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Abstract. Sandy beaches are unique environments composed of unconsolidated sediments that are constantly
reshaped by the action of waves, tides, currents, and winds. The most seaward region of the dry beach, referred
to as the beach face, is the primary interface between land and ocean and is of fundamental importance to coastal
processes, including the dissipation and reflection of wave energy at the coast and the exchange of sediment
between the land and sea. The slope of the beach face is a critical parameter in coastal geomorphology and
coastal engineering, as it is needed to calculate the total elevation and excursion of wave run-up at the shoreline.
However, datasets of the beach-face slopes along most of the world’s coastlines remain unavailable. This study
presents a new dataset of beach-face slopes for the Australian coastline derived from a novel remote sensing
technique. The dataset covers 13 200 km of sandy coast and provides an estimate of the beach-face slope every
100 m alongshore accompanied by an easy-to-apply measure of the confidence of each slope estimate. The
dataset offers a unique view of large-scale spatial variability in the beach-face slope and addresses the growing
need for this information to predict coastal hazards around Australia. The beach-face slope dataset and relevant
metadata are available at https://doi.org/10.5281/zenodo.5606216 (Vos et al., 2021).

1 Introduction

The world’s coastlines are unique geological environments
at the interface between land and sea. Along this coastal
fringe, which is often densely populated (Small et al., 2011),
we find beaches composed of unconsolidated sediments (e.g.
gravel, sand, mud) that are constantly reshaped by the action
of waves, currents, winds, and tides (Dean and Dalrymple,
2004). A typical beach cross section, or beach profile, is il-
lustrated in Fig. 1. The beach face is the most seaward region
of the subaerial beach, which extends from the berm to the
low tide water line and is constantly interacting with the up-
rush and downrush of individual waves and tidal cycles. The
steepness of the beach face (tanβ), or the beach-face slope, is
a key parameter in coastal geomorphology and coastal engi-
neering due to its control of important coastal processes. Cru-
cially, the beach-face slope controls the elevation of the wave
run-up and the total swash excursion at the shoreline (Gomes
da Silva et al., 2020; Stockdon et al., 2006), processes that are
of primary importance for the assessment of coastal erosion

and inundation hazards along the coastal boundary (Senechal
et al., 2011; Stockdon et al., 2007). The beach-face slope pa-
rameter is also a useful proxy for surf-zone hydrodynamics
in the absence of costly surf-zone bathymetric surveys, and
can provide insights into beach swimmer safety (Short et al.,
1993) and wave set-up across the surf zone (Stephens et al.,
2011).

Despite the importance of the beach-face slope param-
eter in numerous empirical formulations in coastal engi-
neering (e.g. wave run-up prediction), large-scale datasets
of the beach-face slope remain unavailable along most of
the world’s coastlines. A complementary global dataset of
nearshore slopes, defined from mean sea level (MSL) to
the “closure depth” where morphological change is theoret-
ically negligible, was recently compiled by Athanasiou et
al. (2019). Referring to Fig. 1, this slope indicates the cross-
shore gradient of the subaqueous (below MSL) profile and is
generally much lower in gradient than the beach-face slope.

The steepness of the beach face is closely related to
grain size (Bujan et al., 2019), with coarser (finer) sedi-
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Figure 1. Schematic of a beach profile from the dune to the depth of
closure, adapted from Coastal Engineering Research Center (1984).
The beach-face slope (tanβ) that is mapped in this work is a proxy
for the slope of the portion of the profile that is highlighted in or-
ange, extending from mean sea level (MSL) up to mean high wa-
ter springs (MHWS). The beach-face slope complements the global
dataset of nearshore slopes presented in Athanasiou et al. (2019)
that represents the slope extending from the depth of closure up to
MSL.

