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Abstract. Near-surface air temperature (Ta) is an important physical parameter that reflects climate change.
Many methods are used to obtain the daily maximum (Tmax), minimum (Tmin), and average (Tavg) temperature,
but are affected by multiple factors. To obtain daily Ta data (Tmax, Tmin, and Tavg) with high spatio-temporal
resolution in China, we fully analyzed the advantages and disadvantages of various existing data. Different Ta
reconstruction models were constructed for different weather conditions, and the data accuracy was improved
by building correction equations for different regions. Finally, a dataset of daily temperature (Tmax, Tmin, and
Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1◦. For Tmax, validation using in
situ data shows that the root mean square error (RMSE) ranges from 0.86 to 1.78◦, the mean absolute error
(MAE) varies from 0.63 to 1.40◦, and the Pearson coefficient (R2) ranges from 0.96 to 0.99. For Tmin, the RMSE
ranges from 0.78 to 2.09◦, the MAE varies from 0.58 to 1.61◦, and the R2 ranges from 0.95 to 0.99. For Tavg,
the RMSE ranges from 0.35 to 1.00◦, the MAE varies from 0.27 to 0.68 ◦, and the R2 ranges from 0.99 to 1.00.
Furthermore, various evaluation indicators were used to analyze the temporal and spatial variation trends of Ta,
and the Tavg increase was more than 0.03 ◦C yr−1, which is consistent with the general global warming trend.
In summary, this dataset has high spatial resolution and high accuracy, which compensates for the temperature
values (Tmax, Tmin, and Tavg) previously missing at high spatial resolution and provides key parameters for the
study of climate change, especially high-temperature drought and low-temperature chilling damage. The dataset
is publicly available at https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021a).
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1 Introduction

Near-surface air temperature (Ta) is an important variable
that reflects global climate change and significantly affects
the cyclical conversion of energy and matter in all spheres
of the earth (Gao et al., 2012, 2014). Obtaining accurate grid
Ta is helpful for research on urban heat island effects, eco-
logical environment changes, vegetation phenology devel-
opment, crop yield fluctuation, and energy dynamic balance
(Lin et al., 2012; Bolstad et al., 1998). In this study, Ta refers
to the daily maximum (Tmax), minimum (Tmin), and aver-
age temperatures (Tavg) of daily near-surface air temperature,
which are important input parameters for hydrological, envi-
ronmental, and crop models (Han et al., 2020; He et al., 2020;
Mostovoy et al., 2006; Schaer et al., 2004). These parame-
ters can accurately reflect the frequency and extent of the oc-
currence and development of extreme climate events (Zhang
et al., 2017; Miao et al., 2016). With the intensification of
global warming, the temperature gradually rises, the number
of extremely cold days and cold nights gradually decreases,
and the frequency of extreme weather events also increases
(Ding et al., 2006; Liao, 2020; Ryoo et al., 2010). China
is a country where extreme weather events frequently oc-
cur, causing substantial economic losses (Kharin et al., 2007;
Kong, 2020). Therefore, obtaining spatio-temporal changes
in Ta is necessary to study extreme weather events and mete-
orological disasters leading to decreased agricultural yield.
Ta is affected by many factors of the Earth’s system, re-

sulting in frequent, complicated diurnal temperature fluctu-
ations (Schwingshackl et al., 2018; Chen et al., 2014). At
present, Ta is obtained mainly via three methods: Ta observed
via meteorological stations, Ta estimated from land surface
temperature (Ts) retrieved from remote sensing, and Ta ob-
tained from the assimilation model. Temperatures with high
temporal resolution can be obtained via measurements from
meteorological stations. This detection method can avoid
the influence of clouds and rain, preserving relatively good
data integrity, continuity, and accuracy. However, the number
of meteorological stations is limited and they are unevenly
distributed, especially for mountainous regions (Mao et al.,
2008; Gao et al., 2018; Zhao et al., 2020). Most meteorolog-
ical stations are in sparsely populated areas far from cities
and cannot accurately monitor changes in urban temperature
caused by the urban heat island effect (He and Wang, 2020).
Moreover, due to the aging of meteorological station equip-
ment, the observation data may be incomplete. Although
many interpolation methods, such as Kriging, cubic spline,
and inverse distance weight interpolations are available, the
difference in density among stations affects the interpolation
accuracy (Tang et al., 2020; Berezowski et al., 2016; Tencer
et al., 2011).

Satellite sensors provide global coverage and high-spatial-
resolution data used to estimate Ta. The most commonly
used estimation methods are the statistical regression method
(Wen, 2020; Zhu et al., 2013; Zhang et al., 2015), the

temperature vegetation index method (Xing et al., 2020),
the energy balance method (Benali et al., 2012), the at-
mospheric temperature profile extrapolation method (Wen,
2020), and the machine learning method (Mao et al., 2008;
Wen, 2020). Sensors are susceptible to weather phenomena,
such as clouds and rain, leading to missing data or reduced
quality. In addition, these methods are mostly suitable for
clear-sky conditions, which need to be further expanded to
establish an estimation model of Ts to Ta under different
weather conditions.

Reanalysis data generated by the global assimilation
model have provided many datasets of geophysical param-
eters, including near-surface temperature, which overcome
most of the aforementioned problems caused by abnormal
weather. The NCEP/NCAR reanalysis dataset was devel-
oped by the National Center for Environmental Prediction
and the National Center for Atmospheric Research (Jan-
uary 1948–September 2021), with a temporal resolution of
6 h and a spatial resolution of 2.5◦ (Kalnay et al., 1996).
The ERA5 dataset was released by the European Center for
Medium-Range Weather Forecast (ECMWF; January 1950–
September 2021), with a temporal resolution of 1 h, and a
spatial resolution of 0.3◦ (Hersbach et al., 2020; Dee et al.,
2011; Taszarek et al., 2021; Lei et al., 2020). The land sur-
face modeling forcing dataset was developed by Princeton
University (January 1948–December 2006), with a tempo-
ral resolution of 3 h and a spatial resolution of 1.0◦ (Deng et
al., 2010). To improve the accuracy of regional data, some
researchers have developed meteorological forcing datasets
for China. The representative dataset is the China Meteo-
rological Forcing Dataset (CMFD) released by the Institute
of Tibetan Plateau Research, Chinese Academy of Sciences
(January 1979–December 2018), with a temporal resolution
of 3 h and a spatial resolution of 0.1◦ (He, 2010; Yang et
al., 2010; Yang and He, 2019). However, the dataset does
not provide daily maximum and minimum temperatures. The
grid dataset of daily surface temperature in China (V2.0) was
released by the China Meteorological Administration (CMA;
January 1961–September 2021), with a spatial resolution of
0.5◦. This dataset comprises the daily maximum, minimum,
and average temperatures; its spatial resolution is low; and
the accuracy of local areas needs improvement. Although re-
analysis datasets can obtain global near-surface air tempera-
ture data, the number of Tmax, Tmin, and Tavg datasets with
high spatial resolution and high precision is insufficient.

