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Abstract. The C3ONTEXT (a Common Consensus on Convective OrgaNizaTion during the EUREC4A eX-
perimenT) dataset is presented as an overview of the mesoscale cloud patterns identified during the EUREC4A
(Elucidating the role of clouds–circulation coupling in climate) field campaign in early 2020. Based on infrared
and visible satellite images, 50 researchers of the EUREC4A science team manually identified the four prevailing
mesoscale patterns of shallow convection observed by Stevens et al. (2020). The common consensus on the ob-
served mesoscale cloud patterns emerging from these manual classifications is presented. It builds the basis for
future studies and reduces the subjective nature of these visually defined cloud patterns. This consensus makes it
possible to contextualize the measurements of the EUREC4A field campaign and interpret them in the mesoscale
setting. Commonly used approaches to capture the mesoscale patterns are computed for comparison and show
good agreement with the manual classifications. All four patterns as classified by Stevens et al. (2020) were
present in January–February 2020, although not all were dominant during the observing period of EUREC4A.
Supplemental classifications of storm-resolving simulations suggest that the latter have a limited ability to repli-
cate the observed cloud patterns and require further research.

The full dataset including post-processed datasets for easier usage are openly available at the Zenodo archive
at https://doi.org/10.5281/zenodo.5979718 (Schulz, 2022a).

1 Introduction

Clouds are often clustered. Examples of larger clusters are
squall lines and the intertropical convergence zone. But also
much smaller clouds like shallow trade wind cumuli are often
seen clustered on a scale of several hundred kilometers. The
understanding of these mesoscale patterns of shallow con-
vection is still sparse. However, the ubiquity of these clouds
and their reoccurring structure suggest that they play an im-
portant role in determining the radiative effects of the trade
wind regimes (Bony et al., 2020). The EUREC4A (Elucidat-
ing the role of clouds–circulation coupling in climate) field
campaign addresses among others, the question of which
processes are at play that change the mesoscale appearance
of shallow convection. Prior to the campaign, studies concen-
trated on the classification of mesoscale patterns based on
satellite images by visual inspection (Stevens et al., 2020),

rule-based algorithms (Bony et al., 2020; Janssens et al.,
2021), supervised neural networks (Rasp et al., 2020) and
unsupervised neural networks (Denby, 2020). Most of these
methods focus on four specific mesoscale cloud patterns that
have been identified as commonly occurring in the North At-
lantic downwind trades (Stevens et al., 2020). An overview
of these four patterns which are named by their visual im-
pressions as sugar, gravel, flowers and fish is given in Fig. 1.

These efforts show that the categorization of the mesoscale
patterns is an elementary step in acquiring further knowledge
about the cloud processes in the downstream trades; 50 sci-
entists from 15 research institutes who were involved in the
EUREC4A field campaign in January–February 2020 there-
fore participated in a joint online classification event. The
results of this classification event are presented here. Due
to the high attendance, the presented dataset can be inter-
preted as the common judgment of the EUREC4A science
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Figure 1. Four classes of mesoscale patterns of shallow convection have been labeled by 50 scientists in satellite images of January and
February 2020. An example of each of these classes is shown based on the reflectance measurements of the Moderate Resolution Imaging
Spectroradiometer (MODIS) on board the Terra satellite (sugar and gravel) and the Visible Infrared Imaging Radiometer Suite (VIIRS) on
board the Suomi National Polar-orbiting Partnership (NPP) satellite (flowers and fish). Example images provided by NASA Worldview.

team on the mesoscale patterns of shallow convection in the
wider trades during EUREC4A. The studied domain of 5–
20◦ N, 62–40◦W contains the entire research area, includ-
ing both the Tradewind Alley in the north (12.5–14.5◦ N) and
the Boulevard des Tourbillons close to the coast of South
America (Stevens et al., 2021). This dataset therefore allows
for consistently communicating about the otherwise subjec-
tively defined patterns and puts the measurements taken dur-
ing EUREC4A into their mesoscale context to advance the
process understanding of shallow convection in the trades.
The need for a better process understanding is highlighted by
a supplemental classification of storm-resolving simulations
covering the same time period.

