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Abstract. Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) on the Interna-
tional Space Station between 2010–2014, hyperspectral reflectance spectra of various floating matters in global
oceans and lakes are derived for the spectral range of 400–800 nm. Specifically, the entire HICO archive of
9411 scenes is first visually inspected to identify suspicious image slicks. Then, a nearest-neighbor atmospheric
correction is used to derive surface reflectance of slick pixels. Finally, a spectral unmixing scheme is used to
derive the reflectance spectra of floating matters. Analysis of the spectral shapes of these various floating mat-
ters (macroalgae, microalgae, organic particles, whitecaps) through the use of a spectral angle mapper (SAM)
index indicates that they can mostly be distinguished from each other without the need for ancillary information.
Such reflectance spectra from the consistent 90 m resolution HICO observations are expected to provide spectral
endmembers to differentiate and quantify the various floating matters from existing multi-band satellite sensors
and future hyperspectral satellite missions such as NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
mission; Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) mission; and Surface Biology
and Geology (SBG) mission. All spectral data are available at https://doi.org/10.21232/74LvC3Kr (Hu, 2021b).

1 Introduction

Since the debut of the first proof-of-concept Coastal Zone
Color Scanner (CZCS, 1978–1986), satellite ocean color
missions have evolved from the original goal of mapping
phytoplankton biomass and primary production to many
other applications. Because of improved spectral resolution
and instrument sensitivity, mapping various types of float-
ing matters has also become possible (IOCCG, 2014). These
floating matters range from living to non-living, including
Sargassum macroalgae, Ulva macroalgae, cyanobacterium
Microcystis, cyanobacterium Trichodesmium, dinoflagellate
Noctiluca, aquatic plants, brine shrimp cysts, oil slicks,
pumice rafts, sea snot, and marine debris, among others (Qi
et al., 2020; Hu et al., 2022).

Currently, mapping floating matters using optical remote
sensing requires the detection of a spatial anomaly using
the near-infrared (NIR) bands and then discrimination of

the anomaly by comparing its spectral characteristics with
known spectra of floating matters (Qi et al., 2020) or by
using ancillary information (e.g., in certain regions a spa-
tial anomaly can only be caused by a certain type of float-
ing algae). Spectral discrimination requires the knowledge
of spectral signatures of various floating matters. However,
despite scattered laboratory or field measurements of certain
types of floating matters, hyperspectral data of these floating
matters are mostly unavailable. Although medium-resolution
(300 m) sensors such as the Ocean and Land Colour Im-
ager (OLCI) have been used to show spectral variations in
floating matters (Qi et al., 2020), the data are not hyper-
spectral; therefore certain spectral features may have been
missed. For example, various pigments (e.g., chlorophyll a,
chlorophyll b, chlorophyll c, fucoxanthin, zeaxanthin, phy-
cocyanin, carotenoids) have been found in natural popu-
lations of microalgae (i.e., phytoplankton; Bidigare et al.,
1990; Bricaud et al., 2004) and macroalgae (e.g., Bell et al.,
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2015; Wang et al., 2018). These pigments often have nar-
row absorption and reflectance features that can be missed by
multi-band sensors, therefore requiring more spectral bands
or hyperspectral data to perform spectroscopic analysis.

Data collected by the Hyperspectral Imager for the Coastal
Ocean (HICO) on the International Space Station (ISS) may
serve this purpose. HICO has 128 bands covering a spec-
tral range of 353–1080 nm. From its entire mission of 2010–
2014, a total of > 10000 scenes have been collected at
a spatial resolution of about 90 m, each containing about
512× 2000 pixels. On average, only 6 scenes were col-
lected per day around the globe, mostly over land and coastal
waters. Because of its stable calibration (Ibrahim et al.,
2018) and relatively high signal-to-noise ratios (Hu et al.,
2012), deriving hyperspectral surface reflectance of water
targets should be feasible. Indeed, after vicarious calibration
and atmospheric correction, hyperspectral reflectance data
over water have been generated (Ibrahim et al., 2018) and
made available through NASA’s Ocean Biology Distributed
Active Archive Center (OB.DAAC; https://oceancolor.gsfc.
nasa.gov, last access: 24 November 2020). However, these
data products are not applicable to image pixels contain-
ing floating matters due to their interference with the atmo-
spheric correction scheme.

