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Abstract. Long-term global monitoring of terrestrial gross primary production (GPP) is crucial for assessing
ecosystem responses to global climate change. In recent decades, great advances have been made in estimating
GPP and many global GPP datasets have been published. These datasets are based on observations from opti-
cal remote sensing, are upscaled from in situ measurements, or rely on process-based models. Although these
approaches are well established within the scientific community, datasets nevertheless differ significantly.

Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of
vegetation optical depth (VOD) to estimate GPP at the global scale for the period 1988–2020. VODCA2GPP
applies a previously developed carbon-sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from
the Vegetation Optical Depth Climate Archive (Moesinger et al., 2020; Zotta et al., 2022), which merges VOD
observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and
evaluated against FLUXNET in situ observations of GPP and compared against largely independent state-of-
the-art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS), FLUXCOM, and the
TRENDY-v7 process-based model ensemble.

The site-level evaluation with FLUXNET GPP indicates an overall robust performance of VODCA2GPP with
only a small bias and good temporal agreement. The comparisons with MODIS, FLUXCOM, and TRENDY-v7
show that VODCA2GPP exhibits very similar spatial patterns across all biomes but with a consistent positive
bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with
median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP corre-
lates well with MODIS and TRENDY-v7 (Pearson’s r 0.53 and 0.61) but less well with FLUXCOM (Pearson’s
r 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP at the
global scale but rather suggests regionally different long-term changes in GPP. For the shorter overlapping ob-
servation period (2003–2015) of VODCA2GPP, MODIS, and the TRENDY-v7 ensemble, significant increases
in global GPP were found. VODCA2GPP can complement existing GPP products and is a valuable dataset for
the assessment of large-scale and long-term changes in GPP for global vegetation and carbon cycle studies. The
VODCA2GPP dataset is available at the TU Data Repository of TU Wien (https://doi.org/10.48436/1k7aj-bdz35,
Wild et al., 2021).
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1 Introduction

Gross primary production (GPP) describes vegetation’s con-
version of atmospheric CO2 to carbohydrates through photo-
synthesis and is the largest CO2 flux in the carbon cycle (Beer
et al., 2010). GPP is also considered the primary driver of the
terrestrial carbon sink responsible for the uptake of approxi-
mately 30 % of anthropogenic CO2 emissions (Friedlingstein
et al., 2020). GPP therefore plays a key role in mitigating
the negative effects of anthropogenic emissions. Estimates of
global mean annual GPP range from 112 (Anav et al., 2015)
to 175 PgCyr−1 (Welp et al., 2011) but exhibit a high de-
gree of interannual variability. GPP is strongly affected by in-
creasing concentrations of CO2 in the atmosphere and the as-
sociated global climate change (Haverd et al., 2020; Schimel
et al., 2015; Cox et al., 2000). Quantifying GPP is essential
to understand the effect of climate variability and changes
in atmospheric CO2 concentrations on the land carbon cycle
(e.g. Baldocchi et al., 2016; Nemani et al., 2003).

Locally, GPP can be determined at in situ flux towers,
which measure the net exchange of carbon dioxide by means
of eddy covariances that are partitioned into GPP and ecosys-
tem respiration fluxes (Baldocchi, 2003). FLUXNET (Pa-
storello et al., 2020) is the global network of flux towers
covering all major biomes and provides the scientific com-
munity with harmonized and well-documented flux obser-
vations. FLUXNET stations, however, are sparsely and un-
evenly distributed, which complicates the derivation of GPP
globally.

On the global scale, GPP is commonly estimated
using optical remote sensing data in combination
with (semi-)empirical or machine learning models
(e.g. O’Sullivan et al., 2020; Jung et al., 2020; Gilabert
et al., 2017; Alemohammad et al., 2017; Tramontana et
al., 2016). Specifically, these models are based on light
use efficiency (LUE) theory and/or statistical models
that are applied to derive GPP based on optical remote
sensing variables that are indicative of the vegetation’s
photosynthetic activity, such as the fraction of absorbed
photosynthetically active radiation (fAPAR), the leaf area
index (LAI), spectral vegetation indices, or sun-induced
fluorescence (SIF). Datasets based on optical remote sensing
have the advantage of being available globally with a high
spatial resolution (usually on the order of 100 m to 1 km)
and temporal resolution (e.g. every 8 d for the Moderate
Resolution Imaging Spectroradiometer, MODIS). However,
optical remote sensing is strongly affected by cloud cover,
leading to data gaps and high uncertainties in regions with
frequent cloud cover and high GPP such as tropical forests.
Additionally, in very productive regions methods based on
optical remote sensing tend to underestimate GPP because of
the saturation of reflectance measurements in dense canopies
(Turner et al., 2006).

Compared to optical remote sensing, vegetation optical
depth (VOD) from microwave remote sensing is much less
affected by weather conditions. VOD describes the vege-
tation’s attenuation of radiation in the microwave domain,
which is controlled by its water content, biomass, type, and
density (Jackson and Schmugge, 1991; Vreugdenhil et al.,
2016). Thus, VOD has been intensively used as a proxy for
above-ground biomass (Li et al., 2021; Rodríguez-Fernández
et al., 2018; Tian et al., 2016; Liu et al., 2015) and is becom-
ing increasingly important for monitoring vegetation dynam-
ics (e.g. Frappart et al., 2020; Piles et al., 2017).

Teubner et al. (2018, 2019, 2021) investigated how GPP
can be estimated from VOD. First, they showed that GPP
is significantly correlated with spatial patterns and tempo-
ral changes in VOD (Teubner et al., 2018). Based on this
relationship, they developed a theoretical framework and a
machine learning method using FLUXNET observations to
predict GPP using VOD (Teubner et al., 2019). They showed
that GPP can be adequately estimated for most regions of
the world with an overall tendency towards moderate over-
estimation and good temporal agreement with existing GPP
products, especially for temperate regions. Recently, Teubner
et al. (2021) improved this method by adding air temperature
into their model to account for the temperature dependence
of plant respiration (Atkin and Tjoelker, 2003) and found that
this significantly improved the temporal agreement with ref-
erence GPP data.

However, until recently, long-term analysis of GPP from
VOD was complicated due to relatively short observation pe-
riods of individual passive microwave remote sensing sen-
sors (Moesinger et al., 2020). Moesinger et al. (2020) over-
came this issue by merging single-frequency VOD from vari-
ous sensors into the long-term Vegetation Optical Depth Cli-
mate Archive (VODCA), which comprises VOD observa-
tions of more than 20 years for the X- and C-band and more
than 30 years for the Ku-band. A new version of VODCA
(Zotta et al., 2022) not only combines single sensors from
identical frequencies but also merges observations from dif-
ferent bands (X, C, and Ku) into a single long-running, multi-
frequency VOD climate archive with improved quality.

Here, our objective is to generate, evaluate, and describe
a novel long-term GPP dataset by applying the approach of
Teubner et al. (2019, 2021) to the VODCA dataset. This
microwave-based GPP dataset can likely complement exist-
ing datasets from optical satellite observations as it is less af-
fected by cloud cover, which enables a consistent long-term
analysis of changes in global GPP. In our analysis, we com-
pare the VODCA2GPP dataset mainly with other data-driven
products (FLUXNET, MODIS, and FLUXCOM). However,
FLUXCOM does not account for CO2 fertilization effects
(Walker et al., 2020), which is why trends derived from
FLUXCOM are not realistic (Jung et al., 2020). Therefore,
we also assess monthly anomalies and long-term trends in
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VODCA2GPP against TRENDY models, which consider
CO2 fertilization.

