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Abstract. The nighttime light (NTL) satellite data have been widely used to investigate the urbanization pro-
cess. The Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) stable night-
time light data and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-
VIIRS) nighttime light data are two widely used NTL datasets. However, the difference in their spatial resolutions
and sensor design requires a cross-sensor calibration of these two datasets for analyzing a long-term urbaniza-
tion process. Different from the traditional cross-sensor calibration of NTL data by converting NPP-VIIRS to
DMSP-OLS-like NTL data, this study built an extended time series (2000–2018) of NPP-VIIRS-like NTL data
through a new cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and a composition of monthly
NPP-VIIRS NTL data (2013–2018). The proposed cross-sensor calibration is unique due to the image enhance-
ment by using a vegetation index and an auto-encoder model. Compared with the annual composited NPP-VIIRS
NTL data in 2012, our product of extended NPP-VIIRS-like NTL data shows a good consistency at the pixel
and city levels with R2 of 0.87 and 0.95, respectively. We also found that our product has great accuracy by
comparing it with DMSP-OLS radiance-calibrated NTL (RNTL) data in 2000, 2004, 2006, and 2010. Generally,
our extended NPP-VIIRS-like NTL data (2000–2018) have an excellent spatial pattern and temporal consistency
which are similar to the composited NPP-VIIRS NTL data. In addition, the resulting product could be easily
updated and provide a useful proxy to monitor the dynamics of demographic and socioeconomic activities for a
longer time period compared to existing products. The extended time series (2000–2018) of nighttime light data
is freely accessible at https://doi.org/10.7910/DVN/YGIVCD (Chen et al., 2020).
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1 Introduction

With the artificial electric light widely equipped in most
buildings and infrastructures, the nighttime light (NTL) re-
mote sensing data have been extensively used to investigate
human activities (Gaston et al., 2013; Falchi et al., 2011;
Elvidge et al., 1997a; Baugh et al., 2013; Li et al., 2018).
Thus far, two NTL data sources, the Defense Meteorologi-
cal Satellite Program Operational Linescan System (DMSP-
OLS) and Suomi National Polar-orbiting Partnership-Visible
Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime
light data, have been increasingly used to monitor and an-
alyze the urban structure and socioeconomic characteristics
of the city during urbanization processes, such as the esti-
mation of the population (Sutton et al., 2001; Xu et al., 2015;
Elvidge et al., 1997b; Yu et al., 2018) and economic develop-
ment (Zhao et al., 2017; Lo, 2002; Ma et al., 2012; Yu et al.,
2015; X. Zhao et al., 2019), identification of energy (Shi et
al., 2018, 2016b) and environmental issues (Ou et al., 2013;
Shi et al., 2016a; Liu et al., 2018; Jiang et al., 2018), and the
detection of urban area (Shi et al., 2014a; Cao et al., 2009;
Zhou et al., 2014; Z. Chen et al., 2019; Zhou et al., 2015)
and its spatial structure (Chen et al., 2015; Lu et al., 2018;
Z. Chen et al., 2017; Yu et al., 2014; Wu et al., 2019).

While both of the two NTL datasets are acknowledged as
good proxies for detecting the dynamics of demographic and
socioeconomic activities at different spatial scales (Yang et
al., 2019), their applications were always limited by their
quality and available time span. The DMSP-OLS NTL annu-
ally composited data can only be collected from 1992 to 2013
(Fig. 1). It has disadvantages, including the lack of on-orbit
radiance calibration, saturation issues, and blooming issues
(Letu et al., 2010; Cao et al., 2019; Elvidge et al., 2014; Levin
et al., 2020), which limit its potential applications. The NPP-
VIIRS NTL data have a better data quality (e.g., higher spa-
tial resolution of∼ 500 m, etc.) and a superior detection abil-
ity, but the short available time span would cause problems
when long-term analysis is required. As shown in Fig. 1, the
monthly composited data are from April 2012 to the present,
and the annual NPP-VIIRS NTL data cover only 2015 and
2016. In addition, DMSP-OLS NTL data record the digital
number (DN), which is substantially different from the ra-
diance value in NPP-VIIRS NTL data. Consequently, these
two sets of NTL data are not comparable and could not be
directly used together. In this light, an extended time series
of nighttime light data with appropriate quality and a bet-
ter consistency is desirable for long-term temporal nighttime
light applications.

In the literature, there have been some studies for extend-
ing NTL data by integrating DMSP-OLS data and NPP-
VIIRS NTL data (Jeswani, 2017). Among them, Shao et
al. (2014), according to the NPP-VIIRS day–night band data
and lunar irradiance model, developed a vicarious radiomet-
ric calibration for DMSP-OLS daily NTL data. However, this
model requires selecting specific events at night as criteria