The primary objective of this paper is to derive HICO-
based hyperspectral reflectance of various floating matters.
This requires customized atmospheric correction and pixel
unmixing to account for the small proportion of floating mat-
ters within an image pixel. From such derived spectra, a sec-
ondary objective is to analyze whether they can be differ-
entiated spectrally. Similarly to the compiled hyperspectral
dataset for inherent and apparent optical properties to sup-
port future hyperspectral missions such as NASA’s Plankton,
Aerosol, Cloud, ocean Ecosystem (PACE) mission (Casey et
al., 2020), such a dataset for floating matters is expected to
help develop or improve algorithms for the PACE mission as
well as for the hyperspectral Surface Biology and Geology
(SBG) mission currently being planned by NASA (Cawse-
Nicholson et al., 2021).

2 Data and methods

HICO Level-1B (calibrated radiance) data were obtained
from the NASA Goddard Space Flight Center (https://
oceancolor.gsfc.nasa.gov, last access: 24 November 2020).
Of the total collected > 10000 scenes, 9411 were available
through this data portal. They were all downloaded, and the
following four steps were used to derive spectral reflectance
of various floating matters.

Step 1 is to generate quick-look red–green–blue (RGB)
and false-color RGB (FRGB) images with Rayleigh-
corrected reflectance (Rrc, dimensionless) in three HICO
bands using the same methods as in Qi et al. (2020) and in the
NOAA OCView online tool (Mikelsons and Wang, 2018). In

the FRGB images, a near-infrared (NIR) band is used to rep-
resent the green channel, thus making floating matters often
appear greenish due to their elevated NIR reflectance. Here,
Rrc was generated using the NASA software SeaDAS (ver-
sion 7.5). Mathematically, it is derived as

Rrc = (Rt−Rr)/(t to tO2 tH2O),
Rt = πL

∗
t /Fo cos(θo),

Rr = πLr/Fo cos(θo), (1)

where L∗t is the at-sensor total radiance after vicarious
calibration and adjustment of two-way gaseous absorption
(e.g., ozone), Lr is at-sensor radiance due to Rayleigh scat-
tering, Fo is the extraterrestrial solar irradiance, θo is the so-
lar zenith angle, t is the diffuse transmittance from the im-
age pixel to the satellite, to is the diffuse transmittance from
the sun to the image pixel, and tO2 and tH2O are the two-way
transmittance due to absorption by atmospheric O2 and H2O,
respectively. For simplicity, the wavelength dependency is
omitted here.

Step 2 is to determine image slicks through visual inspec-
tion of both RGB and FRGB images. Figure 1a shows an
FRGB image captured in the central western Atlantic, where
an elongated greenish slick is identified.

Step 3 is to derive surface reflectance (R, dimensionless)
of both the slick pixels (i.e., those containing floating mat-
ters) and nearby water pixels. While the latter is straight-
forward because R at each pixel is a standard output of the
SeaDAS software, the former is problematic because stan-
dard atmospheric correction in SeaDAS fails over floating
matters due to their elevated NIR reflectance. Such elevated
NIR reflectance violates the atmospheric correction assump-
tions (i.e., negligible reflectance in the NIR or fixed relation-
ships between the red and NIR wavelengths) for slick pixels.
Therefore, a nearest-neighbor atmospheric correction (Hu et
al., 2000) was used to estimate the R of the slick pixels.
Specifically, from the SeaDAS output of Rrs, we have

R = πRrs = (Rt−Rr−Ra)/(t to tO2 tH2O), (2)

where Rrs is the surface remote sensing reflectance (sr−1),
Ra is the at-sensor aerosol reflectance (and reflectance due to
aerosol–molecule interactions as well as due to sun glint and
whitecaps). The difference betweenR andRrc in Eqs. (2) and
(1), respectively, is the removal of Ra in Eq. (2). Estimation
of Ra at each pixel represents the “core” of any atmospheric
correction scheme. The SeaDAS estimation of Ra is valid
over water pixels but not valid over the slick pixels. There-
fore, Ra over water pixels was used as a surrogate to repre-
sent Ra over the nearby slick pixels, from which R over slick
pixels was derived. This is why such an approach is called
“nearest-neighbor” atmospheric correction (Hu et al., 2000).
In this context, the slick pixel is called the “target” and the
nearby water pixel is called the “reference”. Their surface
reflectances are called RT and RR, respectively. Figure 1b
shows examples of RT and RR.
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Figure 1. Demonstration of how surface reflectance of floating matter (RFM) is derived. (a) FRGB image on 1 July 2012 showing sev-
eral greenish image slicks in the Amazon River plume. The image covers a region of about 40km× 24 km, with the target (6.65914◦ N,
51.2395◦W) and reference (6.64847◦ N, 51.2411◦W) pixels marked with a red × and a black ×, respectively. (b) Their corresponding RT

and RR, with the latter derived from SeaDAS and the former derived from a nearest-neighbor atmospheric correction. (c) RFM derived from
RT and RR using Eq. (4), with χ being estimated to be 10 %.

