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Abstract. After more than 10 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) European mis-
sion is still a unique, high-quality instrument for providing soil moisture over land and sea surface salinity
(SSS) over the oceans. At the Barcelona Expert Center (BEC), a new reprocessing of 9 years (2011–2019)
of global SMOS SSS maps has been generated. This work presents the algorithms used in the generation of
BEC global SMOS SSS product v2.0, as well as an extensive quality assessment. Three SMOS SSS fields are
distributed: a high-resolution level-3 product (with DOI https://doi.org/10.20350/digitalCSIC/12601, Olmedo
et al., 2020a) consisting of binned SSS in 9 d maps at 0.25◦× 0.25◦; low-resolution level-3 SSS computed
from the binned salinity by applying a smoothing spatial window of 50 km radius; and level-4 SSS (with DOI
https://doi.org/10.20350/digitalCSIC/12600, Olmedo et al., 2020b) consisting of daily 0.05◦× 0.05◦ maps that
are computed by multifractal fusion with sea surface temperature maps. For the validation of BEC SSS products,
we have applied a battery of tests aimed at the assessment of quality of the products both in value and in structure.
First, we have compared BEC SSS products with near-to-surface salinity measurements provided by Argo floats.
Secondly, we have assessed the geophysical consistency of the products characterized by singularity analysis,
and the effective spatial resolutions are also estimated by means of power density spectra and singularity density
spectra. Finally, we have calculated full maps of SSS errors by using correlated triple collocation. We have com-
pared the performance of the BEC SMOS product with other satellite SSS and reanalysis products. The main
outcomes of this quality assessment are as follows. (i) The bias between BEC SMOS and Argo salinity is lower
than 0.02 psu at a global scale, while the standard deviation of their difference is lower than 0.34 and 0.27 psu for
the high- and low-resolution level-3 fields (respectively) and 0.24 psu for the level-4 salinity. (ii) The effective
spatial resolution is around 40 km for all SSS products and regions. (iii) The results from triple collocation show
the BEC SMOS level-4 product as the product with the lowest estimated salinity error in most of the global
ocean and the BEC SMOS high-resolution level-3 as the one with the lowest estimated salinity error in regions
strongly affected by rainfall and continental freshwater discharge.

1 Introduction

The European Space Agency (ESA) Soil Moisture and Ocean
Salinity (SMOS) satellite was launched in November 2009,
carrying the first orbiting radiometer that collects regular
and global observations from space of two Essential Cli-
mate Variables (ECV) according to the Global Climate Ob-
serving System: sea surface salinity (SSS) and soil moisture

(SM) (Font et al., 2010; Kerr et al., 2010; Mecklenburg et al.,
2009). After more than 10 years in orbit, the SMOS mission
has been a success in terms of both technology and science,
providing SSS and SM data derived from the SMOS mea-
surements (Reul et al., 2020; Kerr et al., 2016) (and refer-
ences therein).
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The Barcelona Expert Center (BEC) was created in 2007
to support the Spanish contribution to SMOS mission activ-
ities. Since the beginning, BEC’s goals have been to con-
tribute to the quality assessment and the development of
algorithms for the retrieval of geophysical variables from
SMOS data as an ESA Level 2 Ocean Salinity Expert Sup-
port Laboratory and to the calibration and validation activi-
ties as a Level 1 Expert Support Laboratory. In recent years,
BEC has developed a SMOS SSS internal processing chain
that generates SSS maps from SMOS raw data (level 0) to
levels 3 and 4 (L3 and L4 added-value SSS maps), thus
allowing the integration of improvements in the different
levels of the processing. The resulting products are freely
distributed through a SFTP service (http://bec.icm.csic.es/
bec-ftp-service/, last access: 1 March 2021).

In this work we present the new reprocessing of the BEC
SMOS SSS global L3 and L4 products v2.0 for a 9-year
period comprising 2011 to 2019, which comes with an im-
provement of the currently used methodology. This new re-
processing is focused on four aspects.

– Improving salinity gradients. A new filtering criterion
that is more geophysically consistent has been intro-
duced.

– Improving the latitudinal and seasonal biases. An em-
pirical correction to reduce the latitudinal and seasonal
biases that affected the previous version of the product
(Olmedo et al., 2019b) has been applied.

– Improving the quality of the acquisitions close to the
coast. The interpolation scheme and also the level-4 fu-
sion techniques have been adapted to preserve small-
scale gradients close to the coast.

– Providing an estimate of the sea surface salinity uncer-
tainty. An explicit expression to propagate the errors
from brightness temperature uncertainties to the final
SSS product has been introduced.

To assess the performance of the BEC SMOS SSS prod-
uct v2.0, the complete 9-year time series of SSS maps is
first compared with the salinity measurements provided by
Argo. Secondly, an extensive battery of validation methods
is applied to 1 year (2017) of data, and the results are com-
pared with three other satellite and one reanalysis SSS prod-
ucts. Those methods are (i) statistics of the differences with
Argo salinity match-ups; (ii) singularity analysis to assess
the geophysical consistency of the data (Turiel et al., 2008b);
(iii) spectral analysis to analyze the effective spatial resolu-
tion of each product, using power density spectra (PDS) and
singularity power spectra (SPS) (Hoareau et al., 2018b); and
(iv) triple collocation analysis to estimate the errors of the
different products (González-Gambau et al., 2020).

This paper is structured as follows. Section 2 describes
how the BEC SMOS SSS product v2 is generated: Sect. 2.1

introduces the data sets used in the generation of the prod-
uct and Sect. 2.2 describes the algorithm itself. Section 3
presents the quality assessment of the data: Sect. 3.1 presents
the different data sets used for comparison and validation,
Sect. 3.2 describes the applied methods and associated met-
rics, and Sect. 3.3 presents the results of the validation exer-
cise. Section 4 shows where the BEC SMOS SSS global L3
and L4 products are available. Finally, the conclusions are
summarized in Sect. 5.

2 Generation of the BEC SMOS SSS global product
v2.0

2.1 Data sets used in the generation of the product

2.1.1 SMOS brightness temperature

The brightness temperatures (TBs) obtained from
the SMOS MIRAS L1B v620 product provided by
ESA are used as the input for the SMOS SSS re-
trieval. This data set is freely available at https:
//earth.esa.int/eogateway/catalog/smos-science-products?
text=SMOS+Britghness+Temperatures (last access:
1 March 2021).

The L1B v620 product contains the Fourier coefficients
of the measured brightness temperatures. Starting from this
product, using ESA’s Earth Observation Customer Furnished
Item (EOCFI) orbit propagation libraries (ESA, 2014) and
following a similar procedure to the one used in the oper-
ational SMOS level-1 processor chain (Deimos, 2014), the
measured TBs are obtained in the antenna reference frame
(ARF). The unique difference from the standard processor
is the number of points contained per snapshot. The opera-
tional processor uses, at antenna level, a hexagonal grid of
128× 128 points. The projection of this antenna grid into
the ground provides a nominal resolution of about 15 km at
boresight. This resolution is more than twice the theoretical
SMOS finer resolution (McMullan et al., 2008). Thus, we
reduce the computational cost without actually losing infor-
mation by using an antenna hexagonal grid of 64×64 points
for a 30 km resolution at boresight.

2.1.2 Sea surface temperature

The Operational Sea Surface Temperature and Sea Ice
Analysis (OSTIA) (see Donlon et al., 2012) maps are used
as a template in the generation of the Level 4 SSS v2.0
products (see Sect. 2.2.7). OSTIA sea surface tempera-
ture (SST) results from the combination of satellite data
provided by the Group for High Resolution Sea Surface
Temperature (GHRSST) project, combined with in situ
observations. The analysis product is obtained using a
variant of the optimal interpolation (OI) method described
in Martin et al. (2007) at a spatial resolution of 0.05◦

(approx. 5 km) and daily frequency. OSTIA SST data
are provided in netCDF format every day and are freely
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available at the Copernicus Marine Environment Monitoring
Service (CMEMS) service desk at the following link:
https://resources.marine.copernicus.eu/?option=com_csw&
task=results?option=com_csw&view=details&product_
id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001
(last access: 1 March 2021).

2.1.3 Auxiliary data used in the salinity retrieval

The auxiliary data used for the SSS retrieval are provided
by the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Sabater and De Rosnay, 2010) and
https://smos-diss.eo.esa.int/oads/access/collection/AUX_
Dynamic_Open (last access: 1 March 2021). For each
satellite overpass, an ECMWF auxiliary file co-located
in time and space with SMOS is provided by ESA. The
following fields are used for the retrieval: sea ice cover,
sea surface temperature, rain rate, wave model, 10 m wind
speed, 10 m neutral equivalent wind (zonal and meridional
components), significant height of wind waves, 2 m air
temperature, surface pressure, and vertically integrated total
water vapor (Zine et al., 2007).

We have used as multiyear salinity reference the annual
climatological salinity value provided by the World Ocean
Atlas 2013 (WOA2013) at 0.25◦× 0.25◦ (Zweng et al.,
2013). The SSS provided by WOA2013 is taken as the refer-
ence value to be added to SMOS salinity anomalies (see sec-
tion 2.2.1). We use the average decadal product, which is ac-
cessible at the National Oceanographic Data Center (https://
www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl, last ac-
cess: 1 March 2021). We have also used the monthly clima-
tology at 0.25◦× 0.25◦ provided by WOA2013 for the cor-
rection of latitudinal and seasonal biases (see Sect. 2.2.5).

2.2 Algorithm description

2.2.1 Retrieval of SMOS debiased sea surface salinity
anomalies

The debiased non-Bayesian (DNB) retrieval approach pro-
posed in Olmedo et al. (2017) has been used to retrieve the
9 years (2011–2019) of SMOS SSS maps. This methodology
consists of retrieving a single value of SSS from each first
Stokes brightness temperature (TB) measurement, which we
refer to as raw SSS retrieval. These raw SSS values are
then appropriately classified, filtered, and combined to build
global SSS maps.

For the retrieval of raw SSS, the difference between the
first Stokes TB measured and modeled is optimized as a func-
tion of the salinity value. A geophysical forward model links
the modeled TB to the SSS. Besides the dielectric constant
model proposed by Klein and Swift (1977), which relates the
TB at flat sea with the SSS and SST, the forward model ac-
counts for the contribution to TB of the sea surface roughness
(Guimbard et al., 2012), the reflected emission of the atmo-
sphere, the reflection on sea surface of the galactic emission

(Tenerelli et al., 2008), and the sun glint (Reul et al., 2007).
All these contributions are taken into account in the salinity
retrieval.