The paper is structured as follows: the dataset and its col-
lection are described in Sect. 2. Potential use cases are de-
scribed in Sect. 3. In Sect. 4 additional classification meth-
ods that are able to detect the four mesoscale patterns are

applied to the EUREC4A time period and compared to the
manual classifications described in this paper. We conclude
with Sect. 6.

2 Data description and development

The manual classifications were gathered through the
online platform https://www.zooniverse.org/ (last access:
1 July 2020), which has already been successfully used in
an earlier project by Rasp et al. (2020). The platform makes
it possible to crowdsource labels for, e.g., machine learn-
ing projects. Additional workflows can be defined to sepa-
rate different image sources or to separate, for example, la-
bels made during a practice run from those that belong to the
actual classification. The former allowed everyone to famil-
iarize themselves with the https://www.zooniverse.org/ plat-
form without influencing the results.

Earth Syst. Sci. Data, 14, 1233–1256, 2022 https://doi.org/10.5194/essd-14-1233-2022

https://www.zooniverse.org/
https://www.zooniverse.org/


H. Schulz: C3ONTEXT: a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT 1235

For this dataset, we defined three workflows. Two work-
flows are based on satellite observations. The first one is
based on the visible channels of both the GOES-16 (Geo-
stationary Operational Environmental Satellite) ABI (Ad-
vanced Baseline Imager) and MODIS on board the Aqua
and Terra satellites and is called EUREC4A VIS. The sec-
ond one is based on the “clean” infrared channel (chan-
nel 13) of GOES-16 ABI only (EUREC4A IR). To test
how well storm-resolving simulations are able to repro-
duce the observed patterns, we included another workflow,
EUREC4A ICON, which is based on ICON (ICOsahedral
Nonhydrostatic) storm-resolving simulations covering the
EUREC4A time period. The simulation has a grid spacing
of 1.25 km and was initialized daily by the European Centre
for Medium-Range Weather Forecasts Integrated Forecast-
ing System (ECMWF IFS) and forced hourly. Each run is
48 h long. The first 24 h were discarded to allow for spin-up.

To visualize the simulation output, we calculated a
pseudo-albedo α by following the approximation of Zhang
et al. (2005):

τ = 0.19 ·LWP
5
6 ·N

1
3 (1)

α =
τ

6.8+ τ
, (2)

where τ is the optical depth, LWP is the liquid water vapor
path andN is an assumed cloud droplet number density. Here
a number density of 70 cm−3 is used, which is at the lower
end of the observed concentrations (Siebert et al., 2013).

All workflows are further described in Table 1.
On 24 March 2020 the international, virtual classification

event was hosted with 50 scientists from 15 institutes partic-
ipating in the creation of the pattern classifications. For a full
day the participants classified patterns of shallow trade wind
convection by labeling, i.e., drawing rectangles of variable
sizes around, the four common types: sugar, gravel, flowers
and fish (Stevens et al., 2020).

In the end, over 12 500 labels were gathered. The obser-
vational workflows got the majority of the labels (see Fig. 2)
because the identification of the patterns in the model simu-
lation was too demanding. The cloud features in the simula-
tions had too little similarity with those found in nature. By
comparing the distribution of labels in the individual work-
flows, Fig. 2 reveals that sugar was disproportionately rarely
identified in the ICON simulations. The largest feature, like
fish, however, has been identified more often. This supports
the assumption that larger features are better reproduced in
storm-resolving simulations than features of smaller scales,
like sugar.

Because all users have familiarity with the patterns ei-
ther by previous work and/or being involved in the clas-
sification event of Rasp et al. (2020), it can be assumed
that the labels are of high quality. In addition, they were
trained immediately before starting the classification through
an online presentation to get familiar with the labeling in-

Figure 2. Distribution of labels by data source. The relative distri-
bution is shown on the y axis, while the absolute number of labels is
indicated within each bar. The total number of labels per workflow
is shown on the top of each bar.

terface on https://www.zooniverse.org/ and to once more re-
fresh the different mesoscale cloud pattern categories. Com-
pared to Rasp et al. (2020), where the focus has been to clas-
sify as many diverse cloud scenes as possible to capture na-
ture’s variability and thus serve as a better machine learning
dataset, the aim for this dataset is to create a common clas-
sification dataset for the EUREC4A time period that partic-
ipating scientists agree on and can directly be used in fur-
ther studies. Therefore, the temporal frequency has been in-
creased from daily cloud scenes to 2-hourly cloud scenes to
reflect also the changes on the sub-daily scale such as those
identified by Vial et al. (2021). Due to this design difference,
a single day is now on average classified 20 times in case of
the visible workflow instead of just about 6 (3 per each day-
time Aqua/Terra satellite overpass) as in Rasp et al. (2020).
Each individual image is however still viewed about 3 times.