The final step, Step 4, is to perform spectral unmixing of
RT. This is because floating matters often cover only a small
portion of a pixel (Hu, 2021a). In this step, the derived RT

from Step 3 is assumed to be a linear mixture of two end-
members, floating matter (RFM) and water (RW):

RT
= χRFM

+ (1−χ )RW
= χRFM

+ (1−χ )RR. (3)

Here, χ is the subpixel portion of floating matter which can
vary between 0.0 % and 100 % and RW is assumed to be RR.
Then, the final product, RFM, is derived as

RFM
= RR

+ (RT
−RR)/χ. (4)

On the right-hand side of Eq. (4), the only unknown is χ . In
practice, assuming RFM at 750 nm ≈ 0.3 as revealed by in-
dependent measurements of floating macroalgae (Hu et al.,
2017; Wang et al., 2018), χ is estimated through linear un-
mixing as

χ = [RT(754)−RR(754)]/[0.3−RR(754)]. (5)

Here, with RT(754) varying between RR(754) and 0.3, χ
ranges between 0.0 % and 100 %. Plugging this mixing ratio
into Eq. (4) will derive RFM. Figure 1c shows the example
of how RFM is derived from RT and RR of Fig. 1b once they
are known from Step 3, with χ being estimated to be 10 %.

Once RFM is derived, a spectral angle mapper (SAM) in-
dex (Kruse et al., 1993) was used to determine whether dif-
ferent floating matters were spectrally different. The SAM
approach was used because it is based on spectral shape only.
An SAM is the angle between two spectral vectors, defined
as in Kruse et al. (1993):

SAM (◦)= cos−1
[(∑

xiyi

)/(√∑
x2
i

√∑
y2
i

)]
. (6)

Here, x and y represent two spectral vectors with the ith
band from 1 to N . An SAM of 0◦ indicates identical spec-
tral shapes between x and y regardless of their difference in

magnitudes, while an SAM of 90◦ indicates completely dif-
ferent spectral shapes. An SAM of < 5◦ indicates that the
two spectra are very similar (Garaba and Dierssen, 2018).

3 Results – HICO reflectance spectra of floating
matters

The approach above was applied to the visually identified
image slicks to derive RFM(λ). These include (1) Sargassum
fluitans and S. natans in the Atlantic (including the Caribbean
Sea and Gulf of Mexico); (2) Ulva prolifera in the western
Yellow Sea (near Qingdao, China); (3) kelp in the South At-
lantic; (4) Trichodesmium around Australia, in the Gulf of
Mexico and Persian Gulf, in the South Atlantic Bight, in the
Bay of Bengal, and near Hawaii and the island of Pagan
(middle Pacific); (5) cyanobacteria of Microcystis in Lake
Taihu, Lake of the Woods, and Lake Victoria; (6) red Noc-
tiluca scintillans (RNS) in the East China Sea and coastal wa-
ters off Japan; (7) brine shrimp cysts in the Great Salt Lake;
(8) oil slicks in the Gulf of Mexico; (9) whitecaps (foam)
in the Arabian Sea, Caspian Sea, and Bohai Sea; (10) ice
in Lake Baikal; and (11) some unknown algae features. For
convenience, they are grouped into four figures: Fig. 2 for
macroalgae (Sargassum, Ulva, and kelp), Fig. 3 for microal-
gae (Trichodesmium; Microcystis; red Noctiluca scintillans,
or RNS), Fig. 4 for organic particles and ocean/lake bubbles,
and Fig. 5 for known and unknown algae scums.

Of all spectra presented in Figs. 2–4, one common fea-
ture for all floating macroalgae and microalgae (except red
Noctiluca) is the red-edge reflectance (i.e., the sharp increase
from about 670 nm to the NIR wavelengths). Such a com-
mon feature is due to both chlorophyll a absorption around
670 nm and high reflectance in the red and NIR wavelengths
due to macroalgae mats or microalgae scums (Kazemipour
et al., 2011; Launeau et al., 2018). The lack of such a red-
edge feature in some of the red Noctiluca reflectance spectra
(Fig. 3c) is possibly due to the lack of chlorophyll a pigment
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Figure 2. Surface reflectance (R, dimensionless) of macroalgae: (a) pelagic Sargassum fluitans and S. natans, (b) Ulva prolifera, (c) kelp.
The dashed lines in (a) and (b) denote R from water tank experiments of Wang et al. (2018) and Hu et al. (2017), respectively. GoM denotes
the Gulf of Mexico. Where full dates are given in figures, they are formatted as month/day/year.