2 Data

2.1 Input to the VODCA2GPP model

2.1.1 VODCA

The Vegetation Optical Depth Climate Archive (VODCA v1;
Moesinger et al., 2020) consists of three single-frequency
VOD products (Ku-, X-, and C-band), covering the pe-
riod from 1987–2017 (Ku-band), 1997–2019 (X-band), and
2002–2019 (C-band). For VODCA2GPP, we used an updated
VODCA version (VODCA v2 CXKu; Zotta et al., 2022) that
merges all bands into a single dataset to obtain increased spa-
tial and temporal coverage and reduce random errors com-
pared to VODCA v1. VODCA v2 CXKu utilizes observa-
tions from the same sensors and frequencies as VODCA v1
(Table 1) to generate a single long-running, multi-frequency
VOD time series. VODCA v2 CXKu is obtained by first scal-
ing VODCA v2 observations from the C- and Ku-band to the
X-band to remove systematic biases and then by computing a
weighted average in order to fuse overlapping observations.
The reference frequency for the scaling of the different fre-
quencies is the X-band. VODCA v2 CXKu provides a single
long-term vegetation metric covering over 30 years of obser-
vations (1988–2020) and thus exceeds the temporal length of
the single-frequency multi-sensor products (VODCA v2 C,
X, and Ku). VODCA v2 CXKu merges 15 passive nighttime
VOD datasets retrieved from seven different sensors via the
Land Parameter Retrieval Model (LPRM; Van der Schalie et
al., 2017). The LPRM is based on radiative transfer theory
introduced by Mo et al. (1982), uses forward modelling to
simulate the top-of-atmosphere brightness temperatures un-
der a wide range of conditions, and minimizes its difference
with the actual satellite observation. Although primarily de-
veloped for soil moisture, it simultaneously solves for the
VOD using an analytical solution by Meesters et al. (2005),
utilizing the ratio between H - and V -polarized observations
(Van der Schalie et al., 2017). The LPRM assumes that the
soil and vegetation temperatures are equal, which may not
be the case during the day due to uneven heating from so-
lar radiation. VODCA v2 therefore uses only nighttime ob-
servations, which are assumed to be in thermal equilibrium
(Owe et al., 2008). Scaling of the single-sensor VOD obser-
vations is achieved by means of cumulative distribution func-
tion (CDF) matching (Moesinger et al., 2020).

The preprocessing of LPRM level-2 VOD data used
in VODCA v2 follows the steps described in detail in
Moesinger et al. (2020). These include projecting the data
onto a 0.25◦× 0.25◦ grid, using nearest-neighbour resam-
pling, and selecting the closest nighttime value in a win-
dow of ±12 h for every 00:00 UTC (Zotta et al., 2022). Data
are masked for radio-frequency interference (De Nijs et al.,

2015), negative VOD retrievals, and temperatures. Differ-
ently from Moesinger et al. (2020), masking for low land
surface temperature (LST< 0 ◦C), when the dielectric prop-
erties of water change drastically, is not based on Ka-band
retrievals because these have high uncertainties over frozen
land (Holmes et al., 2009). Instead, VODCA v2 uses the
ERA5-Land (Muñoz-Sabater et al., 2021) soil temperature
level-1 (stl1) data. To ensure that all observations taken under
frozen conditions are masked, all observations with an asso-
ciated surface soil temperature (stl1) below 3 ◦C are masked
(Zotta et al., 2022).

2.1.2 ERA5-Land – 2 m air temperature

The 2 m air temperature (T2m) from the ERA5-Land dataset
was used to represent the temperature dependence of au-
totrophic respiration. T2m is a commonly used parameter for
describing the relationship between autotrophic respiration
and temperature (Teubner et al., 2021; Drake et al., 2016;
Ryan et al., 1997). ERA5-Land is a reanalysis dataset of
meteorological variables which is provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(Muñoz-Sabater et al., 2021). ERA5-Land is produced at a
spatial resolution of 9 km (∼ 0.08◦) and is available hourly.

2.1.3 FLUXNET2015 in situ GPP

In situ GPP data from Tier 1 v1 FLUXNET2015 (Pas-
torello et al., 2020) were used to train and evaluate the
VODCA2GPP product. FLUXNET GPP estimates are avail-
able for nighttime and daytime flux partitioning, which were
averaged as suggested by Pastorello et al. (2020). FLUXNET
data are available daily from 1991 until 2014 with a mean
observation time span of 7.27± 4.89 years for the stations
used, indicating significant variability in station data avail-
ability. An overview of the FLUXNET2015 stations used can
be found in Table B1.

2.2 Reference datasets

2.2.1 MODIS GPP

GPP estimates derived from MODIS satellite data are based
on Monteith’s (1972) light-use efficiency concept which re-
lates the amount of absorbed solar radiation to vegetation
productivity. The MODIS algorithm uses fAPAR as a proxy
for the absorbed solar energy. For this study the MOD17A2H
v006 GPP product was used (Running et al., 2015; Zhao et
al., 2005). It is available at an 8 d temporal resolution and
500 m sampling and was resampled to 0.25◦ to match the
resolution of VODCA2GPP.

2.2.2 FLUXCOM GPP

FLUXCOM GPP (Tramontana et al., 2016; Jung et al.,
2020) is produced by upscaling GPP estimates from in situ
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Table 1. Input data for the merged-band VODCA v2 with the main sensor specifications: time periods used, local ascending equatorial
crossing times (AECTs), and frequencies used. Table information is taken from Moesinger et al. (2020) and adapted for VODCA v2 CXKu.

Sensor Time period used AECT C-band X-band Ku-band Reference
[GHz] [GHz] [GHz]

AMSR-E Jun 2002–Oct 2011 13:30 6.93 10.65 18.70 Van der Schalie et al. (2017)

AMSR2 Jul 2012–Dec 2020 13:30 6.93, 7.30 10.65 18.70 Van der Schalie et al. (2017)
Jul 2012–Aug 2017 (Ku-band)

SSM/I F08 Jul 1987–Dec 1991 18:15 19.35 Owe et al. (2008)

SSM/I F11 Dec 1991–May 1995 17:00–18:15 19.35 Owe et al. (2008)

SSM/I F13 May 1995–Apr 2009 17:45–18:40 19.35 Owe et al. (2008)

TMI Dec 1997–Apr 2015 Asynchronous 10.65 19.35 Owe et al. (2008),
Van der Schalie et al. (2017)

WindSat Feb 2003–Jul 2012 18:00 6.80 10.70 18.70 Owe et al. (2008),
Van der Schalie et al. (2017)

eddy covariances using machine learning techniques. Two
FLUXCOM GPP setups exist: FLUXCOM RS uses high-
resolution land surface properties from MODIS observa-
tions as machine learning model input, while FLUXCOM
RS+METEO uses the mean seasonal cycle of land surface
variables derived from MODIS observations and addition-
ally incorporates meteorological data (Jung et al., 2020). For
validating VODCA2GPP, FLUXCOM RS was used because
it includes temporal properties of land surface variables at
a finer spatial and temporal resolution than FLUXCOM
RS+METEO. FLUXCOM RS GPP has 10 km sampling
and is available every 8 d in accordance with the MODIS
input data. The data were aggregated to 0.25◦ to match the
VODCA2GPP resolution.