In this study, we aimed to obtain a long-term Ta (Tmax,
Tmin, and Tavg) dataset with high spatial resolution in China.
We first analyzed the advantages and disadvantages of vari-
ous data (e.g., reanalysis, remote sensing, in situ data). Next,
we constructed daily Ta models for clear- and non-clear-sky
conditions. This method compensates for the deficiency that
studies have estimated Ta mostly under clear-sky conditions
rather than under all-sky conditions. We further improve data
accuracy by building correction equations for different re-
gions. Finally, a dataset of daily Ta (Tmax, Tmin, and Tavg) in
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China from 1979 to 2018 was obtained with a spatial resolu-
tion of 0.1◦, and we cross-validated this dataset with existing
datasets.

2 Study area

China’s vast territory has significant undulations on the
Earth’s surface, and a wide range of climate changes. To ex-
plore the temporal and spatial characteristics of Ta, we di-
vided China into six subregions (Fig. 1) according to cli-
matic conditions, such as temperature and rainfall, and to-
pographical conditions, such as elevation. (I) The northeast-
ern region mainly includes Northeast China, located to the
east of the Greater Khingan Range. This region is located
in the temperate monsoon climate zone, the annual precip-
itation is 400–1000 mm, and cumulative temperature is be-
tween 2500 and 4000 ◦C (Mao and Wan, 2000). (II) The
North China region is located north of the Qinling-Huaihe
River and south of the Inner Mongolia Plateau. This region
is mostly located in the temperate monsoon climate zone,
and the annual accumulated temperature is between 3000
and 4500 ◦C (Xu et al., 2017), with hot, rainy summers and
cold, dry winters. (III) The central southern region is located
south of the Qinling-Huaihe River and north of the tropical
monsoon climate type. This region is located in the subtropi-
cal monsoon climate zone, the annual accumulated tempera-
ture is between 4500 and 8000 ◦C, and the precipitation is
mostly between 800 and 1600 mm. (IV) The southern re-
gion is south of the Tropic of Cancer. This region is located
in the tropical monsoon climate zone, the annual accumu-
lated temperature is greater than 8000 ◦C, the annual mini-
mum temperature is not less than 0 ◦C, and there is no frost
year round. Annual precipitation mostly ranges from 1500
to 2000 mm. (V) The northwest region is mainly distributed
in the inland areas above 40◦ N latitude in China, located
northwest of the Greater Khingan Range-Yin Shan-Ho–lan
Mountains-Qilian Mountains line. This region is far from the
coast, water vapor transport is limited, annual precipitation is
between 300 and 500 mm, and the annual accumulated tem-
perature is between 2000 and 3500 ◦C. The daily and annual
temperature differences are large, including those in the tem-
perate desert, temperate grassy, and subfrigid coniferous cli-
mates. (VI) The Qinghai-Tibet Plateau region includes the
Qinghai-Tibet Plateau, the Andes Mountains, Mount Ever-
est, and other areas. This region is located in the plateau and
mountainous climate zone, the annual accumulated tempera-
ture is lower than 2000◦, the daily temperature range is large,
and the annual temperature range is small. This region has
strong solar radiation, sufficient sunshine, and little precipi-
tation.

3 Data

3.1 Reanalysis data

The reanalysis dataset contains drivers of surface elements in
a large area, which can provide highly complementary infor-
mation and avoid data gaps and low-quality pixels caused by
abnormal weather conditions. This study primarily used the
CMFD and ERA5 data as reanalysis data sources.

The CMFD is a set of meteorological forcing datasets de-
veloped by the Institute of Tibetan Plateau Research, Chi-
nese Academy of Sciences (He et al., 2020; Yang et al.,
2010; Yang and He, 2019). It is mainly based on the Global
Land Data Assimilation System (GLDAS) as a background
dataset, using empirical knowledge algorithms and combin-
ing GLDAS with measured data to obtain temperature data
with a spatial resolution of 0.1◦. The CMFD contains seven
variables: 2 m air temperature, surface pressure, specific hu-
midity, 10 m wind speed, downward shortwave radiation,
downward longwave radiation, and precipitation rate. The
CMFD covers January 1979 to December 2018 and provides
four types of temporal resolution (3 h, daily, monthly, and
yearly). The CMFD is comprehensive and has the longest
time series and the highest spatial resolution in China. Stud-
ies have used the temperature data as input parameters to
construct a surface air temperature model, which shows that
the correlation coefficient between the CMFD temperature
and the measured data is greater than 0.99 and has high
consistency, and that grid data can reflect the temporal and
spatial changes in regional air temperature (Zhang et al.,
2019; Wang et al., 2017). The CMFD as an input element
to build a surface temperature model can also significantly
reduce model deviation and improve model accuracy (Chen
et al., 2011). Therefore, we used the 3 h temperature of the
CMFD to build the Ta Model and verified the new prod-
uct with the daily temperature from the CMFD. The CMFD
is available from the China National Qinghai–Tibet Plateau
Science Data Center (http://data.tpdc.ac.cn/zh-hans/data/
8028b944-daaa-4511-8769-965612652c49/, last access: 1
November 2020).