Figure 3. Surface reflectance (R, dimensionless) of floating scums of microalgae: (a) Trichodesmium, (b) Microcystis, (c) red Noctiluca near
the Yangtze of the East China Sea (ECS) and in Sagami Bay of Japan. The dashed line in (a) denotes field-measured R by McKinna (2010).

because red Noctiluca is heterotrophic (i.e., it does not con-
tain pigments unless it feeds on other algae). Other than the
common red-edge reflectance, the contrasting spectral shapes
of the various types of floating macroalgae and microalgae
are due to their different pigment compositions (see below).
In contrast, the non-living floating matters do not show red-
edge reflectance or other pigment-induced spectral features
in the visible wavelengths (Fig. 4). In Fig. 5, in addition to
pigment absorption, high scattering due to high concentra-
tions of algae particles together with sharp increases in water
absorption from the red to the NIR wavelengths leads to the
local reflectance peak around 700 nm (Fig. 5), and, depend-
ing on the particle concentrations, the peak wavelength may
be slightly shifted, for example from 700 to 710 nm.

4 Discussion

4.1 Uncertainties in the derived RFM

There are several assumptions used in the nearest-neighbor
atmospheric correction and spectral unmixing (Eq. 4). Vi-
olations of these assumptions will cause errors in the de-
rived RFM spectra. For example, if the atmosphere over the
floating-matter pixel is different from over the nearby wa-
ter, the nearest-neighbor atmospheric correction may not be
applicable. In practice, however, because the target and ref-
erence pixels are very close (< 1 km), such a violation is un-

likely. In Step 4, the water within the floating matter (FM)-
containing pixel is assumed to be the same as the nearby wa-
ter. Because of the close proximity of the two pixels, this
assumption should be valid for most cases unless the FM-
containing pixel is at an ocean front where different water
masses converge. The departure of RFM(754) from the as-
sumed 0.3 will also lead to errors in the estimated χ (and
thereforeRFM). However, as long asRW (i.e.,RR) in Eqs. (4)
and (5) is� RFM, the shape ofRFM is still retained, although
the magnitude departs from the “truth” in proportion to the
departure of RFM(754) from 0.3. Indeed, the condition of
RW
� RFM can be satisfied for λ > 600 nm for most float-

ing matters unless the water is extremely turbid. Even for
turbid waters, for certain floating matters where RFM is ele-
vated at λ > 530 nm (e.g., red Noctiluca, brine shrimp cysts,
ice), the shape of the derived RFM should still be valid for
λ > 530 nm. Indeed, whenRW is� RFM, even a simple sub-
traction of Rrc or top-of-atmosphere radiance between the
target pixel and reference pixel, as demonstrated in Gower et
al. (2006), may retain the spectral shapes of floating matters.

Another uncertainty source can come from the assumption
of linear mixing between floating matters and water (Eq. 3).
For macroalgae, linear mixing up to the reflectance saturation
level has been shown in laboratory experiments (Hu et al.,
2017; Wang et al., 2018). As long as the macroalgae stay on
the very surface of the water (as opposed to being submerged
under the surface), this assumption should be valid not just
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Figure 4. Surface reflectance (R, dimensionless) of various floating materials: (a) brine shrimp cysts in the Great Salt Lake (GSL BSC);
(b) emulsified oil from the Deepwater Horizon oil spill in the Gulf of Mexico (GoM); and (c) ship wake, sea-foam, whitecaps, and ice. The
dashed line in (c) denotes submersed bubbles measured by Dierssen (2019), which is similar to the ship wake spectrum. Note the similarity
among other spectra.