ment typically adopting a steeper (flatter) beach face, but
it is also linked to the morphodynamic beach state, with
lower-gradient slopes usually found along high-energy dissi-
pative beaches and steeper slopes along low-energy reflective
beaches (Wright and Short, 1984). The beach-face slope can
be measured using survey techniques such as topographic
RTK-GPS measurements, but these methods require human
intervention and remain impractical over large spatial scales
(regional to continental). In recent decades, airborne lidar
technology has significantly increased the spatial coverage
of coastal topographic data from individual beaches to hun-
dreds of kilometres of coastline (e.g. Middleton et al., 2013;
Stockdon et al., 2002). However, in the swash zone, these ac-
tive remote sensing techniques are hampered by the constant
alternation of wet and dry phases as water levels fluctuate at
the shoreline under the action of waves and tides (Middleton
et al., 2013), limiting the ability to extract beach-face slopes.
UAV (unmanned aerial vehicles) surveys and aerial pho-
togrammetry are also subject to the same caveat, as structure-
from-motion techniques fail in the swash zone due to the
non-stationary ground target (Pucino et al., 2021; Turner et
al., 2016). More recently, novel methods to extract intertidal
zone information using publicly available optical imagery
and tide models have been developed (Bishop-Taylor et al.,
2019; Tseng et al., 2017), considerably increasing our ability
to map coastal topography over large spatial scales. Recently,
Vos et al. (2020) introduced a method to specifically estimate
the beach-face slope that combines instantaneous satellite-
derived shorelines with predicted tides and is capable of ac-
curately estimating the long-term average slope between the
MSL and the mean high water springs (MHWS), the region
highlighted in Fig. 1, across a wide range of coastal environ-
ments. This new method paves the way for the generation
of large-scale beach-face slope datasets to complement the

present nearshore slope global dataset and better resolve the
coastal topography.

In Australia, a national dataset of coastal topography and
bathymetry was recently identified by the marine research,
industrial, and stakeholder communities as a key priority to
improve the ability to model hazards associated with waves
and storm surges (Greenslade et al., 2020). More specifically,
O’Grady et al. (2019) investigated the contribution of wind
waves to total water levels along the Australian coastline
and concluded that a key limitation for an accurate opera-
tional coastal inundation forecasting system was the lack of a
continental-scale beach-face slope dataset. Historically, due
to there being no alternative, studies that have focused on
continental to regional scales have adopted uniform beach-
face slope values. For example, recent studies investigating
the contribution of wave processes to relative sea level rise
have either used slope-independent run-up formulations (Vi-
tousek et al., 2017) or opted for a constant and therefore arbi-
trary beach-face slope of 0.1 for all of the world’s coastlines
(Melet et al., 2018), which has led to criticism of this ap-
proach (Aucan et al., 2019).

In this contribution, we use a recently published and val-
idated beach-face slope estimation technique (Vos et al.,
2020) to fill this gap for the Australian continent. We present
a new dataset of beach-face slopes spaced at 100 m incre-
ments alongshore for every sandy beach in Australia, to-
talling 13 200 km of sandy coastline. Each beach-face slope
estimate is based on the average slope over the past 20 years
and is associated with an easy-to-apply measure of confi-
dence. The methodology used to estimate beach-face slopes
and confidence bands is presented in the next section. A syn-
opsis then follows of the large-scale spatial variability in
beach-face slopes around the Australian continent and the
integration of this dataset with the National Sediment Com-
partment Framework for Australia (Thom et al., 2018). The
paper concludes with a brief section illustrating potential use
cases of this new dataset for coastal management and flood
risk modelling studies.

2 Methods

2.1 Transect dataset

A dataset of shore-normal transects along the Australian
sandy coastline was created semi-automatically. Sandy
beaches were first extracted from the OpenStreetMaps
database (OSM, 2017) and manually quality controlled in a
GIS environment (QGIS Development Team, 2021). In total,
5207 sandy beaches were identified along open coasts and
semi-enclosed regions. The sandy shoreline locations were
then used to generate 100 m alongshore-spaced cross-shore
transects with the v_transects functionality of GRASS GIS
(GRASS Development Team, 2020), generating a total of
132 000 individual transects extending along 13 200 km of
sandy coastline circumnavigating the Australian continent.

Earth Syst. Sci. Data, 14, 1345–1357, 2022 https://doi.org/10.5194/essd-14-1345-2022



K. Vos et al.: Beach-face slope dataset for Australia 1347

The beach-face slope was estimated along each transect as
described in the following section.

