.

2 Model and experiments

2.1 Regional model

The Weather Research and Forecasting (WRF) model with
version 3.8.1 (Skamarock et al., 2008) is used to downscale
the GCMs. It has two domains (Fig. 1b). The outer one cov-
ers a large region, with a 27 km resolution and 290× 205
grids. The inner one covers the CA region, with a 9 km reso-
lution and 409× 295 grids. The model has 33 levels in the
vertical direction with its top fixed at 50 hPa. Its physical
schemes are set based on our previous work about the sen-
sitivity analysis of physical parameterizations in the WRF
model for local climate simulations in CA (Wang et al.,
2020). Details about the optimal physical schemes are in Qiu
et al. (2021). Spectral nudging with a weak coefficient of
3× 10−5 is applied in the outer domain (not in the inner one),
which prevents possible model drift during the long-term in-
tegration by relaxing the model simulations of wind, temper-
ature, and moisture toward the driving conditions. In addition
to greenhouse gases and solar constant, the WRF model also
considers other external forcing, such as aerosols, volcanoes,
and ozone, to make its inner external forcing consistent with
the driving GCMs.

The geogrid program in the WRF model is to de-
fine the simulation domains and interpolate various ter-
restrial datasets to the model grids (Wang et al., 2007).
First, geogrid computes the latitude, longitude, and map
scale factors at every grid point. Then, it interpolates
terrain height, land use category, soil category, and
other time-invariant data to the model grides. Global
datasets of each of these fields are provided through
the WRF download page (https://www2.mmm.ucar.edu/wrf/
users/download/get_sources_wps_geog.html, last access: 5
May 2022). The HCPD-CA dataset contains four of the
geostatic variables. In them, the terrain height (HGT) data
(Fig. S1 in the Supplement) are from the United States Geo-
logical Survey (USGS) GTOPO30 elevation dataset, the land
use category (LU_INDEX) data (Table S1 and Fig. S2 in
the Supplement) are from the Moderate Resolution Imaging
Spectroradiometer (MODIS) 21 category land dataset, the
soil category (ISLTYP) data (Table S2 and Fig. S3) are from
the global 5 min United Nation FAO soil category dataset,
and the land mask (LANDMASK) data (Fig. S4) are calcu-
lated based on LU_INDEX with the condition that the value
of a grid cell is set as 1 (0) if land (water) area at least ac-
counts for 50 %.

2.2 Bias-correction technique

MPI-ESM-MR (referred to as MPI, Table 2), CCSM4
(CCSM), and HadGEM2-ES (Had) from Phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5) are selected to
drive the regional model. The reasons why we chose these
three GCMs are as follows: they can provide all the vari-
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Table 1. Geostatic variables and meteorological elements in the HCPD-CA dataset.

Name Description Unit

HGT Terrain height m
LU_INDEX Land use category –
LANDMASK Land mask (1 for land, 0 for water) –
ISLTYP Soil category –
PREC Daily precipitation mm d−1

T2MEAN Daily mean temperature at 2 m K
T2MAX Daily maximum temperature at 2 m K
T2MIN Daily minimum temperature at 2 m K
RH2MEAN Daily mean relative humidity at 2 m %
U10MEAN Daily mean eastward wind at 10 m m s−1

V10MEAN Daily mean northward wind at 10 m m s−1

SWD Daily mean downwelling shortwave flux at bottom W m−2

LWD Daily mean downwelling longwave flux at bottom W m−2

PSFC Daily mean surface pressure Pa

Figure 1. Central Asia (referred to as CA) and its surroundings (a), nested domains in the WRF model (b), and climate subregions in CA (c).
In (a), stations with records of daily mean temperature and precipitation are marked by stars and circles, respectively. In (c), according to
Qiu et al. (2021), the CA region is divided into four climate sub-regions: northern CA (NCA), middle CA (MCA), southern CA (SCA), and
the mountainous areas (MT).

https://doi.org/10.5194/essd-14-2195-2022 Earth Syst. Sci. Data, 14, 2195–2208, 2022



2198 Y. Qiu et al.: HCPD-CA: high-resolution climate projection dataset in central Asia

ables that are needed to drive the regional model; they have
relatively high horizontal resolutions (Table 2) among the
CMIP5 models; they have fairly good performance in sim-
ulating the local temperature and precipitation in CA (see
Figs. S1 and S3 in Qiu et al., 2021), though systematic bi-
ases exist partially due to their coarse resolutions. Since all
GCMs suffer from some forms of bias (Done et al., 2015;
Ehret et al., 2012; Liang et al., 2008; Xu and Yang, 2012) that
may propagate down to the RCM outputs, the bias-correction
technique developed by Bruyère et al. (2014) is applied in
this study to correct the climatology of the GCMs and mean-
while allow synoptic and climate variability to change.

