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Abstract. Although great progress has been made in estimating surface solar radiation (Rs) from meteorolog-
ical observations, satellite retrieval, and reanalysis, getting best-estimated long-term variations in Rs are sorely
needed for climate studies. It has been shown that Rs data derived from sunshine duration (SunDu) can provide
reliable long-term variability, but such data are available at sparsely distributed weather stations. Here, we merge
SunDu-derived Rs with satellite-derived cloud fraction and aerosol optical depth (AOD) to generate high-spatial-
resolution (0.1◦)Rs over China from 2000 to 2017. The geographically weighted regression (GWR) and ordinary
least-squares regression (OLS) merging methods are compared, and GWR is found to perform better. Based on
the SunDu-derived Rs from 97 meteorological observation stations, which are co-located with those that direct
Rs measurement sites, the GWR incorporated with satellite cloud fraction and AOD data produces monthly Rs
with R2

= 0.97 and standard deviation= 11.14 Wm−2, while GWR driven by only cloud fraction produces sim-
ilar results with R2

= 0.97 and standard deviation= 11.41 Wm−2. This similarity is because SunDu-derived Rs
has included the impact of aerosols. This finding can help to build long-term Rs variations based on cloud data,
such as Advanced Very High Resolution Radiometer (AVHRR) cloud retrievals, especially before 2000, when
satellite AOD retrievals are not unavailable. The merged Rs product at a spatial resolution of 0.1◦ in this study
can be downloaded at https://doi.org/10.1594/PANGAEA.921847 (Feng and Wang, 2020).

1 Introduction

A clear knowledge of variations in surface solar radiation
(Rs) is vitally important for an improved understanding of
the global climate system and its interaction with human ac-
tivity (Jia et al., 2013; Myers, 2005; Schwarz et al., 2020;
Wang and Dickinson, 2013; Wild, 2009, 2017; Zell et al.,
2015). Direct measurements have shown that Rs has sig-
nificant decadal variability, namely a decrease (global dim-
ming) from the 1950s to the late 1980s and subsequent in-
crease (global brightening) (Wild, 2009). The variation in Rs

is closely related to the Earth’s water cycle, the whole bio-
sphere, and the amount of available solar energy. This situa-
tion emphasizes the urgency to develop reliable Rs products
to obtain the variability in Rs.

Great progress has been made in the detection of vari-
ability in Rs by meteorological observations, satellite re-
trieval, and radiation transfer model simulations or reanal-
ysis Rs products in previous studies (Rahman and Zhang,
2019; Wang et al., 2015). However, each estimation has its
advantages and disadvantages. Directly observed data pro-
vide accurateRs records at short timescales; however, careful
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calibration and instrument maintenance are needed to main-
tain their long-term homogeneity. Previous studies have re-
ported that directly observed Rs over China may have major
inhomogeneity problems due to sensitivity drift and instru-
ment replacement (Wang, 2014; Wang et al., 2015; Yang et
al., 2018). Before 1990, the imitations of the USSR pyra-
nometers had different degradation rates of the thermopile,
resulting in an important sensitivity drift. To overcome the
radiometer ageing problem, China replaced its instruments
from 1990 to 1993. However, the new solar trackers failed
frequently and introduced a high data missing rate for the di-
rect radiation component ofRs (Lu and Bian, 2012; Mo et al.,
2008). After 1993, although the instruments were substan-
tially improved, the Chinese-developed pyranometers still
had high thermal offset with directional response errors, and
the stability of these instruments was also worse than that of
the first-class pyranometers recommended by the World Me-
teorological Organization (WMO) (Lu et al., 2002; Lu and
Bian, 2012; Yang et al., 2010). Yang et al. (2018) show that
nearly half of observedRs values (60 out of the 119Rs obser-
vation stations) have inhomogeneity issues. These artificial
change points in observed Rs are mainly caused by instru-
ment change (42 shifts), station relocation (34 shifts), and
observation schedule change (20 shifts). The remaining 64
change points could not be identified.

Sunshine duration (SunDu) data are relatively widely dis-
tributed and have a long-term record (Sanchezlorenzo et
al., 2009; Wild, 2009). Existing studies have also confirmed
that SunDu-derived Rs data are reliable Rs data, which can
capture long-term trends of Rs and reflect the impacts of
both aerosols and clouds at timescales ranging from daily to
decadal (Feng and Wang, 2019; Manara et al., 2015; Sanche-
zlorenzo et al., 2013; Sanchezromero et al., 2014; Tang et al.,
2011; Y. Wang et al., 2012; Wild, 2016). Even though SunDu
data do not provide a direct estimate of Rs and have different
sensitivity to atmospheric turbidity changes, compared with
Rs observations, they are still a good proxy for variations in
Rs (Manara et al., 2017).

Sunshine duration observations collected at weather sta-
tions in China have been used to reconstruct long-term Rs
(Che et al., 2005; Feng et al., 2019; He et al., 2018; He and
Wang, 2020; Jin et al., 2005; Shi et al., 2008; Yang et al.,
2006, 2020). Based on the global SunDu-derived Rs records,
He et al. (2018) found that SunDu permitted a revisit of
global dimming from the 1950s to the 1980s over China,
Europe, and the USA, with brightening from 1980 to 2009
in Europe and a declining trend in Rs from 1994 to 2010 in
China. Wang et al. (2015) found that the dimming trend from
1961 to 1990 and nearly constant zero trend after 1990 over
China, as calculated from the SunDu-derived Rs, was consis-
tent with independent estimates of AOD (Luo et al., 2001);
they also observed changes in the diurnal temperature range
(K. C. Wang et al., 2012; Wang and Dickinson, 2013) and
the observed pan evaporation (Yang et al., 2015). Although
direct observations and SunDu-derived Rs can provide ac-

curate long-term variations in Rs, both direct observations
and sunshine duration records are often sparsely spatially dis-
tributed.