2.2.3 TRENDY-v7 GPP

In addition to remote-sensing-based datasets, GPP estimates
from the reanalysis-driven TRENDY-v7 ensemble of 16 dy-
namic global vegetation models (DGVMs) were used as
an independent reference dataset (Le Quéré et al., 2018;
Sitch et al., 2015). TRENDY-v7 simulations consider forc-
ing effects of climate, land use, and changes in atmospheric
CO2 concentration on GPP over the period 1950–2017. The
TRENDY-v7 ensemble consists of the following DGVMs:
CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, JS-
BACH, JULES, LPJ, LPJ-GUESS, LPX, OCN, ORCHIDEE,
ORCHIDEE-CNP, SDGVM, SURFEX, and VISIT. DGVMs
output monthly GPP, which was provided on a common
1◦× 1◦ grid. For the comparison with VODCA2GPP, all
TRENDY-v7 models were regridded to 0.25◦ using nearest-
neighbour resampling and merged into an unweighted en-
semble mean GPP time series.

3 Methods

3.1 VOD2GPP model

VODCA2GPP is based on the VOD-driven GPP estimation
approach (the VOD2GPP model) introduced by Teubner et
al. (2019, 2021). The VOD2GPP model describes the the-
oretical relationship between GPP and VOD. The biogeo-
chemical basis of this model is the relationship between GPP
and ecosystem net uptake of carbon (NPP) and autotrophic
respiration (Ra) (Bonan, 2008):

GPP= Ra+NPP, (1)

where Ra can be again split into two terms: mainte-
nance respiration and growth respiration (Bonan, 2008). The
VOD2GPP model makes use of several VOD variables to
represent the sum of NPP and Ra: the original VOD time
series (VOD), which relates to maintenance respiration; tem-
poral changes in VOD (1(VOD)), which relate to both
growth respiration and NPP; and the temporal median of
VOD (mdn(VOD)) derived from the complete time series,
which serves as a proxy for vegetation density. Specifically,
mdn(VOD) is incorporated to subtract larger structural veg-
etation components which makes the resulting model more
closely related to biomass changes of smaller structural veg-
etation components such as leaves. It was shown that this
increases model performance (Teubner et al., 2019). NPP
is mostly represented by 1(VOD), while Ra is represented
by the original VOD signal and 1(VOD). Thus, the VOD-
based-only VOD2GPP model can be formulated as follows
(Teubner et al., 2019):

GPP(VOD)= s(VOD)+ s(1(VOD))+ s(mdn(VOD)), (2)

where s() denotes the mapping function that maps the input
variables to GPP. 1(VOD) is derived for each pixel (xi) by
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computing the difference between two consecutive VOD ob-
servations of the smoothed and 8 d aggregated VOD signal
(Teubner et al., 2019):

1(VOD)= VODxi ,tj −VODxi ,tj−1 .

The smoothing was performed in order to increase the robust-
ness of the derivation and implemented using a Savitzky–
Golay filter with a window size of 11 data points as suggested
by Teubner et al. (2021).

Equation (2) represents a simplified model formulation
connecting VOD to GPP but does not explicitly take into ac-
count the strong temperature dependence of autotrophic res-
piration (Wythers et al., 2013; Atkin et al., 2005; Tjoelker
et al., 2001), which is mainly attributed to its maintenance
part (Bonan, 2008; Ryan et al., 1997). Therefore, an im-
proved formulation of the model was developed by consider-
ing the temperature dependence of maintenance respiration
through a term representing the interaction between temper-
ature (T2m) and VOD (Teubner et al., 2021):

GPP(VOD,T2m)= te(VOD,T2m)+ s(1(VOD))
+ s(mdnVOD). (3)

The mapping and interaction functions were implemented
using generalized additive models (GAMs). The usage of
short time intervals (on the order of several days) for the
computation of 1(VOD) is crucial since it reduces the influ-
ence of larger vegetation components (e.g. stems) and makes
the model more sensitive to changes in leaf biomass.

3.2 Generalized additive models

Generalized additive models (GAMs; Hastie and Tibshirani,
1990) are semi-parametric generalizations of linear models
and combine properties of generalized linear models (GLMs)
and additive models (Guisan et al., 2002). Link functions f ()
are trained and summed up for each predictor in order to re-
late the expected value of a response variable E(Y ) to the
explanatory variables xi (Hastie and Tibshirani, 1990). The
model can be written as

E(Y )= β +
∑n

i=1
si(xi), (4)

where β denotes a constant offset and n corresponds to the
number of input predictor variables xi . The link functions
si() are implemented as smooth spline functions and allow
the representation of non-monotonic and non-linear relation-
ships, which give them a high degree of flexibility (Hastie
and Tibshirani, 1990). Hence, the relationship between tar-
get and predictor variables does not require explicit a priori
knowledge but can be estimated from the data themselves,
which makes GAMs appropriate for the VOD2GPP model
for which the exact relationship between VOD, air tempera-
ture, and GPP is difficult to determine (Teubner et al., 2019).

3.3 Preprocessing

The model input data (response variable, FLUXNET GPP;
predictor variables, VODCA v2 CXKu, ERA5-Land T2m)
were resampled from a daily to 8 d resolution using the 8 d
means over the respective time period in order to reduce
noise and computation times. This also means that the final
VODCA2GPP represents the mean of daily GPP for an 8 d
period with an estimate every 8 d. Since VODCA v2 CXKu
already incorporates extensive quality flagging (e.g. for tem-
perature), no additional data processing was necessary.

3.4 Model training and output

For each valid FLUXNET2015 in situ observation, the cor-
responding overlapping pixel values of VOD, 1(VOD),
mdn(VOD), and T2m were used to set up the GAM.
Data from days with at least one invalid or missing ob-
servation were not considered for model training. While
cross-validation was performed to evaluate the model
(Sect. 3.5), all data were used for training of the final
VODCA2GPP model. The GAM-based implementation of
the VOD2GPP model is consistent with Teubner et al. (2021)
and utilizes algorithms from the pyGAM Python package
(Servén and Brummitt, 2018).

The trained VODCA2GPP model was applied to each
pixel where all input variables (VOD, 1(VOD), mdn(VOD),
and T2m) were available. The result of this upscaling process
is VODCA2GPP, which covers the period between January
1988 and July 2020. It has a spatial resolution of 0.25◦, and
its temporal resolution is 8 d. In rare cases (∼ 2.5 % of all
data points) the machine learning model produced slightly
negative results for GPP due to the extrapolation capacities
of the trained GAM. As negative GPP is not possible, such
estimates were set to zero.

3.5 Site-level evaluation and uncertainty assessment

The robustness of the model was evaluated based on a site-
based cross-validation analysis during which the influence of
the selection of available in situ stations on the GPP model
was investigated. For the cross-validation 10 VODCA2GPP
models were trained. Each of the 10 models was trained with
90 % of the available FLUXNET stations, while the remain-
ing 10 % of the stations were retained for validation (Teubner
et al., 2019). Every station was excluded exactly once, which
is why this approach is classified as pseudo-random. Model
performance was assessed at all sites that were omitted in
the respective model run by computing root mean square er-
rors (RMSEs), bias, and Pearson’s r for different timescales
(8 d, monthly, and yearly). In addition, the uncertainty in
the VODCA2GPP model was then expressed through the
minimum–maximum range as well as the standard deviation
of the resulting 10 mean annual accumulated GPP estimates
for each pixel. The standard deviation is also incorporated
as an uncertainty map in the available dataset (layer name
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“Uncertainties”) to support users with an indicator for known
uncertainties in VODCA2GPP.