2.2 Beach-face slope estimation algorithm

A novel remote sensing technique to estimate beach-face
slopes from satellite imagery and modelled tides was applied
to each of the 132 000 sandy beach transects. This method,
described in detail in Vos et al. (2020), combines a 20-year
time series of shoreline change derived from Landsat im-
agery with tidal predictions at the time of image acquisition
to estimate the slope of the beach face. Briefly, the concept
behind this method is that instantaneous shoreline time se-
ries mapped onto images acquired at different stages of the
tide contain a tidal signal that is modulated by the beach-face
slope and can be isolated in the frequency domain due to its
periodicity. Thus, this technique uses the frequency domain
and iteratively seeks a value of the slope that minimises the
tidal energy when used for tidal correction. Tidal correction
consists of the projection of individual instantaneous shore-
lines, acquired at different stages of the tide, to a standard
reference elevation such as MSL. A simple tidal correction is
then applied by horizontally translating the shoreline points
along a cross-shore transect using the linear slope

1xcorrected =1x+
ztide

tanβ
, (1)

where1xcorrected is the tidally corrected cross-shore position,
1x is the instantaneous cross-shore position, ztide is the cor-
responding tide level, and tanβ is the beach-face slope.

The first step is to map instantaneous shorelines spanning
a full 20 years of all available Landsat imagery (Landsat 5,
7, and 8) at every sandy beach and then determine the in-
tersection of individual shorelines with each of the 100 m
spaced transects to obtain time series of (non-tidally cor-
rected) shoreline change. An example of this is shown in
Fig. 2a for Cable Beach, Western Australia. Time series are
obtained with CoastSat, a toolbox publicly available at https:
//github.com/kvos/CoastSat (last access: 7 September 2021)
and described in Vos et al. (2019a). The 20-year time period
(1999–2020) is selected to ensure that two Landsat satellites
are in orbit simultaneously, which theoretically results in a
combined revisit period of 8 d (16 d for each satellite). How-
ever, in practice, time series of shoreline change are irregu-
larly sampled due to factors such as cloud cover, gaps in the
Landsat 7 data (scan line corrector error), and discarded im-
ages due to poor geometric or radiometric quality. Any out-
liers in the shoreline time series (e.g. due to false detections)
are also removed using a despiking algorithm.

Next, tide levels associated with every shoreline observa-
tion are extracted from the global tide model FES2014 (Car-
rere et al., 2016), as shown in Fig. 2b. The tide-level time se-
ries are then transformed to the frequency domain, and since
these are not evenly sampled, an alternative to the Fourier
transform, the Lomb–Scargle transform (Lomb, 1976; Van-

derPlas, 2018), is employed to compute the power spectrum
density (PSD). Since the Lomb–Scargle is a least-squares
spectral method, the limits and spacing of the frequency grid
need to be first defined. Here, a main sampling period of 8
days (i.e. the theoretical Landsat revisit period) is used, re-
sulting in a maximum frequency (Nyquist limit) of 16 d, and
the spacing n0 is set to 50 samples per peak to ensure that
the grid sufficiently samples each peak (VanderPlas, 2018,
Sect. 7.1). In the resulting PSD, the frequency with the high-
est peak is isolated. This corresponds to the frequency where
the tidal signal (e.g. the spring–neap tidal cycle) is strongest
in the sub-sampled time series and is referred to as the “peak
tidal frequency”. Note that the spring–neap cycle has a pe-
riod of 14.8 d but is subject to aliasing when sampled at an
8 d interval, resulting in a peak at 17.5 d (refer to Supporting
Information S3 in Vos et al., 2020).

The final steps in obtaining the time-averaged estimate
of the beach-face slope every 100 m alongshore consists of
tidally correcting the time series of raw shoreline change
across an iterative range of slope values from 0.01 to 0.2 (fol-
lowing the range identified in Bujan et al., 2019). For each
slope value, the tidally corrected time series is transformed
to the frequency domain and, by integrating each PSD inside
the peak tidal frequency band, a curve of tidal energy vs slope
is constructed (Fig. 2c). The best estimate of the beach-face
slope is then the value that minimises this tidal energy in the
peak tidal frequency band (Fig. 2d). A full example of this
procedure is presented for both a microtidal site (Narrabeen-
Collaroy) and a macrotidal site (Cable Beach) in the form of
Jupyter notebooks at https://github.com/kvos/CoastSat.slope
(last access: 2 September 2021, Vos, 2021b).