ERA5 is the fifth-generation product of the atmospheric
reanalysis global climate data launched by the ECMWF, re-
placing the ERA-Interim reanalysis data which were discon-
tinued on 31 August 2019. ERA5 data are generated based
on the Cy41r2 model of the integrated forecasting system,
which has benefited from the development of data assimila-
tion, model simulation, and model physics, and is generated
by assimilating many ground-monitoring, aircraft weather
observation, and radio-detection data. ERA5 data are sig-
nificantly better than ERA-Interim data; for example, the
former has a higher spatio-temporal resolution, more verti-
cal mode levels, and more parameter products than the lat-
ter. ERA5 provides timely, updated quality checks on the
data, which is convenient for providing stable, real-time, and
long-term climate information. ERA5 provides many me-
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Figure 1. Scope map of the total study area and the six subregions. Black dots indicate distribution locations of meteorological stations; blue
frame lines indicate the substudy area range, represented by I, II, III, IV, V, and VI.

teorological elements, including 2 m air temperature, 2 m
relative humidity, sea level pressure, sea surface tempera-
ture, and precipitation. Since the release of the ERA5 re-
analysis data, many researchers have tested their applica-
bility and accuracy. The results show that the accuracy of
the ERA5 is better than that of the ERA-Interim data, and
the higher spatio-temporal resolutions are conducive to the
precise description of regional atmospheres. The details of
these improvements are convenient for studying changes in
small-scale atmospheric environments (Meng et al., 2018;
Mo et al., 2021; Hillebrand et al., 2021). These data can
be obtained from https://cds.climate.copernicus.eu/cdsapp#
!/search?type=dataset&text=ERA5 (last access: 1 December
2020).

3.2 In situ data

The in situ data from 1979 to 2018 used in this study were
employed to build a Ta model and evaluate existing datasets
and new products. The measured data of meteorological sta-
tions were from the China National Meteorological Infor-
mation Center (http://www.nmic.cn/site/index.html, last ac-
cess: 1 November 2020), including hourly air temperature,
hourly land surface temperature, maximum daily tempera-
ture (Tmax), minimum daily temperature (Tmin), daily aver-
age temperature (Tavg), and weather condition records. Due
to the inconsistency of recorded data of meteorological con-
ditions at many stations, some data are missing. Furthermore,

there are no meteorological stations in most areas; thus, the
data are used as auxiliary data.

The ground observations obtained from the China Mete-
orological Administration underwent uniform data process-
ing and homogeneity testing. To further ensure the quality
of the data, we checked the in situ data. First, we set a fixed
threshold to eliminate the overflow value. Second, we tested
the time series of station data and eliminated abnormal and
missing data due to instrument damage or bad weather (Zhao
et al., 2020). Finally, we checked the spatio-temporal consis-
tency of the in situ data, deleted the meteorological stations
with location migration during the study period, and main-
tained the temperature data of meteorological stations with a
long monitoring time and stable temperature values.

3.3 Supplementary data

China’s daily near-surface temperature grid dataset was re-
leased by the CMA with a spatial resolution of 0.5◦. This grid
dataset contains the daily maximum, minimum, and average
temperatures in China (http://www.nmic.cn/site/index.html,
last access: 11 April 2021). The CMA dataset was ob-
tained by combining the daily temperature data monitored
by meteorological stations and the digital elevation model
(DEM) data generated by resampling with three-dimensional
geospatial information via a thin-plate spline interpolation al-
gorithm. The spatial resolution of the CMA data is 0.5◦, and
we used these data for cross-validation.
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The Moderate Resolution Imaging Spectroradiometer
(MODIS) is an important sensor in the Earth Observation
System program and is mounted on the Terra and Aqua satel-
lites. Terra is a morning-orbiting satellite that passes through
the Equator at approximately 10:30 local time from north
to south. Aqua is an afternoon-orbiting satellite that passes
through the Equator at approximately 01:30 local time from
south to north. The Terra satellite has been in service since
1999, the Aqua satellite since 2002. Since 2002, surface
temperature data can be obtained four times per day from
MODIS data through inversion calculation. In this study, we
used the MOD11A1 and MYD11A1 products, which pro-
vide daily surface temperature data on a global scale with a
spatial resolution of 1 km. MODIS LST (land surface tem-
perature) has a quality control (QC) field that indicates data
quality and is encoded in binary form. MODIS data can
be downloaded from the LAADS DAAC (Level-1 and At-
mosphere Archive & Distribution System Distributed Ac-
tive Archive Center) website (https://ladsweb.modaps.eosdis.
nasa.gov/search/order, last access: 1 December 2020).

In addition to the aforementioned data, DEM data were
used. The Shuttle Radar Topography Mission (SRTM) DEM
used in this study was a radar topographic mapping project
jointly implemented by NASA and the National Imagery
and Mapping Agency, which was implemented by the Space
Shuttle Endeavour. Temperature data were regulated via the
topographical correction of the SRTM DEM, with 90 m reso-
lution to eliminate the influence of topographical fluctuations
on air temperature. SRTM DEM data can be obtained from
the Geospatial Data Cloud (http://www.gscloud.cn/search,
last access: 10 February 2021).

4 Methodology

The Tmax, Tmin, and Tavg data were provided by meteoro-
logical stations. Other non-station locations or grid values
were estimated by interpolation or indirect methods such as
remote sensing. Because of the limited number of meteo-
rological stations and their uneven distribution, it is diffi-
cult to guarantee the accuracy of Tmax, Tmin, and Tavg ob-
tained through interpolation in some areas. Under rainfall
and cloud-cover weather conditions, estimating the air tem-
perature from remotely sensed surface temperature data is
impossible. Even in clear-sky conditions, the formula for es-
timating near-surface air temperature is not universally appli-
cable, which hinders the development of a high-precision Ta
dataset to a certain extent. Therefore, to obtain a Ta dataset
with high spatio-temporal resolution and long time series, it
is necessary to build a reliable and robust Ta model to es-
timate Tmax and Tmin, and further improve the accuracy of
Tavg. Consequently, the product could be widely used for cli-
mate change and research on extreme weather events.

Daily temperature changes are affected by many factors
and are extremely sensitive to fluctuations under different

weather conditions. This study used multiple methods to cal-
culate Ta. First, the daily weather conditions were divided
into clear-sky and non-clear-sky conditions. Second, based
on the physical process of daily temperature changes and
combined with existing reanalysis data, in situ data, and
remote-sensing data, we estimated Tmax and Tmin under dif-
ferent weather conditions. To further improve the accuracy of
the dataset, we constructed a modified model for each region.
Details are provided in the following sections. The overall
process of this study is illustrated in Fig. 2. The construction
of the dataset was mainly divided into three steps: (1) the pro-
cess of daily weather condition determination, (2) the process
of establishing Ta models under different weather conditions,
and (3) data correction.

