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Abstract. Accurately mapping impervious-surface dynamics has great scientific significance and application
value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and
global ecological-environment modeling. In this study, a novel and automatic method of combining the advan-
tages of spectral-generalization and automatic-sample-extraction strategies was proposed, and then an accurate
global 30 m impervious-surface dynamic dataset (GISD30) for 1985 to 2020 was produced using time-series
Landsat imagery on the Google Earth Engine cloud computing platform. Firstly, the global training samples and
corresponding reflectance spectra were automatically derived from prior global 30 m land-cover products after
employing the multitemporal compositing method and relative radiometric normalization. Then, spatiotemporal
adaptive classification models, trained with the migrated reflectance spectra of impervious surfaces from 2020
and transferred pervious-surface samples in each epoch for every 5◦×5◦ geographical tile, were applied to map
the impervious surface in each period. Furthermore, a spatiotemporal-consistency correction method was pre-
sented to minimize the effects of independent classification errors and improve the spatiotemporal consistency of
impervious-surface dynamics. Our global 30 m impervious-surface dynamic model achieved an overall accuracy
of 90.1 % and a kappa coefficient of 0.865 using 23 322 global time-series validation samples. Cross-comparisons
with five existing global 30 m impervious-surface products further indicated that our GISD30 dynamic product
achieved the best performance in capturing the spatial distributions and spatiotemporal dynamics of impervious
surfaces in various impervious landscapes. The statistical results indicated that the global impervious surface
has doubled in the past 35 years, from 5.116× 105 km2 in 1985 to 10.871× 105 km2 in 2020, and Asia saw the
largest increase in impervious surface area compared to other continents, with a total increase of 2.946×105 km2.
Therefore, it was concluded that our global 30 m impervious-surface dynamic dataset is an accurate and promis-
ing product and could provide vital support in monitoring regional or global urbanization as well as in related
applications. The global 30 m impervious-surface dynamic dataset from 1985 to 2020 generated in this paper is
free to access at https://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b).
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1 Introduction

Impervious surfaces are usually defined as surfaces “prevent-
ing the surface water from penetrating into the ground” and
are composed of anthropogenic materials, such as steel, ce-
ment, asphalt, bricks and stone (Chen et al., 2016; Weng,
2012; Zhang et al., 2020). Over the past few decades, with
the rapid growth of the population and the economy, im-
pervious surfaces have been undergoing dramatic expan-
sion, especially in developing countries (Gong et al., 2019a;
Kuang, 2020). Based on the statistics of the United Na-
tions in 2018, 55 % of the world’s total population lives
in cities, and this proportion is expected to reach 68 % in
2050 (United Nations, 2019). As an indicator of the inten-
sity of human activities and economic development, the dy-
namic information of impervious surfaces plays a signifi-
cant role in urban planning (Li et al., 2015), biogeochemi-
cal cycles (Zhang and Weng, 2016), greenhouse gas emis-
sions and urban heat island effects (Gao et al., 2012; Zhou
et al., 2018), and urban-sustainable-development pathways
(X. Liu et al., 2020). Therefore, understanding and quanti-
fying global impervious-surface spatiotemporal dynamics is
critical.

In recent years, with the continuous improvement in re-
mote sensing techniques as well as computer storage and
computing capabilities, global impervious-surface monitor-
ing has been undergoing a transition from the coarse spatial
resolution of 1 km to the fine resolution of 30/10 m (Cor-
bane et al., 2020; Gong et al., 2020; Liu et al., 2018; X. Liu
et al., 2020; Schneider et al., 2009; Zhao et al., 2020; Zhou
et al., 2018). Specifically, coarse impervious-surface prod-
ucts primarily use time-series nighttime light datasets (in-
cluding DMSP – Defense Meteorological Satellite Program –
and VIIRS NTL – Visible Infrared Imaging Radiometer Suite
Nighttime Lights – imagery) (Xie and Weng, 2017; Zhao et
al., 2020) and MODIS imagery (Huang et al., 2020; Schnei-
der et al., 2010) to capture global impervious-surface dynam-
ics; for example, Huang et al. (2021) used a fully automated
mapping method to produce global 250 m urban-area prod-
ucts for 2001 to 2018 using time-series MODIS imagery.
Zhou et al. (2018) used the Defense Meteorological Satel-
lite Program Operational Linescan System’s nighttime light
data to develop temporally and spatially consistent global
1 km urban maps for 1992 to 2013. Although these coarse
global impervious-surface dynamic products could capture
global urban-expansion trends, they are unsuitable for many
regional applications, because a large quantity of broken
and small-sized impervious surfaces are missed in coarse re-
mote sensing imagery (Gong et al., 2020). Recently, benefit-
ing from the improvements and maturity of cloud comput-
ing platforms (such as Google Earth Engine, Gorelick et al.,
2017), many global 30 m multitemporal impervious-surface
products have been produced using long-time-series Landsat
imagery (Florczyk et al., 2019; Gong et al., 2020; Liu et al.,
2018; X. Liu et al., 2020). Liu et al. (2021a) comprehensively

reviewed seven current global 30 m impervious-surface prod-
ucts and found only four products could capture the imper-
vious expansion at a long time series. Specifically, Liu et
al. (2018) proposed a new index to develop multitemporal
global 30 m urban land maps for 1990 to 2010 with 5-year
intervals, but the products suffered low producer’s accuracy
and user’s accuracy of 0.50–0.60 and 0.49–0.61. Gong et
al. (2020) used a combination of “exclusion–inclusion” and
“temporal-check” methods to generate the first annual global
30 m artificial impervious-surface-area dataset for 1985 to
2018, but the cross-comparisons in Zhang et al. (2020) found
that this annual dataset achieved great performance on mega-
cities but suffered under-estimation problems in rural areas.
The Global Human Settlement Layer (GHSL) monitored the
impervious dynamic from 1975 to 2015 (Florczyk et al.,
2019), but it suffered overestimation problems at an early
stage and also missed fragmented impervious objects (Gong
et al., 2020). Therefore, an accurate global 30 m impervious-
surface dynamic product, which could accurately capture the
spatiotemporal dynamic of various impervious objects in-
cluding cities and rural areas, is still urgently needed.

Over the past few decades, many methods have been
proposed for generating regional or global multitemporal
impervious-surface products. Generally, these methods can
be divided into two groups: time-series change detection
(Jing et al., 2021; Li et al., 2018; Song et al., 2016) and mul-
titemporal independent classification and extraction (Gong
et al., 2020; X. Liu et al., 2020; Zhang and Weng, 2016).
The time-series change detection strategy used change de-
tection models to determine the break points in continu-
ous Landsat observations. As this strategy makes full use of
the correlations inherent within time-series imagery, it has
a higher robustness and a greater ability to capture urban-
ization time and frequency (Liu et al., 2019). However, as
impervious surfaces are usually nonlinear, with high tem-
poral and spatial heterogeneity, impervious-surface monitor-
ing is a highly difficult and challenging task, especially for
arid or semi-arid areas (Reba and Seto, 2020; Sexton et al.,
2013). Zhu et al. (2019) demonstrated that the newest con-
tinuous monitoring of land disturbance (COLD) method still
suffers from an omission error of 27 % and a commission
error of 28 %. Meanwhile, the monitoring efficiency of the
time-series change detection strategy is very low because it
uses pixel-by-pixel modeling by using continuous Landsat
imagery.

The multitemporal independent classification and extrac-
tion strategy generates multiple temporally independent
impervious-surface maps and then derives “from–to” infor-
mation through per-pixel comparison, so the means of gen-
erating multiple temporally independent impervious-surface
maps is the key issue of the strategy. Zhang et al. (2020)
concluded that there are three ways to generate independent
impervious-surface maps including spectral mixture analy-
sis (Wu, 2004; Zhuo et al., 2018), the spectral-index-based
method (Gao et al., 2012; Liu et al., 2018) and the image
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classification method (Zhang and Weng, 2016; Zhang et al.,
2021a, 2020). However, the spectral mixture analysis had
great difficulty in finding the optimal endmembers, espe-
cially for long-time-series monitoring. The spectral-index-
based method was simpler and more efficient than the other
two strategies, but it encountered great difficulty in iden-
tifying the optimal threshold for deriving the impervious
pixels from pervious surfaces, especially in arid areas (Sun
et al., 2019). The image classification strategy uses train-
ing samples to build the classifiers for identifying imper-
vious surfaces and performed well in complex impervious-
surface mapping (Okujeni et al., 2013; Zhang et al., 2020).
However, collecting training samples is a time-consuming
and labor-intensive task, especially for large-area time-series
impervious-surface monitoring.

To solve the time-consuming and manual participation
problems for collecting massive training samples, many stud-
ies have proposed to derive training samples from existing
land-cover products after using a series of refinement rules
and successfully produced the large-area land-cover maps
with fulfilling performances (Zhang and Roy, 2017; Zhang
et al., 2021b, 2019). For example, Zhang and Roy (2017) de-
rived the training samples from time-series MCD12Q1 land-
cover products and then used the derived samples for gen-
erating the 30 m land-cover maps with an overall accuracy
of 95.44 % over all of the United States. Similarly, Zhang et
al. (2021b) combined the CCI LC (Climate Change Initiative
Land Cover) land-cover products and time-series MCD43A4
product to extract the confidence training samples and then
produced the global 30 m land-cover products with an over-
all accuracy of 82.5 %. However, it should be noted that the
derived samples usually selected these spatiotemporal sta-
ble pixels as candidate samples for ensuring the confidence
of training samples. Namely, the changed information can-
not be captured using this derived strategy. In addition, the
spectral-generalization strategy had also been demonstrated
to have great performance for automatic land-cover mapping
(Phalke and Özdoğan, 2018; Wessels et al., 2016; Wood-
cock et al., 2001; Zhang et al., 2019). For example, Zhang
et al. (2019) used the training spectra from MCD43A4 prod-
ucts to classify the multitemporal Landsat imagery in China
with an overall accuracy of 80.7 %. However, the spectral-
generalization strategy usually needed the prior reference
training spectra to build the generalized classifier.