This beach-face slope estimation technique was validated
against in situ (beach survey) data along eight diverse sandy/-
gravel beaches spanning a broad range of beach-face slopes,
tidal regimes, and wave climates (Vos et al., 2020). The val-
idation sites – namely Narrabeen-Collaroy, Moruya-Pedro,
and Cable Beach in Australia, Duck and Torrey Pines in
the USA, Slapton Sands in the UK, Tairua Beach in New
Zealand, and Ensenada in Mexico – range from microtidal
wave-dominated to macrotidal tide-modified beaches, with
the in-situ-measured average beach-face slopes varying from
tanβ = 0.025 to tanβ = 0.14. The satellite-derived beach-
face slope estimates were found to match best with the slope
between MSL to MHWS (R2

= 0.93, bias= 0.0), while they
tended to overestimate the full intertidal (MLWS to MHWS)
slope. This can be explained by the fact that the upper inter-
tidal slope (MSL to MHWS) is generally more stable over
time, while the lower intertidal slope (MLWS to MSL) is
more variable as intertidal bars attach to/detach from the
shoreline (Wright and Short, 1984). Wave run-up and set-
up effects that are not included in the global tide model also
tend to skew the shoreline detection towards the upper part
of the intertidal profile (e.g. Harley et al., 2019).
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Figure 2. Flowchart of the methodology used to estimate beach-face slopes from satellite-derived shorelines and predicted tides, as described
in Vos et al. (2020). Firstly, instantaneous shorelines are mapped onto Landsat imagery with the CoastSat toolbox. The time series of non-
tidally corrected shoreline change (a) and their associated tide levels (b) are then combined in the frequency domain to find the slope that,
when used for tidal correction, minimises the tidal signal. Panel (c) shows the power spectrum density (PSD) of the tidally corrected time
series, demonstrating how the slope value modulates the energy inside the tidal frequency band, which is plotted as a function of slope in (d).

2.3 Beach-face slope confidence bands

The tidal energy vs beach-face slope curve shown in Fig. 2d
is used to quantify the uncertainty of each beach-face slope
estimate. When the minimum is very well defined in the
curve (as in Fig. 2d), there is high confidence in the esti-
mate, as there is a single value of the slope that clearly min-
imises the amount of energy in the peak tidal frequency band.
However, at other locations, the minimum of the curve is not
so well defined, and several beach-face slope values corre-
spond to similar levels of PSD energy, as shown in Fig. 3

(from Narrabeen-Collaroy beach located in Sydney, NSW).
To incorporate a simple-to-apply measure of uncertainty in
the dataset of beach-face slope estimates, a 5 % vertical band
above the minimum amount of energy in the curve is used
to estimate confidence bands around the slope estimate. To
illustrate, Fig. 3 shows the 5 % band above the minimum en-
ergy, the slope that minimises the energy (0.075), and the
lower bound (0.065) and upper bound (0.095) slopes that de-
fine the 5 % of the minimum PSD energy. Note that, given
the shape of the energy vs beach-face slope curves, which
generally tends to start as a parabola and then flattens to an
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inflection point after the minimum, the confidence bands are
not symmetric. While these are not 95 % confidence intervals
in the statistical sense, they provide practical information for
end users about the uncertainty associated with any individ-
ual slope estimate.

3 Results

3.1 Synopsis of the distribution of beach-face slopes
around Australia

Beach-face slopes were estimated at each of the 132 000
beach transects, corresponding to 13 200 km of sandy coast-
line around Australia. The beach-face slope data were sum-
marised from the transect scale to the individual beach scale
by calculating the weighted average of all the transects at
each beach; the slopes were weighted by the width of the
confidence band to emphasise slopes with higher confidence.
The resulting average beach-face slope for every sandy beach
around the continent is presented in Fig. 4a. Beach-face
slope values range between 0.01 and 0.18. The distribution of
beach-face slopes for each of the seven coastal states in Aus-
tralia is shown in Fig. 4b, which indicates that median values
are between 0.055 (Victoria) and 0.08 (Northern Territory),
with all seven interquartile ranges sitting between 0.045 and
0.11.

Along the wave-dominated and energetic southern half of
Australia (refer to Supplement Fig. S1b), the dataset shows
very-low-gradient beaches (0.01–0.035) along the western
coast of Tasmania, Western Victoria, and Southwest WA.
Large spatial variability in the beach-face slopes is ob-
served along the tide-modified/tide-dominated northern half
of Australia, with Queensland showing the widest interquar-
tile range (from 0.05 to 0.11).