Figure 5. Surface reflectance (R, dimensionless) of known and unknown algae scums. (a) Blooms off southern California and in Monterey
Bay that are thought to be Lingulodinium polyedrum (Cetinic, 2009) and Akashiwo sanguinea (Jessup et al., 2009), respectively. (b) Blooms
of unknown types of algae off Cape Town (South Africa) and in Lake Victoria, both likely to be dinoflagellates. Note the different spectra
shape of the Lake Victoria bloom as compared with the cyanobacterial bloom in the same lake (Fig. 3b). (c) Blooms of unknown types of
algae in Taganrog Bay and Lake Kyoga. (d) Blooms of unknown types of algae in Taganrog Bay (note the difference from Fig. 5c) and in
Japanese coastal waters.

for macroalgae but for all floating matters. For the same rea-
son, if certain portions of kelp are submerged in water, large
uncertainties may result from the linear unmixing scheme.
Under high-wind conditions, the strong mixing may result
in submerged algae (especially for microalgae), thus violat-
ing the linear mixing rule. However, the cases presented in
Figs. 2–5 were selected very carefully to avoid high wind
speed (> 5 ms−1, where wind speed was obtained from the
National Centers for Environmental Prediction). Therefore,
such mixing-induced uncertainties are unlikely.

Additional uncertainties may come from the HICO radio-
metric calibration, which affects Rt and all derivative prod-
ucts. Through the use of the Marine Optical Buoy (MOBY)

and other clear-water sites, HICO has been calibrated vicar-
iously (Ibrahim et al., 2018), which has resulted in signifi-
cant improvements in the retrieved Rrs over water as com-
pared with data without vicarious calibration. However, after
the vicarious calibration, while the spectral shape of Rrc over
water appears correctly, the shape of 1Rrc over land appears
to be biased low at λ > 800 nm. Without vicarious calibra-
tion, the opposite is observed. This is possibly due to the
non-linear effects in the detector response to incoming light,
and currently there appears no reliable way to address this
issue (Amir Ibrahim, personal communication, 2021). Sim-
ilarly, calibration for λ < 450 nm may be subject to larger
errors than for λ between 450 and 800 nm. Therefore, RFM
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in the range of 800–900 nm is omitted here, and interpreta-
tion of 400–450 nm also requires more caution. Similarly, the
spectral wiggling between 700 and 800 nm (e.g., Fig. 3b) ap-
pears to come from residual errors in correcting water vapor
absorption and oxygen absorption in the atmosphere. There-
fore, although the spectral wiggling does not affect the over-
all shape of the red-edge reflectance, it may not be used for
algorithm development to discriminate floating-matter types.

Indeed, with all these possible sources of uncertainty, such
HICO-derived RFM can still be used for spectral discrimina-
tion of different floating matters without ambiguity, as shown
below.

4.2 Implications for spectral discrimination

Spectral discrimination can be performed through either vi-
sual inspection or the use of a certain type of similarity index
(e.g., SAM, Eq. 6). Here, results of the SAM analysis are pre-
sented in Table 1, followed by descriptions of visual inspec-
tion to interpret the spectral similarity or difference. Because
nearly all floating algae show typical red-edge reflectance,
discrimination of different algae types is focused on wave-
lengths < 670 nm. To discriminate floating algae from non-
living floating matters (e.g., marine debris), on the other
hand, the inclusion of 670 nm is critical. Furthermore, be-
cause HICO data are noisy for wavelengths < 450 nm, the
SAM calculation was restricted to 450–670 nm for mostRFM

spectra of Figs. 2–4.
Table 1 shows the SAM results for three types of macroal-

gae (Sargassum, Ulva, kelp), three types of microalgae
(Trichodesmium; Microcystis; red Noctiluca scintillans, or
RNS), and one type of organic matter (brine shrimp cysts, or
BSCs). Here, unless noted, Sargassum refers to Sargassum
fluitans and S. natans (dominant pelagic type in the Atlantic
Ocean) and Ulva refers to Ulva prolifera (dominant pelagic
type in the Yellow Sea). For the same floating matter, if field-
based RFM is available, then it is used as the reference; oth-
erwise the mean HICO-derived RFM is used as the reference.
For the SAM between different floating matters, all HICO-
derived RFM values from both types are used (e.g., 4 Sargas-
sum RFM values of Fig. 2a and 3 Ulva RFM values of Fig. 2b
are used to calculate 12 SAM values), with their means and
standard deviations listed in Table 1.

For each type of floating matter, HICO-derived RFM is
very similar to either field-measuredRFM or the floating mat-
ter’s mean RFM, with SAM < 4.6◦. In contrast, the SAM be-
tween different floating matters is always > 9.9◦. These re-
sults suggest that, if these floating matters represent all that
can be found in natural waters, they can be differentiated
through spectroscopy analysis without any other ancillary in-
formation (e.g., knowledge of local oceanography or domi-
nant floating algae type). This is despite the possible uncer-
tainties in their reflectance magnitude, as discussed above. In
the natural environments, however, there may be other types
of floating algae whose spectral shapes may be similar to Sar-

gassum fluitans and S. natans (e.g., either Sargassum horneri
in the East China Sea or other brown algae) or Ulva prolifera
(e.g., other green algae). Therefore, some form of ancillary
information in addition to spectroscopy is still required in or-
der to differentiate floating algae types.