Satellite Rs retrievals and radiation transfer model sim-
ulations or reanalysis Rs products can provide Rs estima-
tion with global coverage at high spatial resolution. How-
ever, model simulations and reanalysisRs products have sub-
stantial biases due to the deficiency of simulating cloud and
aerosol quantities (Feng and Wang, 2019; Zhao et al., 2013).
Previous comparative studies have shown that the accuracies
of Rs from reanalyses are lower than those of satellite prod-
ucts (Wang et al., 2015; Zhang et al., 2016) due to the good
capability of capturing the spatial distribution and dynamic
evolution of clouds in satellite remote sensing data.

Table 1 lists the current satellite-based Rs products, which
have been widely validated in previous studies. Zhang et
al. (2004) found that the monthly International Satellite
Cloud Climatology Project-Flux Data (ISCCP-FD) Rs prod-
uct had a positive bias of 8.8 Wm−2 using Global Energy
Balance Archive (GEBA) archived data as a reference. By
comparing 1151 global sites, Zhang et al. (2015) evaluated
four satellite-based Rs products, including ISCCP-FD, the
Global Energy and Water Cycle Experiment-Surface Ra-
diation Budget (GEWEX-SRB), the University of Mary-
land/Shortwave Radiation Budget (UMD-SRB), and the
Earth’s Radiant Energy System energy-balanced and filled
product (CERES EBAF) and concluded that CERES EBAF
shows better agreement with observations than other prod-
ucts. A similar overall good performance of CERES EBAF
can also be found (Feng and Wang, 2018; Ma et al., 2015).

Although CERES EBAF uses more accurate input data to
provide Rs data, its spatial resolution is only 1◦ (Kato et al.,
2018). Since 2010, new-generation geostationary satellites
have provided opportunities for high-temporal- and high-
spatial-resolution Rs data, such as Himawari-8 (Hongrong
et al., 2018; Letu et al., 2020). However, the time span of
the new-generation satellite-based Rs product is short. The
long-term AVHRR records provide the possibility of build-
ing long-term radiation datasets. The CLoud, Albedo and
RAdiation dataset, the AVHRR-based data-second edition
(CLARA-A2), covers a long time period, but the spatial reso-
lution is only 0.25◦ (Karlsson et al., 2017). Recently, Tang et
al. (2019) built a satellite-based Rs (SSR-tang) dataset using
ISCCP-HXG cloud data. By using a variety of cloud prop-
erties derived from AVHRR, Stengel et al. (2020) presented
the Cloud_cci AVHRR-PMv3 dataset generated within the
Cloud_cci project.

Validation against the BSRN data indicated that SSR-tang
values have the mean bias error (MBE) of −11.5 Wm−2

and root-mean-square error (RMSE) of 113.5 Wm−2 for the
instantaneous Rs estimates at a 10 km scale, but Tang et
al. (2019) point out that care should be taken when using
this dataset for trend analysis due to the absence of realistic
aerosol input data. Stengel et al. (2020) also show that Rs
derived from Cloud_cci AVHRR-PMv3 reveals a very good
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Table 1. Current satellite-derived surface solar radiation (Rs) products.

Satellite Rs product Source Spatial resolution Time range

ISCCP-FD ISCCP 2.5◦ 1983–2009
GEWEX-SRB ISCCP-DX 1◦ 1983–2007
UMD-SRB METEOSAT-5 0.5◦ 1983–2007
GLASS-DSR Terra/Aqua, GOES, MSG, MTSAT 0.05◦ 2008–2010
CLARA-A2 AVHRR 0.25◦ 1982–2015
MCD18A1 Terra/Aqua, MODIS 5.6 km 2001–present
Himawari-8 SWSR Himawari-8 5 km 2015–present
SSR-tang ISCCP-HXG, ERA5, MODIS 10 km 1982–2017
Cloud_cci AVHRR-PMv3 AVHRR/CC4CL 0.05◦ 1982–2016

agreement against BSRN stations, with low standard devia-
tions of 13.8 Wm−2 and correlation coefficients above 0.98,
and a bias for shortwave fluxes that is small (1.9 Wm−2).
However, default aerosol optical depth of 0.05 or data from
Aerosol cci Level-2 or NASA MODIS Level-2 are used in
the BUGSrad model to calculate clear-sky Rs, indicating
that the impact of aerosols is not perfectly parameterized in
Cloud_cci AVHRR-PMv3.

On the other hand, the long-term cloud records also
contain uncertainties. For example, ISCCP cloud products,
which directly combine geostationary and polar orbiter
satellite-based cloud data, have large inhomogeneity due to
different amounts of data from polar orbit and geostationary
satellites and their different capabilities for detecting low-
level clouds (Dai et al., 2006; Evan et al., 2007). This in-
homogeneity of the cloud products might introduce signif-
icant inhomogeneity to the Rs values calculated from the
cloud products (Montero-Martín et al., 2020; Pfeifroth et al.,
2018b), and Rs long-term variability estimation still needs
improvement.

Efforts have been made to further improve Rs products.
Merging multisource data has become an effective empir-
ical method for improving the quality of Rs products (Ca-
margo and Dorner, 2016; Feng and Wang, 2018; Hakuba et
al., 2014; Journée et al., 2012; Lorenzo et al., 2017; Ruiz-
Arias et al., 2015). For instance, to produce spatiotempo-
rally consistent Rs data, multisource satellite data are used in
Global LAnd Surface Satellite (GLASS) Rs products (Jin et
al., 2013). By merging reanalysis and satellite Rs data by the
probability density function-based method, the reanalysis Rs
biases can be substantially reduced (Feng and Wang, 2018).
This finding suggests that fusion methods are effective ways
to improve the estimation of Rs, especially when Rs impact
factors are considered (Feng and Wang, 2019). Although lin-
ear regression fusion methods can produce Rs data incorpo-
rated withRs impact factors, the stable regression parameters
might have negative effects on the final fusion results due to
the complex characteristics of Rs spatial–temporal variabil-
ity.