While state administrative boundaries provide a first divi-
sion of the country, useful for high-level management pur-
poses, they are not representative of the geology, surface
landforms, and shoreline orientation of the Australian coast-
line. To address this, Thom et al. (2018) proposed a na-
tional sediment compartment framework that provides a hi-
erarchical division of the coast, integrating inshore/offshore
geological factors, major structural landforms such as head-
lands, and changes in shoreline orientation. On this basis,
the Australian continent is divided into 23 coastal “regions”,
100 “primary sediment compartments”, and 361 “secondary
sediment compartments”. The beach-face slope distribution
(weighted average per beach) for each of the 23 coastal re-
gions is presented in Fig. 5. Along the south-eastern coast,
narrow slope distributions are observed in Central East (2),
Southern NSW (1), and Gippsland (20). Moving northwards,
very wide distributions are observed in Central Queensland
(3), Eastern (4) and Western (5) Cape York Peninsula, and
Southern Gulf of Carpentaria (6). The Northern Territory
(NT) shows a clear contrast between the relatively steep
beaches of East and North Arnhem Land (7–8) and the ex-

tremely low-gradient beaches of Western NT (9). A simi-
lar distinction is observed in the northern part of Western
Australia (WA), where the manifold of islands in the Kim-
berley region (10) show steep slopes that contrast with the
long and low-gradient beaches of the Pilbara region (11).
As the tide-modified/tide-dominated coast transitions to a
wave-dominated one, a gradient of decreasing beach-face
slopes is observed along the western regions of Central West
WA (12), Southwest WA (13), and Southern WA (14). Wide
beach-face slope distributions are observed in South Aus-
tralia (SA, regions 15–18), which comprises long microtidal
coasts, mesotidal gulfs, and large offshore islands. The re-
maining region of the continental mainland is Central and
Western Victoria (19), which contains relatively low gradi-
ent beaches (median of 0.05). Finally, in Tasmania, a clear
distinction between the intermediate slopes of the north (21)
and east (22) coasts and the west (23) coast is apparent, not-
ing that West Tasmania exhibits the lowest beach-face slopes
(median 0.03) of all the coastal regions around Australia.

The widths of the corresponding beach-face slope confi-
dence bands described in Sect. 2.3 provide a simple-to-apply
metric and filter on the uncertainty in slope estimates. Fig-
ure 6a presents a map of the beach-averaged width of the
confidence band. The map is colour coded with a simple
three-category “traffic-light” system: high confidence (green)
when the confidence-band width is less than 0.025, medium
confidence (yellow) when it is between 0.025 and 0.05, and
low confidence (red) when it is above 0.05. Using these
categories, 56 % of the continental-scale dataset are high-
confidence slope estimates, 23 % are medium-confidence es-
timates, and 21 % are low-confidence estimates. Figure 6b
shows the distribution of this confidence metric across each
of the 23 regions. Extensive areas of low-confidence esti-
mates are observed along the west and south coasts of WA
and most of SA, while the remainder of the coastline gen-
erally presents high-confidence estimates interspersed with
isolated occurrences of low/medium-confidence estimates
(e.g. East Arnhem Land, southern part of East Tasmania).
The median width of confidence bands is below 0.025 (i.e.
high confidence) for 13 of the 23 coastal regions, between
0.025 and 0.5 (medium confidence) for five regions (East
Arnhem Land, Central West WA, Western Eyre Peninsula,
East/West Tasmania), and above 0.5 (low confidence) for five
regions (including Southwest and Southern WA and the ma-
jority of SA).

Vos et al. (2020) previously identified that the performance
of the beach-face slope estimation method depends on the
signal-to-noise ratio between the accuracy of the satellite-
derived shorelines (10–15 m based on the validation in Vos
et al., 2019b) and the horizontal extent of the tidal excur-
sion. Thus, the observation of greater uncertainty in slope
estimates along the Southwest and Southern WA regions is
consistent with the very small tidal range along this coast
(<1 m mean spring tidal range, see Supplement Fig. S1a).
Another issue affecting the signal-to-noise ratio is the alias-
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Figure 3. Estimation of the confidence band around each beach-face slope estimate based on the tidal energy vs slope curve. The lower and
upper bounds are the slopes that are associated with a tidal energy within 5 % of the minimum.