Monitoring impervious-surface dynamics is a challeng-
ing and time-consuming task due to the high spatiotempo-
ral heterogeneity. In this study, we proposed a novel and au-
tomatic method by combining the advantages of spectral-
generalization and automatic-sample-extraction strategies
for monitoring time-series impervious-surface dynamics.
Specifically, we derived the training samples from prior land-
cover products to solve the time-consuming and manual par-
ticipation problems for manually collecting massive training
samples. Then, we combined the derived training samples
and the temporal spectral generalization for independently

mapping impervious surfaces at a long time series. Next, a
spatiotemporal-consistency correction method was applied
to the independent impervious-surface maps to minimize the
effects of classification errors and ensure the spatiotemporal
consistency of the final dynamic impervious-surface dataset.
Finally, we produced an accurate and novel global 30 m
impervious-surface dynamic dataset (GISD30) from 1985 to
2020 by combining the proposed method and Google Earth
Engine (GEE) cloud computing platform, which also provide
vital support for monitoring regional or global urbanization
and performing related tasks.

2 Datasets

2.1 Time-series Landsat imagery

As a single Landsat mission cannot cover the whole period
of 1985 to 2020 (Roy et al., 2014), all available Landsat
imagery, including Landsat 4, 5, 7 and 8, archived on the
GEE computation platform, was collected to monitor the spa-
tiotemporal dynamics of impervious surfaces. To minimize
the scattering and absorption effects of the atmosphere, all
Landsat imagery was corrected for the surface reflectance
using the Land Surface Reflectance Code (LaSRC) (Ver-
mote et al., 2016) and Landsat Ecosystem Disturbance Adap-
tive Processing System (LEDAPS) (Vermote, 2007) algo-
rithms. Meanwhile, these poor observations (including snow,
shadow, cloud and saturated pixels) in the Landsat imagery
were masked using the CFmask (C Function of Mask) algo-
rithm (Zhu and Woodcock, 2014), which is the official Land-
sat processing algorithm and is included in the Landsat Sur-
face Reflectance (SR) product handbook (USGS, 2017). Fig-
ure 1 illustrates the spatial distributions of all available Land-
sat observations from 1985 to 2020, with intervals of 5 years;
clearly, the availability of Landsat imagery had a significant
positive relationship with the advancement of the monitoring
period, mainly because later Landsat satellites had greater ca-
pacities for onboard recording and satellite-to-ground trans-
mission compared with previous Landsat systems (Roy et al.,
2014). In addition, as only Landsat 5 could provide observa-
tion imagery and satellite-to-ground transmission capabili-
ties were fairly low before 2000, the available Landsat ob-
servations before 2000 cannot cover the whole world, and
those for 1985 are especially limited; however, it should be
noted that we assumed that the land cover in these areas with
missing data would remain stable during the period.

2.2 Global 30 m land-cover product in 2020

To automatically monitor the spatiotemporal dynamics of
impervious surfaces, it was necessary to import a global
30 m land-cover product from 2020, which was used as the
reference dataset for deriving training samples in Sect. 3.1
and provided the broadest impervious-surface extents for
monitoring spatiotemporal dynamics. In this study, the
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Figure 1. The spatial distributions of the available Landsat observations from 1985 to 2020 with 5-year intervals.

GLC_FCS30-2020 (global land-cover product with fine clas-
sification system at 30 m in 2020) dataset, generated by
combining the time series of Landsat imagery with high-
quality training data from the Global Spatial Temporal Spec-
tra Library on the Google Earth Engine computing platform
(Zhang et al., 2021b), was used, showing an overall accuracy
of 82.5 % and a kappa coefficient of 0.784 for the level-0
validation system (9 basic land-cover types) and an over-
all accuracy of 68.7 % and kappa coefficient of 0.662 for
the UN-LCCS (United Nations Land Cover Classification
System) level-2 system (24 fine land-cover types), employ-
ing 44 043 global validation samples (Zhang et al., 2021b).
It should be noted that the impervious-surface layer in the
GLC_FCS30-2020 dataset, which was independently pro-
duced by combining multisource and multitemporal remote
sensing imagery and achieved an overall accuracy of 95.1 %
and a kappa coefficient of 0.898 (Zhang et al., 2020), was
not used as the result for the period of 2015–2020 in the
final results; instead, it was only used as the prior dataset
for deriving training samples and determining the broadest
extents. The GLC_FCS30-2020 dataset is free to access at
https://doi.org/10.5281/zenodo.4280923 (L. Liu et al., 2020).

2.3 Validation dataset

To quantitatively assess the accuracies of our impervious-
surface dynamic time-series products, 23 322 validation sam-
ples (Fig. 2), including 13 336 impervious samples and 9986
pervious samples, covering the long-term time series from
1985 to 2020, were randomly generated using the strategy

of stratified random sampling and further interpreted on the
Google Earth Engine computing platform. The GEE comput-
ing platform had obvious advantages over collecting valida-
tion samples, including (1) storing massive amounts of re-
mote sensing imagery with various spatial resolutions and
time spans and (2) allowing for easy access to different re-
mote sensing images via simplified coding (Gorelick et al.,
2017). Therefore, using multisource high-resolution imagery
archived in the GEE platform, each validation sample could
be marked as “pervious surface” or “specific change year of
impervious surface”. However, as the high-resolution images
from 1985 to 2000 were sparse and the Landsat imagery con-
tained observations for that period with satisfactory spatial
resolution, we used the time-series Landsat imagery as the
auxiliary dataset for visual interpretation between 1985 and
2000. Further, as the spatial heterogeneity of the impervi-
ous surface was usually higher than that of natural land-cover
types, the impervious area in a 30m× 30 m window should
comprise more than 50 % when identifying impervious sam-
ples (Zhang et al., 2020). Meanwhile, to minimize the effect
of geometry registration between validation samples and our
products, the geolocations of these rural impervious-surface
samples, located in the transition areas of the impervious ob-
jects (such as buildings and roads) and pervious surfaces,
were repositioned in the center of the objects. Lastly, to min-
imize the influence of the interpreting experts’ subjective
knowledge, each validation sample was to be independently
interpreted by five experts.
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Figure 2. The spatial distribution of the global multitemporal impervious-surface validation dataset for 1985–2020.

2.4 Existing multitemporal global 30 m
impervious-surface products

In this study, five existing multitemporal global 30 m
impervious-surface products, including maps based on
GAIA (Global Artificial Impervious Area), GHSL (Global
Human Settlement Layer), GAUD (Global Annual Ur-
ban Dynamics), GlobeLand30 impervious-surface layer and
NUACI (Normalized Urban Areas Composite Index), were
used to comprehensively analyze the performance of our
products. Specifically, GAIA was generated by combining
the exclusion–inclusion and temporal-consistency methods
and applying them to time-series Landsat imagery, which
provided the global annual impervious surface from 1985 to
2018 at a 30 m spatial resolution, with a mean accuracy of
90 % using 3500 validation samples (Gong et al., 2020). The
GHSL products, developed by fusing supervised and unsu-
pervised classification processes to achieve a combination of
data-driven and knowledge-driven processes, contained four
epochs’ impervious-surface dynamics (1970, 1990, 2000 and
2015) (Florczyk et al., 2019; Pesaresi et al., 2016), with
an high overall accuracy of 96.28 % and a low kappa co-
efficient of 0.323 using the open LUCAS (Land Use/Cover
Area Frame Survey) validation dataset for Europe (Pesaresi
et al., 2016). The GAUD dataset, produced by combining
four prior global urban-extent maps and a time-series NUACI
index, monitored annual changes in urban extent from 1985
to 2015 and achieved a mean kappa coefficient of 0.57 in
2015 (X. Liu et al., 2020). The GlobeLand30 impervious-
surface layer, which was an independent land-cover type
in the GlobeLand30 global land-cover product, was pro-
duced by combining pixel-based classification, multi-scale
object-oriented segmentation and manual verification based
on the visual interpretation of high-spatial resolution imagery

(Chen et al., 2015). Meanwhile, to eliminate salt-and-pepper
noise in the impervious-surface layer, a minimum unit of
4 pixels× 4 pixels was applied for each impervious-surface
object. In this study, three epochs’ (2000, 2010 and 2020)
impervious-surface layers were included in GlobeLand30,
and independent validation indicated that the accuracy of the
impervious surface was over 80 % (Chen and Chen, 2018;
Chen et al., 2016). The NUACI-based products were gen-
erated by combining the multitemporal NUACI index and
adaptive threshold optimization methods and applying them
to the time-series Landsat and nighttime light imagery (Liu
et al., 2018), which contained the impervious-surface dynam-
ics of seven epochs from 1985 to 2015 with 5-year intervals.
The independent validation indicated that the NUACI-based
products achieved overall accuracy, producer’s accuracy and
user’s accuracy of 0.81–0.84, 0.50–0.60 and 0.49–0.61, re-
spectively (Liu et al., 2018).