3.6 Product evaluation and assessment

Mean annual, monthly, and 8 d GPP from VODCA2GPP,
MODIS GPP, and FLUXCOM GPP was evaluated against
GPP from FLUXNET. The error metrics used were RMSE,
bias, and Pearson’s r . Global spatial GPP patterns were com-
pared against products by computing the mean annual GPP
per pixel and the differences in mean annual GPP per pixel
over the common observation period. Temporal agreements
were tested by means of a Pearson correlation analysis for
8 d GPP. A correlation analysis of GPP anomalies was con-
ducted for monthly GPP and also includes TRENDY-v7 GPP,
which only provided monthly GPP data. Anomalies were de-
rived by subtracting the long-term mean of the overlapping
observation periods from monthly GPP estimates for each
product.

Additionally, a trend analysis was conducted for all avail-
able GPP products in order to compare long-term changes in
GPP. Trends in yearly median GPP were quantified using the
Theil–Sen estimator (Theil, 1950; Sen, 1968), which calcu-
lates the slopes for each line between two points. The median
of all computed slopes is then used for line fitting, making it
insensitive to outliers and more robust than simple linear re-
gression (Wilcox, 2010). Slopes were considered significant
when the signs of the lower and upper 90 % confidence inter-
vals were equal. For the trend analysis, yearly median GPP
was used.

4 Results

4.1 Spatiotemporal patterns in global GPP

The average annual GPP of VODCA2GPP exhibits spatial
patterns similar to the remote-sensing-based MODIS and
FLUXCOM products (Fig. 1). The agreement in annual GPP
is high in northern latitudes (e.g. Europe, Russia, Canada),
while there are relatively large differences in the Southern
Hemisphere, especially in tropical and sub-tropical regions
(Fig. 1d). The largest positive differences are found in the
sub-tropics. Very arid regions (e.g. Australian deserts, Kala-
hari Desert) have low mean yearly productivity in all three
datasets (Fig. 1a) but tend to be higher in VODCA2GPP
compared to MODIS and FLUXCOM (Fig. 1b and c).
The mean global total GPP as derived from VODCA2GPP
amounts to 200± 2.2PgCyr−1. Comparison of the latitudi-
nal distribution of FLUXNET stations shows that the closest
agreement in yearly GPP is generally found in regions with a
high density of FLUXNET in situ stations, while the largest
discrepancies are found in regions with few or no FLUXNET
stations.

Similarly, uncertainties tend to be smaller in latitudes with
a high density of FLUXNET stations (Fig. 1d). The lowest

spread in the 10 models (i.e. the lowest uncertainty) is found
north of 20◦ N where the majority of FLUXNET GPP sta-
tions are also located. The Southern Hemisphere, where only
a few in situ stations are located, generally exhibits a larger
spread (higher uncertainty), indicating a considerable sensi-
tivity of the model to the choice of stations. This emphasizes
the need for a well-distributed network of in situ flux towers
across all biomes. The uncertainty map (Fig. 2b) shows that
arid regions (e.g. Sahara, Australian deserts, Arabian Penin-
sula) as well as various mountainous regions (e.g. Carpathi-
ans, Alps, Rocky Mountains, Andes) have the highest model
uncertainties. Moderate to high model uncertainties are also
exhibited for the tropics. Furthermore, significant uncertain-
ties in VODCA2GPP are found in parts of eastern and west-
ern Siberia’s boreal forests as well as in parts of southern
China.

VODCA2GPP shows good temporal agreement with
MODIS and FLUXCOM for most regions outside the tropics
(Fig. 3). Pearson’s r is the highest in regions with distinct in-
terannual variability such as sub-arctic, temperate, and semi-
arid regions and the lowest for dense tropical forests where
even negative correlations occur. The median Pearson’s r
values between VODCA2GPP and the reference datasets
MODIS and FLUXCOM are 0.77 and 0.75, respectively.

4.2 Site-level evaluation

VODCA2GPP’s tendency towards a positive bias with re-
spect to MODIS and FLUXCOM products is not mirrored
in the comparison against FLUXNET GPP (Figs. 4 and A1).
The bias with respect to FLUXNET site data is substan-
tially smaller for VODCA2GPP than for MODIS and FLUX-
COM. The RMSE and Pearson’s r values of VODCA2GPP
are slightly higher and lower, respectively, than for MODIS
and FLUXCOM and are of the same magnitude for 8 d
values and mean annual GPP. All three datasets under-
estimate productivity at high GPP values. A land-cover-
based analysis (Fig. A3) shows that discrepancies in annual
VODCA2GPP mostly occur in (semi-)arid environments
(e.g. savannas, open shrublands, grasslands). VODCA2GPP
performs best in temperate environments (e.g. wetlands, ev-
ergreen broadleaf forest, croplands). Wetlands and evergreen
broadleaf forests exhibit the best performance for all prod-
ucts, while all three datasets underperform in open shrub-
lands and deciduous broadleaf forest.

The site-based spatial cross-validation also exhibits only a
small (negative) bias of VODCA2GPP (Fig. 5) for monthly
and 8 d GPP values, while the bias for annual variations
is positive and slightly higher. A high median Pearson’s r
for 8 d and monthly values indicates good model perfor-
mance for seasonal variations. It is to be noted that there
are only eight significant Pearson’s r values for yearly sam-
pling, which decreases the expressiveness of this value.
This is explicable with the short observation period of most
FLUXNET sites which might not exhibit interannual vari-
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Figure 1. (a) Mean yearly aggregated GPP for the common observation period of the three products VODCA2GPP, MODIS, and FLUXCOM
(2002–2016); (b, c) difference in mean annual GPP between VODCA2GPP and FLUXCOM and MODIS, respectively; (d) latitude plot of
zonal means of mean annual GPP. The means were computed based on 8 d, 0.25◦ sampling. The Min/Max area denotes the minimum–
maximum latitudinal mean for the 10 model runs that were obtained with the site-based cross-validation. The dots represent the latitudinal
location of the FLUXNET sites and their corresponding mean annual GPP. The brightness of the dots indicates the data availability for the
respective FLUXNET station. Only pixels and observation dates that are available in all three datasets were used for these plots.

ability. The RMSE decreases with increasing observation
length scales.

4.3 Anomaly patterns in space and time

In terms of anomalies from the long-term climatology,
VODCA2GPP shows good correlation with MODIS and
TRENDY-v7 and weaker correlation with FLUXCOM (Ta-
ble 2, Fig. 6). TRENDY-v7 correlates similarly well with
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Figure 2. (a) Mean annual GPP as derived from VODCA2GPP for the period 1988–2019. (b) Standard deviation of mean annual GPP
(1988–2019) as obtained by the uncertainty analysis based on site-level cross-validation.

Figure 3. Pearson’s r between VODCA2GPP and MODIS GPP (a) and VODCA2GPP and FLUXCOM GPP (b). The correlations are based
on the common observation period between 2002 and 2016 with a 0.25◦ spatial and 8 d temporal resolution.