All the raw salinity retrievals over 9 years (sraw
n with

n= 1, . . .,N where N is the total number of raw retrievals
in 9 years) are classified as a function of the satellite over-
pass direction (d), latitude (ϕ), longitude (λ), across-track
distance (x), and incidence angle (θ ). The underlying hy-
pothesis of this approach is that the systematic errors (i.e.,
those which are independent of time) are the same for all the
sraw
n values that are acquired under each fixed condition γ =

(ϕ,λ,d,x,θ ). Therefore, the systematic errors are the same
for all the retrievals in the set {sraw

n (γ )}with n= 1, . . .Nγ and
Nγ the number of retrievals during 9 years with that specific
value of γ .

We have defined an estimator of the “typical value” or
central estimator of the ensemble {sraw

n (γ )} that we will call
SMOS-based climatology, sc(γ ). We want, by construction,
this SMOS-based climatology to represent the sum of a mul-
tiyear mean salinity value (which is a geophysical property)
and the bias associated with that particular tuple γ (which
is of instrumental origin and we want to remove). Therefore,
the SMOS-based climatologies can be used for correcting all
the retrievals in the set {sraw

n (γ )}. We have used the same cen-
tral estimator as the one proposed in Olmedo et al. (2017),
that is, the mean around the mode in an interval of ±σγ (the
standard deviation of {sraw

n (γ )}).
Then, we have computed SMOS debiased SSS anomalies

({s′n(γ )}) by subtracting the corresponding SMOS-based cli-
matology sc(γ ) from each individual sraw

n (γ ).
Finally, the debiased salinity value for the acquisition con-

ditions γ , sn(γ ), is computed by adding an external multiyear
salinity reference to the s′n(γ ); in this case, we have used the
annual salinity field provided by WOA2013.

The retrieval algorithm proposed above effectively re-
moves local biases, especially those produced by the land–
sea contamination and artifacts produced by permanent radio
frequency interference (RFI) sources.

2.2.2 Estimation of SSS error

Each value of raw salinity sraw
n can be associated with a re-

trieval error, which is computed according to the following
equation:

εn =
1
2

√
(σH
n )2+ (σV

n )2

∂In
∂s

, (1)

where the σH
n and σV

n are the radiometric resolution for the
horizontal (H) and vertical (V) polarizations of the brightness
temperature, respectively (which are contained in the ESA
L1B product), and ∂In

∂s
is the derivative of the modeled first

Stokes divided by 2 (In) with respect to the salinity (which
can be estimated numerically).
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2.2.3 Filtering criteria

Filtering out degraded measurements in the generation of the
SMOS SSS maps is a key aspect. Without applying any fil-
ter, the error may become too large for many scientific ap-
plications; on the other hand, when the filtering criteria are
too strict, the coverage of maps may be dramatically de-
creased, and part of the geophysical variability may be lost.
In Olmedo et al. (2017), filtering criteria based on the statis-
tical properties of {sraw

n (γ )} were proposed, and the resulting
maps led to an almost complete coverage with an acceptable
salinity accuracy (see Olmedo et al. (2017) for more details).
We revisit these filtering criteria in order to decrease the er-
ror of the retrieved salinity and improve the description of
salinity gradients in highly dynamic regions.

We apply the following filtering criteria.

– Basic filtering. Any sraw
n (γ ) out of the range of [0, 50]

is not considered part of the corresponding set of valid
{sraw
n (γ )}.

– Discarding some full sets of {sraw
n (γ )}. For a given value

of γ , we consider a particular set of {sraw
n (γ )} valid only

when

– it contains more than 100 salinity retrievals,
– the standard deviation of its distribution is lower

than 10 psu,
– the absolute value of the skewness of the distribu-

tion is lower than 1, and
– the kurtosis of the distribution is greater than 2.

These filtering criteria are the same as the ones intro-
duced in Olmedo et al. (2017). The only difference is
that now the criterion corresponding to the kurtosis is
more relaxed. In Olmedo et al. (2017) the set {sraw

n (γ )}
was considered not valid and thus discarded when the
kurtosis of the distribution was larger than 4. Now we
filter only platykurtic distributions but not leptokurtic
ones. Regarding the impact of the filtering criterion cor-
responding to the skewness, this is the same as the one
proposed in Olmedo et al. (2017). This criterion aims
at discarding ocean regions affected by RFI contami-
nation. Although some geophysical events tend to be
not symmetric and fresh, such as continental discharge
and ice melting, and this leads to negative skewed salin-
ity distributions, the typical skewness in these cases is
around −0.5. The skewness values lower than −1 typ-
ically correspond to distributions that are affected by
non-geophysical phenomena. However, we continue re-
visiting this criterion, and in the next version of the
product we will probably analyze the impact of not in-
cluding this criterion of the skewness.

– Outlier criteria. We discard specific salinity retrievals
sraw
n (γ ) when the corresponding SMOS debiased salin-

ity anomaly (s′n(γ )) is larger than σγ . Since we want to

keep the geophysical variability, we include in the cri-
terion a threshold defined by 5σϕ,λ, with σ 2

ϕ,λ being the
geophysical variance of the salinity expected at the grid
point (ϕ,λ). This is new with respect to the criterion
proposed in Olmedo et al. (2017). We discard the salin-
ity retrievals that satisfy

|s′n(γ )| = |sraw
n (γ )− sc(γ )|>

√
σ 2
γ + 25σ 2

ϕ,λ. (2)

In order to estimate σ 2
ϕ,λ we use SMOS 9 d salinity maps

that are computed from a more relaxed filtering criteria,
which is

|sraw
n (γ )− sc

γ |< 2σγ . (3)

Notice that σγ is always greater than σϕ,λ, because σγ
contains the variability corresponding to the salinity un-
certainty and the salinity geophysical variability (see
Olmedo et al., 2019a). Generally, in the open ocean,
σϕ,λ is small, so Eq. (2) is dominated by σγ . There-
fore, in the open ocean, the new and the previous fil-
tering criteria have similar performances. However, in
those regions with strong salinity dynamics, such as
coastal regions, σϕ,λ is not small, and its contribution
in Eq. (2) becomes dominant. Therefore, in those re-
gions with strong salinity dynamics, the new filtering
criterion is more relaxed and thus allows better capture
of the salinity variability.

– Temporal and geophysical consistency. We temporally
and spatially collocate all the debiased retrievals sn(γ )
in 9 d maps with the fixed grid at 0.25◦×0.25◦. The re-
sulting collocated set of SSS is denoted as {s(tT ,ϕ,λ)},
with tT being all the acquisition times in the 9 d pe-
riod which is indexed by the time T (typically, T cor-
responds to the central day). In particular, for a given
geographical location (ϕ,λ), we combine all the differ-
ent values of SSS under all acquisition conditions at that
specific location and 9 d period, which means combin-
ing all satellite overpass directions (d), across-track dis-
tances (x), and incidence angles (θ ) that happen at all
the times tT in that period. Then, we consider as valid
salinity measurements only those satisfying

|s(tT ,ϕ,λ)− s̄(T ,ϕ,λ)|< σ (T ,ϕ,λ), (4)

with s̄(T ,ϕ,λ) and σ (T ,ϕ,λ) being the mean and stan-
dard deviation of the set {s(tT ,ϕ,λ)}, that is, all val-
ues of SSS at longitude ϕ, latitude λ, and the 9 d period
centered around T . Finally, we average the valid salin-
ity values of {s(tT ,ϕ,λ)} in that period to obtain the
binned 9 d map at 0.25◦× 0.25◦, s0(T ,ϕ,λ). This cri-
terion was also applied in the previous version of the
product. Since, at this step, the salinity retrievals are
already debiased and they are temporally and spatially
collocated, the criterion of one-sigma applied here is ex-
pected to reduce the noise of the level-3 salinity maps
only.
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2.2.4 Mitigation of temporal biases

SMOS measurements are affected by biases that depend on
time (see Martín-Neira et al., 2016). The methodology de-
scribed in Sect. 2.2.1 aims at removing the systematic biases
affecting SMOS measurements, i.e., those biases that depend
on the acquisition conditions (γ ) but not on time. To ad-
dress the temporal biases, we follow the approach proposed
in Olmedo et al. (2017), which consists of assuming that the
global average of SSS does not change with time. We use
the constant annual reference WOA13 to assess this assump-
tion. The top plot in Fig. 1 shows the temporal evolution of
the mean difference between the salinity field provided by
WOA13 and the collocated uppermost salinity measurements
provided by Argo floats. The results show that this hypothesis
is true up to hundreds of practical salinity units. The bottom
plot in Fig. 1 shows the difference between the spatially av-
eraged salinity value of s0(T ,ϕ,λ) and the spatially averaged
salinity value of the annual reference (WOA13). We assume
that for a given time T this difference has to be zero. There-
fore, we correct each map with this difference, imposing the
spatially averaged salinity value of every global map to be
equal to the annual reference. We notate the temporally cor-
rected binned salinity fields as s1(T ,ϕ,λ).

2.2.5 Correction of latitudinal and seasonal biases

The corrections applied so far aim at systematic biases which
are time-independent or space-independent and therefore can
be corrected separately. However, after applying both correc-
tions, residual biases depending at the same time on time and
on the geographical position are still present (see top panel
in Fig. 2). These latitudinal and seasonal biases are known to
also happen in other L-band satellite missions and are sup-
posed to be due to the different direct influences of the Sun
on the instrument along its trajectory depending on the sea-
son of the year. We have therefore applied the latitudinal–
seasonal bias correction proposed in Olmedo et al. (2019b),
which is computed as follows.

– We compute SMOS monthly climatologies s̄1(m,ϕ,λ)
for each month m of the year by averaging all the
s1(T ,ϕ,λ) values, where T belongs to the same month
m of the processed 9 years. Recall that this climatology
is defined on a 0.25◦× 0.25◦ grid, as this is the grid for
s1(T ,ϕ,λ).

– For each month m, we subtract the WOA2013 monthly
climatology, sWOA(m,ϕ,λ), from the corresponding
SMOS monthly climatology:

1s1(m,ϕ,λ)= s̄1(m,ϕ,λ)− sWOA(m,ϕ,λ).

– We fit 1s1(m,ϕ,λ) by a second-degree polynomial of
the latitude. That is, for every month,m, and every value

of latitude in the 0.25◦ grid, ϕ, we compute the polyno-
mial p(m,ϕ)

p(m,ϕ)= a(m)ϕ2
+ b(m)ϕ+ c(m),

which minimizes the following cost function:∑
λ

(1s1(m,ϕ,λ)−p(m,ϕ))2.

– After computing the optimal polynomials p(m,ϕ), we
correct the maps s1(t,ϕ,λ) by interpolating the polyno-
mial p(m,ϕ) daily to the specific moment of the month.
We denote the latitudinal–seasonal debiased SSS by
s2(T ,ϕ,λ).