3 Methods

In this study, a novel and automatic method, combin-
ing temporal spectral-generalization and automatic-sample-
extraction strategies, was proposed to automatically mon-
itor the spatiotemporal dynamics of impervious surfaces.
Specifically, the training samples and maximum impervious-
surface extents in 2020 were firstly derived from the prior
GLC_FCS30-2020 land-cover products and other global
30 m impervious-surface products. Secondly, based on the
assumption that the land-cover transition from impervious
surface to pervious surface was irreversible, the pervious-
surface samples in 2020 were directly transferred to other
periods. As for the impervious-surface samples, as it was im-
possible to directly transform them, we proposed to migrate
their reflectance spectra in 2020 to other periods by using
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the temporal spectral-generalization strategy. Thirdly, mul-
titemporal local-adaptive random forest classification mod-
els, trained by the migrated reflectance spectra of impervi-
ous surfaces in 2020 and transferred pervious-surface sam-
ples, were applied to independently generate time-series
impervious-surface maps from 1985 to 2020. Lastly, the
temporal-consistency checking method was used to ensure
the spatiotemporal consistency and logic of using this ap-
proach for monitoring the spatiotemporal dynamics of im-
pervious surfaces.

3.1 Deriving training reflectance spectra and the
maximum impervious-surface boundary

To achieve the automatic monitoring of the spatiotemporal
dynamics of impervious surfaces, we proposed to transfer
the pervious samples in 2020 to other periods by the irre-
versible assumption and simultaneously migrated the imper-
vious reflectance spectra in 2020 to other periods using the
spectral-generalization strategy. The key steps of the novel
method were (1) training sample and maximum impervious-
surface extent derivation from the prior GLC_FCS30-2020
land-cover products and other impervious-surface products
and (2) multitemporal-imagery composting and relative ra-
diometric normalization, which guarantees the feasibility of
migrating the reflectance spectra of impervious surfaces in
2020 to other periods.

3.1.1 Training sample and maximum impervious-surface
extent derivation from existing products

As opposed to the traditional method of collecting train-
ing samples based on visual interpretation, in this study, the
global training samples, including those of the impervious
surface and the pervious surfaces, were automatically de-
rived from the prior GLC_FCS30-2020 land-cover products
and other prior impervious-surface products by using a se-
ries of refinement rules. The reasons why we mainly chose
the GLC_FCS30-2020 as the reference dataset were be-
cause (1) the impervious-surface layer in the GLC_FCS30-
2020 was independently produced by combining multisource
and multitemporal imagery with a high user’s accuracy of
93.2 % and a producer’s accuracy of 94.8 % (Zhang et al.,
2020) and (2) the other pervious land-cover types in the
GLC_FCS30-2020 also achieved a great performance with
an overall accuracy of 82.5 %. Specifically, we firstly deter-
mined the maximum impervious-surface extents and imper-
vious training samples from several prior products. Although
the impervious layer in GLC_FCS30-2020 had an omission
error of only 5.2 % (Zhang et al., 2020), we still combined
multiple global 30 m impervious-surface products (GAIA-
2018 (ISgaia) and GHSL-2014 (ISghsl), the impervious layer
in GlobeLand30-2020 (ISglobeland30) and GLC_FCS30-2020
(ISglc_fcs30)) to capture all the impervious surfaces as com-
prehensively as possible. Namely, the maximum impervious-

surface extents (ISmax), derived via the union of these four
global impervious-surface products (Eq. 1), was used as
the maximum boundary of subsequent time-series classifi-
cations.

ISmax = ISgaia ∪ ISghsl ∪ ISglobeland30 ∪ ISglc_fcs30 (1)

Then, as for how to derive impervious training samples,
the GAIA and GHSL datasets were demonstrated to suf-
fer the problem of missing these fragmented impervious ob-
jects (such as rural villages and roads) (Sun et al., 2019),
so the intersection operation was only applied to the im-
pervious layer in the GlobeLand30-2020 (ISglobeland30) and
GLC_FCS30-2020 (ISglc_fcs30) to comprehensively capture
impervious samples in both cities or small villages and mini-
mize the effect of commission error in these two products.
Afterwards, as the transition areas between two different
land-cover types had a high probability of being misclassified
(Radoux et al., 2014), the spatial homogeneity of each candi-
date impervious sample was calculated using a local window
of 3× 3:

Px,y =
1
N

[
x+1∑
x−1

y+1∑
y−1

I (Lx,y = Limp)

]
, (2)

where Px,y denotes the spatial homogeneity of candidate
pixel Lx,y , Limp represents the label value of the impervious
surface, I (Lx,y = Limp) is the indicator function andN is the
size of the local window. In this study, we only retained these
spatial-homogeneity candidate impervious samples. Namely,
if the Px,y of the candidate pixel was less than 1, the candi-
date impervious sample would be discarded.

As we have combined four prior 30 m impervious-surface
products to determine the maximum impervious-surface ex-
tents in 2020 (ISmax), the remaining areas outside ISmax were
considered pervious surfaces (PScandi). However, due to the
complicated makeup and spectral heterogeneity of impervi-
ous surfaces, some pervious-surface types such as bare land,
grassland and cropland would be spectrally confused with
the impervious surfaces. For example, bare land was spec-
trally similar to the high-reflectance impervious surfaces be-
cause composition materials of the impervious surface, in-
cluding the cement bricks and stone, were also present in
the bare land. Meanwhile, cropland was also easily confused
with impervious surfaces, especially in the cases of some
rural buildings (Sun et al., 2019), because both are com-
posed of low-reflectance vegetation and high-reflectance ar-
tificial materials or bare soil. Therefore, we proposed to fur-
ther split PScandi into three sub-categories (cropland, bare
land and others) by using GLC_FCS30-2020. Meanwhile,
the spatial-homogeneity checking (Eq. 2) was also applied
to each PScandi sample to minimize the confusions in these
land-cover transition areas.

Although we used refinement rules to extract high-
confidence training samples, the volume of candidate train-
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Figure 3. The flowchart of the spectral-generalization method for automatically monitoring the spatiotemporal dynamics of impervious
surface from 1985 to 2020.

ing points (including impervious surfaces and pervious sur-
faces) was still large especially for the pervious samples.
Some studies have quantitatively demonstrated that the dis-
tribution, balance and size of training samples affect the clas-
sification accuracy (Jin et al., 2014; Mellor et al., 2015; Zhu
et al., 2016). In this study, as the impervious surface was
sparser than other pervious surfaces (cropland, bare land and
others) in terms of global total distribution areas, the training
samples with equal allocation were used to guarantee train-
ing sample balance and to capture the spectral heterogene-
ity of impervious surfaces as effectively as possible. Namely,
the ratio of impervious samples and pervious samples was
close to 1 : 3. In addition, the spatial distribution of imper-
vious surfaces greatly varies in different regions; therefore,
if we derived training samples on a global scale, the conti-
nents with more sparse impervious surfaces (South America,
Africa and Oceania) would lack sufficient samples to char-
acterize their impervious surfaces. In order to further ensure
that the training samples were locally adaptive, we adopted
the tiled solution used in Zhang et al. (2021b), splitting the
global land area into approximately 961 geographical tiles of
5◦× 5◦ (Fig. 4) and independently deriving training samples
for each geographical tile. As for the sample size in each tile,
Zhu et al. (2016) quantitatively demonstrated that the map-
ping accuracy first increased and then stabilized with the in-
crease in the sample size and suggested a minimum of 600
training samples and a maximum of 8000 training samples
per class. In this study, the sample size was about 5000 for
each class, and the ratio between impervious surfaces and
pervious surfaces was 1 : 3.

3.1.2 Multitemporal-imagery composting and relative
radiometric normalization

As our previous work (Zhang et al., 2020) had quantita-
tively demonstrated that multitemporal information made a
positive contribution to large-area impervious-surface map-
ping and the availability of Landsat imagery varied with the
spatial distribution in Fig. 1, it was necessary to decom-
pose the time-series Landsat imagery into multitemporal fea-
tures. According to the reviews in the works of Gomez et
al. (2016), there were two main options – “selection-based”
and “transform-based” – for extracting multitemporal infor-
mation from time-series imagery. The selection-based option
was to use user-defined criteria to select the most suitable
observation from the time-series imagery so that the com-
posited imagery still contained the characteristics of surface
reflectance. For example, the maximum NDVI (normalized
difference vegetation index) compositing method was to se-
lect the observation with the largest NDVI value from time-
series observations. While the transform-based method was
to use the transform models (Fourier transform, mathemati-
cal statistics, etc.) to transform the time-series observations
into new variables band by band, the widely used quantile
compositing method was used to transform the time-series
spectra into several quantiles based on the ranking of the val-
ues, for example. Therefore, the composited imagery derived
by the transform-based strategy cannot represent the actual
characteristics of surface reflectance at the wavelength di-
mension.

In this study, as we needed to migrate the reflectance
spectra of impervious surfaces in 2020 to other periods, the
selection-based strategy was the optimal solution for spectral
generalization. To select the user-defined criteria to compos-
ite the multitemporal features, given that the best-available-
pixel (BAP) method could simultaneously take into account
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Figure 4. The spatial distribution of 961 geographical tiles of 5◦×5◦ for local-adaptive modeling. The background imagery comes from the
National Aeronautics and Space Administration (https://visibleearth.nasa.gov, last access: 13 April 2022).

four factors (sensor type, day of year, distance to cloud or
cloud shadow, and aerosol optical thickness; White et al.,
2014), it has been widely used for generating annual or sea-
sonal cloud-free composited imagery (Chen et al., 2021; Liu
et al., 2019). In this study, in order to capture the multitem-
poral information from the time-series Landsat imagery, the
seasonal BAP composited method, which applied the BAP
compositing approach for each season, was used on time-
series Landsat imagery in each period. Therefore, we derived
four sets of seasonally composited Landsat imagery for each
period. It should be noted that we categorized the time-series
Landsat imagery from 1982 to 2020 into eight periods with
the interval of 5 years corresponding to the Fig. 1. Mean-
while, we also assumed that the land cover in those areas
without Landsat observations would remain stable during the
period. According to our statistics, the missing Landsat ob-
servations during 1986–1995 mainly were concentrated in
northeastern Asia, which contained a small number of im-
pervious surfaces.