On the other hand, the spatial resolution of Rs data is cru-
cial for regional meteorology studies, as the minimum re-

quirement of the spatial resolution of Rs data, as suggested
by the Observing Systems Capabilities Analysis and Review
of WMO OSCAR), is 20 km (Huang et al., 2019). Interpo-
lation methods are often included in Rs fusion methods to
further improve the spatial resolutions of Rs data (Loghmari
et al., 2018). For example, Zou et al. (2016) estimated global
solar radiation using an artificial neural network based on an
interpolation technique in southeast China. By integrating Rs
data from 13 ground stations with Meteosat Second Genera-
tion satellite Rs products, Journée and Bertrand (2010) found
that kriging with the external drift interpolation method per-
formed better than mean bias correction, interpolated bias
correction, and ordinary kriging with satellite-based correc-
tion. However, interpolation results have uncertainties due to
the lack of detailed high-spatial-resolution information. Al-
though traditional linear regression fusion methods can in-
corporate high-spatial-resolution data during the fusion pro-
cess, the impacts of the stable regression parameters need
further investigation.

The performances of different machine learning methods
have been evaluated in many previous studies, including sim-
ulation Rs at regional scale with support of satellite retrievals
(Wei et al., 2019; Yeom et al., 2019) and site scale by using
routine meteorological observations (Cornejo-Bueno et al.,
2019; Hou et al., 2020). Whatever models or training data
are selected, the impacts of the spatial relationship are not
taken into account in these machine-learning-based models,
and therefore a large number of input data are required to
ensure accuracy.

Geographically weighted regression (GWR) is an exten-
sion of the traditional regression model by allowing the re-
lationships between dependent and explanatory variables to
vary spatially. Researchers have examined and compared the
applicability of GWR for the analysis of spatial data relative
to that of other regression methods (Ali et al., 2007; Gao et
al., 2006; Georganos et al., 2017; LeSage, 2004; Sheehan et
al., 2012; Q. Zhou et al., 2019). Due to the large spatial het-
erogeneity of Rs over China, the GWR method might pro-
duce accurate Rs variability estimations with an improved
spatial resolution.
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This study is established to merge SunDu-derived Rs data
with satellite-derived cloud fraction (CF) and AOD data to
generate high-spatial-resolution (0.1◦) Rs over China from
2000 to 2017. The GWR and ordinary least-squares (OLS)
regression merging methods are compared. CF and AOD
are important Rs impact factors; however, many long-term
Rs satellite products use climatology aerosol data as input.
Whether much improvement is made in merging SunDu-
derived Rs by incorporating AOD is also evaluated in this
study, instead of evaluating direct merging current Rs prod-
ucts with SunDu-derived Rs. Since current high-quality Rs
such as CERES EBAF have low spatial resolution, the output
of this study provides reliable high-resolution grid Rs data to
avoid the disadvantage of CERES EBAF for capturing the
variability of Rs within a 1◦ box and provides guidance to
merge multisource data to generate long-term Rs data over
China.

2 Data and methodology

2.1 Ground-based observations

2.1.1 Direct observations

Rs direct observations from 2000 to 2017 are obtained from
the China Meteorological Data Service Centre (CMDC, http:
//data.cma.cn/data/index.html, last access: 3 March 2021)
of the China Meteorological Administration (CMA). TBQ-
2 pyranometers and DFY4 pyranometers have been used to
measure Rs since 1993. Daily Rs values from 97 Rs stations
are collected, and we calculated monthly Rs values by av-
eraging daily Rs values when daily observed data are avail-
able for more than 15 d for each month at each radiation sta-
tion. These monthly Rs values from direct measurements and
collocated SunDu-derived Rs are used as independent refer-
ence data to investigate the performances of the fusion meth-
ods (Fig. 1). The whole area over China is further divided
into nine zones by the K-mean cluster method based on ge-
ographic locations and multiyear mean Rs using 97 Rs direct
observation sites, as shown in Fig. 1. The download instruc-
tions of the Rs direct observations can be found in Table 2.

2.1.2 SunDu-derived Rs

Sunshine duration observations (SunDu) and other meteoro-
logical data (e.g. air temperature, relative humidity, and sur-
face pressure) from 1980 to 2017, which were collected from
approximately 2400 meteorological stations (http://data.cma.
cn/data/index.html) from the CMA, are used to calculate the
SunDu-derived Rs (Fig. 1). Rs values are calculated follow-
ing the method of the revised Ångström–Prescott equation
(Eqs. 1–2) (He et al., 2018; Wang, 2014; Wang et al., 2015;
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Figure 1. The 2400 sunshine duration (SunDu) merging sites are shown as light brown points, and 97 independent validation sites, including
Rs direct measurements and SunDu-derived Rs measurements, are shown as brown red points. The whole region is classified into nine
subregions (I to IX) by the K-mean cluster method based on geographic locations and multiyear mean Rs using 97 Rs direct observation
sites. The base hillshade map was produced by an elevation map of the study area using the global digital elevation model (DEM) derived
from the Shuttle Radar Topography Mission 30 (SRTM30) dataset.

Yang et al., 2006).