Six-hourly GCM data in a 25-year base/future pe-
riod (1981–2005/2026–2050), hereafter referred to as
GCMBP/GCMFP, are broken down into the 25-year mean 6-
hourly annual cycle over the base period (GCMBP) plus a
6-hourly perturbation term (GCM′BP/GCM′FP):

GCMBP = GCMBP+GCM′BP (1)

GCMFP = GCMBP+GCM′FP. (2)

The ERA-Interim reanalysis data (Dee et al., 2011, Table 2)
as “observations” (Obs) are similarly broken down into the
mean annual cycle (Obs) and a perturbation term (Obs′):

Obs= Obs+Obs′. (3)

The bias-corrected GCM data for the base/future period,
GCM∗BP/GCM∗FP, are then constructed by replacing GCMBP
from Eqs. (1) and (2) with Obs from Eq. (3):

GCM∗BP = Obs+GCM′BP (4)

GCM∗FP = Obs+GCM′FP. (5)

Equations (1)–(5) are applied to all the variables required
to generate the initial and lateral boundary conditions for
the WRF model: zonal and meridional wind, geopotential
height, air temperature, relative humidity, sea surface tem-
perature, mean sea level pressure, etc. In a recent study (Qiu
et al., 2021), we conducted the sensitivity analysis of using
the bias-correction technique, to quantify its contribution to
improving the RCM simulation. The results show that using
the bias-correction technique largely reduced the biases in
the simulated annual and seasonal precipitation over CA rel-
ative to not using it and slightly improved the model’s skill
in simulating the spatial pattern of precipitation (see Fig. 4 in
Qiu et al., 2021).

The bias-corrected CCSM4 outputs (DOI:
https://doi.org/10.5065/D6DJ5CN4, Monaghan et al.,
2014) are produced by Bruyère et al. (2014) with a 25-year
base period (1981–2005) during the bias correction. In this
study, we produced the bias-corrected MPI-ESM-MR and
HadGEM2-ES outputs with the same base period as them.
Note that the base period used during the bias correction
is not necessary to be consistent with the reference period
(1986–2005) of the RCM simulations.
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Figure 2. Flow chart for the HCPD-CA dataset.

2.3 Experiments

The RCM simulations with the bias-corrected GCMs
(MPI, CCSM, and Had) as the driving data are re-
ferred to as WRF_MPI_COR, WRF_CCSM_COR, and
WRF_Had_COR, respectively (“COR” means using the
bias-correction technique). The reference-period simulations
are from 1 December 1985 to 31 December 2005, and the
future runs are from 1 December 2030 to the end of 2050 un-
der a moderate carbon emission scenario RCP 4.5, which is
arguably the most policy-relevant scenario as the nationally
determined contributions (NDCs) greenhouse gas emissions
framework would produce similar temperatures trajectories
(Gabriel and Kimon, 2015). The first month in each simula-
tion is discarded as spin-up. Figure 2 shows the flow chart
to produce the HCPD-CA dataset. The procedure can be di-
vided into four steps. First, a sensitivity analysis of physical
parameterizations in the WRF model was done and then we
identified the optimal physical parameterization combina-
tion for WRF for regional climate studies over CA. Second,
the original GCMs are bias corrected and the bias-corrected
GCMs are used to drive the WRF model with the optimal
physical schemes. Third, we conducted the dynamical down-
scaling over CA and produced 9 km resolution downscaled
results. At last, the HCPD-CA dataset with certain variables
and standard file formats is derived from the downscaled re-
sults.

3 Results

3.1 Model evaluation

In Qiu et al. (2021), the key meteorological elements, sur-
face air temperature and precipitation in the RCM simula-
tions, have been evaluated with both gridded observations
and stations’ data (see Sect. 3.1 in the paper) and the results
show good skills of the regional model in simulating the lo-
cal temperature and precipitation in CA during the reference
period (1986–2005). Accordingly, the 10 meteorological el-

ements (including surface air temperature and precipitation)
in the HCPD-CA dataset are evaluated here, to show the va-
lidity and applicability of the dataset. Note that daily mean
wind speed at 10 m (referred to as WS10MEAN) instead of
U10MEAN and V10MEAN is evaluated.