Meanwhile, for each piece of seasonally composited im-
agery, excluding those in six optical bands (blue; green;
red; NIR, near infrared; SWIR1, shortwave infrared; and
SWIR2), three spectral indexes, including the normalized
difference built-up index (NDBI), normalized difference wa-
ter index (NDWI) and normalized difference vegetation in-
dex (NDVI), were also imported. This was done because
NDBI was a good indicator of the impervious surface and
bare land, NDVI was sensitive to the vegetation and NDWI
was one of the most popular indices for mapping waterbod-
ies. Eventually, a total of 36 multitemporal spectral features

were derived for four seasonal composites.

NDBI=
ρswir1− ρnir

ρswir1+ ρnir
, NDWI=

ρgreen− ρswir1

ρgreen+ ρswir1
,

NDVI=
ρnir− ρred

ρnir+ ρred
(3)

Afterwards, the prerequisite for temporally spectral gen-
eralization was the spectral consistency between reference
imagery and unclassified imagery. In this study, some mea-
sures were taken to ensure the highest possible spectral con-
sistency in the Landsat composited imagery for the reference
period and other periods: (1) the selection-based strategy was
applied to ensure that the composited imagery could charac-
terize the reflective characteristics of the land surface, and
(2) the seasonal BAP method was used to guarantee the phe-
nological consistency of each set of seasonally composited
imagery. However, there was still a small difference in the
spectral response between Landsat sensors (TM, Thematic
Mapper; ETM+, Enhanced Thematic Mapper Plus; and OLI,
Operational Land Imager) (Roy et al., 2016), and some fac-
tors (including the number of available Landsat observations,
frequency of cloud and shadow, etc.) caused a small temporal
difference in the seasonal composites between the reference
imagery and unclassified imagery. Therefore, we used the
method of relative radiometric normalization to further en-
sure the spectral consistency between reference and unclas-
sified imagery. Specifically, as we migrated the reflectance
spectra of impervious surfaces in 2020 to other periods, the
seasonal composites in 2020 were the dependent variables
(ρR,Sj (λi)):

ρR,Sj (λi)= αi × ρt,Sj (λi)+βi, (4)
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where ρt,Sj (λi) was the surface reflectance in band λi in
period t (t = 1985,1990, . . .,2015), Sj represented the sea-
sonal composites in different seasons, and αi and βi denoted
the slope and intercept of the linear regression model.

3.2 Spectral-generalization classification and
temporal-consistency checking

Based on the assumption that the land-cover transition from
impervious surface to pervious surface was irreversible, the
derived pervious samples in 2020 (Sect. 3.1.1) would be
directly transferred to other periods, but the impervious-
surface samples in 2020 cannot be transferred. To solve
the lack of impervious-surface samples before 2020, we
normalized the reflectance spectra of impervious surfaces
in other epochs to those in 2020 using the method of
relative radiometric normalization (Sect. 3.1.2). Specifi-
cally, we independently trained the classification models at
each period using the generalized impervious reflectance
spectra (TrainFeatures_IS2020) and the pervious samples
(TrainFeatures_PSt ) as

TrainFeatures_PSt =[∑
si

(
ρ
si ,t
b ,ρsi ,tg ,ρsi ,tr ,ρ

si ,t
nir ,ρ

si ,t
swir1,ρ

si ,t
swir2,ndbisi ,t ,ndvisi ,t ,ndwisi ,t

)]
,

TrainFeatures_IS2020 =[∑
si

(
ρ
si
b ,ρ

si
g ,ρ

si
r ,ρ

si
nir,ρ

si
swir1,ρ

si
swir2,ndbisi ,ndvisi ,ndwisi

)]
, (5)

where si denotes various seasonal composites and t is the
monitored period. It can be found that the TrainFeatures_PSt
varies with t ; namely, the training spectra of pervious sur-
faces directly came from the unclassified imagery. It should
be noted that there may not be cloud-free imagery available
especially for the rainy season before 2000 in the tropical-
rainforest areas. In this case, we discarded these missed
seasonal features when training the classification models;
namely, the number of training features varied with the avail-
ability of Landsat observations.

Afterwards, as the spatial distributions of impervious
surfaces varied in different regions, we used the local-
adaptive resampling strategy to comprehensively capture
the impervious-surface characteristics at various regions
(Sect. 3.1.1). However, if we used all training samples to
build a global classification model for mapping global im-
pervious surfaces, the global model still sacrifices the perfor-
mance in these sparse impervious-surface regions to achieve
high overall accuracy. In this study, the local-adaptive mod-
eling strategy of splitting the globe into multiple local re-
gions and then independently training the classification mod-
els in each local region using corresponding regional sam-
ples was adopted to increase the sensitivity and fitting ability
of the classification model at different regions. Zhang and
Roy (2017) also quantitatively compared the performance of
global classification modeling and local-adaptive modeling

strategies and found the latter had greater performance than
the former. Therefore, we adopted the tiled solution used in
Zhang et al. (2021b), splitting the global land area into ap-
proximately 961 geographical tiles (Fig. 4) of 5◦× 5◦ and
then training the independent classification model in each of
the geographical tiles.

Furthermore, the random forest (RF) classification model
has significant advantages over other classification models
(such as a decision tree, support vector machine and neu-
ral network), including (1) higher computation efficiency
and classification accuracy, (2) a stronger ability to process
high-dimensional data and resist training sample errors, and
(3) simpler parameter settings (Belgiu and Drăguţ, 2016; Du
et al., 2015; Gislason et al., 2006). Therefore, the RF classi-
fier was selected to produce our impervious-surface dynamic
time-series products. The RF classifier only contains two ad-
justable parameters (the number of decision trees (Ntree) and
the number of selected prediction variables (Mtry)), and Bel-
giu and Drăguţ (2016) quantitatively analyzed the relation-
ship between the classification accuracy and these two pa-
rameters, finding that the Ntree had a greater impact on clas-
sification accuracy than Mtry and suggesting that these two
parameters should take default values. As such, we defined
the Ntree as 500 and Mtry as the square root of the total num-
ber of input features.

Lastly, as the time-series impervious-surface products
were produced by independent classifications, it was neces-
sary to use the post-processing method to optimize the time-
series impervious products from 1985 to 2020 and minimize
the influence of classification error. Over the past few years,
many post-processing methods have been proposed, includ-
ing maximum a posteriori Markov random fields (Cai et
al., 2014) and temporal-consistency checks (Li et al., 2015),
both of which use contextual spatiotemporal information and
prior knowledge to reduce the illogical land-cover transitions
caused by classification error. In this study, the temporal-
consistency correction proposed by Li et al. (2015) was ap-
plied to optimize our impervious time-series products. It
mainly comprised procedures of spatiotemporal filtering and
illogical transition checking, the former of which iteratively
calculates the probability of the same land-cover pixels oc-
curring in the neighborhoods within a 3×3×3 spatiotempo-
ral window as

Px,y,t =
1
N

x′=x+1∑
x′=x−1

y′=y+1∑
y′=y−1

t ′=t+1∑
t ′=t−1

I
(
Lx′,y′,t ′ = Lx,y,t

) ,
(6)

where Lx′,y′,t ′ denotes the adjacent pixels in the spatiotem-
poral window, Lx,y,t represents the label of the target pixel
(x,y) in period t and I

(
Lx′,y′,t ′ = Lx,y,t

)
is the indicator

function. Usually, the value of Px,y,t could reflect the accu-
racy of Lx,y,t ; namely, a higher value of Px,y,t means the
high confidence of Lx,y,t . In this study, the threshold of 0.5
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for Px,y,t (suggested by the Li et al., 2015) was applied to
reduce the influence of classification error caused by individ-
ual classifications. If Px,y,t for each impervious-surface pixel
was lower than 0.5, the corresponding label was adjusted
as the opposite. Afterwards, the illogical transition checking
mainly employed the irreversibility assumption to remove il-
logical transitions from impervious surface to pervious sur-
face.

3.3 Accuracy assessment

To comprehensively assess the performance of our global
30 m impervious-surface dynamic dataset, sample-based and
comparison-based methods were applied. Specifically, the
sample-based validation method used the multitemporal
impervious-surface validation samples to calculate four ac-
curacy metrics, including the overall accuracy and kappa co-
efficient, the producer’s accuracy (measuring the commission
error), and the user’s accuracy (measuring the omission er-
ror) (Olofsson et al., 2014). Meanwhile, as opposed to tra-
ditional period-by-period accuracy assessments, we catego-
rized the time-series impervious-surface dynamic into nine
independent strata, including pervious surfaces, impervious
surfaces before 1985, and expanded impervious surfaces dur-
ing 1985–1990, 1990–1995, 1995–2000, 2000–2005, 2005–
2010, 2010–2015 and 2015–2020. We then calculated a com-
prehensive confusion matrix for these nine strata.