VODCA2GPP, and MODIS and shows worse correspon-
dence with FLUXCOM. The highest correlation is found
between the two products based on optical remote sensing:
MODIS and FLUXCOM.

The temporal evolution and spatial distribution of the
anomalies exhibit similar patterns (Fig. A4). Several extreme
events are captured in VODCA2GPP and in at least one of
the other GPP datasets. An example of such GPP extremes
is the strong positive anomalies between 2010 and 2011 at
around 25◦ S which were mainly caused by record-breaking
rainfalls in Australia (Wardle et al., 2013). These positive
anomalies are clearly visible in all examined GPP products
apart from FLUXCOM (Fig. A4). Other GPP extremes that
are noticeable in all products apart from FLUXCOM are the
extremely low GPP in 2002, 2003, and early 2005 around
20◦ S (Fig. A4). Both anomalies can be explained by extreme
drought events that occurred in these years (Bureau of Me-
teorology, 2002, 2003, 2005; Horridge et al., 2005), which
are associated with El Niño events (Taschetto and England,
2009). Also, the distinct drop in GPP in 2015 and 2016 in

similar latitudes is likely linked to El Niño-related drought
events (Malhi et al., 2018; Zhai et al., 2016). Generally, ex-
treme events in VODCA2GPP are more pronounced than in
the other datasets.

4.4 Global GPP trends

Trends in global annual median GPP for the overlapping pe-
riod between 2003 and 2015 are similar for VODCA2GPP,
TRENDY-v7, and MODIS, and all show significant positive
trends (Table 3 and Fig. 7). FLUXCOM does not exhibit a
significant trend. The spatial distribution of GPP trends for
the period 2003–2015 (Fig. 8) exhibits many similarities be-
tween all analysed products. Large patterns of strong posi-
tive trends are, for example, found in eastern parts of Siberia
and China as well as in India and North America. Patterns
of negative trends are found north of the Caspian Sea in all
datasets. The remote-sensing-based products exhibit distinct
patterns of declining GPP in central Siberia and significantly
increasing GPP in western Russia. Generally, the trends of
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Figure 4. GPP from FLUXNET plotted against GPP from VODCA2GPP, MODIS, and FLUXCOM for the period 2002–2016 with 8 d
sampling.

Figure 5. Site-based cross-validation for 8 d, monthly, and yearly sampling of GPP from VODCA2GPP and FLUXNET. RMSE, bias, and
Pearson’s r were computed at each of the 10 % of FLUXNET sites that were omitted during the respective training run. Non-significant
Pearson correlations (p value< 0.1) were ignored. The boxplots for Pearson’s r are based on the 71 (8 d), 66 (monthly), and 8 (yearly
sampling) significant values for Pearson’s r values. The whiskers of the boxplots extend to the 5th and 95th percentiles.

VODCA2GPP match better with MODIS and TRENDY-v7
than with FLUXCOM. While there are many similar pat-
terns in the Northern Hemisphere, trends in the Southern
Hemisphere do not match well or are even contradictory. Es-
pecially in the tropics, hardly any similarities are apparent.
Note that the analysed time period is short and may be im-
pacted by individual extreme events.

For the full time period (1988–2019), VODCA2GPP in-
creases slightly on a global scale (Table 3), but this cannot be
classified as significant due to contradictory upper and lower
confidence intervals. The same is true for the slightly shorter
period between 1988 and 2016 during which TRENDY-v7
detects a small significant positive trend on a global scale.
The spatial distribution of long-term (1988–2019; Fig. 9)
trends in VODCA2GPP is similar to that of the shorter period
(2003–2015), but in general, long-term VODCA2GPP trends
are less pronounced. The comparison of the fully overlap-
ping period between VODCA2GPP and TRENDY-v7 (1988–
2016; Fig. A5) shows that TRENDY-v7 exhibits weak but

consistent positive trends for practically all biomes, while
VODCA2GPP trends are spatially differing and for some re-
gions even opposite in sign to the trends in TRENDY-v7.

A comprehensive comparison with in situ GPP trends is
not possible because most FLUXNET time series are too
short to derive reliable trends. However, trends that could be
derived for a few stations with a long time series (Fig. A6)
also suggest increasing GPP. The in situ analysis indicates
that there is a comparatively good correspondence between
VODCA2GPP and FLUXNET GPP trends. Together with
the strong similarities between VODCA2GPP and MODIS
and TRENDY GPP, this suggests that VODCA2GPP can pro-
vide a valuable contribution to the analysis of global GPP
trends.
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Table 2. Pearson’s r correlation matrix for mean global monthly GPP anomalies between 2002 and 2016.

VODCA2GPP MODIS GPP FLUXCOM GPP TRENDY-v7 GPP

VODCA2GPP 1.00
MODIS GPP 0.53 1.00
FLUXCOM GPP 0.29 0.69 1.00
TRENDY-v7 GPP 0.61 0.60 0.26 1.00

Figure 6. Time series of mean global monthly GPP anomalies.

5 Discussion

5.1 Uncertainties in the VODCA2GPP model

The results from the uncertainty analysis and the comparison
with in situ GPP show that VODCA2GPP estimates can be
viewed as reliable across most biomes. However, significant
uncertainties were exhibited in some areas with extreme cli-
matic or topographic conditions (e.g. deserts and mountain
ranges). Also, parts of eastern and western Siberia and parts
of southern China show a relatively large spread in predic-
tions. The observed uncertainty patterns in Siberia might be
associated with topography, land cover, generally lower data
availability (due to frozen masking in VODCA), and a lack of
FLUXNET stations. Complex topography is presumably also
the main driver for uncertainties in southern China. The un-
certainty analysis suggests that VODCA2GPP estimates tend
to be too high in these regions and thus should be interpreted
with caution. Furthermore, moderate uncertainties were also
found for the tropics, which is likely due to the extremely
low in situ data availability and higher absolute GPP than in
mid-latitudes.

The comparison with in situ GPP shows clear differences
in performance of the VODCA2GPP model across different
biomes. High performance is achieved in densely vegetated
biomes, while performance decreases in arid and less vege-

tated regions. A reason for the weaker performance in areas
with less water availability might be adapted water regulation
strategies of plants. Plants in drought-prone regions often re-
duce transpiration by limiting stomatal conductance to main-
tain a constant water potential even in times of extreme water
scarcity (Sade et al., 2012). Since VOD is largely driven by
the vegetation’s water content, this isohydric behaviour of
vegetation could at least partly explain relatively high VOD
and consequently also overestimated GPP in those regions
(Teubner et al., 2021).

Also, the observation bias which is introduced by un-
evenly distributed FLUXNET sites decreases the model’s ro-
bustness. GPP is measured in situ only at a few locations,
and these stations are mostly located in temperate regions
(e.g. Europe and North America) while semi-arid and tropi-
cal forest regions are underrepresented in the training data.

A comparison of uncertainties between VODCA2GPP and
GPP based on optical remote sensing (Xie et al., 2021) shows
that in both cases topographic complexity decreases the relia-
bility. Furthermore, the reliability of GPP estimates based on
optical remote sensing is highly dependent on weather and
illumination conditions. Clouds often contaminate or pre-
vent the observations, which is presumably the main reason
why the largest uncertainties for FLUXCOM and MODIS
are found in the wet tropics where GPP is known to be un-
derestimated (de Almeida et al., 2018; Jung et al., 2020). In
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Table 3. Theil–Sen trends in global yearly median GPP. Same signs of the upper and lower 90 % confidence interval indicate significant
trends. The analysed periods are 2003–2015, which corresponds to the fully overlapping periods for all datasets (for the period 2002–2016
there were some data gaps in the MODIS and FLUXCOM data used at the very beginning/very end; since these data gaps could potentially
impact the slope estimation, the slightly shorter period 2003–2015 was used); 1988–2016, which corresponds to the fully overlapping period
of VODCA2GPP and TRENDY-v7; and 1988–2019, which corresponds to all available complete years of VODCA2GPP data.