In the bottom plots of Fig. 2 the monthly interpolating poly-
nomials p(m,ϕ) are presented (in blue), as well as the mean
difference 1s1(m,ϕ,λ) (in green). As observed in the plots,
the approach of this correction has some limitations at high
latitudes, where the sea ice dynamics also induce ice–sea
contamination.

2.2.6 Mitigation of residual spatial biases

After applying all the above corrections, we make the last
check. By construction, at each geographical location the av-
erage salinity of the full period should be equal to the multi-
year reference introduced in Sect. 2.2.1. We have found sig-
nificant differences between both averages that may be due
to an inaccurate determination of the SMOS-based climatol-
ogy. This may happen when the distributions of the values
{sraw
n (γ )} for a given γ significantly deviate from a Gaus-

sian distribution (especially if it is slightly skewed), and then
differences between the modes (used in the computation of
sc(γ )) and the means of all sn(γ ) after applying the filter-
ing criteria (Sect. 2.2.3) are significant. In order to mitigate
this last bias, we remove the map corresponding to the differ-
ence between the mean average of all the SMOS SSS in the
2011–2019 period (s2(T ,ϕ,λ)) and WOA2013 (see Fig. 3).
The resulting salinity field is our L3 high-resolution product
sL3(T ,ϕ,λ). In future versions of this product we will intro-
duce a better definition of the SMOS-based climatology to
avoid this last correction step.

2.2.7 Multifractal fusion techniques

We use the multifractal fusion techniques introduced in Um-
bert et al. (2014) to increase the spatial and temporal resolu-
tions of SMOS SSS L3 maps (Olmedo et al., 2016). Multi-
fractal fusion methods are based on the hypothesis that differ-
ent ocean scalars have the same singularity exponents (SEs).
From a mathematical point of view, the SE of a function at a
given point is a measure of the local regularity of the func-
tion at that point (Turiel et al., 2008a). It has been shown that
synoptic maps of different ocean scalars show the same mul-
tifractal structure due to the effect of geophysical turbulence.
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Figure 1. (a) Assessment of the temporal correction assumption: the graphic represents the mean average of the difference between a constant
annual salinity reference (the World Ocean Atlas, 2013) and collocated Argo salinity measurements. (b) Temporal correction applied to the
BEC SSS products.

Starting from the SE extracted from SST maps (Turiel et al.,
2005, 2008b), it has been observed that other scalars, such as
chlorophyll concentration maps (Nieves et al., 2007; Umbert
et al., 2020) and even brightness temperature maps at given
frequencies (Isern-Fontanet et al., 2007), present the same
structure and even values of SEs. This correspondence can
be used to improve the quality of the SMOS SSS L3 maps
by using as a template OSTIA SST, which is an ocean scalar
measured with better spatio-temporal resolution and quality
than SSS. Assuming that both variables have the same SE, it
can be shown (Umbert et al., 2014) that as a first-order ap-
proximation the following local relationship holds:

SSS= a ·SST+ b, (5)

where a and b are smooth functions; that is they must have
small gradients, as otherwise they would introduce additional
SEs. The estimation of the smooth functions a and b is done
by means of a local weighting average (see Umbert et al.,
2014 and Olmedo et al., 2016, for more details). Taking ad-
vantage of the fact that a and b do not have sharp variations
over large regions, the evaluation of a and b is performed by
locally weighted linear regression. We have employed a sim-
ilar local-weighting function as in Olmedo et al. (2016), that
is, the inverse of the fourth power of the distance to the cen-
tral point. In order to better describe the small-scale features,
the local weighting is limited to points at most at a distance
of R = 2.5◦ from the central point.

By means of this multifractal fusion method, SMOS L4
SSS maps with the same spatial and temporal resolutions as
the template (OSTIA SST), i.e., daily maps at a spatial grid
of 0.05◦× 0.05◦, are obtained.

2.2.8 BEC SMOS SSS global product v2.0

The BEC SMOS SSS L3 global product v2.0 consists of 9 d
SSS maps at a regular grid of 0.25◦× 0.25◦ generated daily.
The product is distributed in netCDF files and it contains two
different salinity fields and one estimation of the SSS uncer-
tainty. The two SSS fields are denoted as

– the BEC SMOS HR SSS product, where HR stands for
high resolution and contains the binned salinity field
sL3(T ,ϕ,λ), and

– the BEC SMOS LR SSS product, where LR stands
for low resolution and is a low-pass-filtered version of
sL3(T ,ϕ,λ), computed by applying a smoothing win-
dows of radius of 50 km. This product is denoted by
sL3

low(T ,ϕ,λ).

The BEC SMOS L4 SSS product v2.0 (hereafter BEC L4)
consists of daily SSS maps at a regular grid of 0.05◦×0.05◦.
This product is denoted by sL4(T ,ϕ,λ).

3 Quality assessment

3.1 Data sets for validation

3.1.1 Satellite sea surface salinity

We have compared the performance of the new BEC prod-
ucts with that of other satellite SSS products. We have cen-
tered the validation in the year 2017 because there are not
any large-scale geophysical phenomena (such as El Niño or
La Niña events) and also because SSS products produced by
the National Aeronautics and Space Administration (NASA)
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Figure 2. (a) Latitudinal and seasonal bias affecting the BEC SMOS SSS L3 maps after applying the systematic bias correction proposed
in Sect. 2.2.1 and the temporal correction proposed in Sect. 2.2.4. The plot represents a Hovmöller diagram of the temporal evolution of the
differences between the BEC SMOS SSS and the Argo SSS in latitudinal bins of 0.25◦. (b) In the last four rows the monthly interpolating
polynomial (in blue) is presented as well as the mean difference between the monthly SMOS climatology and the monthly WOA13 (in green)
(i.e., 1s1(m,ϕ,λ); see text in Sect. 2.2.1).

Soil Moisture Active Passive (SMAP) mission are available
(this mission has been operating since early 2015; Entekhabi
et al., 2010). We have also computed the statistics with Argo
floats for all the products for the year 2016 to assess the ro-
bustness of the results in 1 year in which El Niño happened.
The satellite SSS products used for the intercomparison are
as follows.

– CATDS SMOS products. The 9 d SMOS SSS maps
provided by Centre Aval de Traitement des Don-
nées SMOS (CATDS). We use the L3 debiased v4
freely available at http://catds.ifremer.fr/Products/
Available-products-from-CEC-OS/Locean-v2019 (last

access: 1 March 2021). This product decreases the
mean bias over the open ocean with respect to previous
versions, and it improves ice filtering, which leads to
an improvement of SSS at high latitudes, especially
in the Southern Ocean (Boutin et al., 2016, 2018;
Kolodziejczyk et al., 2016). See also https://www.
catds.fr/Products/Available-products-from-CEC-OS/
CEC-Locean-L3-Debiased-v4 (last access:
1 March 2021) for the description of the last im-
provements of the product.

– JPL SMAP products. The 8 d SMAP SSS maps
are provided by Jet Propulsion Laboratory (JPL).
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Figure 3. Difference between the 2011–2019 average of BEC SSS maps after applying corrections described in Sect. 2.2.1, 2.2.4, and 2.2.5
and WOA2013 SSS.

We use the level-3 version 4.2 freely available at
https://podaac-opendap.jpl.nasa.gov/opendap/allData/
smap/L3/JPL/V4.2/ (last access: 1 March 2021). Up-
dates of version 4.2 with respect to previous versions
include improvement in the TB calibration using an
adjusted reflector emissivity, the inclusion of a SST
dependence on a flat surface emissivity model, use
of updated land correction tables, and inclusion of
averaged ancillary ice concentration data (Fore et al.,
2016).

– REMSS SMAP products. The 8 d running Remote Sens-
ing Systems SMAP Level 3 Sea Surface Salinity Stan-
dard Mapped Image version v4 is used, which is freely
available at http://www.remss.com/missions/smap (last
access: 1 March 2021). In particular, we have used the
field sss_smap, which is a smoothed measurement at ap-
proximately 70 km resolution. The major change in Ver-
sion 4.0 from Version 3.0 is an improved land correc-
tion, which allows for SMAP salinity retrievals closer
to the coast (Meissner et al., 2018).

3.1.2 In situ salinity: Argo floats

For the purpose of direct comparison of values, we have
used in situ salinity data obtained by Argo profilers Argo
(2000). We consider the uppermost Argo salinity between
5 and 10 m depth (hereafter Argo SSS). Argo data are col-
lected and made freely available by the International Argo
Program and the national programs that contribute to it
(http://www.argo.ucsd.edu, last access: 1 March 2021, http:
//argo.jcommops.org, last access: 1 March 2021). The Argo
Program is part of the Global Ocean Observing System.

3.1.3 Reanalysis sea surface salinity

We are also interested in analyzing the strengths and
weaknesses of the satellite products when compared with
a reanalysis product. To this end and for completeness,
we have used the SSS fields provided by near-real-time
ARMOR3D (Nardelli, 2012; Nardelli et al., 2016; Droghei
et al., 2016) corresponding to the year 2017. We use version
4 of ARMOR3D, which is freely available at the Copernicus
Marine Environment Monitoring Service (CMEMS) ser-
vice desk (https://resources.marine.copernicus.eu/?option=
com_csw&task=results?option=com_csw&view=details&
product_id=MULTIOBS_GLO_PHY_REP_015_002, last
access: 1 March 2021). In the generation of the SSS fields
provided by ARMOR3D (hereafter CMEMS SSS), a cor-
rection based on the ISAS-CORA SSS field is applied as
well as a combination of a quality control SSS measurement
obtained from ISAS-CORA (both distributed through
CMEMS) and a high-pass filter of Reynolds SST L4 satellite
observations. This product assimilates SMOS SSS generated
and distributed by CATDS.

3.1.4 Sea surface temperature

OSTIA SST is used as a reference to assess the spatial struc-
ture, geophysical consistency, and effective resolution of the
SSS satellite products (see Sect. 2.1.2 for the complete de-
scription).
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3.2 Validation methods

3.2.1 Comparison with Argo

Assuming that Argo values represent a ground truth (which
is, we neglect representative errors that are however signif-
icant), we have used Argo SSS to assess the biases and the
standard deviations of the errors of the different SSS prod-
ucts. To that goal, we temporally and spatially collocate the
Argo SSS with the SSS maps as follows: every map is com-
pared with the Argo SSS available during the same period
(9 d in the case of BEC products) used in the generation of
that map. We compare the Argo SSS with the value of the
SSS product corresponding to the cell where the Argo is lo-
cated. Before computing the match-ups between Argo and
SSS products, we apply the following quality control over
the values of Argo SSS.