In addition, the comparison-based method used five global
30 m impervious-surface products (GAIA, GHSL, NUACI,
GAUD and GlobeLand30) with multiple epochs as the
comparative dataset for analyzing the performance of our
GISD30 products. Specifically, we compared the time-series
impervious areas of five products in six continents and fur-
ther analyzed the spatial consistency between GISD30 and
five comparative datasets at the global scale. Further, we se-
lected three types of cities (mega-cities, tropical cities and
arid cities) and one rural area to illustrate the performance
of five global 30 m impervious-surface products used for
capturing the spatiotemporal dynamic. The reasons why we
chose these types of cities and rural areas were that (1) the
mega-cities usually experienced more intense urbanization,
and we could more intuitively understand whether there were
commission error and omission error in each product; (2) the
tropical cities usually mean sparser observations caused by
the cloud coverage, so we could analyze the stability and ro-
bustness of each product in the tropical cities; (3) the arid
cities were selected to analyze the ability of each product
to distinguish between impervious surfaces and similar land
types (arid soils); and (4) the rural area contained sparse im-
pervious surfaces and were prone to suffer the underestima-
tion problem.

4 Results

4.1 The spatiotemporal dynamics of impervious
surfaces from 1985 to 2020

Figure 5 illustrated the spatial distributions of time-series
global 30 m impervious-surface maps and two local enlarge-
ments in China and India during 1985–2020 with intervals
of 5 years. Intuitively, as the world’s main impervious sur-
faces and economic activities are mainly concentrated in the
Northern Hemisphere, the intensity of impervious-surface
expansion in the Northern Hemisphere is more significant
than that in the Southern Hemisphere. Specifically, the im-
pervious surfaces have undergone rapid urbanization in past
35 years especially in developing countries such as China and
India in Fig. 5a and b. It can be found that many low-density
areas in 1985 were transformed into medium-/high-density
areas in 2020, and the cities were obviously connected by
the new impervious surfaces especially in the mega-cities
such as Shanghai and Guangzhou in China. Meanwhile, the
cities (such as Bangkok, New Delhi and Beijing in Fig. 5a
and b) usually experienced faster impervious-surface expan-
sion speeds than the surrounding villages and small cities,
etc.

Figure 6 quantitatively summarizes the impervious surface
areas and their changes on six continents from 1985 to 2020.
Overall, the global impervious surface area has doubled in
the past 35 years, from 5.116×105 km2 in 1985 to 10.871×
105 km2 in 2020. Specifically, Asia experienced the largest
increase in impervious surface area compared to other conti-
nents, with a total increase of 2.946×105 km2 (from 1.908×
105 km2 in 1985 to 4.854× 105 km2 in 2020), followed by
North America (from 1.202× 105 to 2.188× 105 km2), Eu-
rope (from 1.330× 105 to 2.168× 105 km2), Africa (from
0.264× 105 to 0.725× 105 km2) and South America (from
0.298×105 to 0.735×105 km2), and Oceania experienced the
lowest urbanization, with an increase of 0.088×105 km2 over
the past 35 years. In addition, Fig. 6b indicated that the pro-
portion of impervious area on the continents of Asia, Africa
and South America obviously increased, while the propor-
tions of the remaining three continents (Europe, North Amer-
ica and Oceania) slowly declined during 1985–2020. Specif-
ically, the proportion of impervious area in Asia increased
the most, from 37.3 % to 44.7 %, while the proportion in Eu-
rope clearly decreased, from 26.0 % to 20.1 %. Lastly, Fig. 6d
illustrates the impervious-surface expansion ratio of six con-
tinents in 1985–2020. Africa displayed the fastest expansion
ratio compared to other continents – the impervious area in
Africa was 1.74 times greater than that in 1985, followed by
Asia and South America, with expansion ratios of 154.4 %
and 146.4 % over the period, respectively. Comparatively, as
Europe and North America had large impervious surface ar-
eas in 1985, their impervious-area expansion ratios were rel-
atively low. Meanwhile, it can be found that the expansion
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Figure 5. The spatial distributions of time-series global 30 m impervious-surface results and two local enlargements in China and India from
1985 to 2020 with intervals of 5 years. Each pixel represents the fraction of impervious surface within each 0.05◦× 0.05◦ spatial grid.
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rate of impervious surface area on six continents after 2000
was significantly faster than before 2000.

Figure 7 quantitatively measures the growth of impervious
surfaces in various countries around the world over the pe-
riod of 1985–2020. Intuitively, China underwent the largest
increase in impervious area in the last 35 years, with an in-
crease of 1.31× 105 km2, followed by the United States and
India both exceeding 4.0× 104 km2 and Russia and Brazil
exceeding 2.0× 104 km2. Meanwhile, from the perspective
of spatial distribution, countries in Asia and North Amer-
ica displayed a higher increase in impervious area than those
in other continents, especially East Asian and South Asian
countries. In comparison, most countries in Africa underwent
relatively little impervious-surface growth, with an increase
of less than 4000 km2 over the past 35 years. Although Eu-
rope is a center of global economic activity, the increased
impervious area in European countries was not significant
compared with North America and Southeast Asia, and the
average increase in area was less than 8000 km2. In addi-
tion, Fig. 7 shows the sum of the impervious surface area
in the meridional and zonal directions in 1985 (blue) and
2020 (red), with a step of 0.05◦, respectively. The meridional
statistics indicated that the impervious surface in 1985 was
more evenly distributed in the meridional direction than that
in 2020. In 2020, there were four distinct peak intervals: 100–
70◦W (covering the eastern United States), 0–50◦ E (con-
taining most European countries), 70–90◦ E (covering the
whole of India) and 100–120◦ E (containing many Southeast
Asia countries and China). Meanwhile, the increase in im-
pervious area in the Eastern Hemisphere was significantly
larger than that in the Western Hemisphere, and the maxi-
mum increase in impervious area was located near 120◦ E,
containing China’s three major economic deltas (Yangtze
River Delta, Pearl River Delta and Jing-Jin-Ji metropolitan
region). Next, the zonal statistics indicated that the vast ma-
jority of impervious surfaces in the world were distributed
between approximately 20 and 60◦ N, the area of which con-
tains most of the world’s economically developed and high-
density countries. Similarly, the increase in impervious area
over the past 35 years was also concentrated in the Northern
Hemisphere, and the increase between 20–60◦ N accounted
for 70.75 % of the total increase in the world.

4.2 Accuracy assessment using validation samples

Table 1 quantitatively assesses the performance of our time-
series global impervious-surface dynamic products using
23 322 multitemporal validation samples. The global imper-
vious dynamic products achieved the overall accuracy of
90.1 % and a kappa coefficient of 0.865 in the nine-strata val-
idation system. Specifically, from the perspective of user’s
accuracy, the pervious surface had the highest accuracy of
98.5 % because we used the maximum impervious bound-
ary in 2020 to monitor the impervious-surface dynamics,
and the prior impervious layer in GLC_FCS30-2020 also

had the high user’s accuracy of 93.2 % (Zhang et al., 2020).
The impervious surface before 1985 achieved an accuracy of
92.3 %, mainly because the stable impervious area in 1985
was obviously larger than the expanded area over each 5-year
period and capturing the expansion impervious surface was
also more difficult. Furthermore, the measurements of expan-
sion in impervious surfaces in seven 5-year periods had sim-
ilar performances, with an accuracy of approximately 70 %.
Confusions mainly occurred in temporally adjacent periods
because the transition from pervious surface to impervious
surface is a slow process and spans a long period of time,
which directly increases the difficulty of monitoring it. In ad-
dition, the producer’s accuracy had a similar distribution law
to the user’s accuracy for each strata in Table 1. In addition,
it can be found that the user’s accuracy for the expansion of
impervious surface after 2000 was higher than that before
2000, which was mainly affected by the more sparsely avail-
able Landsat observations before 2000 in Fig. 1. Similarly,
Gong et al. (2020) also found that the monitoring uncertainty
before 2000 was greater than after 2000.

Figure 8 illustrates the confusion proportions of the per-
vious surface, the stable impervious surface and the ex-
panded impervious surface over each 5-year period, accord-
ing to the confusion matrix in Table 1. Obviously, the per-
vious surface and stable impervious surface before 1985
had the lowest confusion proportions because we already
knew the maximum impervious-surface boundary in 2020
using multisource prior datasets. Next, the confusion pro-
portion between the expansion of impervious surface before
2000 and the stable impervious surface in 1985 was approxi-
mately 10 %–20 %, mainly because the Landsat imagery be-
fore 2000 was sparse, and we assumed that the land-cover
information would remain stable in missing Landsat obser-
vation areas. Furthermore, there was also a certain degree of
confusion between the expanded impervious surface and the
pervious surface (approximately 5 %) because urbanization
generally occurred on the peripheries of cities and thus was
more likely to be confused with pervious surfaces. Lastly,
there was also much confusion between seven periods of
impervious-surface expansion, especially for the three tem-
porally adjacent periods, because the transition from pervi-
ous surface to impervious surface is a long and slow process.
Similarly, Liu et al. (2019) used the continuous-change de-
tection method to capture impervious-surface dynamics and
found a temporal bias between the detected change time and
the actual change time.

4.3 Cross-comparisons with other global 30 m
impervious-surface products

4.3.1 Cross-comparison at a global scale

To comprehensively analyze the performances of our
impervious-surface dynamic time-series products, five global
30 m multitemporal impervious-surface products (GAIA,
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Figure 6. The expansion of impervious surfaces on each continent over the period of 1985–2020. (a) The impervious areas of six continents
in each period. (b) The proportion of impervious areas on six continents from 1985 to 2020. (c, d) The increased impervious area and
corresponding expansion ratio on each continent.

Figure 7. The expansion of impervious area in each country over the period 1985–2020 and meridional and zonal impervious-area statistics
for 1985 (blue) and 2020 (red), with a step of 0.05◦.