The results from the SAM table can also be explained
through visual inspection and interpretation of the spectral
shapes, as discussed below.

From Fig. 2, it is clear that although the three types of
macroalgae all share the same red-edge reflectance in the
NIR, they have different spectral shapes in the visible wave-
lengths. Unlike the Ulva reflectance with a local peak around
560 nm, the spectral shapes of Sargassum reflectance resem-
ble those of typical brown algae where the local reflectance
trough around 625 nm is induced by chlorophyll c absorption
and the low reflectance below ∼ 520 nm is due to carotenoid
pigment absorption. These characteristics make it easy to dis-
tinguish Sargassum from Ulva (SAM> 27◦, Table 1). On the
other hand, it appears more difficult to spectrally discrimi-
nate Sargassum from kelp because they both have reflectance
peaks around 600–645 nm and because they also share a
common reflectance trough around 625 nm. However, con-
sidering Sargassum is moving in the ocean while kelp is fixed
in location, they can be separated using sequential images.
Even from a single image, when most visible wavelengths
are used, Sargassum and kelp can still be spectrally discrimi-
nated (SAM> 13◦, Table 1). Within the group of Sargassum
spectra (Fig. 2a), there is some variability in the magnitude
between 560–700 nm. It is unclear what caused such vari-
ability, although it could be due to changes in the carbon-
to-chlorophyll ratio in Sargassum of different environment,
as observed from kelp (Bell et al., 2015). Such a variabil-
ity, however, would not impact the spectral discrimination of
Sargassum from other floating matters, as the SAM between
Sargassum spectra is < 5◦, much lower than between Sar-
gassum and any other types of floating matters (Table 1).

Similarly to the macroalgae, the microalgae scums also
show elevated NIR reflectance (Fig. 3), and their spectral
shapes in the visible wavelengths makes it straightforward
to distinguish between kinds (SAM> 17◦) and also straight-
forward to distinguish them from macroalgae (SAM> 9.9◦).
One exception may be the cyanobacterial scums (blue-green
algae blooms) (Fig. 3b) as they show a reflectance peak
around 550 nm, similarly to Ulva (Fig. 2b). However, re-
flectance around 550 nm is nearly symmetric for cyanobacte-
rial scums but asymmetric for Ulva. There is also a local re-
flectance trough around 625 nm for cyanobacterial scums due
to absorption of phycocyanin, but such a trough is lacking in
the Ulva spectra. Such a characteristic makes it possible to
differentiate between the two even without a priori knowl-
edge of the ocean or lake environment, as the SAM between
the two groups is ∼ 16.8◦ (Table 1). What is interesting is
that within each class, either Trichodesmium or Microcystis,
although the spectral shape is nearly identical from differ-
ent spectra (SAM< 5◦), there is substantial variability in the
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Table 1. Spectral angle mapper values (degrees) between different floating matters for the spectral range of 450–670 nm, derived from the
HICO-derived and field-measured spectra shown in Figs. 2–4. An SAM of 0◦ indicates an identical spectral shape, while an SAM of 90◦

indicates a completely different spectral shape. Sarg: Sargassum fluitans and S. natans; Ulva: Ulva prolifera; Tricho: Trichodesmium; Micro:
Microcystis; RNS: red Noctiluca scintillans; BSCs: brine shrimp cysts. Because all floating algae show similar red-edge reflectance with a
reflectance trough around 670 nm, the exclusion of wavelengths of > 670 nm is to reduce the similarity among different types of floating
algae. Bold font indicates strong similarity (SAM < 5◦).

Sarg 4.5± 1.6
Ulva 27.2± 2.5 2.9± 0.5
Kelp 13.7± 1.8 32.5± 1.3 2.7± 0.4
Tricho 15.4± 4.6 25.1± 2.0 23.1± 3.2 2.8± 2.0
Micro 32.9± 7.5 16.8± 5.6 39.0± 7.7 28.8± 5.1 4.6± 2.5
RNS 9.9± 2.4 31.4± 2.8 16.7± 3.0 17.2± 2.1 34.7± 6.7 1.8± 0.7
BSCs 20.7± 0.9 39.3± 2.4 27.0± 3.1 21.2± 1.6 40.9± 5.5 14.5± 3.1 1.1± 0.0