– The cut-off depth for Argo profiles is taken between 5
and 10 m.

– Profiles from BioArgo and those included in the grey
list (i.e., floats which may have problems with one or
more sensors) are discarded.

– We use WOA2013 as an indicator: Argo float profiles
with anomalies larger than 10 ◦C in temperature or 5 psu
in salinity when compared to WOA2013 are discarded.

– Only profiles having temperature between −2.5 and
40 ◦C and salinity between 2 and 41 psu close to the sur-
face are used.

3.2.2 Singularity analysis

Singularity analysis can be used for the assessment of the
geophysical consistency among different products (Umbert
et al., 2014; Hoareau et al., 2018b). From an oceanographic
point of view, SEs are related to the advection term, and
therefore, they are intrinsic characteristics of the flow and
not specific to the chosen scalar (Nieves et al., 2007). The
singularity fronts (bright white streamlines in Fig. 4) clearly
correspond to the general circulation features, such as the
Gulf Stream, the Kuroshio Extension, and the tropical insta-
bility waves in both the Pacific and Atlantic, among others.
This is evident in the singularity fronts derived from OSTIA
SST shown in Fig. 4. As discussed in Umbert et al. (2014),
the SEs of different scalars must correspond, and as OSTIA
SEs have the better quality, we take them as a reference: the
SEs of all the SSS products will be compared to this refer-
ence. Since the OSTIA SST product has the highest resolu-
tion (0.05× 0.05◦), prior to computing its SE it is first re-
gridded at the same resolution of the SSS product it is going
to be compared with. In the case of L3 satellite products and
CMEMS, this implies reducing the resolution to 0.25×0.25◦

and 9 d. In the case of BEC L4, since it has the same spatio-
temporal grid as OSTIA SST, no regridding is required prior
to the calculation of SEs.

Figure 4. SE for the 15 August 2017. (a) SE of BEC LR SSS prod-
uct. (b) SE of OSTIA SST.

A way to assess the correspondence of SEs is to calcu-
late conditioned histograms of one product SSS SE, hSSS, by
the values of OSTIA SE, hSST. Let us recall the definition
of the histogram of one random variable y conditioned by
one random variable x, denoted by ρ(y|x) and defined by the
following expression:

ρ(y|x) ≡
ρ(x,y)
ρ(x)

, (6)

where ρ(x,y) is the joint histogram of both variables (the
standard 2D histogram) and ρ(x) is the marginal histogram
of the variable x (the standard histogram of this variable).
In essence, if we put the variable x in the abscissa axis and
the variable y in the ordinate axis, the conditioned histogram
corresponds to taking the joint histogram of x and y and nor-
malizing it by columns so each column sums up to 1.

The histogram of a variable conditioned by the value of an-
other variable serves to evidence any functional dependence
between both. Conditioned histograms have been used to put
in evidence the correspondence of singularity exponents of
two variables (Hoareau et al., 2018b), and we will use them
for the same purpose here, with hSST the conditioning vari-
able and hSSS the conditioned variable. When the modal line,
defined by the maximum probability of hSSS for each value
of hSST, is close to a straight line of slope 1 (the identity

https://doi.org/10.5194/essd-13-857-2021 Earth Syst. Sci. Data, 13, 857–888, 2021



866 E. Olmedo et al.: Nine years of SMOS SSS global maps at the BEC

function), then the singularity exponents of the SSS maps are
in good correspondence with those of the reference (Turiel
et al., 2008a; Olmedo et al., 2016). In practice, this line be-
comes horizontal beyond a certain threshold value due to the
increase in the error in the estimation of SE for larger values
of SE (Turiel et al., 2006), as hSSS and hSST become indepen-
dent of each other because they are dominated by noise. No-
tice that when two variables are independent, the conditioned
histogram is constant in x and thus the modal line becomes
horizontal. In addition to becoming horizontal, the condi-
tioned dispersion will also be larger beyond that threshold,
since any dependence between the variables would decrease
the dispersion. Thus, besides analyzing the range of the sin-
gularity correspondence, the conditioned dispersion (i.e the
standard deviation of the hSSS for each bin of hSST) must
also be considered.

In the following, we detail the methodology employed in
this work.

– Calculation of the histograms. Regarding the calcula-
tion of the histograms shown in this paper, for a given
SSS product we have accumulated all the values of the
pairs (hSST, hSSS) of all the globe and for the whole
year 2017 to create the joint histogram. Notice that, as
shown in Umbert et al. (2014), the histograms of SEs do
not change in space or in time, and thus this accumula-
tion can be done. The SE values used to construct the
histograms have been limited to the range at [−0.4, 0.4]
(which typically contains more than 80 % of all possi-
ble values), and we fix the bin size to 0.05 for both hSST
and hSSS. The marginal histogram ρ(hSST) is obtained
by summing the values at each column, and the condi-
tioned histogram is obtained by a simple division of all
the elements of a column by the associated value of the
marginal histogram.

– Statistical descriptors. We have computed three de-
scriptors to characterize the conditioned histograms:

– the most probable value of hSSS at each bin of hSST:
H0(hSST);

– the mean value of hSSS at each bin of hSST:
H̄ (hSST);

– the standard deviation of hSSS at each bin of hSSS:
σH (hSST).

– Correspondence of the SE. As a function of hSST, both
H0 and H̄ should ideally be close to the identity, what
would be the best correspondence between hSSS and
hSST. Although the presence of physical processes other
than flow advection, capable of creating singularities
and affecting both variables differently (upwelling, rain-
induced freshening, or river plumes) could lead to a de-
viation from identity as the SEs would not correspond,
in general this effect is small and limited to very nar-
row areas, so the most frequent cause of deviation is just

noise, which mainly affects the larger values of SEs and
for that reason the deviations show up as the value of
SE increases. To quantify the quality of the correspon-
dence between the SEs of SST and those of SSS, we
have computed the linear regression coefficients of the
functionsH0(hSST) and H̄ (hSST) up to a given threshold
value of hSST, hmax. We then have compared the corre-
sponding linear regression coefficients, amode and amean
with 1: the closer amode and amean are to 1, the better
the geophysical correspondence between SSS and SST
in the range of hSST < hmax.

– Uncertainty analysis. σH (hSST) indicates which is the
uncertainty associated with the correspondence between
the SE of SST and SSS, which is due to effects that we
cannot control (including noise, numerical inaccuracies
of the algorithm used to compute SEs, and unknown
physical processes). We have computed the mean value
of σH (hSST) in the same range of values of hSST used
to compute amean and amode, namely hSST < hmax. The
goal is to have a value of mean σ (hSSST) as small as
possible compared to the marginal standard deviation
of hSST.

– Validity range. Finally, we have also analyzed which
is the range of good correspondence between hSST and
hSSS. The larger the range, the better, as this would en-
sure that more geophysical structures (fronts, eddies, fil-
aments) are described by both variables.

3.2.3 Spectral analysis

Spectral analysis has been extensively used to analyze satel-
lite observations, in situ data, and model outputs, in both the
atmosphere and the ocean (Stammer, 1998; Reynolds and
Chelton, 2010; Kolodziejczyk et al., 2015; Olmedo et al.,
2016; Hoareau et al., 2018b). It is well-known that the power
density spectra (PDS) of a scalar submitted to turbulence
should follow a power-law behavior, characterized by a scal-
ing exponent, sometimes referred to as “spectral slope” as it
corresponds to the slope of the log-log representation of the
PDS as function of the wavenumber. The analysis of spec-
tral slopes allows us to obtain information about the effec-
tive spatial resolution of the remote sensing data. For in-
stance, the presence of noise makes the straight curve of
log PDS vs. log wavenumber bend and become horizontal
at high wavenumbers; this happens because noise is inde-
pendent of the wavenumber but the amplitude of the signal
decreases with the wavenumber, so at a given wavenumber
large enough (and thus, at a given spatial scale small enough)
noise is dominant: the crossover point signals the effective
resolution of the data. Another situation that can appear is
when the data are oversmoothed, and then there is a system-
atic lack of energy at high wavenumbers; in those cases, a
faster-than-linear decay is observed for wavenumbers larger
than the resolution threshold.
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Theoretical studies predicted that temperature and salinity
should have the same spectral slopes (Blumen, 1978; Char-
ney, 1971). We have used the spectral analyses based on the
PDS and on the singularity power spectra (SPS), which cor-
respond to the PDS of SE maps (Hoareau et al., 2018b), to
estimate the effective spatial resolutions of the SSS products.
For this, we compare the spectral slopes of the SSS prod-
ucts with the ones computed from OSTIA SST. PDS slopes
are expected to be in between −1 and −3 depending on the
dynamical regime that drives the ocean, while the expected
SPS slopes for SST and SSS maps range between −2 and
−2.5 (Hoareau et al., 2018b). Note that, while the PDS slope
is affected or distorted by the presence of noise in the data,
the SPS slope is not because the SE algorithm we use (Pont
et al., 2013) is designed to filter noise. For the same reason,
the use of SPS reduces the uncertainty in the determination
of the spectral slopes (Hoareau et al., 2018b).

Therefore, both spectral methods are complementary from
a validation point of view as PDS analysis gives information
on the effective spatial resolution of the data, and the SPS
method assesses the existing geophysical structures beyond
the remaining sources of uncertainty in remote sensing prod-
ucts.

The spectral analysis approach that we have followed in
this work is the following one.

– We perform the spectral analysis over the same ocean
regions proposed in Hoareau et al. (2018b) (see Fig. 5).

– At each on of these regions, we compute the PDS from
each SSS product and the OSTIA SST, as well as their
corresponding SPS from their SE maps. Both spectra
(PDS and SPS) are given as a function of wavenumber
values per degree (latitude degrees for meridional re-
gions and longitude degrees for zonal regions) and as
wavelength values in kilometers. Recall that a wave-
length contains a full oscillation from 0 to +1, then
to −1, and finally back to 0, and therefore it contains
two resolved points. Thus, to convert wavelengths to re-
solved spatial scales (resolution scale), the values must
be divided by 2.

– For each region and product, we have computed the
mean PDS and the mean SPS over the full year of 2017
to reduce the fluctuations of each individual spectrum.

– We have computed and analyzed the slope of the aver-
aged PDS and SPS, and we have compared them with
the ones resulting from OSTIA SST.