After the joint classification event, over 12 500 labels were
processed to make them more user friendly, especially be-
cause the raw data miss temporal and geospatial information.
The processing steps with the intermediate products are illus-
trated in Fig. 3 and described as follows:

– Level 0. The level 0 dataset consists of the raw data out-
put and originates from the Zooniverse platform. It con-
sists of CSV (comma-separated values) files that con-
tain entries for each workflow, image (subject) and clas-
sification including technical details like the time spent
on drawing a specific label. Labels are given by their
origin (x,y) and their height (h) and width (w) given in
pixel coordinates.

– Level 1. The level 1 dataset is further processed and
combines the information distributed over the level 0
dataset files. It contains each label as a separate entry
and contains information about the classified object, the
user, and the geographical and Cartesian coordinates of
the label. This product is saved in a netCDF (Network
Common Data Form) file.

https://doi.org/10.5194/essd-14-1233-2022 Earth Syst. Sci. Data, 14, 1233–1256, 2022

https://www.zooniverse.org/


1236 H. Schulz: C3ONTEXT: a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT

Table 1. Description of data sources used to create the images of the classification workflows.

EUREC4A VIS EUREC4A IR EUREC4A ICON

MODIS (Terra/Aqua) ABI (GOES-16) ABI (GOES-16)

Domain 5–20◦ N, 62–40◦W 5–20◦ N, 62–44◦W
Period 7 Jan 2020–22 Feb 2020 16 Jan 2020–20 Feb 2020
Resolution ∼ 1 km ∼2 km
(shown) 2-hourly, 12:00–20:00 UTC 2-hourly 2-hourly
Data source Corrected reflectance Channel 02 (red) Channel 13 (IR) Pseudo-albedo
Number of scenes 94 234 562 425
Remarks Classified after
24 h spin-up

Figure 3. Overview of processing levels of the datasets including the variable names used in the respective datasets.

– Level 2. For the level 2 dataset, the data are merged by
classification_id.

The classification_id is a unique identifier of
a classification, where a classification refers here to the
process of labeling a single image by a single user. The
user might use several labels of the same or a different
kind to completely classify a scene. This process elimi-
nates overlaps of same-user classifications for each pat-
tern and turns the data into masks rather than coordi-
nates (see Fig. 3). In cases where same-user classifica-
tions of different patterns overlap, the overlapping re-
gion is counted towards all classified patterns. This case
is not handled specifically, as it shows the uncertainty a
user had to classify a specific region as one or the other
pattern. Masks have the advantage of being more eas-
ily queried whether a specific location is influenced by
a mesoscale pattern or not. This product is saved in the
Zarr format.

– Level 3. To make working with the dataset easier, the
percentage of agreement (p) among users on a spe-
cific pattern on each location is calculated and saved as
level 3 data for each workflow. It is calculated as fol-
lows:

ppattern(i,j )=
∑U

0 c(i,j )
U

, (3)

whereU is the number of users that have seen the partic-
ular image; c is the classification mask from the level 2
data; and i,j is the geographic coordinates. Because the

labels of users that attributed several classes to a single
pixel are not removed,

∑
p can be greater than 100 %.

An additional unclassified category is introduced to cap-
ture the agreement on unclassified regions, which is im-
plicitly visible in, e.g., Fig. 4. Figure 4 shows how par-
ticipants agreed on the different patterns on 12 Febru-
ary depending on the workflow. This figure is continued
in Appendix A, where this overview of daily averaged
classifications is given for each day to give an impres-
sion of the dataset and in particular the presence and
distribution of mesoscale patterns during the EUREC4A
field campaign. This product is saved in the Zarr format.