Version 4 of the Climatic Research Units gridded Times
Series (CRU TS v4, Harris et al., 2020, Table 2) is applied
to evaluate T2MEAN/T2MAX/T2MIN, and the land compo-
nent of the fifth generation of European reanalysis (ERA5-
Land, Hersbach et al., 2020, Table 2) is used as “obser-
vations” to evaluate other elements. Before the evaluation,
the RCM outputs are interpolated to the grides of CRU TS
v4 (ERA5-Land) with the distance-weighted average (bilin-
ear) method. We found that both on the annual and sea-
sonal scales, the interpolation methods conserved the area-
averaged values in the model outputs with a bias of less than
1 %–2 % between the original and new grids. We thus con-
cluded that our choice of interpolation procedure does not
affect the main conclusions of our work.

The high-resolution downscaled results
(WRF_MPI_COR, WRF_CCSM_COR, and
WRF_Had_COR) are very close to the observational
data in simulating the climatology of all the elements in
CA on both annual and seasonal scales (Figs. 3–5, seasonal
results not shown). For instance, the spatial correlation
coefficients (SCCs) of all the annual mean values (except
WS10MEAN) over CA are larger than 0.80. The SCCs of
annual mean WS10MEAN over CA are relatively small, in
a range of 0.54–0.64. The simulated annual mean T2MEAN
over the very north of Kazakhstan and the Pamirs has cold
bias and that over other areas generally has warm bias
(Fig. S5a–c). However, the bias over most of CA is within
−2 to 2 ◦C. The annual mean RH2MEAN is generally
underestimated over CA except some areas in the northern
part and the Aral Sea (Fig. S6a–c). The RCM simulations
commonly overestimate the annual mean WS10MEAN over
the mountainous areas (Fig. S6d–f). Stronger annual mean
SWD prevails in CA in each simulation (Fig. S7a–c), with
the mean errors (MEs) over the whole region in a range of
27.72–31.43 W m−2. Meanwhile, the regional model slightly
underestimates annual mean LWD (Fig. S7d–f). The bias
in annual mean PSFC is very small over the majority of
CA (Fig. S7g–i). Table S3 summarizes the statistic metrics
(SCCs, RMSEs, and mean errors (MEs)) of all the annual
mean variables over both CA and its climate subregions
(northern CA (NCA), middle CA (MCA), southern CA
(SCA), and the mountainous areas (MT); see their scopes in
Fig. 1c), to help the readers easily check the quality of this
data product in the areas of interest.

Figure 6 shows mean annual cycle of the monthly values
averaged over CA. It is seen that the model outputs are gen-
erally close to the observations. The warm bias in T2MEAN
mainly occurs during May–August (Fig. 6a). The overesti-
mation of SWD occurs throughout the year, with the bias
larger in the warm seasons than in the cold seasons (Fig. 6e).
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Figure 3. The observed and simulated annual mean T2MEAN and
PREC in central Asia during the reference period (1986–2005). The
spatial correlation coefficient (SCC), mean error (ME), and root
mean square error (RMSE) are listed.

The results of T2MAX and T2MIN are similar to those of
T2MEAN (not shown here).

To sum up, the evaluation shows that the HCPD-CA
dataset has good quality in describing the climatology of all
the meteorological elements in CA despite some systematic
biases (e.g., stronger SWD), which ensures the suitability of
the dataset for assessment of future risks from climate change
in CA.

3.2 Projected climate changes

Figure 7 shows projected changes of the annual mean val-
ues in CA during 2031–2050, relative to 1986–2005. All the
RCM simulations exhibit significant warming over CA in the
near-term future, with the annual mean T2MEAN increasing
by 1.62–2.02 ◦C (Fig. 7a–c, range depending on the simu-
lation). Pronounced warming is found in the north, which
is attributed to the snow and surface albedo feedback (Qiu
et al., 2021). Interestingly, enhanced warming projected in
many mountainous regions around the world (Palazzi et al.,

Figure 4. Same as Fig. 3, but for annual mean RH2MEAN and
WS10MEAN.

2019; Pepin et al., 2015; Rangwala et al., 2013) is not found
in CA (also see Figs. 7–8 in Qiu et al., 2021). It poses the
question of whether the responses of ecological and hydro-
logical systems to future warming in the Tien Shan and the
Pamirs differ from those in other mountains, like the Tibetan
Plateau/Himalayas and the Alps.