Figure 4. Beach-face slopes around Australia along 132 000 100 m-spaced transects (equivalent to 13 200 km of coast). Panel (b) shows the
distribution for each Australian state.

ing of the tidal signal by sun-synchronous sensors (i.e. Land-
sat orbits), which implies that the full tidal range may not
always be captured by the satellite imagery (Bishop-Taylor
et al., 2019; Eleveld et al., 2014). Figure 7 shows the per-
centage of the mean spring tidal range (MSTR) that is ob-
served by the satellite-derived shorelines at each beach. This
analysis reveals that the SA coastal regions (15–18), which
exhibit lower confidence in Fig. 6, have the lowest tide range
coverage, with only about 60 %–65 % of the MSTR sampled
(Fig. 7a). Thus, along the SA regions that are already microti-
dal (except inside the gulfs), this aliasing results in only part
of the tidal range being observed in the available satellite im-
agery, further reducing the signal-to-noise ratio and leading
to lower-confidence slope estimates.

3.2 An example embayment-scale application

While the previous section focused on the large-scale dis-
tribution of beach-face slopes at the continental scale, this
dataset can also provide insights into variations in beach-face
slope along any individual embayment or beach. To illustrate,
Fig. 8a shows beach-face slopes at the transect scale (100 m
spacing alongshore) along a single embayment, the Stock-
ton Bight, located in NSW about 150 km north of Sydney.
Stockton Bight is the longest beach in NSW, featuring 32 km
of south-facing sandy coast backed by a large transgressive
dune system (Short, 2020). The beach-face slope data at this
site, shown in Fig. 8a, indicates a distinct alongshore gra-
dient, with lower-gradient slopes towards the northern end
of the embayment (tanβ = 0.04) and steeper slopes in the
southern end (tanβ = 0.1). Interestingly, a sediment grain
size dataset for the same site is reported by Pucino (2015),
with the median swash-zone sand size (D50) at 20 equally
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Figure 5. Distribution of beach-face slopes for each of the 23 coastal regions identified by Thom et al. (2018).

Figure 6. Traffic-light system indicating the uncertainty in the beach-face slope estimates. Panel (b) shows the distribution of the widths of
confidence bands across the 23 regions, indicating on average high confidence across 13 regions, medium confidence across five regions (7,
12, 16, 22, 23), and low confidence across five regions (13, 14, 15, 17, 18).

spaced sample locations (Fig. 8b) indicating a distinct gradi-
ent in grain size along the Stockton Bight embayment. The
observed correlation between grain size and beach-face slope
that is apparent in Fig. 8 is in agreement with our under-
standing of this relationship, generally described by a power
law (Bujan et al., 2019). This example demonstrates that this
continent-wide dataset can also be utilised to gain insights
into the alongshore variability of beach-face slopes (and, po-
tentially, grain size distribution) along individual beaches
and embayments, informing present-day coastal manage-
ment and planning.

3.3 Dataset description

The data presented above are made available as two geospa-
tial layers (GeoJSON files): one providing the beach-face
slope estimates on a transect basis (100 m alongshore spac-
ing) and the second providing the estimates averaged over
each individual beach. Tables 1 and 2 describe the attributes
of each layer, respectively.

At the transect scale (Table 1), the beach-face slope and
confidence bands are accompanied by relevant metadata such
as the number of shoreline points used to estimate the beach-
face slope, the sediment compartment/region in which the
transect is located, and a database id for the transect. A con-
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Figure 7. Observed tidal range by the satellite-derived shorelines. Panel (a) maps the % of the MSTR that is observed at each beach and (b)
shows the distribution of that metric across the 23 coastal regions.

Figure 8. Embayment-scale gradient in beach-face slopes and sediment grain size. (a) Beach-face slope estimates along 100 m-spaced cross-
shore transects along the Stockton Bight embayment. (b) Figure taken from Pucino (2015) displaying the spatial distribution of median grain
size (D50) for 20 sand samples along the embayment. D50 values are in microns and have been interpolated using the inverse-weighted
distance and discretised into seven quantiles.

fidence flag (high/medium/low) is associated with each esti-
mate, as is illustrated in Fig. 6.

At the beach scale (Table 2), the alongshore-averaged
slope weighted by the width of the confidence interval is
provided for each individual beach, and is associated with a
confidence flag (high/medium/low) based on the alongshore-
averaged width of the confidence band. Relevant metadata at
the beach scale include the mean spring tide range (MSTR),
median significant wave height (Hsig), percentage of ob-

served tide range, minimum observed tide level, maximum
observed tide level, and beach length.