Rs

Rc
= a0+ a1

n

K
+ a2

( n
K

)2
(1)

Rc =

∫
(τc_dir+ τc_dif)× I0dt (2)

Here n represents the measured SunDu, andK represents the
theoretical value of the SunDu. a0, a1, and a2 are the station-
dependent parameters by tuning this equation with measure-
ments of Rs and SunDu, and then the method is applied re-
gionally (Wang, 2014). Instead of using observations from
weather stations in Japan (Yang et al., 2006), observations in
CMA are used (Wang, 2014). Rc is the daily total solar radi-
ation at the surface under clear-sky conditions (Eq. 2). τc_dir
and τc_dif represent the direct radiation transmittance and the
diffuse radiation transmittance under clear-sky conditions. I0
is the solar irradiance at the top of the atmosphere (TOA).
For the clear-sky Rs, τc_dir and τc_dif are calculated using
a modified a broadband radiative transfer model by simpli-
fying Leckner’s spectral model (Leckner, 1978), where the
effect of transmittance functions of permanent gas absorp-
tion, Rayleigh scattering, water vapour absorption, ozone ab-
sorption, and aerosol extinction are parameterized using the
surface air temperature, surface pressure, precipitable water,
thickness of the ozone layer, turbidity, and sunshine duration
as inputs (Yang et al., 2006). Calculation of Rs also includes

impacts of aerosols because SunDu is impacted by changes
in both clouds and aerosols (Wang, 2014).

Based on the classified subregions using 97 direct Rs ob-
servations in Fig. 1, the intercomparison results in Figs. 2 and
3 show that the agreement between SunDu-derived Rs and
CERES EBAF Rs estimates is better than that between the
direct observations and SunDu-derived Rs estimates, which
is likely due to the inhomogeneity issue of direct Rs obser-
vations over China, as mentioned in many previous studies
(Wang, 2014; Yang et al., 2018). The satellite Rs retrievals
and SunDu-derived Rs are totally independent, but the high
agreements of these two datasets indicate that they both are
of higher accuracy. Similar results are also reported by Wang
et al. (2015) that low agreement between SunDu-derived Rs
and direct Rs observation is likely due to the directional re-
sponse errors of the direct observations of Rs.

The SunDu-derivedRs observations, excluding SunDu ob-
servations located at direct observation sites, are used for
merging. A total of 10 % merging observations are randomly
selected for GWR parameter optimization. The download in-
structions of the SunDu observations can be found in Table 2.

2.2 Satellite data

Rs data from the Clouds and Earth’s Radiant Energy Sys-
tem energy balanced and filled product (CERES Synoptic
(CERES) EBAF) surface product (edition 4.1) (Kato et al.,
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Figure 2. Statistical summary of annual anomaly Rs from direct
observed Rs, SunDu-derived Rs, and CERES EBAF Rs estimates
in different subregions. The statistics include the mean absolute
bias (MAB), standard deviation (SD), and root-mean-square error
(RMSE). We use MAB due to the cancelling out effect of posi-
tive bias and negative bias. Nine subregions (I to IX) over China
are shown in Fig. 1. S-D represents comparisons between SunDu-
derived Rs and directly observed Rs. C-D represents comparisons
between CERES EBAF Rs and directly observed Rs. S-C repre-
sents comparisons between SunDu-derived Rs and CERES EBAF
Rs. The unit of the y axis is Wm−2.

Figure 3. Similar to Fig. 2, but this statistical summary is for R2.

2018), cloud fraction from MODAL2 M CLD data product
(Platnick et al., 2017), and AOD from the CERES SYN1deg
edition 4A product (Doelling et al., 2013) are collected in
this study. CERES EBAF Rs data are used as reference
data. AOD from CERES SYN1deg and cloud fraction from
MODAL2 M CLD are used as input data for fusion methods.

CERES is a three-channel radiometer measuring three fil-
tered radiances, including shortwave (0.3–5 µm), total (0.3–
200 µm), and window (8–12 µm). Rs values from CERES
EBAF are adjusted using radiative kernels, including bias
correction and Lagrange multiplier processes. The input data
of CERES EBAF are adjusted during the product-generating
process constrained by CERES observations at the TOA.
The biases in temperature and specific humidity from the
Goddard Earth Observing System (GEOS) reanalysis are ad-
justed by atmospheric infrared sounder (AIRS) data. Cloud
properties, such as optical thickness and emissivity, from
MODIS and geostationary satellites are constrained by cloud
profiling radar; Cloud-Aerosol Lidar, and Infrared Pathfinder
Satellite Observations (CALIPSO) detectors, and CloudSat.
The uncertainties of CERES EBAF data, reported by Kato et
al. (2018), in all sky global annual mean Rs is 4 W m−2. Pre-
vious studies (Feng and Wang, 2019, 2018; Ma et al., 2015;
Wang et al., 2015) have shown that the CERES EBAF sur-
face product provides reliable estimations of Rs.

CERES SYN1deg AOD derived from an aerosol transport
model, named Atmospheric Transport and Chemistry Mod-
elling (MATCH) (Collins et al., 2001), which assimilates
MODIS AOD data, is used to obtain spatiotemporally con-
sistent AOD data. Different aerosol constituents, including
small dust (< 0.5 µm), large dust (> 0.5 µm), stratosphere,
sea salt, soot, and soluble, are used to compute the opti-
cal thickness for a given constituent optical thickness for a
given constituent. We did not use AOD from MODIS, be-
cause MODIS AOD conation misses values and cannot meet
the requirements of spatio-temporal continuity of AOD in-
put in this study. In addition, MODIS AOD is only available
under clear-sky conditions while AOD provided by the as-
similation system is averaged under all conditions.

Cloud fraction data from MODAL2 M CLD are collected
as input cloud fraction data with a spatial resolution of 0.1◦

and time span from 2000 to 2017 (Platnick et al., 2017).
The MODAL2 M CLD data are synthesized based on the
cloud data from MOD06. Cloud fraction data from MOD06
are generated by the cloud mask product of MOD35 with a
spatial resolution of 1 km. The MOD35 cloud mask is de-
termined by applying appropriate single field-of-view (FOV)
spectral tests to each pixel with a series of visible and in-
frared threshold and consistency tests. Each land type has
different algorithms and thresholds for the tests. For each
pixel test, an individual confidence flag is determined and
then combined to produce the final cloud mask flag. The
three confidence levels included in the cloud mask flag out-
put are (i) high confidence for cloudless pixels (group confi-
dence values > 0.95), (ii) low confidence for unobstructed
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views on the surface (group confidence values Q≤ 0.66),
and (iii) values between 0.66 and 0.95. Spatial and tempo-
ral continuity tests are further applied to determine whether
the pixel is absolutely cloudless. Then, the cloud fraction is
calculated from the 5 km× 5 km cloud mask pixel groupings;
i.e. given the 25 pixels in the group, the cloud fraction for the
group equals the number of cloudy pixels divided by 25.