3.2.4 Triple collocation

The triple collocation (TC) technique is a powerful tool to
estimate the standard deviation of errors of three spatio-
temporally collocated measurements of the same target. TC
has been used to assess the quality of many remotely sensed

Figure 5. Spatial distribution of Rossby radii of deformation, from
Hoareau et al. (2018b). Blue boxes are the regions where the power
density spectra and singularity power spectra are computed: NATL
(North Atlantic) [0–64◦ N, 27–33◦W], Intertropical Convergence
Zone (ITCZ) [4–10◦ N, 96–160◦W], SPURS (region of the oceano-
graphic campaign Salinity Processes in the Upper-ocean Regional
Study) [22–28◦ N, 28–60◦W], ARC (Agulhas Current Retroflec-
tion) [39–45◦ S, 30–94◦ E], STP (south tropical Pacific) [27–33◦S,
106–170◦W], and SPAC (southern Pacific) [14◦ N–50◦ S, 122–
128◦W].

variables, and in particular SSS (Hoareau et al., 2018a). The
major assumptions of TC are that errors must be uncorrelated
with the target variable and also that the errors of the different
data sets must be uncorrelated between them. Some refined
formulations have been developed in recent years for taking
into account the presence of cross-correlated errors between
two of the data sets, but they require at least four data sets
(Gruber et al., 2016; Pierdicca et al., 2017).

We have used a recently developed formulation of the
triple collocation method, the correlated triple collocation
(CTC), for the case of three data sets that resolve similar
spatial scales from which two of them present correlated er-
rors (González-Gambau et al., 2020). This TC can be par-
ticularly beneficial for the error characterization of variables
for which getting measurement systems with uncorrelated er-
rors is challenging or not feasible, and it is particularly well-
suited to work with limited samples of data because it has
a fast convergence with the sampling size. This formulation
has been proven for the characterization of radiometric er-
rors in L-band brightness temperatures (TBs). By the use of
CTC, we have access to maps of errors, so we can charac-
terize which places are less noisy, and we can also ascertain
which is the best suited product depending on the location.

The triplets used in this analysis are shown in Table 1, indi-
cating which of the three products is considered with uncor-
related errors with respect to the other two data sets. Errors
among the different SMOS products are assumed to be cor-
related, as well as errors among the different SMAP products
since they are measured by the same sensor. Additionally, we
have assumed that errors of CMEMS and SMOS CATDS are
correlated, since the latter is assimilated by the former.
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Table 1. SSS triplets used in the analysis performed in Sect. 3.3.4.

Correlated Correlated Uncorrelated
source 1 source 2 source

BEC HR CATDS JPL
BEC HR CATDS REMSS
BEC HR CMEMS JPL
BEC HR CMEMS REMSS
REMSS JPL BEC HR
BEC LR CATDS JPL
BEC LR CATDS REMSS
BEC LR CMEMS JPL
BEC LR CMEMS REMSS
REMSS JPL BEC LR
BEC L4 CATDS JPL
BEC L4 CATDS REMSS
BEC L4 CMEMS JPL
BEC L4 CMEMS REMSS
REMSS JPL BEC L4
REMSS JPL CATDS
REMSS JPL CMEMS

In order to estimate the SSS error of each product, we
average the estimated errors resulting from each one of the
triplets where the product is considered. We also compute
the standard deviation of the estimated error in the different
triplets as a metric of the uncertainty in the error estimation.

3.3 Validation results

3.3.1 Comparison with Argo SSS

In the first part of this subsection, we present the comparison
of the 9-year time series of the BEC SMOS SSS products
with Argo SSS; then, in the second part, we extend the com-
parison to the rest of the SSS products (see Sect. 3.1.1) but
for the year 2017 only. In Table 2, the regions of study ana-
lyzed in this section are presented.

Table 3 summarizes the statistics of the differences of BEC
SMOS SSS v2.0 products minus Argo SSS for the 2011–
2019 period in two different ocean regions: (i) the whole tem-
perate ocean (labeled as GLO in Table 2) and (ii) the tropics
(labeled TR in the same table). The statistics are provided on
a yearly basis.

In terms of mean differences with respect to Argo (which
would account for biases in the products, if we consider Argo
to be the ground truth), the three BEC products (HR, LR,
and L4) provide very similar performances. The BEC SSS
v2.0 products have a mean difference with respect to Argo
below 0.02 and 0.06 psu, in GLO and in TRO, respectively.
Those values are rather small and may be statistically non-
significant.

Regarding the standard deviation of the differences with
respect to Argo salinity, among the three salinity fields of
the v2 product, BEC HR is the one with the largest stan-

dard deviation and L4 the one with the lowest (BEC LR is
in between the other two). This is expected since BEC HR
is known to have some high-spatial-frequency noise, while
BEC LR is a smoothed version of the BEC HR salinity with
a radius of 50 km, and therefore a reduction in the noise is
expected. The fusion technique used in the generation of the
L4 also leads to a reduction of the random noise of the salin-
ity maps, and it is even better than a simple low-pass filter-
ing as it preserves fine-scale structures. The standard devi-
ations of the differences between BEC products and Argo
salinity range between 0.34 and 0.26 psu in the case of L3
HR, 0.27 and 0.24 psu in the case of BEC LR, and 0.24 and
0.21 psu in the case of L4. There is a significant reduction of
the standard deviation of the differences between SMOS and
Argo since 2017, which is more significant in the case of the
BEC HR product. We have analyzed several possible reasons
for this reduction. One reason could be a reduction of RFI
contamination, which has been observed at the global scale
since 2017. Another reason could be a change in the spatial
scales of the auxiliary data provided by ESA and what are
used in the retrieval. Since 2017, the ECMWF auxiliary data
(see Sect. 2.1) are provided at a resolution of 7.8 km, while
previously they were provided at 25 km.

We have calculated the statistics of the comparison with
Argo SSS in the regions defined in Table 2. Tables 4 and
5 comprise the results of the comparison for all the grid-
ded products for the year 2017, and Fig. 9 summarizes the
statistics by showing the mean (blue square), standard de-
viation (purple bar), and root-mean-square difference (rms,
green circle) in all the defined regions. In general, BEC LR
and BEC L4 provide very competitive statistics with respect
to Argo among all the satellite products. The only prod-
ucts that provide lower rms differences with respect to Argo
in some regions are CMEMS with lower rms in the Arctic
Ocean and North Atlantic Ocean and REMSS with slightly
lower rms in tropical and equatorial regions, the equatorial
Pacific, the Amazon region, and the Indian Ocean. The pro-
cessing of SMOS data in polar regions and also in semi-
enclosed seas deserves specific algorithms, and in fact there
are several projects for developing dedicated products at the
Mediterranean Sea, Baltic Sea, Arctic Ocean, and Black Sea,
in which BEC is involved. We have also computed the statis-
tics of the comparison with Argo and all the satellite prod-
ucts for the year 2016 (see Table 6 to assess the performance
in 1 year in which an El Niño event occurred). The results
are similar to the ones obtained in 2017. The BEC products
present a slight increase in the standard deviation of the dif-
ferences with respect to Argo in all the regions that is consis-
tent with the general increase observed at the first 6 years of
the mission and that have been mentioned above.

Figure 6 shows the spatial arrangement of the differences
between each salinity product (BEC L4 not shown) and
the corresponding collocated Argo SSS, averaged in 5◦× 5◦

latitude–longitude cells during the year 2017. In the open
ocean, CATDS and REMSS are the two products that pro-
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Table 2. Ocean regions used in the statistics with respect to Argo SSS.

Region Description Latitude Longitude

GLO Tropics and mid-latitudes 60◦ S–60◦ N All
TRO Tropics 30◦ S–30◦ N All
EQU Equatorial regions 10◦ S–10◦ N All
ANT Antarctic 90–50◦ S All
ARC Arctic 50–90◦ N All
SPA Southern Pacific 30–0◦ S 150–120◦W
NAT North Atlantic 30–50◦ N 50–0◦W
AMA Amazon River region 0–20◦ N 70–40◦W
EPA Equatorial Pacific 10◦ S–10◦ N 180–80◦W
NPA North Pacific 30–50◦ N 180–120◦W
SAT Southern Atlantic 40–0◦ S 30–0◦W
IND Indian Ocean 30–0◦ S 60–120◦ E

Table 3. Statistics of the comparison of the BEC global SSS product v2.0 with Argo.

SMOS – ARGO in GLO SMOS – ARGO in TRO

Year Product <Mean> <SD> <Rms> <Mean> <SD> <Rms>

2011
BEC HR −0.02 0.34 0.34 −0.03 0.31 0.31
BEC LR −0.02 0.27 0.27 −0.03 0.25 0.25
BEC L4 −0.02 0.22 0.22 −0.04 0.21 0.21

2012
BEC HR −0.02 0.34 0.34 −0.04 0.31 0.31
BEC LR −0.02 0.27 0.27 −0.04 0.25 0.26
BEC L4 −0.02 0.22 0.23 −0.05 0.21 0.22

2013
BEC HR −0.03 0.34 0.34 −0.03 0.33 0.33
BEC LR −0.02 0.27 0.27 −0.03 0.27 0.27
BEC L4 −0.03 0.23 0.23 −0.04 0.22 0.23

2014
BEC HR −0.01 0.34 0.34 −0.02 0.32 0.32
BEC LR −0.01 0.27 0.27 −0.02 0.27 0.27
BEC L4 −0.02 0.23 0.23 −0.03 0.23 0.23

2015
BEC HR −0.00 0.34 0.34 0.00 0.32 0.33
BEC LR −0.00 0.28 0.28 0.00 0.27 0.27
BEC L4 −0.01 0.23 0.23 −0.01 0.23 0.23

2016
BEC HR −0.01 0.34 0.34 0.01 0.32 0.33
BEC LR −0.01 0.28 0.28 0.01 0.27 0.28
BEC L4 −0.02 0.24 0.24 0.00 0.24 0.24

2017
BEC HR 0.00 0.28 0.28 0.03 0.27 0.27
BEC LR −0.00 0.24 0.24 0.03 0.24 0.24
BEC L4 −0.00 0.22 0.22 0.02 0.22 0.22

2018
BEC HR 0.01 0.27 0.27 0.04 0.26 0.26
BEC LR 0.01 0.24 0.24 0.04 0.23 0.23
BEC L4 0.01 0.21 0.21 0.03 0.21 0.21

2019
BEC HR 0.02 0.27 0.27 0.06 0.25 0.26
BEC LR 0.02 0.24 0.24 0.06 0.23 0.23
BEC L4 0.02 0.21 0.21 0.05 0.21 0.21
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Table 4. Regional statistics of the differences between the SMOS and Argo SSS for the year 2017. For each product and ocean region the
mean, standard deviation, root mean square of the difference, and coefficient of correlation r2 are provided separated by a colon.