To assist users of Australia’s national sediment compart-
ment framework (Fig. 5), the distribution of beach-face
slopes in each sediment compartment is provided in the Sup-
plement at both the primary (Supplement Fig. S3) and sec-
ondary (Supplement Fig. S4) levels. Geospatial layers con-
taining the primary and secondary compartments are also in-
cluded in the dataset and displayed in Supplement Fig. S2.
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Table 1. Description of data fields for the beach-face slope dataset at the transect scale.

Attribute Values Description

transect_id e.g. aus0001-0000, aus0001-0001, . . . Database id for each transect

beach_id e.g. aus0001, aus0002, . . . , aus5255 Database id for each beach

beach_slope (tanβ) 0.01≤ x ≤ 0.2 Estimate of the beach-face slope (between MSL and
MHWS)

lower_conf_bound 0.01≤ x ≤ 0.2 Lower limit of the confidence band

upper_conf_bound 0.01≤ x ≤ 0.2 Upper limit of the confidence band

width_conf_bound 0≤ x ≤ 0.19 Width of confidence band

sl_points 100≤ x ≤ 1300 Number of data points in the time series used for beach-
face slope estimation

quality_flag High/Medium/Low Quality flag indicating the confidence in the slope esti-
mate at this transect

coastal_region e.g. Southern NSW, Central Queensland, . . . Database id corresponding to the 23 coastal regions as
identified by Thom et al. (2018)

primary_comp_id e.g. NSW01.01, NSW01.02, QLD01.01, . . . Database id corresponding to the 100 primary sediment
compartments as identified by Thom et al. (2018)

secondary_comp_id e.g. NSW01.01.01, NSW01.01.02,
QLD01.01.01, QLD01.01.02, . . .

Database id corresponding to the 361 secondary sedi-
ment compartments as identified by Thom et al. (2018)

4 Discussion

This new beach-face slope dataset provides full coverage
of the Australian sandy coast, with beach-face slope esti-
mates for 132 000 transects spaced every 100 m and extend-
ing along 13 200 km of coast. By focusing on the beach-
face slope (defined between the MSL and MHWS), it com-
plements an existing dataset (Athanasiou et al., 2019) of
nearshore slopes that are defined for the lower beach pro-
file (between the MSL and the depth of closure). While the
nearshore slopes can be used to transform offshore wave pa-
rameters to the nearshore (see Fig. 1), the beach-face slope
is necessary to predict the elevation of wave run-up and
the total swash excursion at the shoreline, which is used in
most standard wave run-up formulations (e.g. Stockdon et
al., 2006). Consequently, this beach-face slope dataset is an
important step towards improving predictions of wave run-up
and potential inundation hazards along the Australian coast
(O’Grady et al., 2019). Additionally, coastal flood warning
systems (e.g. Doran et al., 2015; Leaman et al., 2021; Stokes
et al., 2019) often rely on a measure of the uncertainty as-
sociated with the input parameters to provide meaningful
predictions with a margin of error. In that regard, the con-
fidence bands associated with the beach-face slope estimates
in this dataset can be used to propagate the uncertainty into
the wave run-up equations and generate ensemble forecasts
of total run-up elevation and swash excursion.

As identified in a previous validation at eight diverse sites
(Vos et al., 2020), this dataset provides a good estimate
of the “typical” or long-term average beach-face slope ob-
tained from 20 years of Landsat imagery. It is recognised,
however, that the beach-face slope can vary quite substan-
tially through time, particularly for microtidal intermedi-
ate beaches (such as those found in SE Australia), where
the beach often rapidly transitions between morphodynamic
beach states (Wright and Short, 1984). While estimating this
temporal variability is challenging when using the described
method with the historic Landsat data (as undertaken here),
new satellite remote sensing capabilities may make this a fu-
ture possibility. For example, by combining satellite missions
such as Landsat and Sentinel-2 (5 d revisit at the Equator)
with Planet’s CubeSat imagery (Kelly and Gontz, 2019), it
might be possible to significantly increase the sampling fre-
quency of shoreline observations. This higher-frequency data
would enable the use of a narrower time window in which
beach-face slopes are estimated, potentially opening up the
possibility of estimating the temporal variability in beach-
face slopes at different timescales (e.g. inter-annual and sea-
sonal).

While the focus of this dataset is on the Australian coast-
line, the generic nature of the method and the global extent
of Landsat imagery mean that such a dataset could, theoret-
ically, also be reproduced elsewhere. It is important to note,
however, that the density of Landsat coverage is not consis-
tent globally (Wulder et al., 2016) and that Australia (along
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Table 2. Description of data fields for the beach-face slope dataset at the individual beach scale.