Sarg Ulva Kelp Tricho Micro RNS BSCs

magnitude in the visible wavelengths, which might be due
to changes in their carbon-to-chlorophyll ratios (Behrenfeld
et al., 2005). Furthermore, the spectral-wiggling features be-
tween 450 and 660 nm in Fig. 3a are due to Trichodesmium-
specific pigments such as phycourobilin, phycoerythrobilin,
and phycocyanin that absorb light strongly at 495, 550, and
625 nm, respectively (Navarro Rodriguez, 1999). These fea-
tures are unique to Trichodesmium scums, which makes it
straightforward to develop classification algorithms once cer-
tain spectral bands are available to capture these features
(e.g., Hu et al., 2010).

Of all the microalgae scums of Fig. 3, the spectral shapes
of red Noctiluca (Fig. 3c) appear different from all others, but
they show the same characteristics as those reported from the
limited field measurements (Van Mol et al., 2007): a sharp,
featureless increase from ∼ 520 to ∼ 600 nm. This unique
spectral shape makes RNS different from all other floating
matters (SAM> 9.9◦, Table 1). The difference within this
group is that the spectra from Sagami Bay off Japan show
reflectance troughs around 670 nm. Because red Noctiluca is
known to feed on other algae, it is speculated that the 670 nm
trough is due to chlorophyll pigments of the consumed algae.
Once more hyperspectral data are available in the future to
test this hypothesis using field data, this characteristic may
be used to study how red Noctiluca interacts with other algae.
On the other hand, once more hyperspectral data are available
in the future, it is also possible to test whether other algae
(e.g., Mesodinium rubrum; Dierssen et al., 2015), once they
have formed surface scum, have similar spectral shapes to
those of red Noctiluca.

The non-algae floating matters in Fig. 4 show spectral
characteristics different from both macroalgae and microal-
gae; for example they lack the typical red-edge reflectance of
vegetation and lack typical spectral variations in the visible
wavelengths due to pigment absorption. Within this group,
the organic matter of BSCs (Fig. 4a) and emulsified oil
(Fig. 4b) show some degrees of similarity as they also have
monotonic reflectance increases from a wavelength between

500–560 to at least 740 nm. The difference between them is
that BSC reflectance always starts to increase at ∼ 560 nm
with an inflection wavelength of∼ 640 nm, while reflectance
of oil emulsions start to increase at variable wavelengths
without any inflection between 560–740 nm. Indeed, the in-
fection at∼ 640 nm appears to be a common feature between
BSC slicks and coral spawn slicks (Yamano et al., 2020). In
contrast, depending on the oil emulsion state, oil emulsion
may have different spectral characteristics (Lu et al., 2019),
suggesting that there is no fixed “endmember” spectra for oil
spills.

The inorganic “particles” (i.e., water bubbles, ice) also
have distinctive spectral shapes. The examples in Fig. 4c
indicate that submersed bubbles from ship wakes are sim-
ilar in terms of spectral shapes, but all others are nearly
identical in their lack of any narrow-band spectral features.
Rather, foams, whitecaps, and ice all show flat reflectance
spectral shapes between 400–800 nm that are consistent with
in situ measurements of foams (Dierssen, 2019). The lack
of narrow-band spectral features is similar to marine debris
(Garaba and Dierssen, 2020). Such a similarity will make
detection of marine debris very difficult, especially around
ocean fronts because these are where surface materials tend
to aggregate and foams also tend to form.

In addition to the spectra of Figs. 2–4 that can be well
recognized, HICO also showed reflectance spectra that are
difficult to discriminate from spectroscopy alone, as shown
in Fig. 5. Without a known reflectance library, one can only
speculate what algae type could be responsible for the al-
gae scum spectra from some ancillary information in the lit-
erature. For example, the often-reported blooms of Lingulo-
dinium polyedrum and Akashiwo sanguinea in coastal waters
off southern California and in Monterey Bay, respectively,
may show spectral shapes of those in Fig. 5a when they are
heavily concentrated in surface waters. Inference may also
be made for other cases once similar ancillary information
is available. Even when such information is absent, one can
still rule out some possibilities simply based on the spec-
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tral shapes. For example, the reflectance spectrum in Fig. 5b
from Lake Victoria cannot be from cyanobacteria that has
been often reported in this lake (Fig. 3b), but it is most likely
from a dinoflagellate bloom, as blooms of other algae types
have also been reported in this lake (Haande et al., 2011).
Likewise, the different spectra from the same Taganrog Bay
in Fig. 5c and d suggest different algae types. Clearly, al-
though cyanobacterial blooms have been reported in many
lakes, without spectral diagnosis one cannot simply jump to
the conclusion that a freshwater bloom is caused by a certain
type of cyanobacterium.