NUACI, GHSL, GAUD and GlobeLand30) were selected as
the comparative datasets. Figure 9 illustrates the total im-
pervious area of five global impervious-surface products on
six continents over the period of 1985–2020. Overall, all six
global impervious-surface products accurately captured the
rational spatiotemporal trend over the past 35 years – the im-

pervious surface area of all continents had steadily increased
over time, and the increased impervious area in the Northern
Hemisphere was obviously greater than that in the Southern
Hemisphere.

Specifically, GISD30, GAIA, NUACI, GAUD and GHSL
showed great area consistency in North America, while Glo-
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Table 1. The confusion matrix of our global 30 m impervious-surface dynamic products using 23 322 validation samples.

P.S. 1985 85–90 90–95 95–00 00–05 05–10 10–15 15–20 Total P.A.

P.S. 9840 11 20 14 22 21 14 24 20 9986 0.985
1985 247 5408 61 49 41 17 20 8 5 5856 0.923
85–90 28 74 555 27 11 14 19 16 9 753 0.737
90–95 43 58 20 556 19 19 10 13 5 743 0.748
95–00 70 72 13 31 902 35 31 16 19 1189 0.759
00–05 76 62 12 36 42 1383 49 29 5 1694 0.816
05–10 52 37 13 14 14 42 1201 18 21 1412 0.851
10–15 47 52 11 21 23 36 69 566 19 844 0.671
15–20 55 59 8 7 14 21 30 43 608 845 0.720

Total 10 268 5786 686 714 1064 1602 1435 662 689 23 322
U.A. 0.958 0.935 0.809 0.779 0.848 0.863 0.837 0.855 0.882

O.A. 0.901
Kappa 0.865

P.S.: pervious surface; 1985: impervious surface before 1985; 85–90: expansion of impervious surface during 1985–1990; . . ., 15–20: expansion of
impervious surface during 2015–2020; U.A.: user’s accuracy; P.A.: producer’s accuracy; O.A.: overall accuracy.

Figure 8. The confusion proportions of pervious surfaces, impervious surfaces in 1985 and increased impervious surfaces from 1985 to
2020.

beLand30 displayed a degree of overestimation, and its es-
timated area was almost 0.5× 105 km2 higher than that for
other products. Then, on the remaining five continents, GAIA
showed the lowest total impervious area compared with the
other global 30 m impervious products. Similarly, the com-
parison in Gong et al. (2020) also indicated that GAIA
showed the lowest impervious area among several global
30 m impervious-surface products (NUACI, GHSL and Glo-
beLand30). As NUACI only monitored the global urban dy-
namics and excluded the rural areas (Liu et al., 2018), it was
expected that the total impervious areas given by NUACI
would be lower than those given by GISD30, GHSL and Glo-
beLand30. As for GHSL, its impervious area varied greatly
on different continents; for example, the total impervious
area was close to that of GISD30 in North America and Eu-
rope; of NUACI in Asia, South America and Oceania; and of
GlobeLand30 in Africa. However, compared with GISD30
and GlobeLand30, GHSL still underestimated the impervi-

ous surfaces in most continents. Next, GlobeLand30 gave
the largest total impervious area for each continent, mainly
because some vegetation surfaces around buildings were re-
garded as artificial surfaces in GlobeLand30 (Chen et al.,
2015). Lastly, the GAUD dataset showed the second low-
est total impervious areas among the six products on the
continents of Asia, South America, Africa and Oceania and
had the slowest impervious-surface growth rates among six
impervious-surface products.

As the six global 30 m impervious-surface products dis-
played large differences in estimated global total impervi-
ous area in Fig. 9, it was necessary to further assess the per-
formances of these products. Figure 10 illustrates the spatial
patterns of these products globally and for two local enlarge-
ments in China and Europe (Fig. 10a and b) after aggregat-
ing to the resolution of 0.05◦. Overall, there was great spatial
consistency between the GISD30, GHSL, GAUD and Glo-
beLand30 products – all of them captured the actual pat-
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Figure 9. The impervious area of six global 30 m impervious-surface products on six continents over the period of 1985–2020.

terns of global impervious surfaces, mainly those concen-
trated between approximately 20 and 60◦ N. In detail, the
local enlargement in Fig. 10a illustrated that GHSL showed
smaller impervious areas and a lower intensity than GISD30,
GAUD and GlobeLand30 in China, which meant a lot of
the small impervious-surface pixels were underestimated by
the GHSL-2015 dataset. Next, the impervious area given
by GlobeLand30 in the United States was greater than that
given by GISD30, GAUD and GHSL because many cities
in the United States display a serious mix of houses and
vegetation, while some vegetation surfaces around buildings
were regarded as artificial surfaces in GlobeLand30. It should
be noted that there was the highest consistency between
GISD30 and GlobeLand30 in these two local enlargements.
Further, GAUD, optimized from the NUACI dataset (X. Liu
et al., 2020), simultaneously captured the urban and rural ar-
eas at a global level and achieved a higher performance than
the NUACI dataset in the two local enlargements, but it still
showed a lower impervious area and intensity than GISD30
and GlobeLand30 in the local regions. Comparatively, the
NUACI dataset showed the smallest impervious surface ar-
eas and the lowest intensity compared to the other products
especially in Europe (Fig. 10b), India and China (Fig. 10a)
because it only identified urban pixels and excluded rural
areas (Liu et al., 2018). As for the GAIA dataset, although
it simultaneously identified urban and rural pixels, their im-
pervious surface areas were still significantly smaller than
in the GISD30, GHSL, GAUD and GlobeLand30 products
especially in Europe (Fig. 10b), which indicated that GAIA
suffered the underestimation problem in these rural areas.

To quantitatively assess the consistency of the GISD30
dataset with five previous impervious-surface products, the
scatterplots and the corresponding regression functions were
illustrated in Fig. 11. It should be noted that the scatter points
in Fig. 11 represented the proportions of impervious area in
each 0.05◦× 0.05◦ grid. Overall, the consistency between

GISD30 and other products increased with time, and the re-
gression slope also increasingly approached 1.0 (the solid re-
gression lines were getting closer and closer to the dotted
1 : 1 reference line). Specifically, as for the scatterplots be-
tween the GAIA and GISD30 dataset, most scatter points
were obviously concentrated below the 1 : 1 line at early
stage and then slowly distributed on both sides of the 1 : 1
line, and the regression slope and correlation coefficient also
increased from 0.498 to 0.871 and 0.789 to 0.907, respec-
tively. Next, as the NUACI dataset only identified the ur-
ban pixels and excluded rural areas (Liu et al., 2018), we
could find that most scatter points were located below the
1 : 1 line especially in the “low-fraction” interval, and the re-
gression slopes were less than 1.0. Then, the scatterplots be-
tween the GISD30 and GAUD datasets indicated that the im-
pervious surfaces captured by GISD30 was larger than that
of GAUD, and the correlation coefficients and slopes be-
tween these two datasets increased with time especially in
2015 with the highest correlation coefficient of 0.931. Fur-
ther, as the GlobeLand30 defined the vegetation in cities as
artificial surfaces (Chen et al., 2015), we could find a lot
of scatter points located above the 1 : 1 line. Meanwhile, as
GlobeLand30 used the minimum mapping unit of 4× 4 for
impervious surface (Chen et al., 2015), which meant that a
large number of fragmented and small impervious surfaces
were missed, the regression slopes between GlobeLand30
and GISD30 were still less than 1.0. Lastly, there was greater
agreement between the GISD30 and GHSL dataset than be-
tween other products in terms of the spatial distributions of
scatter points and the regression slope.

Except for the consistency analysis, the quantitative ac-
curacy assessments for four global impervious-surface prod-
ucts were calculated using the same validation dataset, as
listed in Table 2. The GHSL and GlobeLand30 datasets were
excluded because both of them cannot cover the whole pe-
riod with a 5-year interval. Overall, GISD30 achieved the
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Figure 10. The spatial patterns of six global 30 m impervious-surface products and two local enlargements in China (a) and Europe (b) after
aggregating to the spatial resolution of 0.05◦× 0.05◦.
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Figure 11. The scatterplots of the GISD30 dataset (x axis) against five previous global 30 m impervious-surface products (y axis, GAIA,
NUACI, GAUD, GlobeLand30 and GHSL datasets) at the spatial resolution of 0.05◦× 0.05◦. It should be noted that the label of the x and
y axes was the proportion of impervious surfaces in each 0.05◦× 0.05◦ spatial grid.

highest performance with an overall accuracy of 0.901 and
kappa coefficient of 0.865, compared with 0.797 and 0.702
for GAIA, 0.843 and 0.748 for GAUD, and 0.745 and 0.702
for NUACI. Specifically, in terms of the pervious surfaces,
it can be found that all four products achieved similar and
great producer’s accuracy exceeding 0.94. As the previous
comparisons have illustrated that GAIA, NUACI and GAUD
datasets underestimated the impervious surfaces, the user’s
accuracy of them was lower than the GISD30 dataset. Af-
terwards, as for the performance of impervious surfaces,
NUACI suffered the lowest user’s accuracy and producer’s
accuracy in 1985 because it only identified the urban areas
(Liu et al., 2018) and overestimated some increased imper-
vious surfaces as the early impervious surfaces before 2000
(see Fig. 13). Similarly, GAIA and GAUD also missed some
fragmented and small impervious surfaces, so the producer’s

accuracy of them in 1985 was also greatly lower than that
of GISD30. Then, the accuracy metrics of these increased
impervious surfaces were similar to the overall accuracies;
namely, GISD30 could accurately capture the spatiotempo-
ral dynamics of impervious surfaces, followed by the GAUD,
GAIA and NUACI datasets.