3 Potential dataset use and reuse

The EUREC4A field campaign has been an international
study with a wide range of research platforms and many
minor objectives (Stevens et al., 2021). This dataset covers
not only the core area of the experiment but also the wider
area and time period. While the participating research air-
planes and drones were mostly staying in the trade winds,
some research vessels conducted measurements as far south
as 6.5◦ N.

This dataset gives the opportunity to study all these mea-
surements in the context of the mesoscale patterns observed
in the downwind trades. Due to the high subjectivity of these
mesoscale cloud pattern definitions, it is of particular im-
portance to discuss results based on a common consensus to
keep studies comparable. The C3ONTEXT dataset can serve
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Figure 4. Manual-classification examples for the three workflows (top to bottom: visible, infrared and simulation). The labels for each
pattern (from left to right: sugar, flowers, fish and gravel) are shown next to the labeled image. Coastline of South America is marked in
black. The circle marks the EUREC4A circle, one focus area of the EUREC4A field campaign and the main flight pattern of the participating
research aircraft HALO (High Altitude and LOng Range Research Aircraft) (Konow et al., 2021). Coastlines are based on GSHHG (Global
Self-consistent, Hierarchical, High-resolution Shorelines) shapefiles (Wessel and Smith, 1996). Please note that the date format in this figure
is year-month-day.

as such a reference for the period of the EUREC4A field cam-
paign.

Figure 5 shows the mesoscale context for three platforms
participating in EUREC4A and representing different mea-
surement strategies (see Stevens et al., 2021, for a complete
list of platforms). Based on the classifications of the infrared
workflow, the daily changes in the cloud patterns become ap-
parent. The infrared workflow is preferred over the visible
one because it covers both day and night and is therefore
able to also capture the dial nature of the patterns (Vial et al.,
2021). Before the intense observation period (IOP), 20 Jan-
uary to 20 February, the prevailing cloud pattern at the Barba-
dos Cloud Observatory was gravel. With the start of the IOP,
fish was detected most in the research area. After 24 January,
patterns were much less widespread and well defined such
that there was more disagreement on the patterns. This tran-
sition is independent of the location. Both the platforms in
the north as well as R/V Atalante, which sailed further south
in the Boulevard des Tourbillons (eddy boulevard), which is
defined by Stevens et al. (2021) as the area of the coastline
of Brazil where the North Brazil Current (NBC) rings oc-
cur, were embedded in a similar transition. The reduced fre-
quency of classifications towards the end of the IOP around
15 February are caused by mid-level clouds obscuring the
view of shallow convection.

In Appendix A the level 3 products are visualized for each
studied day and can be used as a lookup table to quickly
identify if a pattern has been identified at a specific time and
place.

4 Comparison with other classifications

Several methods have been developed to describe the
mesoscale structure of shallow convection (Wood and Hart-
mann, 2006; Rasp et al., 2020; Bony et al., 2020; Denby,
2020). Here we focus on the comparison of the manual clas-
sifications with two other methods that specifically aim to
detect the four mesoscale patterns of the downwind trades
as defined by Stevens et al. (2020) and shown in Fig. 1.
Bony et al. (2020) combined a measure of organization (Iorg,
Tompkins and Semie, 2017) with the mean cluster size (S),
while Rasp et al. (2020) developed a deep neural network
to detect the patterns. Although Janssens et al. (2021) show
that different combinations of metrics, like cloud fraction
and fractal dimension, better describe the variance in a cloud
field, the pair of Iorg and mean cluster size has been widely
used and is considered here for better comparison.

To assess the agreement between the different classifica-
tion methods, we compare the method of Bony et al. (2020)
and a deep neural network based on Rasp et al. (2020)
that detects the patterns in geostationary infrared images of
GOES-16 ABI (Schulz et al., 2021) instead of visible im-
ages taken on board the polar-orbiting satellites Terra and
Aqua. It should be noted that this deep neural network has
not been trained with the manual classifications presented
here but with the manual classifications of Rasp et al. (2020)
which cover older years and included different geographical
regions. The network is identical to the one used in Schulz
et al. (2021).
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Figure 5. Exemplary use case of level 3 data: mesoscale setting of research platforms during EUREC4A based on the EUREC4A IR workflow
(a–c: Barbados Cloud Observatory (BCO), R/V Meteor and R/V Atalante). Please note that the date format in this figure is day.month.