2.3 Methods

2.3.1 Fusion models

OLS regression and GWR are used to build fusion methods
for estimating Rs data. Cloud fraction and AOD have been
important factors that affect variations in Rs. We compare
different combinations of input data for the fusion methods,
which can be classified into two types. The first type only
contains cloud fraction data. The second type contains cloud
fraction and AOD (Feng and Wang, 2020).

The OLS regression model is a commonly used model
to estimate dependent variables by minimizing the sum-of-
square differences between the independent and dependent
variables. GWR is a regression model that allows the rela-
tionships between the independent and dependent variables
to vary by locality (Brunsdon et al., 2010, 1998). GWR devi-
ates from the assumption of homoscedasticity or static vari-
ance but calculates a specific variance for data within a zone
or search radius of each predictor variable (Brunsdon et al.,
1998; Fotheringham et al., 1996; Sheehan et al., 2012). The
regression coefficients in GWR are not based on global infor-
mation; rather, they vary with location, which is generated by
a local regression estimation using subsampled data from the
nearest neighbouring observations. The principle of GWR is
described as follows:

yi = δ (i)+
∑
k

δk (i)xik + εi, (3)

where yi is the value of Rs unit i; i = 1,2, . . .,n,n denotes
location i; xik indicates the value of the xik variable, such
as cloud fraction and AOD; and ε denotes the residuals. δ(i)
is the regression intercept. δk(i) is the vector of regression
coefficients determined by spatial weighting function w(i),
which is the weighting function quantifying the proximities
of location i to its neighbouring observation sites; X is the
variable matrix; and b is the bias vector.

δk (i)=
(

XTw (i)X
)−1

XTw(i)b (4)

The weighting functions are generally determined using the
threshold method, inverse distance method, Gauss function
method, and bi-square method. Due to the irregular distribu-
tion of observation sites and computer ability, the adaptive
Gaussian function method is selected as a weighting func-
tion that varies in extent as a function of Rs observation site
density.

wij = exp(−(dij/b)2), (5)

where wij is the weighting function for observation site j
that refers to location i; dij denotes the Euclidian distance
between j and i; and b is the size of the neighbourhood, the
maximum distance away from regression location i, called
“band width”, which is determined by the number of nearest-
neighbour points (NNPs).

2.3.2 GWR parameter comparison

To perform the local regression for every local area, the num-
ber of NNPs is required to estimate spatially varying relation-
ships between CF, AOD, and Rs in the GWR-based fused
method. To identify the best combination of parameter val-
ues, we test the number of NNPs ranging from 29 to 1000.
A total of 10 % of merging SunDu-derived Rs data are ran-
domly selected to validate these GWR parameters (Fig. 1).
The results show that R2 increases and bias decreases when
the number of NNPs decreases. However, when the NNP is
smaller than 30, the GWR-based fusion method produces
spatially incomplete Rs data due to the local collinearity
problem with large spatial variability. Therefore, 30 is se-
lected as the NNP parameter (Table 3).

3 Results

3.1 Site validation

Based on the independent SunDu validation sites, both the
GWR and OLS methods explain 97 %–86 % of Rs variabil-
ity (Fig. 4). The GWR method generally shows an improved
performance compared with the OLS method due to the rep-
resentativeness of the spatial heterogeneity relationship be-
tween Rs and its impact factors in GWR. Both the GWR and
OLS methods produce better simulations ofRs if satellite and
AOD data are incorporated.

Direct observations from 2000 to 2016 are also used to fur-
ther evaluate the performance of the fusion methods (Fig. 4).
The comparative result shows that both fusion methods show
slightly reduced performances when using direct Rs obser-
vations rather than the SunDu-derived Rs. Both the GWR
and OLS methods explain 91 %–82 % ofRs variability by us-
ing direct observations as reference data. Similarly, the GWR
method exhibits better performances than the OLS-based fu-
sion method, with an R2 of 0.91 and root-mean-square error
(RMSE) ranging from 19.89 to 19.97 Wm−2 at the monthly
timescale (Table 4).

3.2 Seasonal and annual variations in Rs

To analyse the impacts of AOD on the GWR fusion re-
sults, the GWR driven with only CF (GWR-CF) and GWR
driven with CF and AOD (GWR-CF-AOD) are compared.
Two validation sites (Changchun, 43.87◦ N, 125.33◦ E and
Beihai, 21.72◦ N, 109.08◦ E) are randomly selected to evalu-
ate the seasonal and annual variations in Rs derived from the
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Table 3. Statistical summary of GWR parameter optimization. NNP is the number of nearest-neighbour points. GWR-CF presents the GWR-
based fused method using only cloud fraction (CF) input, and GWR-CF-AOD presents that using both CF and aerosol optical depth (AOD)
as input. MAB is the mean absolute bias. SD is the standard deviation. RMSE is the root-mean-square error.