The annual mean precipitation (PREC) is projected to
slightly increase by 0.01–0.02 mm d−1 (Fig. 7d–f). However,
changes in few areas passed the significance test. The an-
nual mean RH2MEAN is simulated to slightly decrease by
0.68 %–1.28 % (Fig. 7g–i), which suggests a drier condition
in CA in the coming decades and may affect the physical and
chemical properties of the local vegetation. Changes in wind
speed (WS10MEAN) are inconsistent among the RCM sim-
ulations (Fig. 7j–l). WRF_MPI_COR shows a slight increase
of 0.02 m s−1, while others show a slight decrease, which
highlights the uncertainties in the projected changes. Down-
ward shortwave/longwave fluxes (SWD/LWD) are projected
to significantly increase by 3.47–4.28 W m−2 (Fig. 7m–
o) and 7.13–9.61 W m−2 (Fig. 7p–r), respectively. Surface
pressure (PSFC) is simulated to slightly increase by 0.15–
0.70 hPa in CA (Fig. 7s–u).

Earth Syst. Sci. Data, 14, 2195–2208, 2022 https://doi.org/10.5194/essd-14-2195-2022
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Figure 5. Same as Fig. 3, but for annual mean SWD, LWD, and PSFC.

To sum up, main features of projected climate changes in
CA in the near-term future are strong warming and signif-
icant increases in downward shortwave and longwave flux,
with minor changes in other elements. Therefore, the HCPD-
CA dataset provides extraordinary warming scenarios for as-
sessing the impacts of future warming on many sectors (e.g.,
agriculture, ecological and hydrological systems) in CA. De-
tails about changes in these meteorological elements (e.g.,
changes on the seasonal scale) are out of the scope of the
present paper and will be presented in further studies. Sys-
tematic analyses of changes in surface air temperature, heat
waves, and droughts are in Qiu et al. (2021).

4 Discussion

4.1 Uncertainties in the evaluation

To prove whether considering the elevation differences be-
tween the observations and the model grids during the eval-
uation will give a fairer assessment of the model’s skills,
we take T2MEAN as an example and adjusted the simulated
T2MEAN to the elevation of the observations and then com-

pared the adjusted T2MEAN with the observations. Here, we
use the records of T2MEAN on 58 stations across CA (see
the stars in Fig. 1a) as observations, which as well as the
records of PREC on 52 stations (which is used in Sect. 4.2,
see the circles in Fig. 1a) are from Global Historical Clima-
tology Network (GHCN) of NOAA National Climatic Data
Center and have been quality controlled (Qiu et al., 2021).
Note that a station is compared with the model grid on which
it is located. Figure S8 shows the SCCs and RMSEs of the
simulated annual and seasonal T2MEAN over CA before and
after adjusting. It is seen that the simulated T2MEAN is more
consistent with the observations after vertically interpolating
the model data to the elevation of the stations by the stan-
dard moist lapse rate of 6.5 ◦C km−1 (Qiu et al., 2017). For
instance, after adjusting, the SCC of the simulated annual
T2MEAN increases from 0.93 to 0.96 and its RMSE de-
creases from 2.52 to 2.25 ◦C. This proves that the regional
model’s skills may be underestimated if the elevation differ-
ences between the observations and the model grids are not
considered.
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Figure 6. Mean annual cycle of the monthly values averaged over central Asia in the observations and RCM simulations.

4.2 9 km vs. 27 km

As discussed above, most of the previous RCM simulations
in CA have horizontal resolutions not higher than 30 km.
To show the added values of using 9 km resolution in this
study with respect to using coarser resolutions, the evalua-
tion metrics (SCC and RMSE) of the simulated 9 km resolu-
tion precipitation in the inner domain of the WRF model are
compared with those of 27 km resolution precipitation in the
outer domain (Fig. 8). As the gridded observations (CRU TS
v4, and ERA5-Land) have potential limitations in depicting
the climatology of precipitation in CA, the metrics are cal-
culated based on the aforementioned 52 stations’ data across
CA.

Compared with the 27 km resolution data, the 9 km resolu-
tion data largely increases SCCs and reduces RMSEs, espe-
cially over the mountainous areas (see the scope of subregion
“MT” in Fig. 1c). For instance, over the mountainous areas,
the ensemble-mean SCC of annual precipitation increases

from 0.38 to 0.58 (Fig. 8c) and the ensemble-mean RMSE
of annual precipitation decreases from 1.30 to 1.14 mm d−1

(Fig. 8d). This highlights the necessity of improving the
model resolution from ≥ 30 to 9 km and the advantages of
using the HCPD-CA dataset for researches in CA.