and is not suitable for the annual DMSP-OLS NTL com-
posite data. Zhu et al. (2017) and Li et al. (2017) both at-
tempted to use a power function for integrating the DMSP-
OLS NTL data and NPP-VIIRS NTL data. Zhu et al. (2017)
fitted the power function by using the cumulated DMSP-OLS
and NPP-VIIRS NTL intensity within each province in China
from 1992 to 2015. Then this power function was applied to
the cumulated NPP-VIIRS NTL intensity to generate simu-
lated DMSP-OLS NTL intensity. The power function from
Li et al. (2017) was fitted from annual DMSP-OLS NTL
data and monthly NPP-VIIRS NTL data. This power func-
tion was then conducted to inter-calibrate these two NTL
sets of data for analyzing Syria’s major human settlement
loss during a war. These power functions both heavily relied
on the strategy of training sample selection and are not easy
to be extended to other world regions or the entire world.
Instead of using power function and traditional DMSP-OLS
stable NTL data, Zheng et al. (2019) conducted a geographi-
cally weighted regression model to fit the radiance-calibrated
DMSP-OLS NTL data and NPP-VIIRS NTL data and then
generated the DMSP-like NPP-VIIRS NTL data for further
research. M. Zhao et al. (2019) proposed a sigmoid func-
tion model with a series of preprocessing procedures to con-
vert NPP-VIIRS NTL data into simulated DMSP-OLS NTL
data from 1992 to 2018 in Southeast Asia. Li et al. (2020)
provided a global DMSP-OLS-like NTL data, called harmo-
nized DMSP-OLS NTL data, through a stepwise calibration
of DMSP-OLS NTL data and a kernel density-based inte-
gration of calibrated DMSP-OLS and NPP-VIIRS NTL data.
However, since NPP-VIIRS NTL data have a better quality
than DMSP-OLS NTL data, the performance of estimating
social-economic index and extracting urban spatial structure
from NPP-VIIRS NTL is much higher (Shi et al., 2014b;
Z. Chen et al., 2017). Therefore, simulating an extended time
series of a NPP-VIIRS-like NTL dataset other than tradi-
tional DMSP-OLS-like NTL data would be very helpful for
further analysis and applications. Given the difficulties men-
tioned above, a new approach to cross-sensor calibrate these
two sets of NTL data is still a challenge.

Recently, deep learning technologies present great poten-
tial for image processing, such as image restoration, image
denoising, and target recognition/classification (Goodfellow
et al., 2016). An auto-encoder model proposed by Hinton
and Zemel (1994) contains a set of recognition weights for
encoding the input data and a set of generative weights for
reconstructing a similar input data. With convolutional neu-
ral networks (CNN), the auto-encoder model becomes more
powerful for learning high-level image features and enhanc-
ing the input image quality (Wang and Tao, 2016; Jain and
Seung, 2009). For instance, Tan and Eswaran (2008) and
Vincent et al. (2010) successfully developed a stacked auto-
encoder network with CNN to reconstruct and denoise hand-
written digital images, respectively. H. Chen et al. (2017) ap-
plied a residual encoder–decoder convolutional neural net-
work (RED-CNN) to enhance a CT image from low dense
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Figure 1. NTL data from DMSP-OLS and NPP-VIIRS.

to normal dense. By analogy, the DMSP-OLS NTL data can
be regarded as the low-density image with some noise, while
the NPP-VIIRS NTL data can be treated as the high-quality
image. According to the successful cases from the literature
mentioned above, it is believed that the auto-encoder model
is promising in converting DMSP-OLS NTL data to NPP-
VIIRS NTL data.

In this study, we developed an auto-encoder (AE) model
including convolutional neural networks to integrate DMSP-
OLS NTL and NPP-VIIRS NTL data and generated an ex-
tended time series of global annual NPP-VIIRS-like NTL
data from 2000 to 2018. The Google Earth Engine (GEE)
platform (Kumar and Mutanga, 2018) and a parallel comput-
ing platform named Compute Unified Device Architecture
(CUDA) of the graphics processing unit (Huang et al., 2015)
were used in the proposed framework. The remainder of this
paper is organized as follows. Section 2 describes the data in-
volved in this study and the illustration of data preprocessing.
The auto-encoder network structure and cross-sensor calibra-
tion are presented in Sect. 3. In Sects. 4 and 5, the extended
time series of global NPP-VIIRS-like NTL data, accuracy
evaluation, spatial pattern, and temporal consistency are dis-
cussed. The findings are summarized in the final section.

2 Data

This study used three datasets (Table 1). The first one is the
enhanced vegetation index adjusted NTL index (EANTLI) of
2000–2013 (Zhuo et al., 2015) as an input dataset in the AE
model. It was derived from the annual calibrated DMSP-OLS
NTL data and Enhanced Vegetation Index (EVI) data pro-
duced by the Moderate Resolution Imaging Spectroradiome-
ter. The second dataset is the composited NPP-VIIRS NTL
data from 2012 to 2018, which was annually summarized
from the monthly NPP-VIIRS NTL data. The 2013 com-
posited NPP-VIIRS NTL data were used as the label data
in the AE model, and the 2012 data were introduced as the
reference for validation. The 2013–2018 data were appended

to the NPP-VIIRS-like NTL data (2000–2012) simulated by
the AE model. The third one is the DMSP-OLS radiance-
calibrated NTL (RNTL) data for the validation procedure.

2.1 Enhanced vegetation index adjusted NTL index
(EANTLI)

Due to the mentioned issues in the annual DMSP-OLS
NTL data, an enhanced vegetation index adjusted NTL in-
dex (EANTLI) of 2000–2013 was used as an input in the
AE model to simulate NPP-VIIRS-like NTL data. EANTLI
was proposed by Zhuo et al. (2015) by fusing the EVI and
DMSP-OLS NTL data. EANTLI not only reduces the satura-
tion problems but also enhances the nighttime light intensity
variations. It can be expressed mathematically in the follow-
ing equation:

EANTLI=
1+ (nNTL−EVI)
1− (nNTL−EVI)

×NTL, (1)

where EVI represents the value from the annual average EVI
value, NTL is the DMSP-OLS NTL intensity, and nNTL in-
dicates the normalized NTL.