4.3.2 Cross-comparison at a regional scale

To understand the performance of five global 30 m
impervious-surface products used for monitoring spatiotem-
poral dynamics, we randomly selected six cities after con-
sidering city size, spatial distribution and urban landscapes.
Moscow and Shanghai were the representative mega cities;
Bangkok and Jakarta were the cities in tropical regions (heav-
ily affected by cloud and shadows); and Phoenix and Jo-

https://doi.org/10.5194/essd-14-1831-2022 Earth Syst. Sci. Data, 14, 1831–1856, 2022



1848 X. Zhang et al.: GISD30: global 30 m impervious-surface dynamic dataset

Table 2. The accuracy metrics of four global 30 m impervious-surface dynamic products using the same validation datasets.

P.S. 1985 85–90 90–95 95–00 00–05 05–10 10–15 15–20 O.A. Kappa

GISD30
P.A. 0.985 0.923 0.737 0.748 0.759 0.816 0.851 0.671 0.720

0.901 0.865
U.A. 0.958 0.935 0.809 0.779 0.848 0.863 0.837 0.855 0.882

GAIA
P.A. 0.969 0.755 0.552 0.510 0.494 0.489 0.474 0.663 0.531

0.797 0.702
U.A. 0.873 0.932 0.445 0.469 0.532 0.627 0.621 0.488 0.608

NUACI
P.A. 0.940 0.660 0.459 0.348 0.317 0.422 0.395 0.482

0.745 0.609
U.A. 0.839 0.796 0.160 0.348 0.398 0.624 0.626 0.608

GAUD
P.A. 0.978 0.855 0.516 0.554 0.528 0.551 0.520 0.571

0.843 0.748
U.A. 0.896 0.901 0.535 0.620 0.642 0.693 0.637 0.614

P.S.: pervious surface; 1985: impervious surface before 1985; 85–90: expansion of impervious surface during 1985–1990; . . ., 15–20: expansion of impervious
surface during 2015–2020; U.A.: user’s accuracy; P.A.: producer’s accuracy; O.A.: overall accuracy.

hannesburg were the representative cities for arid regions. It
should be noted that we excluded GlobeLand30 in regional
comparisons because it only covered the period of 2000–
2020, while the remaining products can monitor the impervi-
ous surfaces before 2000. Specifically, Fig. 12 illustrates the
comparison between our GISD30 dynamic products and four
comparative datasets for Moscow and Shanghai. Intuitively,
NUACI suffered from overestimation for two cities, misclas-
sifying much vegetation as impervious surfaces. It also failed
to capture the expansion of impervious surfaces in Shang-
hai – many cropland pixels before 2000 were identified as
impervious surfaces. The GAIA products misidentified some
old urban pixels (green color) as newly expanded impervious
surfaces (red color) in Moscow, and it overestimated the ex-
pansion of impervious surfaces during 2010–2020 in Shang-
hai. According to the Landsat imagery, Shanghai’s fastest ur-
ban expansion occurred in 2000–2010, but GAIA obviously
lagged in this measurement. Furthermore, GHSL also could
not accurately capture the spatiotemporal dynamics of imper-
vious surfaces in detail. For example, it gave a low propor-
tion of expanded impervious surfaces after 2000 in Shanghai,
whereas in actuality, Shanghai experienced rapid urbaniza-
tion after 2000. Lastly, there was the greatest spatial consis-
tency between the GAUD and GISD30 datasets in these two
cities; both of them accurately captured the expansion pat-
tern of “the center to the periphery”. However, it still can be
found that a lot of rural impervious surfaces in GAUD were
wrongly labeled (red rectangle) in Shanghai.

Figure 13 illustrates the performance of five impervious-
surface products in two cloud-contaminated cities (Bangkok
and Jakarta). Clearly, GISD30 performed the best in mon-
itoring the spatiotemporal dynamics of the impervious sur-
faces in these two cities. Comparatively, GAIA clearly un-
derestimated the impervious surfaces in Bangkok, and many
small impervious-surface objects in the peripheral cities (ru-
ral buildings) were missed. As regards impervious dynamics,
GAIA underestimated the expansion after 2010 in Bangkok
and also failed to capture the expansion pattern from the city

center to the outskirts in Jakarta. On the contrary, NUACI
suffered from serious overestimation in the two cities and
misidentified some croplands on the peripheries as impervi-
ous surfaces, especially in Jakarta. Meanwhile, it also failed
to monitor the spatiotemporal dynamics of impervious sur-
faces in the two cities, while the expansion area from 1985 to
2020 was severely underestimated, and the impervious area
before 2000 was overestimated. GHSL captured the distri-
bution of impervious surfaces before 1985; however, the ex-
pansion of impervious surfaces over the past 35 years was
seriously underestimated in the two cities. Lastly, the GAUD
dataset performed well in the early stage in Bangkok, but it
failed to capture the increased impervious surfaces after 2000
and missed a lot of rural impervious surfaces (red rectangle)
in Bangkok. As for the second region, it still cannot accu-
rately capture the increased impervious surfaces after 2000.

Figure 14 compared the performances of GISD30 and the
four reference products in two arid cities (Phoenix and Jo-
hannesburg). Overall, the highest consistency was found be-
tween GISD30 and GHSL because both accurately captured
the spatial patterns of impervious surfaces and the expan-
sion of impervious surfaces on the peripheries of the cities.
NUACI showed larger impervious areas than the other four
products, but the corresponding Landsat imagery indicates
that NUACI misidentified many pervious surfaces (bare land)
as impervious surfaces, especially in Johannesburg. Mean-
while, NUACI suffered an obvious stamping effect mainly
caused by temporal differences among adjacent Landsat im-
age sets and also failed to capture the time of the expansion
of impervious surfaces, especially in Johannesburg. GAIA
performed well in identifying the impervious surface area
and capturing the time of expansion in Phoenix, but it suf-
fered from overestimation in Johannesburg, where much arid
bare land was wrongly identified as an impervious surface
in the early stages. Furthermore, as GHSL only covered the
period of 1975–2014, it made sense that it registered less
expanded impervious surface than GISD30. Lastly, GAUD
shared similar impervious-surface distributions with GISD30
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Figure 12. Comparisons between the GISD30 dynamic products and four other datasets (the GAIA products developed by Gong et al., 2020;
NUACI developed by Liu et al., 2018; GHSL developed by Florczyk et al., 2019; and GAUD developed by X. Liu et al., 2020) in the two
representative megacities of Moscow and Shanghai. In each case, the multi-epoch Landsat imagery, comprised of red, green and blue bands,
came from the United States Geological Survey (https://earthexplorer.usgs.gov/, last access: 13 April 2022).

Figure 13. The comparisons between GISD30 and four reference datasets (the GAIA products developed by Gong et al., 2020; NUACI
developed by Liu et al., 2018; GHSL developed by Florczyk et al., 2019; and GAUD developed by X. Liu et al., 2020) in the two cloud-
contaminated cities of Bangkok and Jakarta. In each case, the multi-epoch Landsat imagery, comprised of red, green and blue bands, came
from the United States Geological Survey (https://earthexplorer.usgs.gov/).

at the early stage in Phoenix, but its increased impervious
surfaces after 2000 were significantly less than GISD30,
GAIA and GHSL. As for the Johannesburg city, it suffered
the overestimation problem, identifying some pervious sur-
faces in the cities as the impervious surfaces, and also under-
estimated the increased impervious surfaces after 2000.

Lastly, the cross-comparison between GISD30 and the
four previous datasets in the rural villages (containing sparse
impervious surfaces) was illustrated in the Fig. 15. Over-
all, except for GISD30, the remaining impervious-surface
datasets failed to identify these small rural buildings around
the central villages. In terms of the spatial pattern of vil-
lages, the NUACI dataset obviously misclassified a lot of
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Figure 14. The comparisons between GISD30 and four reference datasets (the GAIA products developed by Gong et al., 2020; NUACI
developed by Liu et al., 2018; GHSL developed by Florczyk et al., 2019; and GAUD developed by X. Liu et al., 2020) in the two representative
arid cities of Phoenix and Johannesburg. In each case, the multi-epoch Landsat imagery, comprised of red, green and blue bands, came from
the United States Geological Survey (https://earthexplorer.usgs.gov/).

croplands as increased impervious surfaces and also missed
those stable impervious surfaces in the central villages. The
GAUD dataset performed well in the early stage and accu-
rately captured these old impervious surfaces, but these in-
creased impervious surfaces after 2000 were missed. In fact,
the village experienced significant impervious expansions af-
ter 2000 by visually interpreting the multitemporal Landsat
imagery. GAIA partly captured the spatiotemporal expan-
sion in the village, but the impervious areas in GAIA were
obviously smaller than the actual situation, which indicated
that the GAIA dataset suffered the underestimation prob-
lem in this rural village. Further, it can be found that there
was the highest consistency between GISD30 and GHSL,
both of which captured the expansion pattern of the center
to the periphery; however, the increased impervious surfaces
in GHSL were still less than the actual increases.