4.1 Strategies for division of weather conditions and Ta
estimation

4.1.1 Scheme for dividing weather conditions

Different weather conditions have different rules of temper-
ature change. To improve the estimation accuracy of the
maximum and minimum temperature, we conducted spe-
cific calculations by distinguishing daily weather conditions.
The quality of observation data is affected by weather, and
some remote-sensing products, such as MODIS LST prod-
ucts, have quality control fields. Therefore, the quality con-
trol field of MODIS can be used to distinguish between clear-
sky and non-clear-sky conditions. However, we have only
been able to obtain MODIS observation data four times per
day since 2002, which cannot cover the timespan involved in
this study. Therefore, we divided the time series of this study
into two periods: 1979–2001 and 2002–2018, and different
methods were used for the two time series to distinguish the
daily weather conditions. For the study period from 2002
to 2018, we distinguished each pixel based mainly on the
MODIS quality control field. When the MODIS quality con-
trol of all four Ts corresponding to a pixel was in the clear-
sky condition, the pixel was judged to be in the clear-sky
condition; otherwise, it was judged to be in the non-clear-sky
condition.

For the study period from 1979 to 2002, we used the in
situ, CMFD, and ERA5 data to determine the daily weather
condition. First, we filtered each pixel and divided it into
two types: meteorological stations corresponding to pix-
els with and without weather condition records. For pix-
els with weather condition records, we used many statistical
discrimination methods to analyze the impact of non-clear-
sky weather phenomena on temperature fluctuations, which
can facilitate the subsequent determination of pixels without
weather condition records. Statistical analysis shows a sig-
nificant difference in daily temperature fluctuations between
clear-sky and non-clear-sky conditions, and non-clear-sky
weather conditions may cause abnormal temperature fluctu-
ations. Therefore, we converted the judgment of the weather
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Figure 2. Summary flowchart of Ta dataset establishment.

state into the abnormal judgment of the time and frequency
of the occurrence of Tmax and Tmin (occurrence time of Tmax
and Tmin is hereinafter cited asHmax andHmin, respectively).
Specifically, when Hmax and Hmin occur abnormally or the
temperature change is wavy, a non-clear-sky condition is
used (Zhao and Duan, 2014; Ren et al., 2011). In other cases,
they are regarded as clear-sky conditions, and the position
of each pixel is marked. Therefore, we had to further fill the
daily time series of each pixel to determine the weather con-
dition. In this study, we used two strategies to perfect the
temperature series for distinguishing weather conditions. The
specific implementation steps for determining weather con-
ditions are shown in Fig. 3.

In the first strategy, when the pixel location had a corre-
sponding meteorological station or when the Euclidean dis-
tance between adjacent stations was less than 0.3◦, we filled
in the gaps to improve the integrity and continuity of the
time series. The time series-filling process was as follows:
(1) when the temperature data at the observation sites were
missing and not consecutively missing, in the case of the
same spatial range, we used the average temperature of two
adjacent timepoints before and after the missing value at the
same site to fill in the missing value; and (2) when the ob-
servation data of a station were continuously missing, in the
same time range, we filled the missing value with the ob-
servation data of the stations within 0.3◦. This method was
mainly based on the principle that the closer the distance be-

tween stations, the stronger the spatial consistency and corre-
lation of temperature changes. (3) When the station data were
continuously missing and the adjacent station data could not
be filled, other relevant data were used for repair within the
same time and space. In this study, we estimated the weather
state from the Ts monitored by the same station. This method
theoretically originates from the approximate consistency be-
tween the daily variation ranges of Ts and Ta and is suitable
for situations where there are many missing values and in-
complete time series at meteorological stations and adjacent
meteorological stations. Many studies have analyzed the cor-
relation between the daily trend of Ta and Ts and found strong
consistency. The Ts retrieved by remote-sensing satellites is
also widely used to estimate Ta, which proves the reliability
of determining the pixel weather state through the Ts time
series (He et al., 2020; Yoo et al., 2018; Johnson and Fitz-
patrick, 1977; Caesar et al., 2006; Mostovoy et al., 2006).
(4) When there is no meteorological station at the pixel loca-
tion and the distance from the meteorological station is less
than 0.3◦, we use the inverse distance weighting method to
perform spatial interpolation on adjacent pixels. Notably, be-
fore interpolation, we need to consider the impact of eleva-
tion differences. To improve the interpolation accuracy, we
first correct the data of the observation station to a uniform
sea level, and then perform further calculations according to
the elevation of the interpolation point to obtain the corre-
sponding temperature.

Earth Syst. Sci. Data, 14, 1413–1432, 2022 https://doi.org/10.5194/essd-14-1413-2022



S. Fang et al.: Dataset of daily near-surface air temperature in China from 1979 to 2018 1419

Figure 3. Summary flowchart for classification of weather conditions.

The second strategy was to target areas where the distri-
bution of stations was sparse and the Euclidean distance be-
tween two adjacent stations was greater than 0.3◦. To com-
pensate for the insufficient coverage and uneven distribution
of stations in these areas, we used hourly data from ERA5
to determine the approximate time of occurrence of Tmax and
Tmin. Because of a certain difference between the spatial res-
olution of ERA5 and this dataset, it was difficult to fulfill our
demand for higher spatial resolution. Consequently, we de-
veloped an effective downscaling process based on the spa-
tial correlation between the ERA5 data and CMFD tempera-
ture data. ERA5 data (with a spatial resolution of 0.3◦) were
spatially downscaled with the aid of the CMFD data (with
a spatial resolution of 0.1◦). The downscaling process is il-
lustrated in Fig. 4. First, quality control of the ERA5 data
and CMFD was performed to eliminate temperature outliers.
Second, the ERA5 data and CMFD were matched according
to time series and central latitude and longitude to construct
pixel pairs. Subsequently, we weighted the high-resolution
data to the low-resolution ERA5 data pixel by pixel. Finally,
the weight was used to downscale the ERA5 data to the same
spatial resolution of the CMFD. The ERA5 downscaling was
computed using Eqs. (1) and (2),

TE (xo,yo)=
TC (xo,yo)

m∑
i=1

n∑
j=1

TC
(
xi,yj

) · TE (xm,yn) , (1)

TE (xo,yo)=
TM (xo,yo)

m∑
i=1

n∑
j=1

TM
(
xi,yj

) · TE (xm,yn) , (2)

where TE,TC, and TM represent the ERA5 data, CMFD, and
MODIS data, respectively. TE (xo,yo) is the temperature data
after downscaling; TE (xm,yn) is the temperature data before
downscaling; i, j are pixel coordinates; andm, n are the pixel
coordinates before downscaling.