NNP GWR-CF GWR-CF-AOD

R2 Bias MAB SD RMSE R2 Bias MAB SD RMSE

29 0.91 −0.21 7.45 9.90 9.90 0.91 −0.13 7.47 9.93 9.92
30 0.91 −0.23 7.45 9.90 9.90 0.91 −0.14 7.47 9.92 9.91
31 0.91 −0.24 7.45 9.90 9.90 0.91 −0.14 7.47 9.91 9.91
32 0.91 −0.25 7.46 9.91 9.91 0.91 −0.14 7.47 9.91 9.90
33 0.91 −0.26 7.47 9.92 9.92 0.91 −0.15 7.46 9.90 9.90
34 0.91 −0.27 7.47 9.93 9.93 0.91 −0.14 7.46 9.90 9.89
35 0.91 −0.28 7.48 9.94 9.94 0.91 −0.14 7.46 9.89 9.88
36 0.91 −0.28 7.49 9.94 9.94 0.91 −0.14 7.46 9.89 9.88
37 0.91 −0.29 7.49 9.95 9.95 0.91 −0.14 7.46 9.88 9.87
38 0.91 −0.30 7.50 9.96 9.96 0.91 −0.14 7.46 9.88 9.87
39 0.91 −0.31 7.51 9.98 9.98 0.91 −0.14 7.46 9.87 9.87
40 0.91 −0.32 7.52 9.99 9.99 0.91 −0.14 7.46 9.87 9.87
50 0.90 −0.38 7.62 10.12 10.12 0.91 −0.12 7.51 9.91 9.91
100 0.89 −0.57 8.20 10.90 10.91 0.90 −0.02 7.86 10.31 10.30
500 0.81 −1.08 10.89 14.50 14.54 0.86 0.20 9.55 12.45 12.45
1000 0.75 −1.13 12.60 16.57 16.61 0.82 0.26 10.68 13.84 13.85

GWR method (Fig. 5). The multiyear mean of AOD from
Changchun and Beihai is 0.49 and 0.70, respectively. As
shown in panels (a) and (b), both GWR-CF and GWR-CF-
AOD produce similar seasonal variation patterns compared
with SunDu-derived Rs and CERES EBAF Rs data. Small
differences are found in the seasonal variation in Rs derived
from GWR regardless of whether AOD was incorporated.
Examination of the annual variation in Rs from the GWR-
CF and GWR-CF-AOD is shown in panels (c) and (d) of
Fig. 5. The two fusion methods also produce similar annual
Rs variations. The similar performances of the GWR-CF and
GWR-CF-AOD might suggest that the impacts of AOD have
already been included in the SunDu-derived Rs site data.

We also analyse the performances of fusion methods for
different seasons at all validation sites, as shown in Table 4.
At seasonal scales, both the GWR-CF and GWR-CF-AOD
methods have high R2 values ranging from 0.94 to 0.96,
compared with direct Rs measurement or SunDu-derived Rs.
GWR-CF and GWR-CF-AOD show slight differences, indi-
cating that both fusion methods produce consistent Rs sea-
sonal variation patterns, which might be because the impacts
of AOD have already been included in the SunDu-derived
Rs site data at seasonal timescales. Comparatively, the GWR
methods perform best in autumn, with RMSEs ranging from
9.23 to 9.56 Wm−2 followed by winter, spring, and sum-
mer. Both the GWR-CF and GWR-CF-AOD methods pro-
duce similar annual variations in Rs from 2000 to 2016, with
R2 values ranging from 0.57 to 0.58 (Table 4). The statistics
indicate that the GWR can produce reasonable seasonal and
annual variations in Rs.

3.3 Multiyear mean and long-term variability in Rs

Figure 6 shows the performance of GWR-CF and GWR-CF-
AOD in simulating the multiyear mean Rs by using 97 di-
rect Rs observation sites and independent SunDu-derived Rs
sites. Based on direct Rs measurements, both GWR-based
methods show good performances with high R2 (0.89–0.95)
and low RMSE (11.03–11.11 Wm−2), and few differences
are found for the GWR merging results, whether or not AOD
is taken as input data (Table 4).

The spatial distributions of the multiyear means ofRs from
2000 to 2017 are shown in Fig. 7. The SunDu sites show
that Rs is high in northwest China, ranging from 180 to
300 Wm−2, and low in eastern China, ranging from 120 to
180 Wm−2. Both the GWR-CF and GWR-CF-AOD meth-
ods show consistent Rs spatial patterns with SunDu-derived
Rs observations and CERES EBAFs, indicating that the rela-
tionship between Rs and impact factors is not linearly stable
and is closely related to spatial position. The spatial distribu-
tion of the Rs trend derived from the GWR method is also
consistent with the SunDu-derived Rs trend, especially in
western China (Fig. 8). In order to prove that SunDu-derived
Rs can add value to the 0.1◦ product, instead of cloud frac-
tion data alone, we perform a similar GWR analysis but using
CERES EBAF interpolated to 0.1◦ and 0.1◦ cloud, and we
compare the results with those using SunDu-derived Rs and
0.1◦ cloud (Fig. 9). The results indicate that SunDu-derived
Rs can add value to the 0.1◦ product and the mergedRs by us-
ing interpolated CERES EBAF, and 0.1◦ cloud products are
also similar to the original CERES EBAF but not the 0.1◦

cloud product.
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Table 4. Validation of fusion methods driven by cloud fraction (CF) and AOD. GWR-CF and OLS-CF represent the GWR fusion method
and OLS fusion method driven only by CF. GWR-CF-AOD and OLS-CF-AOD represent GWR and OLS fusion methods driven by CF and
AOD, respectively.