2003–2015 1988–2016 1988–2019

Theil–Sen slope Lower/upper Theil–Sen slope Lower/upper Theil–Sen slope Lower/upper
[gCm−2 yr−1] confidence interval [gCm−2 yr−1] confidence interval [gCm−2 yr−1] confidence interval

VODCA2GPP 0.013 +0.008/+0.025 0.002 −0.001/+0.006 0.002 −0.001/+0.005
TRENDY-v7 GPP 0.017 +0.006/+0.026 0.004 +0.000/+0.008 – –
MODIS GPP 0.012 +0.002/+0.020 – – – –
FLUXCOM GPP −0.004 −0.009/+0.001 – – – –

Figure 7. Time series of yearly median GPP with the regression lines as obtained by the Theil–Sen estimator. Areas around the regression
lines indicate the 90 % confidence intervals.

contrast, VODCA2GPP shows good skill for densely veg-
etated areas, including broadleaf evergreen forests. On the
other hand, the relatively high uncertainties in VODCA2GPP
in water-limited regions have not been reported for FLUX-
COM or MODIS GPP, indicating that these are VOD-specific
and presumably caused by the above-mentioned isohydric
behaviour of plants in arid regions.

5.2 Limitations in VODCA and their impact on
VODCA2GPP

Certain limitations in the VODCA v1 product exist, as out-
lined in Moesinger et al. (2020), which are partly also evi-
dent in VODCA v2 (Zotta et al., 2022) and thus propagate to
VODCA2GPP. A known issue of VODCA v2 is caused by
an observation gap between October 2011 and July 2012 for
AMSR-E and AMSR2 (Table 1), which prevents a direct bias
removal between the sensors. However, scaling between the
sensors is achieved by using TMI observations north/south
of 35◦ N/35◦ S for the X- and Ku-band. Beyond these lati-
tudes for the X- and Ku-band and globally for the C-band,

AMSR-E data were matched directly to AMSR2 using the
last 2 years of AMSR-E and first 2 years of AMSR2 as the
reference period, under the assumption that trends between
2010–2014 are negligible (Moesinger et al., 2020). The re-
sult is that AMSR2 observations exhibit a slight positive bias
in parts of North America, which is also evident in a spa-
tial break in VODCA v1 X- and Ku-band trends (Moesinger
et al., 2020). Although the impact of this procedure on
VODCA2GPP trends is small and spatially limited, users are
advised to keep the potential bias in mind when analysing
VODCA2GPP data after 2012 for latitudes north/south of
35◦ N/35◦ S. Other limitations in VODCA concern the mix-
ing of observations that were retrieved at different geome-
tries (e.g. incidence angles) or observation times (Moesinger
et al., 2020) and the data loss in certain regions, mostly
in the Himalayas, which is caused by failure of the CDF-
matching method due to insufficient input data (Moesinger
et al., 2020). These issues, however, only have a small or
spatially very limited influence on the final VODCA2GPP
product. Furthermore, VOD retrievals exhibit a tendency to-
wards saturation in regions with very dense vegetation, mak-
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Figure 8. Global map of trends in yearly median GPP for the period 2003–2015 for all analysed datasets. White indicates non-significant
trends.

Figure 9. Global map of yearly median GPP trends for the period 1988–2019 for VODCA2GPP. White indicates non-significant trends.

ing it less likely to distinguish variability. A slight tendency
towards saturation was also observed for VODCA2GPP, but
the land-cover-based analysis exhibited a very high agree-
ment between VODCA2GPP and in situ GPP, indicating high
reliability of VODCA2GPP over densely vegetated regions.

Another limitation of VOD products in general, and
thus also of VODCA2GPP, is the limited spatial resolution
(0.25◦). The lower spatial granularity achieved from passive
microwave remote sensing is presumably another reason for
the slightly weaker performance of VODCA2GPP in com-
parison with GPP derived from optical remote sensing since
the VODCA grid cell might not always be well represented
by the in situ measurements. Furthermore, the lower spatial
resolution of VODCA2GPP is disadvantageous for the anal-
ysis of local GPP as small-scale variations in GPP might be
hidden in VODCA2GPP. However, due to its long-term avail-
ability and generally high reliability, VODCA2GPP can still
serve as a valuable source of data for various other appli-
cations (Sect. 5.4), especially concerning long-term climate-
related studies and climate model evaluation.

5.3 Observed bias between VODCA2GPP and other
remote-sensing-based GPP datasets

There is only a very small bias when comparing
VODCA2GPP with eddy-covariance measurements from
FLUXNET, but relatively large discrepancies in absolute
GPP exist between VODCA2GPP and other remote-sensing-
based products and to a lesser extent with process-based
TRENDY-v7 models. In tropical regions, the positive bias be-
tween VODCA2GPP and MODIS and FLUXCOM GPP can
be partly explained by a reported and observed tendency of
FLUXCOM and MODIS to underestimate GPP in these re-
gions (Turner et al., 2006; Wang et al., 2017; Figs. 1 and A3).
Outside the tropics, discrepancies in absolute GPP among
products might be caused by the assumed overestimation of
VODCA2GPP in winter months (i.e. in times with very little
or no primary productivity). This overestimation is explained
by water content in vegetation that is also present in these
dormant periods. The sensitivity of microwaves to this water
content results in non-zero VOD and, consequently, non-zero
GPP (Teubner et al., 2021). This effect is similar to the isohy-
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dricity effect discussed in Sect. 5.1, which is an explanation
for overestimation of VODCA2GPP in arid regions.

Another potential explanation for the positive bias of
VODCA2GPP compared to MODIS and FLUXCOM is the
presence of surface water and its impact on VOD retrievals.
The presence of surface water is known to decrease the
brightness temperature of the earth’s surface and thus signifi-
cantly decreases VOD retrievals (Bousquet et al., 2021). The
impact of surface water contamination is evident in VODCA
pixels that partly contain waterbodies (e.g. lakes, rivers).
These pixels exhibit systematically lower values than neigh-
bouring pixels without waterbodies. On the one hand, this
leads to underestimation in the VODCA2GPP model in pix-
els containing surface water. On the other hand, it also has an
effect on model training. This effect is caused by FLUXNET
stations located close to waterbodies, which hardly impacts
in situ GPP retrievals but does cause erroneous VOD re-
trievals at the 0.25◦ pixel scale. As a result, underestimated
VOD is trained against unaffected in situ GPP, which causes
a slight but systematic global overestimation. A potential so-
lution would be the masking of water-contaminated VOD.
However, due to the constraints with temperature in the in-
teraction term (Eq. 3), this would strongly reduce the data
available for training, which would potentially decrease the
robustness of the VODCA2GPP model if the number of sta-
tions is not increased.