4.1.2 Tmax and Tmin estimation under clear-sky
conditions

In addition to the severe temperature fluctuations caused by
abnormal weather phenomena, the daily temperature changes
under clear-sky conditions have a certain regularity, period-
icity, and asymmetry (Leuning et al., 1995; Johnson and Fitz-
patrick, 1977). According to the similarity between the sur-
face temperature and the diurnal variation trend of air tem-
perature, a method of estimating Ta is established by the daily
air temperature variation model. Verified by in situ data, this
method is feasible (Du et al., 2020; Zhu et al., 2013; Perkins
et al., 2007; Cesaraccio et al., 2001; Serrano-Notivoli et al.,
2019). However, using the surface temperature retrieved by
remote-sensing methods to estimate the changing trend of
air temperature is complicated, additional parameters need
to be input, and the relationship between Ts and Ta is not
fixed. Therefore, it is difficult to unify the types and quanti-
ties of parameters and ensure accuracy. Thus, we established
a piecewise local sine function of temperature under clear-
sky conditions for each pixel, which can simulate the change
in Ta and calculate Tmax and Tmin (Mao et al., 2016; Jiang et
al., 2010). First, according to the approximate periodicity of
daily temperature changes and the asymmetry of Hmax and
Hmin, we derived the Ta piecewise sine function of the adja-
cent regions of Hmax and Hmin (Eqs. 3 and 4). Second, using
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Figure 4. Flowchart for spatial downscaling, where nv represents the number of valid values.

a method similar to that in Sect. 4.1.1, we obtained Hmax
and Hmin for each pixel. These Hmax and Hmin values are
entered as parameters into the piecewise sine function. The
CMFD (3 h data) are used as Ta data, each pixel Hmax and
Hmin are used as time, and the values of At and Bt are ob-
tained by the least squares method. Finally, Hmax and Hmin
values were substituted into the derivation formula to obtain
Tmax and Tmin as preliminary results for subsequent correc-
tion and analysis. We constructed a temperature model, pixel
by pixel, to fulfill the temporal and spatial heterogeneity of
each region.

Tmax = At · sin
[

(Ho−Hmax)π
Hmax−Hmin

−
π

2

]
+ Bt , (3)

Tmin = At · sin
[

(Ho−Hmax)π
24 −Hmax+Hmin

−
π

2

]
+ Bt , (4)

where Hmax is the occurrence time of the daily maximum
temperature, Hmin is the occurrence time of the daily mini-
mum temperature, Ho is the input time, and At and Bt are
unknown parameters.

4.1.3 Tmax and Tmin estimation under non-clear-sky
conditions

The daily temperature fluctuations in non-clear-sky condi-
tions are relatively large, and there may be large-scale cool-
ing or sudden temperature changes within a short period.
Based on the spatial location information of each pixel, the
most reliable and representative data source are the in situ
data. Therefore, if there are in situ data for the pixel lo-
cation, the temperature data at the same time will be di-
rectly obtained from the station to replace the pixel val-
ues Tmax and Tmin. For the pixels corresponding to non-
meteorological stations, similar to the method of spatial

downscaling for the pixel positions of non-meteorological
stations in the weather condition judgment, we used ERA5
data to perform spatial downscaling with the assistance of
the CMFD. By adding high-spatial-resolution MODIS data,
the downscaling method was further expanded to improve
the accuracy of each pixel. We mainly wanted to fully ex-
ploit the advantages of various data, especially with the help
of high-resolution MODIS data. According to the QC field
of MODIS data, we used MODIS data with high spatio-
temporal resolution to improve local accuracy while ensur-
ing high-quality MODIS data. The corresponding time of the
effective pixel was matched with the ERA5 data according to
the nearby time, to obtain the data weight for spatial down-
scaling. The downscaling process and the validity determina-
tion of MODIS data are shown in Fig. 4, and the downscaling
formulas are shown in Eqs. (1) and (2).

4.1.4 Tavg estimation

Usually, the aim of calculating average temperature is to use
the temperature value observed every day to obtain an arith-
metic average. If each pixel has hourly temperature data, the
calculated daily average temperature is the most representa-
tive. Because the observational conditions are limited, hourly
temperature data is difficult to obtain; thus, often, the tem-
perature values of four observation times (e.g., 02:00, 08:00,
14:00, and 20:00) are used to obtain the daily average tem-
perature, or the daily maximum and minimum temperatures
are directly averaged to obtain the daily average temperature.
To improve the accuracy of the average temperature as much
as possible, we used the 3 h temperature data provided by the
CMFD and the maximum and minimum values we have cal-
culated to conduct an arithmetic average to obtain the daily
average temperature. Finally, to improve the accuracy, we
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performed multiple linear regression correction on the Tavg
output value according to the in situ data (the linear correc-
tion method was the same as that described in Sect. 4.2) and
obtained the daily Tavg dataset.

4.2 Ta data calibration scheme

Surface temperature is sensitive to changes in altitude and
easily affected by the surrounding environment. For non-
meteorological station pixels, we use interpolation to fill in
the pixel values based on the principle of regional consis-
tency. To improve the accuracy of the pixel temperature at
non-meteorological stations, we fully considered the influ-
ence of altitude on temperature. First, the in situ Ta was uni-
fied to sea level according to the vertical rate of tempera-
ture drop. Next, the non-station pixels were interpolated ac-
cording to the station data, and finally, the interpolated pixel
values were restored to the corresponding elevation. This
method can reduce the influence of altitude on temperature
to a certain extent and improve the accuracy of the dataset.
In this study, we used a uniform vertical temperature drop
rate (γ ), i.e., for every 100 m increase in altitude, the atmo-
spheric temperature decreases vertically by 0.65 ◦C, and vice
versa. The height correction formula is provided by Eq. (5)
(He and Wang, 2020; Schicker et al., 2015; Wang, 2013):

TSL = Ta− γ · (HSL−Ha) , (5)

where TSL is the sea-level temperature, Ta is the temperature
of the meteorological station, and HSL is the sea-level height,
where the value of γ is approximately 0.0065 ◦C m−1.