Timescale Ref R2 Bias SD RMSE

GWR-CF Monthly SunDu Rs 0.97 −1.17 11.41 11.47
GWR-CF-AOD Monthly SunDu Rs 0.97 −0.82 11.14 11.17
OLS-CF Monthly SunDu Rs 0.86 −3.80 25.03 25.32
OLS-CF-AOD Monthly SunDu Rs 0.89 −1.37 22.10 22.15
GWR-CF Monthly Direct obs 0.91 4.88 19.29 19.89
GWR-CF-AOD Monthly Direct obs 0.91 5.24 19.27 19.97
OLS-CF Monthly Direct obs 0.82 2.18 26.73 26.82
OLS-CF-AOD Monthly Direct obs 0.85 4.64 24.71 25.15
GWR-CF Spring SunDu Rs 0.95 −1.3 11.5 11.57
GWR-CF-AOD Spring SunDu Rs 0.95 −0.86 11.2 11.23
OLS-CF Spring SunDu Rs 0.77 −4.97 23.65 24.16
OLS-CF-AOD Spring SunDu Rs 0.84 −1.35 19.85 19.9
GWR-CF Summer SunDu Rs 0.9 −2.09 14.08 14.23
GWR-CF-AOD Summer SunDu Rs 0.9 −1.38 13.76 13.82
OLS-CF Summer SunDu Rs 0.65 −6.49 26.18 26.97
OLS-CF-AOD Summer SunDu Rs 0.77 −1.37 21.17 21.22
GWR-CF Autumn SunDu Rs 0.95 −1.27 9.48 9.56
GWR-CF-AOD Autumn SunDu Rs 0.96 −1.04 9.17 9.23
OLS-CF Autumn SunDu Rs 0.67 −3.22 25.62 25.82
OLS-CF-AOD Autumn SunDu Rs 0.71 −1.97 23.79 23.87
GWR-CF Winter SunDu Rs 0.94 0.01 9.87 9.86
GWR-CF-AOD Winter SunDu Rs 0.94 0.04 9.78 9.78
OLS-CF Winter SunDu Rs 0.63 −0.37 24.16 24.16
OLS-CF-AOD Winter SunDu Rs 0.65 −0.78 23.41 23.42
GWR-CF Annual Direct obs 0.37 5.62 4.73 10.42
GWR-CF-AOD Annual Direct obs 0.37 5.98 4.79 10.53
OLS-CF Annual Direct obs 0.30 3.06 5.01 15.01
OLS-CF-AOD Annual Direct obs 0.33 5.45 4.89 13.34
GWR-CF Annual SunDu Rs 0.57 −1.19 4.30 6.76
GWR-CF-AOD Annual SunDu Rs 0.58 −0.84 4.30 6.68
OLS-CF Annual SunDu Rs 0.35 −3.58 5.63 15.17
OLS-CF-AOD Annual SunDu Rs 0.39 −1.23 5.44 13.40
GWR-CF Annual mean SunDu Rs 0.94 −1.50 6.63 6.76
GWR-CF-AOD Annual mean SunDu Rs 0.95 −1.15 6.41 6.47
OLS-CF Annual mean SunDu Rs 0.62 −3.90 17.11 17.46
OLS-CF-AOD Annual mean SunDu Rs 0.71 −1.58 14.90 14.90
GWR-CF Annual mean Direct obs 0.89 5.08 9.85 11.03
GWR-CF-AOD Annual mean Direct obs 0.89 5.43 9.75 11.11
OLS-CF Annual mean Direct obs 0.70 2.57 16.31 16.42
OLS-CF-AOD Annual mean Direct obs 0.77 4.88 14.00 14.75

Based on the classified subregions using 97 direct Rs ob-
servations in Fig. 1, the regional means ofRs annual anomaly
variation from 2000 to 2016 are shown in Fig. 10. Com-
pared with observations, both the GWR-CF and GWR-CF-
AOD methods produce consistent long-term Rs trends with
SunDu-derived Rs and CERES EBAF Rs (Figs. 2, 3, and 10),
indicating that the GWR-CF and GWR-CF-AOD methods
can produce reasonable annual Rs variations over China.

In zones I and II, located in northern arid and semiarid
regions, the annual anomaly Rs variation shows small fluctu-

ations ranging from −10 to 10 Wm−2. In contrast, zones IV,
V, VIII, and IX covering the Sichuan Basin, Yunnan–Guizhu
Plateau, Qinghai–Tibet Plateau, and North China Plain show
large Rs variation trends. Li et al. (2018) found a sharply in-
creasing Rs trend over east China, especially in the North
China Plain, which is due to controlling air pollution and re-
ducing aerosol loading. However, our results indicate that the
increased surface solar radiation in north China is not con-
firmed by satellite retrieval (CERES) and SunDu-derived Rs.
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Figure 4. Comparison of surface solar radiation (Rs) derived from
the GWR method and the OLS method. Panels (a), (c), (e), and
(g) represent validation results using SunDu-derived Rs data as a
reference. Panels (b), (d), (f), and (h) show directly observed Rs
data. Panels (a)–(d) denote the GWR validation results, and pan-
els (e)–(h) denote the OLS validation results.

4 Discussion

4.1 Impact factors of Rs

In this study, we merged more than 2400 sunshine-duration-
derived Rs site data with MODIS CF and AOD data to gener-
ate high-spatial-resolution (0.1◦) Rs over China from 2000 to
2017. The results show that the GWR method incorporated
with CF and AOD (GWR-CF-AOD) performs best, indicat-
ing the non-neglected role of clouds and aerosols in regulat-
ing the variation in Rs over China.

Clouds and aerosols impact the solar radiation reaching
the surface by radiative absorption and scattering (Tang et al.,
2017). Recent Rs trend studies over Europe suggest that CF
may play a key role in the positive trend ofRs since the 1990s

Figure 5. Seasonal and annual variations in Rs at two sites:
Changchun (a, c, 43.87◦ N, 125.33◦ E) and Beihai (b, d, 23.50◦ N,
99.72◦ E). SunDu Rs is the SunDu-derived Rs data, and GWR-CF
Rs isRs produced by the GWR method incorporating only the cloud
fraction. GWR-CF-AOD is Rs produced by the GWR method in-
corporating cloud fraction and AOD. The multiyear mean of AOD
from Changchun and Beihai is 0.49 and 0.70, respectively.

Figure 6. Comparison of multiyear mean surface solar radiation
(Rs) derived from the GWR method. Panels (a) and (c) represent
validation results using SunDu-derivedRs data as a reference, while
that of panels (b) and (d) uses directly observed Rs data.

(Pfeifroth et al., 2018a). In terms of input data, our results
also indicate that the cloud fraction might be a major factor
affecting Rs, which is consistent with our previous studies
(Feng and Wang, 2019).