4.3 Uncertainties of the HCPD-CA dataset

With the limitation of the computational and time cost, this
study used three bias-corrected GCMs from CMIP5 to do
the dynamical downscaling over CA, which is an improve-
ment relative to using a single original GCM. However, it
still harbors uncertainties in the projected climate changes.
As reported in the 1.5 ◦C special report of the Intergovern-
mental Panel on Climate Change (IPCC), we are on track to
exceed 1.5 ◦C warming between 2030 and 2052 based on the
current warming rate, and hence the near-term future pro-
jection becomes more critical to human development than
that for the end of this century. Therefore, this study focuses
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Figure 7. Projected changes of the annual mean values over central Asia during 2031–2050, relative to 1986–2005. The regional mean
(upper) and minimum and maximum value (in parentheses) are listed. The slashed areas indicate where the changes passed the significance
test at the 95 % confidence level using the two-tailed Student’s t test.
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Figure 8. Spatial correlation coefficients (SCCs) and root mean square errors (RMSEs) of the simulated annual (ANN), summer (JJA: June–
July–August), and winter (DJF: December–January–February) mean precipitation over CA and the mountainous areas (MT) in the 9 and
27 km resolution downscaled results. The metrics are calculated based on 52 stations’ data across CA.

on projected climate changes over CA in the near-term fu-
ture (2031–2050). Long-term continuous (e.g., 1986–2100)
regional climate projections in CA are more useful for stud-
ies in this region and will be conducted in the next stage.
Land use and land cover (LULC) in the WRF model both
in the historical and future simulations are derived from the
MODIS data of 2002 (Wang et al., 2007). Dramatic changes
in land use and land cover have happened in CA and are very
likely to be ongoing in the future (Micklin, 2007; Ma et al.,
2021; Chen et al., 2013; Li et al., 2019), such as the shrink-
ing of the Aral Sea and the expansion of croplands and urban
areas. The land-use and land-cover changes (LULUCC) are
not taken into account in our simulations, which brings un-
certainties in simulating the historical climate in this area as
well as projecting the climate changes in the future. A study
about assessing the effects of the future LULUCC on the lo-
cal climate in CA is in process, and the model outputs from
this study will be openly published as a complement to the
HCPD-CA dataset.

5 Code and data availability

The HCPD-CA is hosted at National Tibetan Plateau
Data Center (Li et al., 2020; Pan et al., 2021) and has
the DOI https://doi.org/10.11888/Meteoro.tpdc.271759
(Qiu, 2021). The files are stored in netCDF4 format and
compiled using the Climate and Forecast (CF) conventions.
It contains four geostatic variables and 10 meteorological
elements from three RCM simulations (WRF_CCSM_ COR,
WRF_MPI_COR, and WRF_Had_COR) for a spatial do-

main covering the CA region (which consists of Kazakhstan,
Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) and
its surrounding areas (see the domain “D02” in Fig. 1b). The
dataset covers two continuous 20-year periods, 1986–2005
and 2031–2050. Each year has 365 d (there is no leap
year). We provide smaller-size (monthly and annual) files
as surrogates for larger-size (daily) files. The names of the
files containing the geostatic variables follow the order
[dataset name]_[variable name].nc. For example, the file
name, HCPD-CA_ISLTYP.nc, represents the soil category
in the HCPD-CA dataset. The names of the files containing
the meteorological elements follow the order [dataset
name]_[experiment name]_[element name]_[year].[time
frequency].nc. For example, the file name, HCPD-
CA_WRF_CCSM_COR_T2MAX_2004.mon.nc, represents
the monthly mean T2MAX of 2004 from the experiment
WRF_CCSM_COR in the HCPD-CA dataset.

The WRF model is available at https://www2.mmm.
ucar.edu/wrf/users/download/get_source.html (Skamarock
et al., 2008). The source code to do the bias correction is
available at https://rda.ucar.edu/datasets/ds316.1/#!software
(https://doi.org/10.5065/D6DJ5CN4, Monaghan et al.,
2022). The Climate Data Operators (CDO, https:
//code.mpimet.mpg.de/projects/cdo, Schulzweida, 2021,
https://doi.org/10.5281/zenodo.5614769), Python modules
(like netCDF4, Xarray, and NumPy), and NCAR Command
Languages (NCL, 2019, https://www.ncl.ucar.edu/) are
recommended to do operations on the netCDF files.
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6 Conclusions

A high-resolution (9 km) projection climate dataset in CA
(the HCPD-CA dataset), containing four geostatic variables
and 10 meteorological elements, is derived from dynamically
downscaled results based on three bias-corrected GCMs
(MPI-ESM-MR, CCSM4, and HadGEM2-ES) from CMIP5
for application to vulnerability, impacts, and adaption assess-
ments in this region. The reference and future periods are
1986–2005 and 2031–2050, respectively. The carbon emis-
sion scenario is RCP4.5. The evaluation shows good qual-
ity of the data product in describing the climatology of all
the meteorological elements in CA despite some systematic
biases (e.g., stronger downward shortwave radiation through-
out the year), which ensures the suitability of the dataset. The
RCM simulations commonly suggest strong warming over
CA in the near-term future, with the annual mean T2MEAN
increasing by 1.62–2.02 ◦C and significant increase in down-
ward shortwave and longwave flux. Changes in other ele-
ments (e.g., precipitation, relative humidity at 2 m, and wind
speed at 10 m) are minor. The HCPD-CA dataset presented
here serves as a scientific basis for assessing the impacts of
climate change over CA on many sectors, especially on eco-
logical and hydrological systems.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-2195-2022-supplement.