We used the jackknife method as follows: 699 in situ sta-
tions across China were divided into 140 verification points
and 559 calibration points according to the ratio of 20 to 80
to establish a multiple linear regression equation (Benali et
al., 2012; Xu et al., 2017). The preliminary accuracy results
(Sect. 5.1) show that although the overall accuracy was high,
there remains the problem of abnormal temperature values
of the model output data caused by the violent fluctuations in
daily temperature changes. Further correction is required to
reduce the deviation and improve the accuracy of the dataset.
The data correction process is illustrated in Fig. 5. For the
abnormal temperature value, we replaced the Ta at the pixel
location with the observation Ta from the meteorological sta-
tion and performed the adjacent pixel temperature correction
for the pixel without the meteorological station at the pixel
location. The multiple linear regression method was used to
process the original temperature, and the stepwise regression
relationship between the measured value of the station and
the fitted value of the corresponding pixel was established.
Next, we calculated the predicted value of the regression tem-
perature according to the regression equation and obtained
the temperature residual value by calculating the observed
value and the predicted value to obtain the final corrected
temperature (Cristobal et al., 2006). The modified expression

Figure 5. Flowchart for calibration of Ta model data.

is shown in Eq. (6):

V (x, y) = m̂ (x, y) + ε̂ (x, y) , (6)

where x and y are the numbers of rows and columns of pix-
els, respectively; V (x, y) is the correction value of the re-
gression equation; m̂ (x, y) is the regression prediction value
of air temperature; and ε̂ (x, y) is the residual value.

4.3 Evaluation metrics

We mainly selected areas with a single surface type and flat
terrain under clear skies as the comparative study area to ver-
ify the original dataset and reconstructed dataset. A scatter
diagram can represent the overall distribution and aggrega-
tion of the data and intuitively convey accurate information
from the data; thus, we used a scatter chart to display the ac-
curacy range of this product. In addition, before establishing
the model, we retained a part of the reanalyzed data excluded
from the calculation and used it for cross-validation. We used
three indicators as metrics to measure the accuracy of vari-
ables, i.e., R2, MAE, and RMSE.

We compared Tmax and Tmin with the ERA5 data and CMA
data. Notably, the ERA5 reanalysis dataset is an hourly tem-
perature grid dataset; thus, we obtained the highest and low-
est temperature values of ERA5 by constructing a local sine
function similar to that in the prior section and further cal-
culated the average daily temperature. The accuracy of Tavg
products in this study was verified with the ERA5 data, CMA
data, and CMFD daily temperature data. Because the spatial
resolution of CMA is 0.5◦, to facilitate comparison, we re-
sampled the spatial resolution of all datasets to 0.5◦.
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4.4 Analysis of the Ta series trend

We not only compared the output Ta data with the in situ
data, but also assessed the climate change trends of Tmax,
Tmin, and Tavg in various regions of China, and further tested
the effectiveness and regional applicability of the dataset
through various climate variables. The World Meteorologi-
cal Organization defined a series of extreme climate indexes,
including 27 core indexes. We used four of them (TXx, TNn,
TX90p, and TN10p) to analyze the trend of extreme temper-
ature changes in Tmax and Tmin (Karl et al., 1999; Peterson et
al., 2001). Specifically, the TXx (TNn) anomaly refers to the
difference between the sum of monthly Tmax (Tmin) and the
multi-year average of monthly Tmax (Tmin) in each year. The
multi-year period of this study is 40 years. In addition, lin-
ear regression was performed on the TXx (TNn) anomaly to
analyze the interannual variation trend. The TX90p (TN10p)
means that the daily Tmax (Tmin) of each month during the
study period is arranged in ascending order, and the 90 %
(10 %) corresponding value in the time series is used as the
threshold for judging warm days (cold nights; Zhang et al.,
2005).

To study the spatio-temporal variation trend of Tavg, we
used linear regression analysis (K), correlation coefficient
analysis (R), and the T test (Du et al., 2020; Yan et al., 2020;
Cao et al., 2021). The interannual change rate and correla-
tion of Tavg were calculated by K and R, and the formulae
are provided by Eqs. (7) and (8), respectively. We performed
a two-tailed significance test on the T test to measure the sig-
nificance of the temperature and time series changes (Eq. 9):

K =
n
∑n
i=1 (iTi)−

∑n
i=1i

∑n
i=1Ti

n
∑n
i=1i

2−
(∑n

i=1i
)2 , (7)

R=
n
∑n
i=1 (iTi )−

∑n
i=1i

∑n
i=1Ti√

n
∑n
i=1i

2−
(∑n

i=1i
)2
·

√
n
∑n
i=1T

2
i
−
(∑n

i=1Ti
)2 , (8)

T _test(R)=
R
√
n− 2

√
1−R2

, (9)

where n represents the total number of years of the time se-
ries length, i represents the year, and Ti represents Tavg in
the ith year. K > 0 indicates that the temperature increases
within the time series, and K < 0 indicates that the tempera-
ture decreases within the time series.

5 Results

5.1 Evaluation of the original product

According to the six subregions in Fig. 1, comparative analy-
ses of this product (Tmax, Tmin, and Tavg) based on in situ data
were conducted. Figure 6 shows the accuracy scatter plot be-
tween the original data of Tmax and the in situ data. The R2

fluctuated from 0.91 to 0.99, the MAE ranged from 1.69 to
2.71 ◦C, and the RMSE ranged from 2.15 to 3.20 ◦C. Figure 7

shows the accuracy scatter plot of Tmin. The R2 fluctuated
from 0.93 to 0.97, the MAE ranged from 1.34 to 2.17 ◦C, and
the RMSE fluctuated from 1.68 to 2.79 ◦C. Figure 8 shows
the accuracy scatter plot of Tavg. The R2 fluctuated between
0.97 and 0.99, the MAE ranged from 0.58 to 0.96 ◦C, and the
RMSE fluctuated from 0.86 to 1.60 ◦C. As shown in Figs. 6,
7, and 8, the R2 of Tmax, Tmin, and Tavg, and the temperature
measured at the meteorological station, were all greater than
0.90. In general, our method performed well in estimating
the daily temperature values. However, due to the impact of
complex changes in weather, the distribution of temperature
values on certain days is discrete, especially in study areas
V and VI. Further corrections are necessary to reduce errors
and improve the accuracy of the dataset.