4.3 Implications for current and future satellite missions

Because HICO is a pathfinder sensor that collected only a
limited number of scenes, not all reported floating matters
have been captured. For example, no HICO scene appears to
have captured pumice rafts, Sargassum horneri, sea snot, or
marine debris. Therefore, the spectral reflectance dataset pre-
sented here is incomplete. The use of data from other simi-
lar pathfinders, for example the DLR Earth Sensing Imag-
ing Spectrometer (DESIS) on the ISS (235 bands from 400–
1000 nm, 30 m resolution, 2018–present) and the PRecur-
sore IperSpettrale della Missione Applicativa (PRISMA, 237
bands from 400–2505 nm, 30 m resolution, 2019–present),
may complement the spectral data using the same approach
presented here (e.g., sea snot reflectance spectra derived from
DESIS; Hu et al., 2022). Even in their present form, given the
large variety of floating matters presented here, the spectral
data may lead to several implications for current and future
satellite missions.

First, although all current multi-band sensors can detect
floating matters through its elevated NIR reflectance (Qi
et al., 2020), the Sentinel-3 Ocean and Land Colour Im-
ager (OLCI) appears to be the best at differentiating spectral
shapes in the visible wavelengths because of its 21 spectral
bands between 400 and 1020 nm, especially because of its
620 nm band that can be used to differentiate whether an al-
gae scum appears greenish or brownish, thus providing extra
information to discriminate algae type in the absence of hy-
perspectral data.

Second, for the same reason, although only four bands
(blue, green, red, NIR) are available on the PlanetScope
(Dove) constellation, the recent SuperDove constellation is
equipped with four additional bands with one centered at
610 nm and thus may significantly enhance the capacity of
the current high-resolution sensors (∼ 3–4 or 30 m) to differ-
entiate greenish and brownish algae types.

Finally, the Ocean Color Instrument (OCI) on NASA’s
PACE mission, to be launched in 2023, will be the first of
its kind to map global oceans with hyperspectral capacity
(5 nm resolution between 340–890 nm, plus seven discrete
bands from 940 to 2260 nm) with a nominal resolution of
1 km. Unlike HICO, OCI will cover global oceans and lakes
every 1–2 d, thus providing unprecedented opportunities to

detect, differentiate, and quantify various types of floating
matters. The spectral reflectance data, derived from one sen-
sor (HICO) with a stable calibration, may serve as a consis-
tent dataset to help select the optimal bands for future ap-
plications once PACE data become available, for example,
through the use of an SAM matrix as demonstrated in Ta-
ble 1. Likewise, the SBG mission currently being planned
by NASA is expected to have hyperspectral capacity be-
tween 380 and 2500 nm with a nominal resolution of 30 m
(Cawse-Nicholson et al., 2021); such a mission will provide
unprecedented opportunity to map various floating matters
on a global scale, and the hyperspectral dataset developed
here can help develop algorithms before its launch.

5 Data availability

All HICO data used in this analysis are available at the
NASA Ocean Biology Distributed Active Archive Cen-
ter (OB.DAAC, https://oceancolor.gsfc.nasa.gov, NASA,
2020a). The data processing software (SeaDAS) can be
obtained from the same source, at https://seadas.gsfc.nasa.
gov (NASA, 2020b). The derived HICO spectra in digi-
tal data form, as shown in the above figures, are avail-
able online from the Ecological Spectral Information Sys-
tem (EcoSIS) (http://ecosis.org, last access: 9 March 2022,
https://doi.org/10.21232/74LvC3Kr) (Hu, 2021b).

6 Conclusions

Through customized atmospheric correction and spectral un-
mixing, hyperspectral reflectance spectra in the visible and
NIR wavelengths of various floating matters have been de-
rived from HICO measurements over global oceans and
lakes.

The reflectance dataset shows distinguishable spectral
shapes between floating algae (macroalgae and microalgae,
such as Sargassum fluitans and S. natans, Ulva prolifera,
kelp, Microcystis, Trichodesmium, red Noctiluca scintillans)
and between floating algae and non-algae floating matters.
While the approach may be extended to other pathfinder
missions to complement the findings here, the spectral re-
flectance dataset is expected to help select optimal bands
for future hyperspectral satellite missions to differentiate and
quantify the various floating matters in global oceans and
lakes.
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