In this study, to get an EANTLI dataset with better tem-
poral consistency, the calibrated DMSP-OLS NTL data re-
placed the original DMSP-OLS NTL data in Eq. (1). The
calibrated DMSP–OLS NTL data of 2000–2013 used in this
study were derived from the original annual DMSP-OLS
NTL data via a stepwise calibration (Li and Zhou, 2017).
The calibrated DMSP–OLS NTL data have a better tempo-
ral consistency and a greater agreement with the NPP-VIIRS
NTL data (Li et al., 2020). This calibrated NTL data cover
the same extent (180 to 180◦ longitude and −65 to 75◦ lat-
itude) and spatial resolution (30 arcsec). The data record the
digital number (DN) values with a range from 0 to 63. Zero
indicates no nighttime light intensity (used as background),
while 63 indicates the highest nighttime light intensity.

The 16 d EVI products (MOD13A1) with a spatial reso-
lution of 500 m are involved. To mitigate the sensitivity to
seasonal and interannual fluctuations, the MOD13A1 EVI
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Table 1. The list of data used in this study.

Dataset Source Role

EANTLI Calibrated DMSP-OLS NTL dataa

EVI Datab
Input data in AE model (2000–2013)

Composited NPP-VIIRS NTL data Monthly NPP-VIIRS NTL datac Reference data for validation (2012);
label data in AE model (2013)
part of NPP-VIIRS-like NTL data
(2013–2018)

DMSP-OLS RNTL data3 F12–F15_20000103–
20001229_rad_v4
F14_20040118–20041216_rad_v4
F16_20051128–20061224_rad_v4
F16_20100111–20101209_rad_v4

Reference data for validation
(2000, 2004, 2006, 2010)

Census datad Total population (ID: SP.POP.TOTL) Reference data for temporal consis-
tency validation (2000–2018)

a Accessed from Li et al. (2020) in February 2020. b Accessed from MOD13A1 version 5 based on Google Earth Engine in May 2020. c Accessed from the
Earth Observation Group (EOG) from the Colorado School of Mines (https://payneinstitute.mines.edu/eog/nighttime-lights/, last access: 20 May 2020) in
May 2020. d Accessed from the World Bank (2020) in May 2020.

products were processed as an annual average EVI (Jing et
al., 2015) using Google Earth Engine. It is worth noting that
since the MOD13A1 EVI data are only available from 2000
onwards, we only processed the enhanced vegetation index
adjusted NTL index (EANTLI) of 2000–2013. More details
and advantages of calibrated DMSP–OLS NTL and EANTLI
can be found in Li et al. (2020) and Zhuo et al. (2015).

2.2 Composited NPP-VIIRS NTL data

The monthly NPP-VIIRS NTL data were calibrated and ag-
gregated to the annual NPP-VIIRS NTL data from 2012 to
2018. The composited NPP-VIIRS NTL data of 2012 were
for the validation process, the composited NPP-VIIRS NTL
data of 2013 were for the training process in the AE model,
and the composited NPP-VIIRS NTL data from 2013 to 2018
were appended to the final product as a part of the NPP-
VIIRS-like NTL data.

The version 1 monthly NPP-VIIRS NTL composite data
(vcm version) of April 2012 to December 2018 provided by
the Colorado School of Mines were used to composite an-
nual NPP-VIIRS NTL data. The monthly NPP-VIIRS NTL
data cover the same extent of calibrated DMSP-OLS NTL
data with a finer spatial resolution of 15 arcsec (approxi-
mately 500 m near the Equator) and a more sensitive sensor
with a unit of nanowatts per centimeter squared per steradian
(nW cm−2 sr−1). Since the official annual NPP-VIIRS NTL
data are only available in 2015 and 2016 and they require in-
accessible parameters to repeat the official annual composite
process for other years (Elvidge et al., 2017), we compos-
ited new annual NPP-VIIRS NTL data by using the median
value of 12 NPP-VIIRS NTL monthly sets of composite data
per each pixel. To differentiate with the official annual NPP-

VIIRS NTL data (2015 and 2016), we named our annual
NPP-VIIRS NTL data composited NPP-VIIRS NTL data in
the following sections.

We used the median value instead of the traditional aver-
age or max value because the monthly NPP-VIIRS NTL data
were contaminated by stray light in the mid-to-high latitude
regions during the entire summer, and the contaminated pix-
els are reassigned as 0 in the official monthly composite data
(Elvidge et al., 2017). As the mean value could lower the
NTL intensity and the max value could highlight the abnor-
mal value, the median value could be more reliable than the
mean or max value (Liu et al., 2010). A validation of these
median composited NPP-VIIRS NTL data was conducted as
described in the following section.

According to the correction model of NPP-VIIRS NTL
data proposed by Shi et al. (2014b) and Ma et al. (2014), a
dark background mask and a nighttime light intensity thresh-
old value are required to remove pixels of unstable and ab-
normal nighttime light intensity, respectively. First, the dark
background mask consists of the EANTLI pixels with the
value of 0 and the NPP-VIIRS NTL pixels with an intensity
lower than 1 nW cm−2 sr−1. We then filtered the correspond-
ing annual NPP-VIIRS data by using this dark background
mask. Then, we assumed that the NTL intensities in other ar-
eas do not exceed the maximum NTL intensity in the center
of large cities. If the pixel has a value larger than the maxi-
mum, this pixel was identified as the abnormal pixel and was
adjusted (Shi et al., 2014b). According to the global city rank
from the Globalization and World Cities (GaWC) Research
Network (Taylor et al., 2010), two cities (New York City in
the United States and London in the United Kingdom) with
the alpha++ level and the two largest cities in China (Shang-
hai and Beijing) were selected in this study to capture the

Earth Syst. Sci. Data, 13, 889–906, 2021 https://doi.org/10.5194/essd-13-889-2021

https://payneinstitute.mines.edu/eog/nighttime-lights/


Z. Chen et al.: An extended time series of global NPP-VIIRS-like nighttime light data 893

maximum NTL intensity as the threshold to adjust the ab-
normal pixels for each year. Once an NPP-VIIRS NTL pixel
value is higher than this threshold value, this pixel value will
be replaced by its maximum NTL intensity within its eight
neighbor pixels to eliminate the abnormal value.