Author contributions. All the authors made contributions to the
conception or design of the work. YQ did the analyses and drafted
the work and others revised it.

Competing interests. The contact author has declared that nei-
ther they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Extreme environment datasets for the three poles”. It is not associ-
ated with a conference.

Acknowledgements. This study was supported by the Strategic
Priority Research Program of Chinese Academy of Sciences (grant
no. XDA20020201) and the General Project of the National Natural
Science Foundation of China (grant no. 41875134). The work was
carried out at National Supercomputer Center in Tianjin, and this
research was supported by TianHe Qingsuo Project – special fund
project in the field of climate, meteorology, and ocean. The HCPD-

CA dataset is hosted at National Tibetan Plateau Data Center (http:
//data.tpdc.ac.cn/en/, last access: 5 May 2022).

Financial support. This research has been supported by the
Strategic Priority Research Program of Chinese Academy of Sci-
ences (grant no. XDA20020201).

Review statement. This paper was edited by Xin Li and reviewed
by four anonymous referees.

References

Bao, J., Feng, J., and Wang, Y.: Dynamical downscaling simulation
and future projection of precipitation over China, J. Geophys.
Res.-Atmos., 120, 8227–8243, 2015.

Bruyère, C. L., Done, J. M., Holland, G. J., and Fredrick, S.:
Bias corrections of global models for regional climate simula-
tions of high-impact weather, Clim. Dynam., 43, 1847–1856,
https://doi.org/10.1007/s00382-013-2011-6, 2014.

Burunciuc, L.: Natural disasters cost Central Asia $10 billion a year
– Are we doing enough to prevent them?, World Bank Blogs,
https://blogs.worldbank.org/europeandcentralasia/natural-
disasters-cost-central-asia-10-billion-year-are-we-doing-enough
(last access: 5 May 2022), 2020.

Chen, X., Bai, J., Li, X., Luo, G., Li, J., and Li, B. L.: Changes
in land use/land cover and ecosystem services in Central Asia
during 1990–2009, Curr. Opin. Environ. Sustain., 5, 116–127,
https://doi.org/10.1016/j.cosust.2012.12.005, 2013.

Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., and
Bauer, D. P.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, 2011.

Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H.,
Rockel, B., Jacob, D., Kjellström, E., de Castro, M., and van den
Hurk, B.: An intercomparison of regional climate simulations for
Europe: assessing uncertainties in model projections, Climatic
Change, 81, 53–70, https://doi.org/10.1007/s10584-006-9228-x,
2007.

Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in
precipitation simulated by high-resolution nested Regional Cli-
mate Models and observations, Clim. Dynam., 38, 1229–1247,
https://doi.org/10.1007/s00382-011-1068-3, 2012.

Di Luca, A., de Elía, R., and Laprise, R.: Potential for small
scale added value of RCM’s downscaled climate change signal,
Clim. Dynam., 40, 601–618, https://doi.org/10.1007/s00382-
012-1415-z, 2013.

Done, J. M., Holland, G. J., Bruyère, C. L., Leung, L. R.,
and Suzuki-Parker, A.: Modeling high-impact weather and
climate: lessons from a tropical cyclone perspective, Cli-
matic Change, 129, 381–395, https://doi.org/10.1007/s10584-
013-0954-6, 2015.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert,
J.: HESS Opinions “Should we apply bias correction to global
and regional climate model data?”, Hydrol. Earth Syst. Sci., 16,
3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.

https://doi.org/10.5194/essd-14-2195-2022 Earth Syst. Sci. Data, 14, 2195–2208, 2022

https://doi.org/10.5194/essd-14-2195-2022-supplement
http://data.tpdc.ac.cn/en/
http://data.tpdc.ac.cn/en/
https://doi.org/10.1007/s00382-013-2011-6
https://blogs.worldbank.org/europeandcentralasia/natural-disasters-cost-central-asia-10-billion-year-are-we-doing-enough
https://blogs.worldbank.org/europeandcentralasia/natural-disasters-cost-central-asia-10-billion-year-are-we-doing-enough
https://doi.org/10.1016/j.cosust.2012.12.005
https://doi.org/10.1007/s10584-006-9228-x
https://doi.org/10.1007/s00382-011-1068-3
https://doi.org/10.1007/s00382-012-1415-z
https://doi.org/10.1007/s00382-012-1415-z
https://doi.org/10.1007/s10584-013-0954-6
https://doi.org/10.1007/s10584-013-0954-6
https://doi.org/10.5194/hess-16-3391-2012