Changes in aerosol loading have also been reported to be
an important impact factor (Che et al., 2005; Li et al., 2018;
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Figure 7. Spatial distribution of multiyear mean monthly surface solar radiation (Rs) from 2000 to 2017. The first line (a, b) shows the
observed multiyear mean monthly Rs from SunDu and CERES EBAF; the multiyear mean monthly Rs derived from the GWR method is
shown in the second line (c, d), respectively.

Figure 8. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) from 2000 to 2017. The first line (a, b) shows the
SunDu-derived Rs and CERES EBAF Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). Panel (c) incorporates
only CF, and panel (d) incorporates CF and AOD. The black dots on the maps represent significant trends (P < 0.05).

Liang and Xia, 2005; Qian et al., 2015; Xia, 2010; Z. Zhou
et al., 2019). The atmospheric visibility data show that the
slope of the linear variation in surface solar radiation with
respect to atmospheric visibility is distinctly different at dif-
ferent stations (Yang et al., 2017), implying that the relation-
ship between Rs and aerosols varies with location.

4.2 Performances of the fusion methods

The good overall performances of the GWR model have
been reported in many previous studies, including geography
(Chao et al., 2018; Georganos et al., 2017), economics (Ma
and Gopal, 2018), meteorology (Li and Meng, 2017; Q. Zhou
et al., 2019), and epidemiology (Tsai and Teng, 2016). Chao
et al. (2018) used the GWR method to merge satellite precip-
itation and gauge observations to correct biases in satellite
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Figure 9. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) from 2000 to 2017. The first line (a, b) shows the
SunDu-derived Rs and CERES EBAF Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). (c) SunDu-derived Rs
incorporates only CF, and (d) is the results of GWR analysis using CERES data interpolated to 0.1◦ and 0.1◦ cloud. The black dots on the
maps represent significant trends (P < 0.05).

Figure 10. The regional mean of the annual anomaly of the surface
solar radiation (Rs) for different subregions. Nine subregions (I to
IX) over China are shown in Fig. 1. Direct Rs observations, SunDu-
derivedRs, and CERES EBAF are shown as black lines, green lines,
and red lines, respectively. Light and dark blue represent theRs vari-
ation derived from the GWR-CF and the GWR-CF-AOD methods.

precipitation data and downscale satellite precipitation to a
finer spatial resolution at the same time. Q. Zhou et al. (2019)
used GWR to analyse haze pollution over China and found
that the GWR estimate was better than the OLS estimate,
with an improvement in correlation coefficient from 0.20 to
0.75.

Compared with other traditional interpolation methods,
such as optimal interpolation (OI), GWR can theoretically
integrate geographical location andRs impact factors for spa-
tial Rs estimations and reflect the non-stationary spatial rela-
tionship between Rs and its impact factors. The thin plate
spline method can include CF and AOD as covariates to sim-
ulate the approximately linear dependence of these impact
factors on Rs, but this linear function cannot fully describe
the relationship among CF, AOD, and Rs (Hong et al., 2005).

Comparison results from (Wang et al., 2017) also indicate
that the GWR method is better than the multiple linear re-
gression method and spline interpolation method for near-
surface air temperature. By using the spatial interpolation
method, CERES EBAF Rs can also be downscaled to 1 km
or 30 m. These interpolated CERES Rs data cannot represent
the detailed Rs distributions at spatial resolution of 1 km or
30 m due to the variability of Rs within a 1◦ box. Without ad-
ditional high-spatial-resolution data, interpolated data cannot
capture more detail variability of Rs.
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5 Code availability

The software code used for this article can be accessed at
https://doi.org/10.5281/zenodo.4584571 (forgetbear, 2021).

6 Data availability

The merged Rs product by GWR methods with cloud
fraction and AOD data as input in this study is avail-
able at https://doi.org/10.1594/PANGAEA.921847 (Feng
and Wang, 2020). The cloud data can be downloaded
from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=
MODAL2_M_CLD_FR (last access: 3 March 2021; NASA
Earth Observations, 2021). The CERES SYN data can
be downloaded from https://ceres.larc.nasa.gov/data/ (last
access: 3 March 2021; CERES Science Team, 2021).

7 Conclusions

Accurate estimation of Rs variability is crucially important
for regional energy budget, water cycle, and climate change
studies. Recent studies have shown that SunDu-derived Rs
data can provide reliable long-term Rs series. In this study,
we merged SunDu-derived Rs data with satellite-derived
cloud fraction (CF) and aerosol optical depth (AOD) data to
generate high spatial resolution (0.1◦) Rs over China from
2000 to 2017 (Feng and Wang, 2020). The GWR and OLS
merging methods were also compared.

Our results show that the spatial resolutions of all fusion
results are improved to 0.1◦ by incorporating MODIS cloud
fraction data. The GWR shows better performance than OLS,
with increases inR2 by 9.21 %–12.81 % and RMSEs reduced
by 49.56 %–54.68 %, indicating that Rs has complex charac-
teristics of spatial variability over China, which has also indi-
cated the necessity of the high spatial resolution of Rs data.
As clouds and aerosols play vital roles in the variability in
Rs, apparent improvements in the results of SunDu-derived
Rs data-merging are found if both cloud fraction and AOD
are incorporated. Based on the merging results incorporat-
ing only cloud fraction, cloud fraction is suggested to be the
major factor impacting Rs, which explained approximately
86 %–97 % of Rs variability. Generally, SunDu-derived Rs
data merging results derived from GWR show more consis-
tent multiyear mean Rs and long-term Rs trends compared
with those from OLS. Our results show that the improve-
ment in Rs variability estimation is closely related to Rs
impact factors and Rs spatial heterogeneity. The merged Rs
products derived from GWR-CF-AOD can be downloaded at
https://doi.org/10.1594/PANGAEA.921847.
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