2.3 DMSP-OLS radiance-calibrated NTL (RNTL) data

Since the NPP-VIIRS NTL data are only available after
2012, DMSP-OLS RNTL data in 2000, 2004, 2006, and 2010
were selected as reference data to evaluate if our product
has good accuracy during the entire time series. The DMSP-
OLS RNTL data have a radiance calibration based on pre-
flight sensor parameters and are free from sensor saturation
(Feng-Chi et al., 2015). However, this dataset is still unit-
less because the lack of an onboard calibration system for
all DMSP-OLS data results in the imprecise measurement of
the sensor degradation over time. DMSP-OLS RNTL data
have the same extent as the original DMSP-OLS NTL data
with the same spatial resolution (30 arcsec), but they are only
available in specific years. The four selected DMSP-OLS
RNTL data were accessed from Earth Observation Group
(EOG) from the Colorado School of Mines, as shown in Ta-
ble 1.

3 Methodology

As outlined in Fig. 2, after data preprocessing, a four-step
approach was proposed to generate an extended time se-
ries (2000–2018) of NPP-VIIRS-like NTL data from the
EANTLI data and composited NPP-VIIRS NTL data. In
step 1, a modified auto-encoder model was developed. In
steps 2 and 3, the architecture of the auto-encoder model
with CNN was designed, and the cross-sensor calibration
model was trained. In step 4, an extended time series (2000–
2018) of the NPP-VIIRS-like NTL dataset was generated us-
ing the trained model by inputting the 2000–2012 EANTLI
data and appending the composited NPP-VIIRS NTL data
(2013–2018) with postprocessing of the data. Finally, a com-
prehensive accuracy evaluation was conducted.

3.1 The auto-encoder (AE) model

The auto-encoder model was trained by setting the 2013
EANTLI data as input data and the 2013 composited NPP-
VIIRS NTL data as the label. Then, the trained model
was adopted to simulate the NPP-VIIRS-like NTL data by
inputting the 2000–2011 EANTLI data. The auto-encoder
model includes two main parts (encoder and decoder), as
shown in Fig. 3. Let X ∈ Rm×n, Y ∈ Rm×n, and Ŷ ∈ Rm×n be
the annual EANTLI data, composited NPP-VIIRS NTL data,
and simulated NPP-VIIRS-like NTL data. The encoder part
is to learn a deterministic mapping fθ which could transfer
X into a hidden representation (H). A typical deterministic

mapping function can be expressed as

fθ (x)= s (Wx+ b) , (2)

where x ∈ X, and θ represents the parameter set, including
weight matrix (W) and offset (b). In contrast, the traditional
decoder part is to reconstruct X using the high-level features
extracted from the hidden representation (H). This recon-
struction gθ ′ is called the decoder and can be expressed as

Ŷ= gθ ′ (h)= s
(
W′h+ b′

)
, (3)

where h ∈H, and θ ′ represents the parameter set, including
weight matrix (W′) and offset (b′). However, in this study,
the decoder part was modified to map the composited NPP-
VIIRS NTL data (Y) rather than the traditional reconstruc-
tion of X, which means that the problem can be transformed
to build two functions, fθ and gθ ′ , via deep learning technol-
ogy to minimize a specific loss function (e.g., mean square
error):

arcmin
∥∥∥Ŷ−Y

∥∥∥2
. (4)

3.2 The auto-encoder with a CNN architecture design

AE and CNN have both demonstrated excellent performance
on the image feature extractions. In this study, based on the
AE and CNN framework, we proposed a 10-layer network
architecture as the cross-sensor calibration model (Fig. 4).
This model includes five convolutional operations for encod-
ing EANTLI data and then stacks five deconvolutional op-
erations for decoding in symmetry. Because our intention is
to reconstruct images instead of classifying targets, the fully
connected layers in the traditional encoder and decoder parts
were removed from our architecture.

The kernel size of convolutional and deconvolutional oper-
ations adopted in this architecture is 3 by 3 with a stride and
padding of 1 to keep the size of the output layers the same
as the input layers. In the encoder part, the batch normaliza-
tion (BN) operations were added after each convolution layer
to avoid the vanishing or exploding gradient problem (Ioffe
and Szegedy, 2015). The rectified linear unit (ReLU) func-
tion was applied in this architecture as the activation function
after each convolutional and deconvolutional layer except the
last deconvolutional layer. The ReLU function can be formed
as

ReLU(x)=max(0,x) . (5)

The traditional CNN structure always contains more than one
pooling operation to improve its learning efficiency, but these
pooling operations could lose the details of the input images.
To keep as much of the image information as possible, the
pooling processes among all layers were deleted.
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Figure 2. Flow chart of the generation of NPP-VIIRS-like NTL data.

Figure 3. The framework of the auto-encoder model.