2206 Y. Qiu et al.: HCPD-CA: high-resolution climate projection dataset in central Asia

Fischer, A. M., Keller, D. E., Liniger, M. A., Rajczak, J., Schär,
C., and Appenzeller, C.: Projected changes in precipitation inten-
sity and frequency in Switzerland: a multi-model perspective, Int.
J. Climatol., 35, 3204–3219, https://doi.org/10.1002/joc.4162,
2015.

Frenken, K.: Irrigation in Central Asia in figures, Food
and Agriculture Organization of the United Nations,
https://doi.org/10.13140/RG.2.1.2770.8247, 2013.

Gabriel, K. A. and Kimon, K.: Analysis of scenarios integrating the
INDCs, EUR – Scientific and Technical Research Reports, JRC
nr: JRC97845, 2015.

Gao, X., Pal, J. S., and Giorgi, F.: Projected changes in mean and
extreme precipitation over the Mediterranean region from a high
resolution double nested RCM simulation, Geophys. Res. Lett.,
33, L03706, https://doi.org/10.1029/2005GL024954, 2006.

Gessner, U., Naeimi, V., Klein, I., Kuenzer, C., Klein,
D., and Dech, S.: The relationship between precipita-
tion anomalies and satellite-derived vegetation activ-
ity in Central Asia, Global Planet. Change, 110, 74–87,
https://doi.org/10.1016/j.gloplacha.2012.09.007, 2013.

Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are
We and Where Are We Going next?, J. Geophys. Res.-Atmos.,
124, 5696–5723, https://doi.org/10.1029/2018jd030094, 2019.

Giorgi, F., Shields Brodeur, C., and Bates, G. T.: Re-
gional Climate Change Scenarios over the United States
Produced with a Nested Regional Climate Model,
J. Climate, 7, 375–399, https://doi.org/10.1175/1520-
0442(1994)007<375:RCCSOT>2.0.CO;2, 1994.

Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot,
S.: Enhanced summer convective rainfall at Alpine high eleva-
tions in response to climate warming, Nat. Geosci., 9, 584–589,
https://doi.org/10.1038/ngeo2761, 2016.

Guo, D., Zhang, Y., Gao, X., Pepin, N., and Sun, J.: Evaluation and
ensemble projection of extreme high and low temperature events
in China from four dynamical downscaling simulations, Int. J.
Climatol., 41, E1252–E1269, 2021.

Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the
CRU TS monthly high-resolution gridded multivariate climate
dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-
0453-3, 2020.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hong, C., Zhang, Q., Zhang, Y., Tang, Y., Tong, D., and
He, K.: Multi-year downscaling application of two-way cou-
pled WRF v3.4 and CMAQ v5.0.2 over east Asia for re-
gional climate and air quality modeling: model evaluation and
aerosol direct effects, Geosci. Model Dev., 10, 2447–2470,
https://doi.org/10.5194/gmd-10-2447-2017, 2017.

Im, E. S., Coppola, E., Giorgi, F., and Bi, X.: Local effects
of climate change over the Alpine region: A study with

a high resolution regional climate model with a surrogate
climate change scenario, Geophys. Res. Lett., 37, L05704,
https://doi.org/10.1029/2009GL041801, 2010.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B.,
Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski,
G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G.,
Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Ko-
vats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin,
E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann,
S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-
CORDEX: new high-resolution climate change projections for
European impact research, Reg. Environ. Chang., 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014.

Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders,
I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso,
R. M., Casanueva, A., Christensen, O. B., Christensen, J. H.,
Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., Domínguez,
M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez,
M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J. J.,
Alemán, J. J. G., Gutiérrez, C., Gutiérrez, J. M., Güttler, I.,
Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones,
R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Ma-
raun, D., van Meijgaard, E., Mercogliano, P., Montávez, J. P.,
Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J.,
Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P., Prein, A. F.,
Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez,
E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Sørland,
S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe:
perspectives from the EURO-CORDEX community, Reg. Envi-
ron. Chang., 20, 52, https://doi.org/10.1007/s10113-020-01606-
9, 2020.

Ji, Z. and Kang, S.: Double-nested dynamical downscaling exper-
iments over the Tibetan Plateau and their projection of climate
change under two RCP scenarios, J. Atmos. Sci., 70, 1278–1290,
2013.