Region BEC HR BEC LR BEC L4 CATDS

GLO 0.00:0.28:0.28:0.94 −0.00:0.24:0.24:0.95 0.00:0.22:0.22:0.97 0.00:0.29:0.29:0.96
TRO 0.03:0.27:0.27:0.89 0.03:0.24:0.24:0.91 0.02:0.22:0.22:0.92 0.01:0.25:0.26:0.91
EQU 0.06:0.29:0.29:0.78 0.06:0.26:0.27:0.80 0.05:0.25:0.25:0.82 0.02:0.26:0.27:0.85
ANT −0.05:0.30:0.31:0.69 −0.05:0.23:0.25:0.20 – −0.02:0.30:0.31:0.13
ARC 0.09:0.37:0.39:0.56 0.09:0.31:0.34:0.99 0.09:0.29:0.32:0.99 0.22:0.36:0.44:0.99
SPA −0.00:0.19:0.19:0.79 −0.00:0.16:0.17:0.83 −0.01:0.14:0.14:0.87 −0.03:0.19:0.20:0.79
NAT −0.02:0.29:0.30:0.60 −0.01:0.25:0.26:0.63 −0.02:0.22:0.23:0.67 0.10:0.32:0.35:0.60
AMA 0.03:0.36:0.37:0.66 0.02:0.34:0.35:0.67 0.01:0.33:0.34:0.64 0.05:0.28:0.30:0.76
EPA 0.09:0.24:0.26:0.74 0.09:0.21:0.23:0.77 0.08:0.20:0.21:0.81 0.03:0.23:0.24:0.83
NPA −0.02:0.26:0.28:0.85 −0.02:0.22:0.25:0.88 −0.03:0.20:0.23:0.90 −0.06:0.25:0.28:0.85
SAT −0.04:0.21:0.21:0.83 −0.04:0.17:0.18:0.87 −0.04:0.15:0.16:0.89 −0.03:0.19:0.20:0.86
IND 0.03:0.23:0.23:0.81 0.03:0.20:0.21:0.84 0.03:0.18:0.19:0.86 −0.03:0.21:0.22:0.87

Table 5. Regional statistics of the differences between the SMAP and Argo SSS for the year 2017. For each product and ocean region the
mean, standard deviation, root mean square of the difference, and coefficient of correlation r2 are provided separated by a colon. The table
also contains the results for the CMEMS product.

Region JPL REMSS CMEMS

GLO 0.11:0.28:0.30:0.95 −0.03:0.24:0.24:0.97 −0.03:0.21:0.21:0.98
TRO 0.14:0.22:0.26:0.91 −0.01:0.19:0.19:0.94 −0.03:0.25:0.25:0.86
EQU 0.19:0.23:0.30:0.83 −0.01:0.20:0.20:0.89 −0.02:0.29:0.29:0.68
ANT 0.10:0.61:0.66:0.00 −0.12:0.43:0.45:0.07 −0.02:0.09:0.10:0.41
ARC 0.43:0.51:0.69:0.95 0.07:0.38:0.40:0.99 0.06:0.14:0.16:0.99
SPA 0.07:0.18:0.20:0.71 0.03:0.15:0.15:0.86 −0.05:0.18:0.19:0.80
NAT 0.11:0.28:0.32:0.58 0.01:0.28:0.29:0.76 0.01:0.17:0.17:0.73
AMA 0.20:0.24:0.32:0.80 −0.01:0.21:0.21:0.79 −0.01:0.31:0.32:−0.11
EPA 0.22:0.21:0.31:0.74 0.02:0.17:0.18:0.89 −0.01:0.24:0.24:0.77
NPA 0.23:0.27:0.36:0.74 −0.03:0.23:0.25:0.89 0.04:0.24:0.26:0.85
SAT 0.05:0.18:0.19:0.86 0.01:0.15:0.16:0.88 −0.05:0.16:0.17:0.87
IND 0.11:0.19:0.23:0.84 −0.01:0.16:0.16:0.90 −0.08:0.22:0.24:0.76

vide the lowest differences. JPL displays the largest (pos-
itive) differences with respect to Argo SSS. Regarding the
BEC products, the three products display similar differences
with respect to Argo SSS. Significant positive differences
(≈ 0.2 psu) are evidenced in the North Atlantic Ocean and
also in the North Pacific. Similar differences are found in the
CMEMS product (especially in the northern Atlantic and the
eastern northern Pacific).

We have also analyzed the spatial arrangement of the stan-
dard deviations of the differences between the gridded prod-
ucts and Argo SSS in 5◦× 5◦ cells. Figure 7 shows these
standard deviations for the different products (BEC L4 not
shown). CMEMS SSS presents the lowest standard deviation
in some regions, such as the Southern Ocean and the western
North Atlantic. BEC HR is the product with the largest stan-
dard deviation. The rest of the satellite products show similar
standard deviations. The largest standard deviations are lo-
cated in regions of strong salinity gradients such as the Gulf
Stream and close to the mouth of the main rivers. Discrep-

ancies appear between the satellite products in the Southern
Ocean, where SMOS products show a lower standard devia-
tion of the difference than SMAP products.

Figure 8 shows the temporal evolution of the mean dif-
ference of the gridded products with respect to Argo SSS
in 0.25◦ bands of latitude (BEC L4 not shown). The prod-
uct with the lowest differences with respect to Argo SSS is
CMEMS, probably because CMEMS assimilates Argo data.
Among the satellite products, BEC (HR, LR, and L4) and
REMSS present the lowest latitudinal differences with re-
spect to Argo. JPL shows the largest differences with respect
to Argo SSS (increasing at high latitudes).

We have also analyzed the temporal evolution of the dif-
ference with Argo statistics in Figs. 10 and 11, for the mean
and standard deviation, respectively. The temporal evolution
of the mean differences between the three BEC products and
Argo are very similar (see blue, green, and orange lines in
Fig. 10) and stable; i.e., no significant oscillations are ob-
served, specially in GLO and TRO regions where the oscil-
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Table 6. Regional statistics of the differences between the satellite and Argo SSS for the year 2016. For each product and ocean region the
mean, standard deviation, and root mean square of the difference are provided separated by a colon.

Region BEC HR BEC LR BEC L4 CATDS JPL REMSS

GLO −0.01: 0.34 : 0.34 −0.01:0.28:0.28 −0.02:0.24:0.24 0.05:0.28:0.29 0.11:0.28:0.30 −0.02:0.23:0.23
TRO 0.01,0.32,0.33 0.01,0.27,0.28 0.00:0.24:0.24 0.05:0.25:0.26 0.13:0.23:0.26 −0.02:0.19:0.19
EQU 0.06:0.34:0.35 0.06:0.30:0.30 0.05:0.27:0.27 0.07:0.27:0.28 0.18:0.24:0.30 −0.01:0.20:0.20
ANT −0.05:0.39:0.40 −0.05:0.29:0.30 − 0.02:0.29:0.31 0.20:0.60:0.66 −0.11:0.43:0.45
ARC 0.09:0.42:0.45 0.09:0.32:0.35 0.09:0.28:0.31 0.25:0.40:0.49 0.45:0.45:0.65 0.09:0.35:0.37
SPA −0.01:0.24:0.24 −0.01:0.19:0.20 −0.02:0.16:0.17 0.02:0.19:0.19 0.06:0.18:0.20 0.00:0.15:0.15
NAT 0.01:0.35:0.36 0.01:0.28:0.29 0.01:0.22:0.23 0.12:0.31:0.34 0.13:0.24:0.28 0.04:0.24:0.25
AMA −0.08:0.35:0.37 −0.09:0.31,0.34 −0.09:0.29:0.32 0.07: 0.25:0.28 0.19:0.21:0.30 0.01:0.27:0.28
EPA 0.13:0.33:0.35 0.13:0.29:0.31 0.11:0.26:0.28 0.06:0.26:0.28 0.21:0.24:0.32 0.09:0.35:0.37
NPA −0.06:0.34:0.35 −0.06:0.27:0.28 −0.07:0.23:0.24 0.02:0.27:0.29 0.23:0.29:0.38 −0.00:0.26:0.27
SAT −0.03:0.24:0.25 −0.03,0.18,0.19 −0.04,0.14,0.16 0.04:0.17:0.18 0.09 :0.16: 0.20 −0.00 :0.13: 0.14
IND 0.04:0.29:0.30 0.05:0.25:0.26 0.04:0.21:0.22 0.03:0.22:0.23 0.07: 0.20 :0.21 −0.01:0.17:0.17

Figure 6. Spatial distribution of the mean differences with respect to Argo SSS. From left to right and top to bottom: BEC HR, BEC LR,
JPL, REMSS, CATDS, and CMEMS.
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Figure 7. Spatial distribution of the standard deviations of the differences with respect to Argo SSS. From left to right and top to bottom:
BEC HR, BEC LR, JPL, REMSS, CATDS, and CMEMS.

lations have an amplitude lower than 0.05 psu. The largest
oscillations are observed in the Arctic Ocean, where all the
satellite products (except CMEMS) present annual variations
larger than 0.4 psu, although not all of these products evolve
in the same way. In the case of the BEC products, the differ-
ences show a seasonal behavior, being negative in summer
and positive in winter. In summer, fresh water masses coming
from ice melting may remain at the surface because of strat-
ification. This could produce negative differences between
surface salinity (as measured by satellite SSS) and salinity a
few meters deeper (Argo SSS). In winter, high winds may in-
duce significant evaporation, and the formation of sea ice also
produces excess salt, and this could explain part of the posi-
tive differences between measurements at the surface and at
the first meters. Also notice that in the North Pacific, large
differences appear at the end of the year. All the SMOS SSS
products present a negative difference with respect to Argo

of−0.4 psu. REMSS also presents this negative difference at
the beginning, but then it suddenly jumps to a positive differ-
ence.

Regarding the temporal evolution of the standard devia-
tion, there are some significant seasonal effects. For exam-
ple, in the Northern Hemisphere, Arctic, and North Atlantic
regions, the standard deviation is larger in winter than in
spring–summer. This is expected because L-band TBs are
less sensitive to the SSS in cold waters (wintertime) than in
warm waters (summertime), which implies that the retrievals
of SSS must be noisier in winter than in summer. However in
the North Pacific, all the satellite products present the inverse
behavior: a reduction of the standard deviation is present at
the end of the year. The reason for this decrease is still under
study. In the Amazon River region, the standard deviation in-
creases in spring and summer. The reason for this increase
could be related to the seasonal behavior of the North Brazil
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Figure 8. Hovmöller diagrams of the mean difference between salinity gridded products and the temporally and spatially collocated upper-
most salinity measurement provided by Argo floats. The y axis represents the latitudes: differences are averaged in latitude bins of 0.25◦.
The x axis represents the time (in days): only the year 2017 is considered in this analysis. The gridded products used in this analysis are the
following ones: (from left to right and top to bottom) BEC HR, BEC LR, JPL, REMSS, CATDS, and CMEMS.