3.3 Training auto-encoder model with a CNN
architecture

Considering the balance between computational limita-
tion and efficiency, the EANTLI data and composited
NPP-VIIRS NTL data were severally split into tiles of
256× 256 pixels. Since both sets of NTL data cover the
year 2013, we built a training set of paired tiles, as
P = {(X1,Y1) , (X2,Y2) , . . ., (XN ,YN )}, by using the 2013
EANTLI data and composited NPP-VIIRS NTL data, re-
spectively, where N indicates the number of tiles. Then this
training set was input to train the auto-encoder model de-
signed above by minimizing the loss function L between
composited NPP-VIIRS NTL data (Y) and simulated NPP-
VIIRS-like NTL data (Ŷ). The loss function adopted in this

study is the mean square error function and was then opti-
mized by the Adam algorithm proposed by Kingma and Ba
(2014) in each deep learning step. The loss function can be
formed as

L=
1
N

N∑
n=1

(
Ŷn−Yn

)2
. (6)

3.4 Generating an extended time series of
NPP-VIIRS-like NTL data

We generated the extended time series (2000–2018) of NPP-
VIIRS-like NTL data with two components. First, the trained
AE model was applied to the 2000–2012 EANTLI data to
generate the simulated NPP-VIIRS-like NTL data covering
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Figure 4. The overall architecture of our proposed auto-encoder with CNN.

the same period. Second, we composited annual NPP-VIIRS
NTL data (2013–2018) from monthly data. Via appending
these two components, the extended time series (2000–2018)
of global NPP-VIIRS-like NTL data was generated.

The split tiles of 2000–2012 EANTLI data with the same
size (256 by 256) were input into the trained auto-encoder
model to simulate the NPP-VIIRS-like NTL data. Due to the
fluctuation of EVI data, the input EANTLI data have several
abnormal pixels, which makes the output NTL pixels unrea-
sonable. Thus, postprocessing of the data is required for the
simulated NPP-VIIRS-like data which involves three proce-
dures. Firstly, as it is not reasonable to simulate lights where
there is no stable light source, the EANTLI pixels with DN
value of 0 were extracted as a dark background mask for each
year and overlaid with the simulated NPP-VIIRS-like data
to assign the pixels in the same locations as 0. Meanwhile,
because of the NPP-VIIRS sensor’s detection limitation, the
simulated NTL intensity lower than 1 nW cm−2 sr−1 was also
assigned as 0 (Ma et al., 2014). Finally, to ensure simulated
NPP-VIIRS NTL data have the same temporal change as
the calibrated DMSP-OLS NTL images, the simulated NPP-
VIIRS-like intensity was computed by

SNTL(year, i) =



SNTL(year+1, i)
NTL(year, i) > NTL(year+1, i)
∩SNTL(year, i) < SNTL(year+1, i)

SNTL(year+1, i)
NTL(year, i) < NTL(year+1,i)
∩SNTL(year, i) > SNTL(year+1, i)

SNTL(year, i) otherwise

, (7)

where SNTL(year, i) and NTL(year, i) indicate the simulated
NPP-VIIRS-like intensity and calibrated DMSP-OLS NTL
intensity of the ith pixel in the year (from 2000 to 2012).

4 Results

4.1 Training of the auto-encoder model with CNN

In the training process of the AE model, the learning rate in
this study was initialized as 1×10−4 and optimized by using
the Adam algorithm. For weight initialization, this study em-
ployed the method proposed by He et al. (2015) instead of the
traditional random weights from Gaussian distribution. The-
oretically, the AE model was iteratively trained until the re-
construction loss became stable. In this study, the loss value
tended to be stable around 200 when the number of train-
ing iterations reached 4000, which implies that an increase
in iterations beyond 4000 cannot further improve the model
precision.

4.2 Accuracy evaluation

According to the pixel-level and city-level validations be-
tween the extended NPP-VIIRS-like NTL data and compos-
ited NPP-VIIRS NTL data of 2012 (Fig. 5), our result is
close to the composited NPP-VIIRS NTL data at both spa-
tial scales. At the pixel level, 150 000 random pixels were
selected as validation points, and the coefficient of determi-
nation (R2) between our results and the composited NPP-
VIIRS NTL data of 2012 was 0.87 with a root mean squared
error (RMSE) of 2.96 nW cm−2 sr−1 at the significant level.
The dots were colored based on their kernel density, which
follows the color ramp of the density scale. A warmer col-
ored dot represents a higher density. It can be observed that
the dots were mostly clustered around the low NTL inten-
sity (the origin of the coordinates). For the city-level valida-
tion, the total NTL intensity for each city (i.e., the sum of all
pixels’ NTL intensities within each of the 40 000 cities) was
adopted as the variable, and the results showed that the ex-
tended NPP-VIIRS-like NTL data have a better performance
with an R2 of 0.94 and a RMSE of 3024.62 nW cm−2 sr−1
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Figure 5. The comparison with kernel density between the global composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL
data in 2012 (unit: nW cm−2 sr−1) (a) at the pixel and (b) city levels. The solid line denotes the 1 : 1 line, and N is the number of sample
points (cities).

(Fig. 5b). Most of the dots in these two scatter plots are
around the non-bias (1 : 1) line (red line in Fig. 5), which
implies that the extended NPP-VIIRS-like NTL data have a
positive 1 : 1 relationship with the composited NPP-VIIRS
NTL data.

Among the global validation points, we also selected six
subsets within six countries (United States, Italy, China,
Brazil, South Africa, and Australia) and found that the ac-
curacy in these countries is acceptable and has no signifi-
cant spatial variation (Fig. 6). Brazil has the highest accuracy
(R2
= 0.86), followed by the United States (R2

= 0.84). The
rest of the countries all have an accuracy higher than 0.7.
Australia has anR2 of 0.79, while Italy and China have anR2

of 0.76 and 0.72, respectively. South Africa also has a good
R2 of 0.70. In particular, the RMSE of each sample country
is very small (from 1.67 to 5.72), which means our results
are very similar to the calibrated NPP-VIIRS NTL intensity
at the pixel level.