Jiang, R., Sun, L., Sun, C., and Liang, X.-Z.: CWRF down-
scaling and understanding of China precipitation projections,
Clim. Dynam., 57, 1079–1096, https://doi.org/10.1007/s00382-
021-05759-z, 2021.

Jung, C.-Y., Shin, H.-J., Jang, C. J., and Kim, H.-J.: Projected
change in East Asian summer monsoon by dynamic downscal-
ing: Moisture budget analysis, Asia-Pac. J. Atmos. Sci., 51, 77–
89, 2015.

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué,
M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meij-
gaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R.,
Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate model-
ing on European scales: a joint standard evaluation of the EURO-
CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333,
https://doi.org/10.5194/gmd-7-1297-2014, 2014.

Kotlarski, S., Lüthi, D., and Schär, C.: The elevation de-
pendency of 21st century European climate change: an
RCM ensemble perspective, Int. J. Climatol., 35, 3902–3920,
https://doi.org/10.1002/joc.4254, 2015.

Li, J., Chen, H., Zhang, C., and Pan, T.: Variations in
ecosystem service value in response to land use/land cover

Earth Syst. Sci. Data, 14, 2195–2208, 2022 https://doi.org/10.5194/essd-14-2195-2022

https://doi.org/10.1002/joc.4162
https://doi.org/10.13140/RG.2.1.2770.8247
https://doi.org/10.1029/2005GL024954
https://doi.org/10.1016/j.gloplacha.2012.09.007
https://doi.org/10.1029/2018jd030094
https://doi.org/10.1175/1520-0442(1994)007<375:RCCSOT>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<375:RCCSOT>2.0.CO;2
https://doi.org/10.1038/ngeo2761
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/gmd-10-2447-2017
https://doi.org/10.1029/2009GL041801
https://doi.org/10.1007/s10113-013-0499-2
https://doi.org/10.1007/s10113-020-01606-9
https://doi.org/10.1007/s10113-020-01606-9
https://doi.org/10.1007/s00382-021-05759-z
https://doi.org/10.1007/s00382-021-05759-z
https://doi.org/10.5194/gmd-7-1297-2014
https://doi.org/10.1002/joc.4254


Y. Qiu et al.: HCPD-CA: high-resolution climate projection dataset in central Asia 2207

changes in Central Asia from 1995–2035, PeerJ, 7, e7665,
https://doi.org/10.7717/peerj.7665, 2019.

Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan,
X., Fang, M., and Bao, Q.: CASEarth Poles: Big Data for
the Three Poles, B. Am. Meteorol. Soc., 101, E1475–E1491,
https://doi.org/10.1175/bams-d-19-0280.1, 2020.

Liang, X.-Z., Kunkel, K. E., Meehl, G. A., Jones, R. G., and
Wang, J. X. L.: Regional climate models downscaling analysis
of general circulation models present climate biases propagation
into future change projections, Geophys. Res. Lett., 35, L08709,
https://doi.org/10.1029/2007GL032849, 2008.

Ma, X., Zhu, J., Yan, W., and Zhao, C.: Projections
of desertification trends in Central Asia under global
warming scenarios, Sci. Total Environ., 781, 146777,
https://doi.org/10.1016/j.scitotenv.2021.146777, 2021.

Mannig, B., Müller, M., Starke, E., Merkenschlager, C., Mao, W.,
Zhi, X., Podzun, R., Jacob, D., and Paeth, H.: Dynamical down-
scaling of climate change in Central Asia, Global Planet. Change,
110, 26–39, https://doi.org/10.1016/j.gloplacha.2013.05.008,
2013.

Micklin, P.: The Aral Sea disaster, in: Annual Review of Earth and
Planetary Sciences, Annu. Rev. Earth Pl. Sc., 47–72, 2007.

Monaghan, A. J., Steinhoff, D. F., Bruyere, C. L., and Yates,
D.: NCAR CESM Global Bias-Corrected CMIP5 Output
to Support WRF/MPAS Research, Research Data Archive
at the National Center for Atmospheric Research, Com-
putational and Information Systems Laboratory [data set],
https://doi.org/10.5065/D6DJ5CN4, 2014.

Narama, C., Kääb, A., Duishonakunov, M., and Abdrakhmatov,
K.: Spatial variability of recent glacier area changes in the Tien
Shan Mountains, Central Asia, using Corona (∼ 1970), Land-
sat (∼ 2000), and ALOS (∼ 2007) satellite data, Global Planet.
Change, 71, 42–54, 2010.
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