A general issue in the upscaling of GPP is the low avail-
ability of in situ GPP, which not only is problematic in model
training but also hampers a fair evaluation and validation at
the global scale. The remote-sensing-based reference prod-
ucts, FLUXCOM and MODIS, however, are also trained and
calibrated using in situ GPP observations (Jung et al., 2020;
Running et al., 1999) and can therefore not be viewed as fully
independent from VODCA2GPP (Teubner et al., 2021). In
contrast to observation-based GPP products, estimates from
the TRENDY ensemble can be considered largely indepen-
dent from VODCA2GPP.

5.4 Potential applications of VODCA2GPP

The validation results show that VODCA2GPP generally
exhibits a high consistency with in situ GPP observa-
tions and global state-of-the-art GPP products, indicating
that VODCA2GPP can be used complementarily to current
global GPP products. For the analysis of global as well as re-
gional GPP anomalies, VODCA2GPP can provide valuable
insights that might be hidden in other observational products
due to the fundamentally differing observation methods and
the associated limitations related to saturation effects, cloud
cover, and other atmospheric effects such as water vapour
content or aerosols (Xiao et al., 2019).

Also, for the monitoring of global GPP trends,
VODCA2GPP has the potential to serve as an indepen-
dent and reliable source of data. The long-term trend
analysis suggests that the majority of biomes have increased

their primary productivity since 1988. There are several
potential drivers for long-term increases in GPP, the most
important ones being global warming, land-use changes,
and elevated CO2 concentration in the atmosphere (Piao et
al., 2019). The observed long-term trends in GPP across the
different products support the theory of elevated atmospheric
CO2 leading to an increased uptake of CO2 (Haverd et al.,
2020; Walker et al., 2020; Campbell et al., 2017; Schimel
et al., 2015). The absence of trends in FLUXCOM does not
contradict but rather supports this theory as FLUXCOM
does not account for CO2 fertilization effects (Jung et
al., 2020). Due to the shortness of most in situ GPP time
series, it is, however, difficult to draw final conclusions on
the existence of, magnitude of, and reasons for long-term
variations in GPP. Therefore, the global influence of atmo-
spheric CO2 on vegetation productivity remains uncertain,
but VODCA2GPP allows us to gain new perspectives
on long-term GPP trends and might help to identify and
quantify driving factors for increasing long-term primary
productivity.

Furthermore, VODCA2GPP can be used as a largely in-
dependent source of data for the intercomparison and valida-
tion of other existing or newly developed global GPP datasets
and models. Currently, a multitude of global GPP products
exists showing large inconsistencies among products (Zhang
and Aizhong, 2021). Similarly to other global GPP datasets,
VODCA2GPP cannot be seen as a true reference, but using
it as an additional reference might help to acquire a more
comprehensive picture of the performance of other datasets,
especially in the context of long- and short-term variability
in GPP.

6 Data availability

The VODCA2GPP data can be accessed (CC
BY-NC-SA 4.0) at TU Data Repository under
https://doi.org/10.48436/1k7aj-bdz35 (Wild et al., 2021).

7 Conclusions

In this dataset paper we introduced VODCA2GPP, a long-
term GPP data record which uses multi-sensor, multi-
frequency microwave VODCA data and temperature data
from ERA5-Land for the upscaling of in situ GPP from
FLUXNET2015. The comparison of VODCA2GPP with
FLUXNET in situ GPP and global state-of-the-art GPP
datasets showed good correspondence between the prod-
ucts in both the spatial and the temporal domain but with
varying performance differences across biomes and analysed
timescales. In tropical and arid regions, VODCA2GPP has
significantly higher values than the reference datasets. Arid
and mountainous areas were found to have the largest uncer-
tainties. The analysis of monthly anomalies exhibited var-
ious extreme events in VODCA2GPP that are also found
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in one or more existing products, indicating high plausibil-
ity of VODCA2GPP-derived anomalies. Furthermore, trends
derived from VODCA2GPP contain several plausible pat-
terns that match those derived from the TRENDY-v7 sim-
ulations but are not visible in both observational products
and vice versa. This suggests that the novel microwave-based
approach in VODCA2GPP has the potential to reveal novel
findings about temporal dynamics in GPP at large scales that
are not yet captured by other GPP products.

Appendix A

Figure A1. Mean annual in situ GPP (FLUXNET) plotted against mean annual GPP from VODCA2GPP, FLUXCOM, and MODIS for the
respective grid cells. Mean annual GPP was computed from all available overlapping years, and thus each station is represented by one dot.
Red lines indicate the best linear fits determined by ordinary linear regression, and the black lines represent the 1 : 1 lines.

Figure A2. GPP from FLUXNET plotted against GPP from VODCA2GPP, MODIS, and FLUXCOM for the period 2002–2016 with monthly
sampling.
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Figure A3. Scatterplots of mean annual GPP for FLUXCOM, MODIS, and VODCA2GPP for the period 2002–2016 per vegetation type.
Vegetation types indicate the predominant IGBP vegetation type at the respective FLUXNET station. Abbreviations are as follows: CRO,
croplands; ENF, evergreen needleleaf forests; DBF, deciduous broadleaf forests; WET, permanent wetlands; WSA, woody savannas; MF,
mixed forests; GRA, grasslands; OSH, open shrublands; SAV, savannas; EBF, evergreen broadleaf forests.
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Figure A4. Hovmöller diagrams of monthly GPP anomalies for each dataset.
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Figure A5. Global maps of yearly median GPP trends for the period 1988–2016 for VODCA2GPP and TRENDY-v7. White indicates
non-significant trends.

Figure A6. Exemplary collection of time series of in situ FLUXNET GPP together with extracted time series from MODIS, FLUXCOM,
and VODCA2GPP. The stations were selected because of their high data availability for their respective land cover. The lines indicate the
regression lines as obtained from the Theil–Sen slope estimation for yearly median GPP. The trends are computed for the common observation
period with FLUXNET. The slope [gCm−2 yr−1] is depicted in the legend together with the respective 90 % lower and upper confidence
intervals. The depicted stations are as follows: (a) AU-Tum – Tumbarumba, Australia; −35.65◦ N, 148.15◦ E; land cover EBF; (b) DE-Tha
– Tharandt, Germany; 50.96◦ N, 13.57◦ E; land cover ENF; (c) GF-Guy – Guyaflux, French Guiana; 5.28◦ N, −52.93◦ E; land cover EBF;
(d) US-Ha1 – Harvard Forest EMS Tower, United States; 42.54◦ N, −72.17◦ E; land cover DBF.
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Appendix B

Table B1. Overview of FLUXNET Tier 1 v1 stations within the period 1991–2014.