Figure 7 shows that our extended NPP-VIIRS-like NTL
data have a strong agreement with the DMSP-OLS RNTL
data in the same 40 000 cities in 4 years (2000, 2004, 2006,
and 2010), which implies that the AE model is suitable for
simulating NPP-VIIRS-like NTL data during the entire pe-
riod. Before 2012, the composited NPP-VIIRS NTL data are
not available for the validation, but the DMSP-OLS RNTL
data are accessible in some separate years. To validate our
results before 2012, we have to use the DMSP-OLS RNTL
data as the reference data. The DMSP-OLS RNTL data were
calibrated by using preflight sensor calibrations and have no
actual radiance value. Thus, this validation was conducted
at the city level, and the total NPP-VIIRS-like NTL intensity
and DMSP-OLS RNTL intensity of each city were calculated
and scattered (Fig. 7). In these 4 years, all the R2 values are
higher than 0.75 and demonstrate our model does work for

this entire time series. Note that the DMSP-OLS RNTL data
still have interannual biases due to sensor degradation and
other sources (Feng-Chi et al., 2015), resulting in the differ-
ent slopes of trend lines in 4 years.

Finally, a comparison between the composited NPP-
VIIRS NTL data and the official annual NPP-VIIRS NTL
data in 2015 was performed based on 5000 random valida-
tion pixels, and the result indicated the former is close to the
latter (see Fig. 8). In other words, using the median value to
composite annual NPP-VIIRS NTL data is reasonable and
appropriate. In Fig. 8a, the similar distribution of green bars
and blue bars in these two histogram plots indicate that the
pixel numbers of composited and official annual NPP-VIIRS
NTL data are similar within each bin at 10 nW cm−2 sr−1.
The result illustrates that these two datasets have a signifi-
cant statistic similarity. Meanwhile, the scatter plot between
these two NTL intensities at the pixel level (Fig. 8b) showed
that our composited NPP-VIIRS NTL data have a strong lin-
ear relationship (R2

= 0.85 and the slope is close to 1) with
the official annual NPP-VIIRS NTL data. Both validation re-
sults proved that the composited annual NPP-VIIRS NTL
data generation model based on median values is a reason-
able solution.

4.3 The extended time series (2000–2018) of global
NPP-VIIRS-like NTL data

Figure 9 shows the global spatial distribution of extended
NPP-VIIRS-like NTL in 2012, including three enlarged sub-
plots of New York, Rome, and Shanghai. From each enlarged
subplot (Fig. 9b–d), our results could provide more informa-
tion for urbanization evaluation, such as the road network and
urban spatial structure. In addition, our product can be used
to explore the differences in NTL intensity among cities. For
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Figure 6. The comparison between composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL data in 2012 (unit:
nW cm−2 sr−1) at the pixel level in six countries. The solid line denotes the 1 : 1 line, and N is the number of sample points (cities).

Figure 7. The comparison between the annual DMSP-OLS RNTL intensity (DN Value) and extended NPP-VIIRS-like NTL intensity (unit:
nW cm−2 sr−1) at the city level in (a) 2000, (b) 2004, (c) 2006, and (d) 2010.
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Figure 8. A comparison of composited and official annual NPP-VIIRS NTL data via (a) histograms and (b) scatter plot with kernel density.

Figure 9. The extended NPP-VIIRS-like NTL data (unit: nW cm−2 sr−1) with three enlarged subplots of New York, Rome, and Shanghai
in 2012 and the dynamics of NTL intensity from 2000 to 2015 by longitude and latitude (1◦ bins).
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example, these three enlarged subplots clearly show that New
York had higher NTL intensity than either of the other two
cities.

The dynamics (2000–2018) of extended NTL intensity
were also plotted in Fig. 9e and f. At the global scale, higher
NTL intensities clustered in the region from 20 to 45◦ N,
while those with lower values were located in the South-
ern Hemisphere. The region from 30 to 45◦ N had no sig-
nificant change in NTL intensity during the 2000–2010 pe-
riod but had a great enhancement after 2010. For the region
from 15 to 30◦ N, the NTL intensity was increasing during
the 15 years, which was mostly caused by China’s develop-
ment. In the longitudinal direction, one of the NTL intensity
peaks within the Western Hemisphere region was mostly lo-
cated in the United States (from 70 to 100◦W). In the Eastern
Hemisphere region, there were three significant peaks in Eu-
rope, the Middle East, and China (from west to east). The
temporal changes in NTL intensity between 2000 and 2005
were generally slighter than those between 2005 and 2010,
but from 2010 to 2015, the blue part (2015) in Fig. 9e and f
was larger than the yellow part (2010), which implies that the
NTL intensity strengthened almost all over the world. This
result was highly associated with the global economic recov-
ery after the global financial crisis of 2007–2008 (W. Chen
et al., 2019).

Figure 10 reports the trend in NTL intensity from our
extended NPP-VIIRS-like NTL data within each continent.
Globally, the NTL intensity had more than doubled during
the period from 2000 to 2018, from 60 million to almost
150 million nW cm−2 sr−1. At the regional scale, Asia and
North America had the most intense NTL intensity increase
and seemed to be the main contributors to global urbaniza-
tion. As the second group, both Europe and South Amer-
ica had a stable but slow increase. In Oceania and Africa,
the NTL intensity had no obvious growth, especially before
2010.