Attribute Values Description

beach_id e.g. aus0001, aus0002, . . . , aus5255 Database id for each beach

beach_slope_average
(tanβ)

0.01≤ x ≤ 0.2 Average of the beach-face slope along each transect,
weighted by the width of the confidence band

width_ci_average 0≤ x ≤ 0.19 Average width of the confidence band over the included
transects

quality_flag High/medium/low Quality flag indicating the confidence in the slope estimate
at this beach

mstr 0.75m≤ x ≤ 10m Mean spring tide range at the beach, calculated from the
closest grid point in the FES2014 global tide model

hsig_median 0.1m≤ x ≤ 3m Median significant wave height from the closest grid point
in the CAWCR re-analysis dataset

prc_mstr_obs 100 max(tideobserved)−min(tideobserved)
MSTR Percentage of the MSTR observed by the satellite-derived

shorelines

min_tide_obs min(tideobserved) Lowest tide level observed by the satellite-derived shore-
lines

max_tide_obs max(tideobserved) Highest tide level observed by the satellite-derived shore-
lines

sl_points_average 100≤ x ≤ 1300 Average number of data points in the time series over the
included transects

beach_length 75m≤ x ≤ 50000m Length of each beach or embayment.
Very long beaches (>50 km) were split to optimise memory,
as images are cropped around each beach

coastal_region e.g. Southern NSW, Central
Queensland, . . .

Database id corresponding to the 23 coastal regions as iden-
tified by Thom et al. (2018)

primary_comp_id e.g. NSW01.01, NSW01.02,
QLD01.01, . . .

Database id corresponding to the 100 primary sediment
compartments as identified by Thom et al. (2018)

secondary_comp_id e.g. NSW01.01.01, NSW01.01.02,
QLD01.01.01, QLD01.01.02, . . .

Database id corresponding to the 361 secondary sediment
compartments as identified by Thom et al. (2018)

with North America and eastern China) has some of the high-
est coverage in terms of image density. Additionally, the Aus-
tralian continent is characterised by a relatively low mean
cloud frequency (Wilson and Jetz, 2016), which means that
a lower proportion of optical images are hindered by clouds.
Other areas with sparser Landsat coverage and/or a higher
cloud frequency may not have the same temporal depth of
shoreline observations, which could hinder the applicability
of this method in some regions.

5 Code availability

The source code to map satellite-derived shorelines from
Landsat imagery (CoastSat) is available at https://doi.org/
10.5281/zenodo.2779293 (Vos, 2021a). The source code to
estimate beach-face slopes from satellite-derived shorelines

and modelled tides (CoastSat.slope) is available at https:
//doi.org/10.5281/zenodo.3872442 (Vos, 2021b).

6 Data availability

The continental-scale beach-face slope dataset described in
this paper (Sect. 3.3) is available in the following Zen-
odo data repository: https://doi.org/10.5281/zenodo.5606216
(Vos et al., 2021).

7 Conclusion

This study presents a new dataset of beach-face slopes for the
Australian coastline derived from a newly available remote
sensing technique. The dataset covers a total of 13 200 km
of sandy coast and provides an estimate of the beach-face
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slope from mean sea level (MSL) to mean high water spring
(MHWS) every 100 m alongshore. Based on the width of the
confidence band around each slope estimate, it was found
that 56 % of the continental-scale dataset can be classified as
high confidence, 23 % as medium confidence, and 21 % as
low confidence.

The dataset offers a unique view of large- to local-scale
scale features in beach-face slope variability, providing data
for regions with no in situ observational coverage. This new
data availability opens up many interesting applications in
coastal sciences and engineering, including:

i. estimates (with confidence bands) of the beach-face
slope parameter, which is needed to predict wave run-
up in coastal inundation forecasting systems (O’Grady
et al., 2019)

ii. enhancing the understanding of large-scale geologic
factors that contribute to the distribution of beach-face
slopes and sediment grain sizes (Bujan et al., 2019;
Short, 2020)

iii. informing coastal management and planning at the em-
bayment scale.

The data are available in a simple format that can be read-
ily imported into standard geographical information system
software (e.g. QGIS, ArcGIS) or accessed programmatically
for use by coastal researchers and end users.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-1345-2022-supplement.
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