FLUXNET ID Name Long [◦ E] Lat [◦ N] Years used

AR-SLu San Luis −66.46 −33.46 2009–2011
AR-Vir Virasoro −56.19 −28.24 2010–2012
AT-Neu Neustift 11.32 47.12 2002–2012
AU-ASM Alice Springs 133.25 −22.28 2010–2013
AU-Ade Adelaide River 131.12 −13.08 2007–2009
AU-Cpr Calperum 140.59 −34.00 2010–2013
AU-Cum Cumberland Plain 150.72 −33.61 2012–2013
AU-DaP Daly River Savanna 131.32 −14.06 2008–2013
AU-DaS Daly River Cleared 131.39 −14.16 2008–2013
AU-Dry Dry River 132.37 −15.26 2008–2013
AU-Emr Emerald, Queensland, Australia 148.47 −23.86 2011–2013
AU-Fog Fogg Dam 131.31 −12.55 2006–2008
AU-GWW Great Western Woodlands, Western Australia, Australia 120.65 −30.19 2013–2014
AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 −14.56 2011–2013
AU-Rig Riggs Creek 145.58 −36.65 2011–2013
AU-Rob Robson Creek, Queensland, Australia 145.63 −17.12 2014
AU-Tum Tumbarumba 148.15 −35.66 2001–2013
AU-Whr Whroo 145.03 −36.67 2011–2013
BE-Bra Brasschaat 4.52 51.31 2004–2013
BE-Lon Lonzee 4.75 50.55 2004–2014
BE-Vie Vielsalm 6.00 50.31 1996–2014
BR-Sa3 Santarem-Km83-Logged Forest −54.97 −3.02 2000–2004
CA-NS1 UCI-1850 burn site −98.48 55.88 2001–2005
CA-NS3 UCI-1964 burn site −98.38 55.91 2001–2005
CA-NS4 UCI-1964 burn site wet −98.38 55.91 2002–2005
CA-NS5 UCI-1981 burn site −98.49 55.86 2002–2005
CA-NS6 UCI-1989 burn site −98.96 55.92 2001–2005
CA-NS7 UCI-1998 burn site −99.95 56.64 2002–2005
CA-Qfo Quebec – Eastern Boreal, Mature Black Spruce −74.34 49.69 2003–2010
CA-SF1 Saskatchewan – Western Boreal, forest burned in 1977 −105.82 54.49 2003–2006
CA-SF2 Saskatchewan – Western Boreal, forest burned in 1989 −105.88 54.25 2001–2005
CA-SF3 Saskatchewan – Western Boreal, forest burned in 1998 −106.01 54.09 2001–2006
CH-Cha Chamau 8.41 47.21 2006–2012
CH-Fru Früebüel 8.54 47.12 2006–2012
CH-Oe1 Oensingen grassland 7.73 47.29 2002–2008
CN-Cha Changbaishan 128.10 42.40 2004–2005
CN-Cng Changling 123.51 44.59 2007–2010
CN-Dan Dangxiong 91.07 30.50 2004–2005
CN-Din Dinghushan 112.54 23.17 2003–2005
CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006–2008
CN-Ha2 Haibei Shrubland 101.33 37.61 2003–2005
CN-HaM Haibei Alpine Tibet site 101.18 37.37 2002–2004
CN-Qia Qianyanzhou 115.06 26.74 2003–2005
CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010–2012
CZ-BK1 Bily Kriz forest 18.54 49.50 2004–2008
CZ-BK2 Bily Kriz grassland 18.54 49.49 2004–2006
DE-Akn Anklam 13.68 53.87 2009–2014
DE-Gri Grillenburg 13.51 50.95 2004–2014
DE-Hai Hainich 10.45 51.08 2000–2012
DE-Kli Klingenberg 13.52 50.89 2004–2014
DE-Lkb Lackenberg 13.30 49.10 2009–2013
DE-Obe Oberbärenburg 13.72 50.78 2008–2014
DE-RuS Selhausen Juelich 6.45 50.87 2011–2014
DE-Spw Spreewald 14.03 51.89 2010–2014
DE-Tha Tharandt 13.57 50.96 1996–2014
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Table B1. Continued.

FLUXNET ID Name Long [◦ E] Lat [◦ N] Years used

DK-NuF Nuuk Fen −51.39 64.13 2008–2014
DK-Sor Soroe 11.64 55.49 1996–2012
ES-LgS Laguna Seca −2.97 37.10 2007–2009
ES-Ln2 Lanjaron-Salvage logging −3.48 36.97 2009
FI-Hyy Hyytiala 24.30 61.85 1996–2014
FI-Jok Jokioinen 23.51 60.90 2000–2003
FR-Gri Grignon 1.95 48.84 2004–2013
FR-Pue Puechabon 3.60 43.74 2000–2013
GF-Guy Guyaflux (French Guiana) −52.92 5.28 2004–2012
IT-CA1 Castel d’Asso1 12.03 42.38 2011–2013
IT-CA2 Castel d’Asso2 12.03 42.38 2011–2013
IT-CA3 Castel d’Asso3 12.02 42.38 2011–2013
IT-Cp2 Castelporziano 2 12.36 41.70 2012–2013
IT-Isp Ispra ABC-IS 8.63 45.81 2013–2014
IT-Lav Lavarone 11.28 45.96 2003–2012
IT-Noe Arca di Noe – Le Prigionette 8.15 40.61 2004–2012
IT-PT1 Parco Ticino forest 9.06 45.20 2002–2004
IT-Ren Renon 11.43 46.59 1998–2013
IT-Ro1 Roccarespampani 1 11.93 42.41 2000–2008
IT-Ro2 Roccarespampani 2 11.92 42.39 2003–2012
IT-SR2 San Rossore 2 10.29 43.73 2013–2014
IT-SRo San Rossore 10.28 43.73 1999–2012
IT-Tor Torgnon 7.58 45.84 2008–2013
JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003–2005
JP-SMF Seto Mixed Forest Site 137.08 35.26 2002–2006
NL-Hor Horstermeer 5.07 52.24 2004–2011
NL-Loo Loobos 5.74 52.17 1996–2013
NO-Adv Adventdalen 15.92 78.19 2012–2014
RU-Che Cherski 161.34 68.61 2002–2005
RU-Cok Chokurdakh 147.49 70.83 2003–2013
RU-Fyo Fyodorovskoye 32.92 56.46 1998–2013
RU-Ha1 Hakasia steppe 90.00 54.73 2002–2004
SD-Dem Demokeya 30.48 13.28 2005–2009
US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 −99.42 36.43 2009–2012
US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 −99.60 36.64 2009–2012
US-ARM ARM Southern Great Plains site- Lamont −97.49 36.61 2003–2012
US-Blo Blodgett Forest −120.63 38.90 1997–2007
US-Ha1 Harvard Forest EMS Tower (HFR 1) −72.17 42.54 1991–2012
US-Los Lost Creek −89.98 46.08 2000–2014
US-MMS Morgan Monroe State Forest −86.41 39.32 1999–2014
US-Me6 Metolius Young Pine Burn −121.61 44.32 2010–2012
US-Myb Mayberry Wetland −121.77 38.05 2011–2014
US-Ne1 Mead – irrigated continuous maize site −96.48 41.17 2001–2013
US-Ne2 Mead – irrigated maize-soybean rotation site −96.47 41.16 2001–2013
US-Ne3 Mead – rainfed maize-soybean rotation site −96.44 41.18 2001–2013
US-SRM Santa Rita Mesquite −110.87 31.82 2004–2014
US-Syv Sylvania Wilderness Area −89.35 46.24 2001–2014
US-Ton Tonzi Ranch −120.97 38.43 2001–2014
US-Tw3 Twitchell Alfalfa −121.65 38.12 2013–2014
US-UMd UMBS Disturbance −84.70 45.56 2007–2014
US-Var Vaira Ranch- Ione −120.95 38.41 2000–2014
US-WCr Willow Creek −90.08 45.81 1999–2014
US-Whs Walnut Gulch Lucky Hills Shrub −110.05 31.74 2007–2014
US-Wkg Walnut Gulch Kendall Grasslands −109.94 31.74 2004–2014
ZM-Mon Mongu 23.25 −15.44 2007–2009
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