5 Discussion

5.1 The feasibility and advantages of the proposed
method for monitoring impervious-surface dynamics

In contrast to supervised classification methods using inde-
pendent samples for different periods, which require expen-
sive resources to collect multitemporal training samples (Gao
et al., 2012; Zhang and Weng, 2016), we used prior global
land-cover products and the spectral-generalization strategy
to automatically monitor the impervious-surface dynamics.
Firstly, as the reliability of the training samples was demon-
strated to directly affect the final classification accuracy, we
combined the impervious layers in the GLC_FCS30-2020

and GlobeLand30-2020 land-cover products to derive can-
didate impervious training samples and then adopted the
spatial-homogeneity filtering to further ensure the reliabil-
ity of each sample in 2020. In order to assess the accuracy of
training samples, we randomly selected 10 000 impervious-
surface samples from the global sample pool, and the 10 000
random samples were interpreted by visual interpretation.
The validation result showed that these impervious training
samples achieved an overall accuracy of 95.52 % in 2020.
To demonstrate whether the erroneous training samples can
affect the performance of the classifiers, we gradually in-
creased the percentage of erroneous training samples with
a step of 1 % and then repeated 100 times, as illustrated
in the Fig. 16. It can be found that the local-adaptive ran-
dom forest models had great performance in being resistant
to noise and erroneous training samples, and the overall ac-
curacy and impervious-surface producer’s accuracy kept sta-
ble when the percentage of erroneous training samples were
controlled within 40 % and then decreased after exceeding
the threshold. Similarly, Gong et al. (2019b) also found that
the overall accuracy kept stable when the percentage of er-
roneous training samples was within 20 %. Therefore, the
training samples derived in Sect. 3.1 were accurate enough
for monitoring impervious-surface dynamics.

In addition, contrary to other spectral-generalization clas-
sification methods, which migrated the reflectance spectra of
all land-cover types (Dannenberg et al., 2016; Phalke and
Özdoğan, 2018; Zhang et al., 2019), we only migrated the
reflectance spectra of impervious surfaces measured in 2020
to other periods and simultaneously transferred the pervious
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Figure 15. The comparisons between GISD30 and four reference datasets (the GAIA products developed by Gong et al., 2020; NUACI
developed by Liu et al., 2018; GHSL developed by Florczyk et al., 2019; and GAUD developed by X. Liu et al., 2020) in the rural village.
The multi-epoch Landsat imagery, comprised of SWIR1, NIR and red bands, came from the United States Geological Survey (https://
earthexplorer.usgs.gov/).

Figure 16. The relationship between overall accuracy and impervi-
ous producer’s accuracy with the percentage of erroneous training
samples using the random forest classification model.

samples to other periods based on the assumption of irre-
versibility. Therefore, we needed to independently train the
classification models in each period using the migrated re-
flectance spectra of impervious- and pervious-surface sam-
ples. Correspondingly, our temporal adaptive models achieve
better performances than traditional generalized models used
for monitoring impervious-surface dynamics. Furthermore,
many studies have demonstrated that the spectral inconsis-
tency between migrated spectra and classified imagery di-
rectly affects classification accuracy (Woodcock et al., 2001;
Zhang et al., 2018). In this study, we used continuous Land-
sat imagery to preclude the effects of different sensors and
adopted a seasonally composited method with relative radio-
metric normalization to minimize the influence of temporal
difference. We took the Yangtze River Delta as an exam-
ple to draw scatterplots for NIR reflectance of impervious
surfaces in 2020 against other periods at the growing sea-
son after relative radiometric normalization, as illustrated in
Fig. 17. There was significant consistency in NIR band be-
tween reference period and other periods, and most scatters
were distributed on both sides of the regression line. In terms

of the regression slope, the slope got closer and closer to 1.0
as time increased, which was mainly caused by the shorter
temporal difference and denser Landsat imagery at later pe-
riods. According to the distribution of scatter points and the
regression lines, there was no systematic bias between refer-
ence data and other data, which also demonstrated that it was
feasible to generalize the reflectance spectra of impervious
surfaces in 2020 to other periods.

Lastly, to optimize the time-series impervious maps and
minimize the influence of classification error, the temporal-
consistency checking post-processing method proposed by
the Li et al. (2015) was adopted. It mainly used the spa-
tiotemporal correlation information to eliminate the salt-and-
pepper noise in the multi-epoch impervious-surface maps
and used the irreversible assumption to remove the illogi-
cal transitions. Li et al. (2015) quantitatively demonstrated
that the post-processing method improved the overall accu-
racy by about 6 % for monitoring impervious dynamics in
Beijing, China. Recently, this post-processing method was
involved for producing the GAIA dataset (Gong et al., 2020)
and optimizing time-series land-cover maps in China (Yang
and Huang, 2021); both of them demonstrated that temporal-
consistency checking improved the reliability and consis-
tency of the classification results by integrating the spa-
tiotemporal context information.

5.2 Limitations and prospects of the global
impervious-surface dynamic dataset

In this study, we have proposed a novel automatic method to
successfully produce a global 30 m impervious-surface dy-
namic dataset over the period of 1985–2020 and quantita-
tively and qualitatively demonstrated that our dataset per-
formed well in capturing the spatial distributions and spa-
tiotemporal dynamics of impervious surfaces; however, there
were still some weaknesses in our impervious-surface dy-
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Figure 17. The scatterplots for NIR reflectance of impervious surface in 2020 (y axis) against other periods (x axis) after relative radiometric
normalization in the Yangtze River Delta region.

namic products. Firstly, we assumed that the transition from
pervious surface to impervious surface was irreversible over
the monitoring period, which caused our method or product
to fail to capture the transition from impervious to pervious
surface (such as demolition caused by urban greening), as
well as many changes that took place in impervious surfaces
(such as urban demolition and reconstruction). Recently, Liu
et al. (2019) used continuous-change detection to success-
fully capture these reversible and multiple changes in Nan-
chang, China; however, the implementation efficiency of the
method was low, and whether it can support the monitoring
of global impervious-surface dynamics remains to be veri-
fied. Therefore, our future work must exploit the advantages
of a continuous-change detection model to improve the ef-
fectivity of monitoring the spatiotemporal dynamics of im-
pervious surfaces.

Our previous study (Zhang et al., 2020) quantitatively
demonstrated that a combination of multisource remote sens-
ing datasets could significantly improve the ability to rec-
ognize impervious surfaces, especially in semi-arid or arid
regions, where bare land generally shares spectral charac-
teristics with impervious surfaces. In addition, the Landsat
imagery available before 2000 was relatively sparse (illus-
trated in Fig. 1), which directly affects the monitoring ac-
curacy of impervious surfaces, and this explains why the
user’s accuracy of the expansion of impervious surfaces
before 2000 was significantly lower than after 2000 (Ta-
ble 1). Similarly, Gong et al. (2020) also found that the
availability of Landsat imagery had a positive relationship
with impervious-surface monitoring accuracy when creat-
ing GAIA global impervious-surface products. Therefore,
our future work should combine multisource remote sens-

ing imagery (such as synthetic-aperture radar (SAR), night-
time light (NTL) and Advanced Very High Resolution Ra-
diometer (AVHRR) data) as auxiliary data to further improve
impervious-surface monitoring accuracy.

6 Data availability

The global 30 m impervious-surface dynamic
dataset from 1985 to 2020 is free to access at
https://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b).
The global dynamic dataset was used to label the expansion
information in a single band; specifically, the pervious
surface and the impervious surface before 1985 were,
respectively, labeled 0 and l, and the expanded impervious
surfaces in the periods 1985–1990, 1990–1995, 1995–2000,
2000–2005, 2005–2010, 2010–2015 and 2015–2020 were
labeled 2, 3, 4, 5, 6, 7 and 8. Furthermore, in order to
facilitate the use of these data, the global dynamic products
were split into 961 tiles of 5◦× 5◦ in the GeoTIFF format,
named “GISD30_1985-2020_E/W**N/S**.tif”, where
“E/W**N/S**” is the latitude and longitude coordinates
found in the upper left corner of the tile data.

7 Conclusions

In this study, a novel and automatic method of combining the
advantages of spectral-generalization and automatic-sample-
extraction strategies was proposed, and then an accurate
global 30 m impervious-surface dynamic dataset for 1985 to
2020 was produced by using time-series Landsat imagery.
Specifically, we first migrated the reflectance spectra of im-
pervious surfaces and simultaneously transferred the training

Earth Syst. Sci. Data, 14, 1831–1856, 2022 https://doi.org/10.5194/essd-14-1831-2022

https://doi.org/10.5281/zenodo.5220816


X. Zhang et al.: GISD30: global 30 m impervious-surface dynamic dataset 1853

samples of pervious surfaces to other periods to automat-
ically monitor the spatiotemporal dynamics of impervious
surfaces from 1985 to 2020. Then, we combined the local-
adaptive modeling and time-series Landsat imagery to inde-
pendently produce impervious-surface time-series products.
Lastly, the spatiotemporal-consistency checking method was
applied to independent impervious-surface products in or-
der to minimize the effects of classification errors and en-
sure the reliability and spatiotemporal consistency of the fi-
nal impervious-surface dynamic dataset.

Overall, the global 30 m impervious-surface dynamic
dataset we produced accurately captured the expansion pat-
tern of impervious surfaces over the past 35 years. The quan-
titative results indicate that the global impervious surface
area doubled in the past 35 years, from 5.116× 105 km2

in 1985 to 10.871× 105 km2 in 2020, and Asia underwent
the greatest increase in impervious surface area compared to
other continents, with a total increase of 2.946× 105 km2.
Meanwhile, we also found that the expansion rate of im-
pervious surface on six continents after 2000 was signifi-
cantly faster than before 2000. In addition, the global 30 m
impervious-surface dynamic dataset was validated by 23 322
multitemporal validation samples, and our dataset achieved
the overall accuracy of 90.1 % and a kappa coefficient of
0.865. Lastly, quantitative and qualitative comparisons be-
tween GISD30 and the five comparative impervious-surface
products (GAIA, GHSL, NUACI, GAUD and GlobeLand30)
indicate that our GISD30 products performed the best in cap-
turing the spatial distributions and spatiotemporal dynamics
of impervious surfaces. Therefore, it was concluded that our
global 30 m impervious-surface dynamic dataset was an ac-
curate product and could provide vital support for monitoring
regional or global urbanization or carrying out related tasks.
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