Current and the North Brazil Current retroflection that has
a seasonal behavior which is manifested in the SSS (Castel-
lanos et al., 2019) as well as to seasonal changes in the Ama-
zon run off.

3.3.2 Singularity analysis

In this section we take the SE of OSTIA SST as a reference to
assess the effective spatial resolution of the salinity products.
The OSTIA SST product is not perfect and it also has some
limitations in describing the small spatial gradients of SST,
which could be reflected in the results of this comparison.

Figure 12 shows the histograms of the SEs of each one
of the SSS products conditioned by the SEs of OSTIA SST.
The modal (H0(hSST), in black) and the mean (H̄ (hSST), in
white) lines are also represented. In Fig. 13 the statistical
descriptors (conditioned mean H̄ (hSST), conditioned mode
H0(hSST), and conditioned standard deviation σH (hSST)) of
all the products are shown.

All the conditioned histograms present three different
well-defined ranges. The first part of the curve is unstruc-
tured and noisy: this is normal because there are very few
points with those values, so the statistics are scarce and fluc-

tuations are large; it is also affected by small mismatches in
the positions of fronts, lack of accuracy of the sensors, and,
very occasionally, different singularity-inducing effects act-
ing on each variable. Then, we find a central part where the
relation between hSST and hSSS is clearly linear, as is evident
from the H0 and H̄ curves. After this, we find a third range,
where the value of the conditioned histogram is saturated and
the values of both H0 and H̄ are horizontal lines, indicating
that hSST and hSSS are independent. This is also expected,
as noise becomes dominant as we go to the largest values of
the SE, and the noise in SSS and in SST is independent. We
can then separate the three ranges in the curve by two tip-
ping points, one in the negative range (which we will denote
by h−SST and has a value typically around −0.3 or −0.2) and
the other in the positive range (which we will denote by h+SST
and has a value around 0.1). The most interesting range is the
central one, which is delimited by these two tipping points,
where the linear dependence between the SEs of SSS and
the SEs of SST is observed; the larger this central range (the
geophysical correspondence range), the better.

All the products present no correlation between hSSS and
OSTIA hSST from hSST > 0.1. Therefore, we fix h+SST = 0.1
for all SSS products.
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Figure 9. Regional statistics of the comparison with respect to Argo salinity. The numbers in the label plots correspond to the different
products that are compared with Argo SSS: 1-BEC HR, 2-BEC LR, 3-CATDS, 4-JPL, 5-REMSS, 6-CMEMS, and 7-BEC L4.

We observe that the value of the h−SST depends on the SSS
product. Some of the products have good correlation from
the most negative SE values while others start the correlated
range in moderate negative SE values. BEC L4 (top right plot
in Fig. 12) presents a good correspondence between hSSS and
hSST even at the most negative values of hSST. This is ex-
pected because the BEC L4 product is computed from OS-
TIA SST by applying multifractal fusion. The method im-
proves the quality of the salinity maps by using the spa-
tial structures of the OSTIA SST. Therefore, the singular-
ity exponents of the BEC L4 are expected to be close to the

ones of the OSTIA SST. Therefore, in this section, BEC L4
is expected to provide the best performance. The CMEMS
product is far from the identity in the most negative values
of the hSST, and only at moderated negative values (from
hSST ≥−0.2) do we see that the hSST–hSSS correspondence
becomes closer to the identity.

Quality of the geophysical correspondence. We have com-
puted amean and amode (and also 〈σH 〉) in three intervals
of hSST: [−0.4,0.1], [−0.3,0.1], and [−0.2,0.1]. Table 7
shows the values of amean and amode. We observe some dif-
ferences between amean and amode. This is because H̄ is a

Earth Syst. Sci. Data, 13, 857–888, 2021 https://doi.org/10.5194/essd-13-857-2021



E. Olmedo et al.: Nine years of SMOS SSS global maps at the BEC 875

Figure 10. Mean of the differences between the gridded SSS products and Argo salinity in different ocean regions for the year 2017.

numerically more robust metric (it does not depend on the
histogram discretization), but it is more affected by outliers.
On the contrary, H0 is numerically less stable (it depends
on the histogram discretization) but it is less affected by
outliers. In general, despite their differences, both metrics
are consistent when we intercompare them among the dif-
ferent SSS products. The only exception is REMSS, which
presents a much lower amean than amode. BEC L4 presents
the best performance in all the intervals, having amean > 0.68

and amode > 0.88. The CMEMS product also presents very
high values of amean and amode but only in the interval of
[−0.2,0.1]; as mentioned above, in the CMEMS product, the
relation between hSSS and hSST in the most negative range
is far from the identity. All the satellite SSS products pro-
vide negative values of H̄ andH0 for hSST ∈ [−0.35,−0.25],
while the CMEMS product provides positive values. This
suggests that there are some SSS fronts of moderate inten-
sity that are captured by all the SSS satellite products but
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Figure 11. Standard deviation of the differences between the gridded SSS products and Argo salinity in different ocean regions for the year
2017.

not captured at all by the CMEMS product. In the case of L3
satellite products, amean and amode range in between 0.29 and
0.5 depending on the product and the interval of analysis.

Residual uncertainty. For each of the ranges above, we
have calculated the average on that range of values of hSST
of the conditioned standard deviation, 〈σh〉. The best per-
formance is for BEC L4, presenting a 〈σh〉 of 0.11 in all
the analyzed ranges. The worse performances are for the
CMEMS product that reaches values of 0.17 in the range of

[−0.4,0.1]. The L3 satellite products provide similar 〈σH 〉
values that vary from 0.13 to 0.15 (depending on the product
and the analyzed range).

Extent of the geophysical correspondence range. In order
to determine the largest possible range of reasonable geo-
physical correspondence between SEs of SSS and of SST, we
have defined h−SST as the most negative value of hSST with
amean (or amode) larger than 0.35. Table 7 shows h+sst−h

−
sst

defined from amean (11th column) and from amode (12th col-
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Figure 12. Histogram of SEs of SSS conditioned to the SEs of OSTIA SST. For each SST SE bin, the corresponding SSS SE distribution is
normalized by the total number of SSS SEs. The black line corresponds to the mode of the SE SSS at each bin of SE SST (H0 in the text).
The white line corresponds to the mean SE SSS at each bin of SE SST (H̄ in the text). In the first row from left to right, the SSS products
correspond to BEC HR, BEC LR, and BEC L4. In the second row from left to right the products correspond to CATDS, JPL, and REMSS,
and in the third row CMEMS products are shown.
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Table 7. Singularity analysis metrics of the SSS products over three different SST SE regimes: [−0.4,0.1], [−0.3,0.1], and [−0.2,0.1]. For
each one of these regimes we compute the linear regression coefficient of the mean SSS SE as a function of SST SE (mean, H̄ (hSST)); the
linear regression coefficient of the most probable value of SSS SE as a function of the SST SE (mode, H0(hSST)) and the averaged value of
the standard deviation of the SSS SE as a function of SST SE in the corresponding range (〈σH 〉).

Fitting range [−0.4,0.1] Fitting range [−0.3,0.1] Fitting range [−0.2,0.1] h+sst−h
−
sst

amean amode 〈σH 〉 amean amode 〈σH 〉 amean amode 〈σH 〉 From amean From amode

BEC HR 0.32 0.31 0.15 0.43 0.45 0.15 0.39 0.39 0.14 0.4 0.4
BEC LR 0.38 0.41 0.14 0.50 0.53 0.14 0.46 0.5 0.13 0.5 0.5
BEC L4 0.68 0.88 0.11 0.74 0.93 0.11 0.72 0.99 0.11 0.5 0.5
CATDS 0.42 0.47 0.13 0.44 0.43 0.13 0.32 0.32 0.13 0.4 0.4
REMSS 0.33 0.43 0.13 0.33 0.43 0.13 0.29 0.46 0.14 0 0.5
JPL 0.39 0.37 0.14 0.47 0.50 0.14 0.40 0.50 0.14 0.5 0.5
CMEMS 0.15 0.12 0.17 0.31 0.38 0.16 0.68 0.82 0.15 0.3 0.4

umn). The products that present the best performances are
BEC L4, BEC LR, and JPL.

3.3.3 Spectral analysis

Figures 14 and 15 represent the PDS and SPS (respectively)
in the different regions for all SSS products and OSTIA SST
data. We have also included the information about the stan-
dard deviation of the set of individual spectra that have been
used in the mean spectra represented in these figures. The
vertical line represented in the plots applies to all the frequen-
cies on the log-log scale in which the spectra are represented.

For a better comparison, Fig. 16 presents the spectral
slopes of the PDS (top) and SPS (bottom) for all the products
together. These slopes are calculated in the range of 100–
1000 km wavelengths. Although the effect of rain and other
geophysical phenomena can lead to differences in the PDS
for SSS and SST, on the spatial and temporal scales in which
we have computed the slopes, these differences are expected
to be negligible.

We observe a large diversity in the shapes of the SSS PDS
(Fig. 14) for the different SSS products, significantly differ-
ing for the OSTIA PDS (purple line). In contrast, the shapes
of SSS SPS are closer to the shape of OSTIA SST SPS up to
the 80 km wavelength (see Fig. 15). This is also observed in
Fig. 16: the values of PDS slopes vary on a range larger than
the one of SPS slopes, which are more concentrated around
the theoretically expected range (between −2.0 and −2.5).
These results indicate that, despite the level of noise of each
remotely sensed product, the geophysical structures of the
SSS data are consistent until a 100–80 km wavelength. How-
ever, the slope values in Fig. 16 reveal some differences be-
tween the products.

– BEC HR (in orange) presents the flattest values of the
PDS slopes, being higher than −1.5 in most of the re-
gions, indicating a strong influence of noise (noise tends
to flatten the curve). However, the corresponding SPS
slopes always remain in the range of−2 and−2.5. This

indicates that even if this product is the one with the
largest high-frequency noise, BEC HR allows a consis-
tent description of the geophysical structures up to the
100 km wavelength.

– The CMEMS product (in grey) presents the steepest
PDS slope, becoming lower than −3 in the STP and
SPURS regions, which means that the product is over-
smoothed and that wide regions contain just plainly in-
terpolated data. This indicates that the CMEMS prod-
uct has a loss of structures at wavelengths larger than
100 km. For example, Fig. 14 shows that in the STP and
SPURS regions, the slope of the CMEMS product (grey
line) becomes steeper at wavelengths around 250 km.
This is partially confirmed by the SPS slopes that in
SPURS and NATL present values lower than −2.5,
which indicates that fronts of SEs have been lost and
confirms the existence of an oversmoothing at wave-
lengths larger than 100 km.