5.2 Evaluation of the new product

The temperature was further corrected using the linear cor-
rection method. The data verification results of Ta after cor-
rection are shown in Figs. 9, 10, and 11. The results show
that the corrected data had a higher consistency with the in
situ data. The fitted and observed temperatures were linearly
distributed and gradually approached the regression line, and
the outliers were significantly reduced. Figure 9 shows the
corrected scatter plot of Tmax for each study area. The R2

fluctuated from 0.96 to 0.99, the MAE ranged from 0.63
to 1.40 ◦C, and the RMSE fluctuated from 0.86 to 1.78 ◦C.
Figure 10 shows the corrected scatter plot of Tmin for each
study area. The R2 fluctuated between 0.95 and 0.99, the
MAE ranged from 0.58 to 1.61 ◦C, and the RMSE fluctuated
from 0.78 to 2.09 ◦C. Figure 11 depicts the corrected scat-
ter plot of Tavg in each study area, where R2 fluctuated be-
tween 0.99 and 1.00, the MAE ranged from 0.27 to 0.68 ◦C,
and the RMSE fluctuated from 0.35 to 1.00 ◦C. The results
show that the distribution of numerical points in each area
after the correction was denser, mostly concentrated near the
1 : 1 line, and the degree of clustering with the measured
data was higher than before calibration. Our detailed anal-
ysis of the daily temperature in the six study areas demon-
strated that the accuracy measurement values differed signif-
icantly between the east and west. For example, the accu-
racy error of study area IV is small, and the accuracy error
of study areas VI and V is large, which may be affected by
the regional topography and the distribution of meteorologi-
cal stations. Study area IV is in the tropical monsoon climate
zone, affected by latitude and topography, and the tempera-
ture is relatively high throughout the year. Moreover, the area
is in Eastern China and has densely distributed meteorolog-
ical stations and relatively flat terrain. Linear correction can
significantly improve the agreement between the estimated
value and the observed value. Study areas VI and V have
the highest RMSE. They are in the Qinghai–Tibet Plateau
in Southwest China and Xinjiang in the northwest. Such ar-
eas have similar characteristics, such as high altitude, large
spatial heterogeneity, and few meteorological stations. This
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Figure 6. Scatter diagrams of the Tmax output from the Ta model against ground station data; statistical accuracy measures (R2, MAE, and
RMSE) are also indicated.

Figure 7. Scatter diagrams of the Tmin output from the Ta model against ground station data; statistical accuracy measures (R2, MAE, and
RMSE) are also indicated.

result shows that the temperature has strong spatial hetero-
geneity. In general, the corrected dataset has higher accuracy
than the original dataset, satisfies the spatial heterogeneity of
different regions, and better estimates the temperature under
different weather conditions.

To further verify the robustness and accuracy of this prod-
uct, Table 1 shows the cross-validation results of this prod-

uct and other datasets, the mean average precision (MAP) of
each region, and that this product has a high regional consis-
tency with other datasets. Study area IV in the tropical mon-
soon climate zone has the highest accuracy, and study area VI
located in the Qinghai–Tibet Plateau region of China has the
lowest data accuracy. This result may be because the reanal-
ysis dataset is also affected by the number and distribution
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Figure 8. Scatter diagrams of the Tavg output from the Ta model against ground station data; statistical accuracy measures (R2, MAE, and
RMSE) are also indicated.

Figure 9. Scatter diagrams of the original Tmax and reconstructed results versus their corresponding ground station data in six natural
subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original Tmax data, orange points represent the values
in the after-calibration Tmax dataset; the statistical accuracy measures (R2, MAE, and RMSE) are also indicated.

of meteorological stations and the spatial heterogeneity. The
accuracy and robustness of the product were confirmed from
another perspective. The accuracy comparison of each area
shows that this product has higher accuracy and spatial repre-
sentation than other datasets. R2 is closer to 1, and MAE and
RMSE remain low. Through the accuracy evaluation and data
comparison between this product and the existing dataset, we

found that our product has a better temperature estimation
of each area, and the overall accuracy and accuracy of the
dataset are higher.
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Figure 10. Scatter diagrams of the original Tmin and reconstructed results versus their corresponding ground station data in six natural
subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original Tmin data, blue points represent the values
in the after-calibration Tmin dataset; the statistical accuracy measures (R2, MAE, and RMSE) are also indicated.

Figure 11. Scatter diagrams of the original Tavg and reconstructed results versus their corresponding ground station data in six natural
subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original Tavg data, green points represent the values
in the after-calibration Tavg dataset; the statistical accuracy measures (R2, MAE, and RMSE) are also indicated.

https://doi.org/10.5194/essd-14-1413-2022 Earth Syst. Sci. Data, 14, 1413–1432, 2022



1426 S. Fang et al.: Dataset of daily near-surface air temperature in China from 1979 to 2018

Table 1. Cross-validation results of this product and other datasets. Values in bold indicate study areas with the highest precision, and values
in italics indicate the lowest precision.

Temp. type Index Data I II III IV V VI MAP

MAX R2 ERA5 0.99 0.97 0.94 0.94 0.97 0.94 0.96
CMA 1.00 0.95 0.95 0.98 0.99 0.90 0.96
DATASET 0.99 0.99 0.97 0.98 0.99 0.96 0.98

MAE ERA5 1.05 1.25 1.47 0.99 1.53 1.99 1.38
CMA 0.67 1.28 1.28 0.63 0.81 1.58 1.04
DATASET 0.73 0.94 1.07 0.62 1.02 1.40 0.96

RMSE ERA5 1.69 1.52 2.14 1.68 1.91 2.30 1.87
CMA 0.99 1.80 1.76 0.83 1.22 2.79 1.57
DATASET 1.03 1.14 1.37 0.81 1.57 1.78 1.28

MIN R2 ERA5 0.96 0.95 0.96 0.95 0.97 0.90 0.95
CMA 0.99 0.97 0.96 0.98 0.99 0.90 0.97
DATASET 0.99 0.98 0.97 0.97 0.98 0.95 0.97

MAE ERA5 1.68 1.28 1.48 1.00 1.48 2.09 1.50
CMA 0.85 1.24 1.18 0.46 0.98 2.23 1.16
DATASET 1.13 1.14 1.04 0.57 1.34 1.41 1.10

RMSE ERA5 1.95 1.98 1.73 1.32 2.21 2.34 1.92
CMA 1.19 1.99 1.72 0.63 1.47 2.80 1.63
DATASET 1.31 1.60 1.49 0.74 1.61 2.05 1.47

AVG R2 CMFD 0.99 0.99 0.98 0.99 0.97 0.98 0.98
ERA5 0.98 0.97 0.97 0.99 0.97 0.97 0.98
CMA 1.00 0.97 0.96 0.99 0.99 0.91 0.97
DATASET 0.99 0.99 0.98 0.99 0.98 0.98 0.99

MAE CMFD 0.46 0.49 0.44 0.30 0.53 0.89 0.52
ERA5 0.50 0.52 0.48 0.45 0.70 0.73 0.56
CMA 0.59 1.07 1.09 0.41 0.79 1.34 0.88
DATASET 0.51 0.56 0.53 0.27 0.65 0.67 0.53