5 Discussion

5.1 Evaluation of spatial patterns of extended
NPP-VIIRS-like NTL data in 2012

The extended NPP-VIIRS-like NTL data (Fig. 11.IV) and the
composited NPP-VIIRS NTL data (Fig. 11.III) show signif-
icant spatial variations in NTL intensity and less saturation
and blooming problems than the calibrated DMSP-OLS data
and EANTLI data (Fig. 11.I and II). In Fig. 11, the calibrated
DMSP-OLS data have severe saturation and blooming prob-
lems in all three selected cities: Shanghai, Los Angeles, and
Cape Town. By fusing the calibrated DMSP-OLS data and
EVI data, the quality of the produced EANTLI data has a
significant improvement, but it is still suffering a blooming
problem. For example, in the periphery of the urban area,
many pixels that are supposed to be dark have low NTL in-
tensity, which makes the lit areas much larger than the reality.

Compared to the EANTLI data, the composited NPP-VIIRS
NTL data and our extended NPP-VIIRS-like NTL data have
already obtained a great improvement. Firstly, the main road
network can be easily found from the composited or ex-
tended NPP-VIIRS NTL data, which indicates that these two
datasets can provide more spatial details of the NTL inten-
sity. Secondly, the urban hierarchy structure is much clearer,
and each lit area can be identified due to the effective elimi-
nation of the blooming problem.

The fluctuation of extended NPP-VIIRS-like NTL data
(solid or dashed line) agrees well with that of the compos-
ited NPP-VIIRS NTL data (gray part) from the six profiles
across Shanghai, Los Angeles, and Cape Town in Fig. 12. In
these three cities, the general trends of extended NPP-VIIRS-
like NTL data are consistent with the those of composited
NPP-VIIRS NTL data, especially within the urban core area,
even though these extended NPP-VIIRS-like NTL profiles
showed a small overestimation. Parts of the extended NPP-
VIIRS-like NTL profiles in Shanghai have an underestima-
tion when compared with the composited NPP-VIIRS NTL
data. This situation mostly appeared within the urban periph-
ery region (e.g., ID: 80–90 in Fig. 12c) and could be caused
by some extreme situations, such as dramatically unbalanced
development which leads to specific pixels with an abnor-
mally high NTL intensity, while the surrounding pixels have
a relative low NTL intensity. Under such a situation, the sur-
rounding pixels might lower the centric pixel’s NTL intensity
when the convolutional and deconvolutional operations were
conducted.

5.2 Evaluation of temporal consistency of the time
series (2000–2018) of NPP-VIIRS-like NTL data

We compared the extended time series of NPP-VIIRS-like
NTL data with the time series of census data and analyzed
the range of the NTL intensity change near the temporal join-
ing point (that is, the final year of simulated NPP-VIIRS-like
NTL data and the first year of the composited NPP-VIIRS
NTL data; see the rectangular box in Fig. 14). The results
show that the extended time series of NPP-VIIRS-like NTL
data has a consistent temporal trend at both global and re-
gional scales.

Firstly, our NPP-VIIRS-like NTL data have a similar trend
with the population from 2000 to 2018 (see Fig. 13). The
census data of the entire world and seven countries were
collected from World Bank Open Data (Table 1). A linear
regression model was conducted to compare the population
and total NTL intensity. The R2 at the global scale is 0.84
(Fig. 13a), and the R2 of seven selected countries (Fig. 13b)
ranges from 0.65 (in the United States and France) to 0.90 (in
China). This result illustrated that the NPP-VIIRS-like NTL
data (2000–2018) have a reasonable temporal trend. Also, in
China and Afghanistan, the extended NTL data have a better
performance (R2 is larger than 0.8) of population estimation.
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Figure 10. The dynamics of total NTL intensity from 2000 to 2018 in each continent.

Figure 11. Spatial patterns of NTL intensity in 2012 of (I) calibrated DMSP-OLS data, (II) EANTLI data, (III) composited NPP-VIIRS
NTL data, and (IV) our extended NPP-VIIRS-like NTL data in three cities (a) Shanghai, China, (b) Los Angeles, United States, and (c) Cape
Town, South Africa.

Secondly, our extended time series (2000–2018) of NPP-
VIIRS-like NTL data has a smooth temporal change even
near the temporal joining point (the year of 2012) between
the simulated NPP-VIIRS-like NTL data and composited
NPP-VIIRS NTL data. In Fig. 14a, the total NTL intensity
and lit pixels (NTL intensity greater than 1 nW cm−2 sr−1)
were measured at the global scale from 2000 to 2018. The

total NTL intensity and lit pixel increased steadily in the first
10 years (2000–2010). From 2010 to 2014, the changes in
total NTL intensity and lit pixels both increased much faster
than before but were still stable, and no sudden jumps were
found during the period (the rectangular box in Fig. 14). In
the last 4 years (2014–2018), the increases in total NTL in-
tensity became small and slow, while the lit pixel has a “U”
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Figure 12. Profiles of composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL intensity (unit: nW cm−2 sr−1) across (a,
b) Los Angeles, United States, (c, d) Shanghai, China, and (e, f) Cape Town, South Africa.

Figure 13. Comparison of total population with total NTL intensity for (a) the globe and (b) seven representative countries.
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Figure 14. Temporal trend of extended time series (2000–2018) NPP-VIIRS-like NTL data for the total NTL intensity and lit pixels at (a) the
global scale and within six selected countries: (b) United States, (c) China, (d) Italy, (e) Brazil, (f) South Africa, and (g) Australia.

shape with the peak in 2017. Consequently, our NPP-VIIRS-
like NTL data source change from simulated NPP-VIIRS-
like NTL data (2000–2012) to composited NPP-VIIRS NTL
data (2013–2018) does not cause any unreasonable change in
NTL intensity during the entire period at the global scale.