Because the Iorg/S measure is sensitive to the domain size,
we compute these metrics over a 10× 10◦ sub-domain and
consider only classifications within this domain for the com-
parison. Specifically, we focus on the region 10–20◦ N, 58–
48◦W. This domain size ensures that Iorg describes the or-
ganization on the mesoscale and the cloud patterns we are
interested in. The method has been successfully used in this
domain in Bony et al. (2020) and applied accordingly. Bright-
ness temperatures between 280 and 290 K are regarded as
clouds. Days where the 25th percentile of brightness tem-
peratures within any satellite image is lower than 285 K are
discarded to avoid a bias by high clouds.

Figure 6 shows the comparison of the different methods.
From the appearance of the patterns, we expect gravel and
flowers to be rather regularly distributed and therefore to
have a lower Iorg compared to fish and sugar. It should be
noted that Iorg is calculated based on a threshold in bright-
ness temperature, and therefore only the deeper clouds in the
sugar field are considered leading to a higher Iorg value than
one would expect from an otherwise rather randomly dis-
tributed cloud field. The mean cluster size should be small
for sugar and gravel and larger for flowers and fish.

Indeed, the pattern area fraction maximizes for each pat-
tern in the respective quadrant of the Iorg/S space indepen-
dent of the classification method. Gravel classifications dom-
inate the lower-left quadrant; sugar dominates the upper-left
quadrant; and fish dominates the upper-right one. Flowers are
harder to associate with a quadrant, as they are more cen-
tered. In general, the Iorg/S distribution has a large range of

values for small mean cluster sizes and narrows with increas-
ing mean cluster size.

This is also in alignment with Bony et al. (2020), where
the lower-right quadrant includes not only flowers but also
about 35 % of the fish cases (their Fig. 1c). Flowers’ cloud
entities are generally smaller than those of the fish pattern
and therefore cannot separate very well from the other pat-
terns.

Figure 7 reveals the time series of the area fraction cov-
ered by the mesoscale patterns within the region of 10–20◦ N,
58–48◦W and identified by the different classification ap-
proaches. For a better comparison with the EUREC4A VIS
workflow, Fig. 7 is only based on daytime classifications
(12:00–20:00 UTC).

To convert the agreement on patterns in the level 3 dataset
into actual classifications, we applied a threshold of 0.1 to the
percent agreement so that at least 10 % of participants who
viewed a given scene must have agreed on a pattern. Agree-
ment below this threshold is treated as an unclassified region.
This threshold should be seen as a lower bound and is only
used to reduce the noise of the classifications. For compari-
son, we also apply a stricter threshold of 0.5, which removes
most of the overlap (Fig. 7b). The overall day-to-day changes
remain robust. Figure 7 shows that in January–February 2020
all patterns were dominant at least once. It also shows that
abrupt day-to-day changes of dominant patterns are rather
rare, and a smooth transition from gravel to fish to sugar to
flowers is observed.

Overall, the different classification methods agree well
with each other, and no large discrepancies are found. This
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Figure 6. Comparison of the Iorg versus mean cluster size (S) classification method and the (a) manually classified patterns and (b) the
neural network classifications. For each Iorg/S classification, the manually/automatically classified pattern area for each pattern is indicated
as wedges of different sizes. Mean cluster size is given as a fraction of the domain size and multiplied by 104 to be consistent with Bony
et al. (2020). Grey areas indicate the middle terciles of Iorg and S and are the bounds of the four pattern quadrants. All classifications are
based on the GOES-16 ABI infrared images and are daily averages.