RMSE CMFD 0.60 1.19 0.75 0.41 1.26 1.17 0.90
ERA5 0.57 1.17 0.71 0.52 1.24 1.15 0.89
CMA 0.88 1.30 1.30 0.54 1.23 1.64 1.15
DATASET 0.65 0.79 0.70 0.35 1.20 1.06 0.79

5.3 Application of the product for trend analysis

We analyzed temperature changes in various regions of
China through extreme climate indexes and change trend val-
ues to further test the validity and regional applicability of
the dataset. As shown in Figs. 12 and 13, the TXx anoma-
lies and TNn anomalies are consistent in the regional change
trend. Although the annual anomalies fluctuated during the
study period, they gradually changed from negative to posi-
tive. This phenomenon confirmed that the temperature fluc-
tuated and increased, and that the Tmax and Tmin gradually
increased, which is consistent with the global warming trend.
The average temperature rise of TXx anomalies in each study
area was 0.42 ◦C a−1, and the average temperature rise of
TXx anomalies was 0.47 ◦C a−1. The histograms in Figs. 12
and 13 show that the number of warm days and cold nights
fluctuates in an increasing and decreasing trend, respectively.

In addition, similarities are seen in the change trends between
warm days and cold nights. For example, in 1980, under
the continual influence of strong cold air in the north, low-
temperature weather occurred continuously in most areas of
China and many areas experienced low-temperature disas-
ters, which led to a decrease in the number of warm days and
an increase in the number of cold nights. In 2015, 2016, and
2017, the temperature continued to rise, with high tempera-
tures that occurred once in decades. This finding is closely
related to the severe El Niño events that occurred in 2015
and 2016, the impact of the subtropical high in 2017, and the
overall global warming trend. From 1979 to 2018, there has
also been an increase in the number of warm days and a de-
crease in the number of cold nights. Meteorological events
can indirectly verify the accuracy of this product, indicating
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Figure 12. Multi-axis diagram of TXx anomaly, TX90p, and Tmax linear trend graphs. The broken black line represents the TXx anomaly,
the red line represents the linear regression of the TXx anomaly, and the orange histogram represents the TX90p change trend.

Figure 13. Multi-axis diagram of TNn anomaly, TN10p, and Tmin linear trend graphs. The broken black line represents the TNn anomaly,
the red line represents the linear regression of the TNn anomaly, and the blue histogram represents the TN10p change trend.

that the corrected data can be used to analyze long-term tem-
poral and spatial changes in temperature.

To further analyze the change rate and regional differences
in Tavg during the study period, we analyzed the temperature
change rate (K), correlation coefficient (R), and significance
test of the correlation coefficient (T test(R)). As shown in
Fig. 14a and a.i, the Tavg in most regions of China shows a
weak positive warming trend, accounting for 92.13 % of the
total, and the average temperature of Tavg in each region in-
creased by 0.03 ◦C yr−1. The analysis ofR in Fig. 14b and b.i
shows that they show a strong correlation of approximately

48.77 % and a correlation in the region of 84.06 %, which
shows that there is a high correlation between temperature
changes and time. Figure 14c and c.i show that after per-
forming a significance test on theR between temperature and
time, 83.17 % of the area passed the 95 % significance test
and 75.23 % of the area passed the 99 % significance test,
which shows that the correlation between temperature and
time development is significant.
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Figure 14. Multi-year climate change trends in Tavg. Panel (a) K , as calculated by Eq. (7); (b) R between temperature change and time
series development, calculated by Eq. (8); (c) T test (R), calculated by Eq. (9). Panels (a.i), (b.i), and (c.i) represent the distribution of pixel
values in the corresponding (a), (b), and (c) spatial images.

6 Data availability

The daily Ta products at 0.1◦ resolution from 1979 to
2018 are freely available to the public in tif format at
https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021a),
and are distributed under a Creative Commons Attribution
4.0 License.

7 Code availability

The technical code of the Ta dataset based on the re-
construction model and verification can be downloaded at
https://doi.org/10.5281/zenodo.5513811 (Fang et al., 2021b).
We have been finishing and improving the code and plan to
upload it as a supplementary version.
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8 Conclusions

Ta is an indispensable variable for global climate change re-
search. Therefore, how to obtain high-precision and high-
temporal-resolution air temperature data products is an im-
portant issue. Many researchers have endeavored to produce
datasets by using different data sources for the global or
local region. However, because of the need for refinement
of research, further improvements in accuracy and spatio-
temporal resolution are necessary. Based on the full analy-
sis of the advantages and disadvantages of various datasets
and data sources, this study integrated various data sources,
such as in situ data, remote-sensing data, and reanalysis data,
and proposes a reconstruction model of Ta under clear-sky
and non-clear-sky weather conditions. A multiple linear re-
gression model was used to further improve the accuracy
of the data, and we obtained a new set of gridded high-
resolution daily temperature datasets in China from 1979 to
2018. For Tmax, validation using in situ data shows that the
RMSE ranges from 0.86 to 1.78◦, the MAE varies from 0.63
to 1.40◦, and the R2 ranges from 0.96 to 0.99. For Tmin, the
RMSE ranges from 0.78 to 2.09◦, the MAE varies from 0.58
to 1.61◦, and the R2 ranges from 0.95 to 0.99. For Tavg, the
RMSE ranges from 0.35 to 1.00◦, the MAE varies from 0.27
to 0.68◦, and the R2 ranges from 0.99 to 1.00. Furthermore,
we verified the Ta dataset with the existing reanalysis dataset
and found that the proposed dataset has credibility and ac-
curacy. Moreover, based on the particularity of geographic
climate change in different regions, we used four extreme
climate indicators (TXx and TNn anomalies, TX90p, and
TN10p) and three climate change indices (K , R, and T test)
to analyze the trend changes of Tmax, Tmin, and Tavg. In sum-
mary, the temperature in most regions of China has been
gradually increasing. The number of cold nights and warm
days has gradually decreased and increased, respectively, and
Tmax and Tmin have gradually increased, which is consistent
with the general trend of global warming.

However, due to various factors, the weather may occa-
sionally change drastically, such as to hail. Historical data
cannot provide weather information to a greater specificity
than was possible at that time; thus, particularly in areas
without meteorological stations, refining past data is diffi-
cult. However, further research should consider more meteo-
rological satellite data, especially geostationary meteorolog-
ical satellite data, to improve the accuracy of surface temper-
ature datasets used to monitor climate change.
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