As shown in Fig. 14b–g, the number of lit pixels within
each of the six selected countries has a stable trend, while
the total NTL intensity has some fluctuations before 2010.
From 2007 to 2010, an obvious reduction in NTL intensity
was apparent in these six selected countries and even all over
the world. After 2010, most countries had recovered and had
an increase in the NTL intensity. This temporal change in
NTL intensity is consistent with the worldwide Great Re-
cession (2007–2010). This result proves that our extended
NPP-VIIRS-like NTL data can truly detect the NTL intensity
growth or reduction within a country. Meanwhile, we also
found that each country had a different fluctuation range dur-
ing the Great Recession. For example, as shown in Fig. 14b
and c, the United States had a sharp decrease, but the decre-

ment in China is slight, which is similar to the argument pro-
vided by Wen and Wu (2019) that China is able to withstand-
ing the Great Recession. It means that our product has the
capability of revealing the details of NTL intensity change.

5.3 Limitations

The artificial light from the oceans is not a stable light source
(e.g., ship, offshore oil well) and could bring about a mis-
understanding during the AE model training. Hence, a land
area mask was applied to remove the ocean parts even though
this procedure could reduce the ability to detect information
from oceans, such as fishery (Waluda et al., 2008) and boats
(Elvidge et al., 2015). Although our experiments, e.g., for
population estimation, have indicated that the NPP-VIIRS-
like NTL data have great potential in urban research, more
applications are still required to promote this dataset.

Another issue is about the composited NPP-VIIRS NTL
data generation based on its median value. We found some
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abnormal pixels which were not lit in the 2012 median
annual NPP-VIIRS NTL data. This is because the NPP-
VIIRS NTL monthly composite data were only available
from April 2012, and the NTL data in the high latitude re-
gions have been affected (Román and Stokes, 2015; Levin,
2017; Román et al., 2018). In summary, this missing data
(from January to March) and the stray light in summer make
the median NTL intensity become biased (lower than the
usual level or even becoming zero). Thus, the cities or pixels
with no lit issues were removed in the validation procedure.

In this study, we are more concerned about the statistical
relationship between DMSP-OLS NTL data and NPP-VIIRS
NTL data. However, the land cover and land use data could
be useful to mitigate the underestimations in Fig. 12c because
these data can help distinguish the extreme development sit-
uation. Meanwhile, introducing physical parameters during
the preprocessing of data could probably further improve our
extended NTL product because it has been proven that phys-
ical parameters such as viewing angle (Li et al., 2019) and
lunar zenith angle (Román et al., 2018) could influence the
NTL data quality. However, due to the limitation of data ac-
cessibility, the land cover and land use data and physical pa-
rameters were not involved in this study.

6 Code availability

The source code of the AE architecture for this product is
available at https://doi.org/10.7910/DVN/JRM2XE (Chen et
al., 2021).

7 Data availability

The extended time series (2000–2018) of nighttime light
data in the WGS84 coordinate system with a spatial res-
olution of 15 arcsec (∼ 500 m) can be freely accessed at
https://doi.org/10.7910/DVN/YGIVCD (Chen et al., 2020),
which is stored as a zip file (∼ 50 MB) for each year. By un-
compressing the zip file, the annual NPP-VIIRS-like NTL
data are provided in GeoTIFF format (∼ 9 GB). These data
can be processed using open-source software such as QGIS.
We also included two data tables as Microsoft Excel XLSX
files. One contains 40 000 sample points for comparing com-
posited and official annual NPP-VIIRS NTL data in Fig. 8,
and the other is the data used for the temporal trend analysis
of our extended time series of NPP-VIIRS-like NTL data in
Fig. 14.

8 Conclusions

An extended time series (2000–2018) of NPP-VIIRS-like
NTL data was produced in this study. This product includes
two parts: the simulated NPP-VIIRS-like NTL data (2000–
2012) from DMSP-OLS NTL data and the composited an-
nual NPP-VIIRS NTL data (2013–2018). Compared to the

composited NPP-VIIRS NTL data in 2012, our extended
NPP-VIIRS-like NTL data show good accuracy globally at
the pixel (R2: 0.87, RMSE: 2.96) and city (R2: 0.95, RMSE:
3024.62) levels. At the regional scale, all countries show an
acceptable accuracy. The R2 ranges from 0.70 to 0.86, and
the RMSE is lower than 6 nW cm−2 sr−1. DMSP-OLS RNTL
data in 2000, 2004, 2006, and 2010 were compared with the
extended NPP-VIIRS-like NTL data. All R2 are higher than
0.75, which implies that our model is reliable. These evalu-
ations indicate that our extended NPP-VIIRS-like NTL data
have a reasonably good and spatially different quality.

Generally, our extended time series (2000–2018) of NPP-
VIIRS-like NTL data shows a similar spatial pattern as the
composited NPP-VIIRS NTL data with good quality regard-
ing the spatial pattern and temporal consistency. The tempo-
ral trend agrees with the population change and a global eco-
nomic event (i.e., the Great Recession). The NTL intensity of
our product does not fluctuate around neighboring years be-
tween the simulated NPP-VIIRS-like NTL data (2000–2012)
and composited NPP-VIIRS NTL data (2013–2018).

The extended NPP-VIIRS-like NTL data from 2000 to
2018 can be used to better evaluate and analyze the dynamics
of demographic and socioeconomic characteristics during ur-
banization. For example, we can investigate the urban spatial
structure, even the road network and its temporal dynamic,
for a long time period. Our proposed NTL dataset is avail-
able until 2018 so far, but it can be extended in future when
the monthly NPP-VIIRS NTL data for the whole year (e.g.,
2019) become available.
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