Figure 7. Time series of the area fraction covered by each pattern as identified in the workflows EUREC4A VIS (first bar), EUREC4A IR
(second bar), EUREC4A ICON (third bar) and the deep neural network trained for the infrared classification of cloud patterns (fourth bar
in a) within the area of 10–20◦N, 58–48◦W. Thresholds of 0.1 (a) and 0.5 (b) have been applied to the percentage of agreement of the
manual classifications and visualize that the overlap of different categories (cumulative area fractions above 1) is eliminated in the latter.
Please note that the date format in this figure is year-month-day.
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confirms that these methods are valid for further analysis of
mesoscale patterns. While the Iorg/S metric is computation-
ally cheap and can be easily applied to different regions, it
is less suitable for short time periods because the terciles
that attribute the Iorg/S pairs to specific quadrants are not
robust for a small sample size. Terciles from other studies
can only be used if the resolution of the dataset is the same.
For short time periods, like those of typical campaigns where
people are interested in specific days or even sub-daily vari-
ations, manual classifications are advantageous, as they do
not require a large sample size. The neural network approach
presents a good opportunity to extend the classifications to
different time periods and regions by using manual classifica-
tions as a training set. Here, the manual classifications served
as an additional independent validation dataset and proved
once more the capabilities of the neural network which has
been trained on the dataset of Rasp et al. (2020).

5 Code and data availability

The C3ONTEXT dataset including raw data is openly
available on the Zenodo database (European Organi-
zation For Nuclear Research and OpenAIRE, 2013;
https://doi.org/10.5281/zenodo.5979718, Schulz, 2022a).
The source code necessary to generate the dataset is avail-
able at https://doi.org/10.5281/zenodo.5989155 (Schulz,
2022b) together with examples on how to process the data
and retrieve the classifications for any platform as shown in,
e.g., Fig. 5.

6 Conclusions

Mesoscale patterns of shallow convection are a main focus
of the EUREC4A field campaign that took place in January
and February 2020. To gain a better process understanding
of shallow convection in the trades, the classifications of
mesoscale patterns offer the opportunity to study the mea-
surements in their mesoscale context and thereby split the
observations into less complex pieces and disentangle other-
wise superimposed processes. Here, we present C3ONTEXT,
a dataset on the common consensus on the mesoscale pat-
terns which occurred during the broader EUREC4A time pe-
riod and emerges from the manual classifications done by
members of the EUREC4A science team.

C3ONTEXT reveals that all mesoscale cloud patterns are
observed during the studied period of January and Febru-
ary 2020. However, in the intense observation period of the
EUREC4A field campaign, 20 January to 20 February, gravel
was only sporadically identified and not prevalent in the
study area. In contrast, a week before the intense observation
period, gravel dominated in the research area. Instruments
that were already running at this time, like those at the Bar-
bados Cloud Observatory, were able to gain measurements
under the mesoscale influence of gravel and complement the
measurements from the IOP.

The difficulties of the participants to classify the patterns
in the output of a storm-resolving simulation demands fur-
ther investigation into how well simulations can capture the
variability of mesoscale patterns of shallow convection in the
trades.

A comparison of the manual-classification approach with
other methods used in the literature to identify the four
mesoscale patterns of shallow convection reveals a generally
good agreement and confirms the validity of the different ap-
proaches. Nevertheless, the manual classifications are benefi-
cial for limited temporal and spatial studies especially when
the classifications are done by a group of several trained sci-
entists. This presents a way to gain a consensus of subjec-
tively defined cloud patterns without an additional layer of
complexity from a neural network or any other algorithm.

In general, it has been shown that with little effort, clas-
sifications of the cloud field are possible and can be a huge
benefit for the community, encouraging this approach for fu-
ture studies.
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Appendix A: Daily classification overview

Figure A1.
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Figure A1.
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Figure A1.
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Figure A1.
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Figure A1. Heatmaps of manual classifications based on MODIS (Aqua and Terra) visible imagery. Left to right: visible imagery during an
Aqua overpass and user agreement on sugar, flowers, fish and gravel. The circle marks one focus area of the EUREC4A field campaign and
the main flight pattern of the participating research aircraft HALO (Konow et al., 2021). Coastlines are based on GSHHG shapefiles (Wessel
and Smith, 1996). Please note that the date format in this figure is year-month-day.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2. As Fig. A1 but for the infrared workflow. Images show the cloud field at 16:00 (except 11 February 2020 at 17:00). Please note
that the date format in this figure is year-month-day.
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Figure A3.
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Figure A3.
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Figure A3.
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Figure A3. As Fig. A1 but for the ICON albedo workflow. Images show the cloud field at midnight. Please note that the date format in this
figure is year-month-day.
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