– CATDS (in green) presents the flattest PDS slope in the
SPAC region (≈−1). This suggests that the presence
of noise in this region is very large in comparison with
the other products and with its performance in other
regions. The SPAC region is used in the data process-
ing of CATDS to correct systematic and temporal bi-
ases (it corresponds to the region where the ocean target
transformation (OTT) is computed and applied daily to
the CATDS data; Tenerelli and Reul, 2010). This result
suggests that using this region for the calibration of the
SMOS measurements could lead to some issues in the
resulting product.

– BEC L4 (in red) presents the closest PDS to those of
OSTIA SST. Its SPS slopes remain in the range of −2
and −2.5 in all the regions. This indicates that BEC
L4 allows the description of spatial scales up to 100 km
wavelengths with the lowest presence of noise and the
closest geophysical consistency with OSTIA SST data.
That is partially because of the fusion method used in
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Figure 13. From left to right in the following are shown: the most probable SSS SE value as a function of the SST SEs, the mean SSS SE
value as a function of the SST SEs, and the standard deviation of the SSS SEs for each SST SE.

the generation of the BEC L4, which improves the salin-
ity by introducing the spatial correlation consistency
with respect to OSTIA SST.

Below 100 km, except for BEC HR, all spectral slope
values get steeper (lack of signal variability into the data).
REMSS (cyan line in Fig. 14) presents a fast valley-shaped
decay around wavelengths of 80 km followed by a flattening
(traduced by a steeper slope in the SPS slope). This indi-
cates that the smoothing applied to the REMSS product may
remove part of the geophysical variability at those scales.
Around the 60 km wavelength, BEC HR, BEC LR, CATDS,
and JPL PDS get flattened, while this does not happen in the
corresponding SPS spectra. As SPS shape is less affected by
noise (Hoareau et al., 2018b), these results indicate that de-
spite the noise, the geophysical signal present in BEC HR,
BEC LR, CATDS, and JPL is consistently described even at
those smaller scales, so they can be considered to be valid
up to a wavelength of 80 km, which corresponds to a spatial
resolution of 40 km.

3.3.4 Triple collocation

Figure 17 shows the estimated error standard deviations for
the different SSS products (CMEMS not shown) for the year
2017. As a general remark, the estimated error standard de-
viations are larger in those regions with higher salinity dy-
namics, such as the Gulf of Bengal and the equatorial At-
lantic which is affected by the dynamics of the Amazon River
plume. In general, BEC L4 provides the lowest error standard
deviations among all the satellite products, with the excep-
tion of a region close to the Antarctic ice edge, where CATDS
provides the lowest one. The uncertainty on the estimation of
the error standard deviation (calculated as the standard devi-
ation across all the possible triples of the error standard devi-
ations) is lower than 0.03 psu for all the products and almost
all ocean regions as shown in Fig. 18.

We assign one number to each product to assess which is
the product with the lowest estimated error standard devia-

tion at each ocean location. We have not included the un-
certainty associated with the estimation of the salinity error
in this computation. This implies that, although we represent
one map with a single product only at each grid point, after
considering the uncertainty of each estimation, several prod-
ucts could provide a similar performance from a statistical
point of view. In particular, the estimated error in regions of
large salinity variability presents larger uncertainty than in
regions of low salinity variability (see Fig. 18). Therefore,
the following maps are less accurate in these regions. Figure
19 shows the four comparisons that have been performed.

– Comparison of BEC products. We assign the label 1 to
BEC HR, 2 to BEC LR, and 3 to BEC L4. In general
BEC L4 is the product with the lowest SSS error. How-
ever, BEC LR and BEC HR become more accurate in
regions affected by regular rain events (such as the trop-
ics) or continental fresh water discharges (such as the
Gulf of Mexico), where the hypothesis assumed in the
generation of BEC L4 (the gradients of SSS and SST
tend to be parallel) does not hold most of the year.

– Comparison of all satellite L3 products. We assign the
label 1 to BEC HR, 2 to BEC LR, 3 to CATDS, 4 to
JPL, and 5 to REMSS. In the bulk of the ocean BEC LR
provides the lowest SSS error. In some specific regions,
such as the equatorial Atlantic and the Gulf of Guinea,
which are regions strongly affected by the dynamics of
the Amazon and Congo plumes, the BEC HR provides
the best SSS error. Both SMAP products provide better
SSS errors in regions affected by RFI (which is expected
due to SMAP on-board RFI mitigation) such as the Chi-
nese Sea, close to Madagascar, and the Mediterranean
Sea. In the Southern Ocean, CATDS provides the best
SSS error.

– Comparison of all satellite products. When we include
BEC L4 in the comparison (1-BEC HR, 2-BEC LR, 3-
BEC L4, 4-CATDS, 5-JPL, and 6-REMSS), the small-
est SSS error is given by BEC L4 in the majority of
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Figure 14. Power density spectra of the different SSS products.

the ocean. As in the previous comparison, BEC HR and
BEC LR provide the SSS with the lowest error in re-
gions affected by rainfall and continental discharges.
BEC L4 allows improvement of the SSS estimation in
some regions affected by RFI with respect to the L3
products, such as in the China Sea and close to Mada-

gascar. In some regions, SMAP products provide the
best SSS and in others BEC L4 is better.

– Comparison among all the products. In this case, BEC
L4 remains the product with the lowest salinity error
in most of the ocean regions. However, CMEMS SSS
also appears to be the product with the lowest salinity
error in many regions. For example, in the ocean regions
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Figure 15. Singularity spectral analysis of the different SSS products.

close to Europe CMEMS SSS provides the best salinity
estimation.

The results obtained from triple collocation provide a com-
plementary view to the comparisons with Argo floats (see
Sect. 3.3.1). Although the comparison between in situ and
satellite data provides very valuable information about the

quality of the satellite products, this comparison has several
limitations that the triple collocation method does not.

– For sampling, the in situ measurements are provided
over a few samples while the satellite data are synop-
tic. The dynamics displayed by the in situ measurement
could be strongly conditioned by its sampling. There-
fore, the results from the comparison could not be com-
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Figure 16. Slopes of the power density spectra (a) and the singu-
larity specter analysis (b) of the different SSS products. The cor-
responding slopes of the PDS and SPS of OSTIA SST are also in-
cluded as a reference.

pletely representative of the quality of the satellite prod-
uct in the considered region.

– The spatial and temporal scales of the in situ and
satellite measurements are different. The in situ mea-
surements provide punctual and instantaneous measure-
ments while satellite measurements correspond to an in-
tegrated measure of several days and a footprint of sev-
eral square kilometers.

– The in situ measurements are typically given at several
meters depth while the satellite data provide the salinity
at a few centimeters depth.

The above-mentioned reasons could lead to apparent contra-
dictory results between the results corresponding with Argo
comparison and the results corresponding with triple collo-
cation. Indeed, both comparisons constitute different metrics
that provide different pieces of a complex puzzle.

4 Data availability

The product is available for visualization purposes
on the website of the CMEMS Lambda project
(2021) (http://www.cmems-lambda.eu/mapviewer/)
and through the EMODnet (2021) website (https:
//www.emodnet-physics.eu/map/Products/Smos/). The
access to the data is provided by the Barcelona Ex-
pert Center (2007) FTP service; for more details see
http://bec.icm.csic.es/bec-ftp-service/. The DOI of the level-
3 product is https://doi.org/10.20350/digitalCSIC/12601
(Olmedo et al., 2020a), and the DOI of the level-4 product is
https://doi.org/10.20350/digitalCSIC/12600 (Olmedo et al.,
2020b).

5 Conclusions

We have presented 9 years of the new release of SMOS SSS
global products generated at the Barcelona Expert Center:
the BEC SMOS SSS global L3 and L4 products v2.0. The
methods used in their generation include several improve-
ments with respect to the previous version of these products:
(i) a new latitudinal–seasonal debiasing has been included;
(ii) improved filtering criteria based on the salinity geophys-
ical variability have been applied, which allows a better de-
scription of the salinity gradients without increasing the over-
all noise error in the maps; (iii) new interpolation schemes
are proposed to allow better description of small-scale spatial
features that are especially relevant in coastal regions; (iv) the
fusion scheme used in the generation of the L4 product has
been modified to preserve small-scale spatial features; and
(v) an estimation of the salinity uncertainty is provided in the
new products.

We have performed an extensive validation of the BEC
SMOS SSS products v2.0. For doing this, we have compared
the 9-year time series of the new BEC SMOS SSS with Argo
uppermost salinity, and we have also compared the perfor-
mance of BEC products with the other three satellite SSS
products (the SMOS product produced at CATDS and two
SMAP products generated by REMSS and JPL) and the re-
analysis product distributed by CMEMS, but in this case re-
stricted to the year 2017. The main conclusions of this com-
parisons are as follows.

– The statistics of the comparisons with Argo salinity ev-
idence a competitive performance in comparison with
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Figure 17. SSS error estimation by triple collocation, from top to bottom and left to right: BEC HR, BEC LR, BEC L4, JPL, REMSS, and
CATDS.

the statistics of the rest of the SSS products. This in-
cludes small mean and standard deviation of the dif-
ferences with respect to Argo SSS (in the global and
regional statistics, latitudinal biases, and stable differ-
ences in terms of temporal evolution). In this sense, the
mean differences with respect to Argo SSS among the
three BEC products (BEC L3 (HR and LR) and BEC
L4) are very similar (being lower than 0.02 psu at a
global scale), but the standard deviation is significantly
different among them, with the BEC HR being the one
with the largest standard deviation (lower than 0.34 psu
at a global scale) and BEC L4 the one with the lowest
deviation (lower than 0.27 psu).

– In terms of effective spatial resolution and geophysical
consistency, we have used two different metrics.

– Singularity analysis. The SEs of BEC HR and BEC
LR SSS products are very similar to the ones of the
other satellite salinity products in terms of corre-
lation with OSTIA SST SEs. A clear improvement
is observed in the BEC L4 that presents a higher
correlation with the SEs of OSTIA SST, suggesting
that the geophysical consistency is the most accu-
rate as it is the closest to OSTIA SST SEs. This is
partially because of the multifractal fusion method
used in the generation of the BEC L4 product.

– Spectral analysis. The effective spatial resolutions
of BEC HR and BEC LR are consistent with the
ones of the other satellite products which are at
least a wavelength of 80 km (i.e., spatial resolution
of 40 km). The BEC L4 presents similar spectral
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Figure 18. Uncertainty in the SSS error estimation by triple collocation from top to bottom and left to right: BEC HR, BEC LR, BEC L4,
JPL, REMSS, and CATDS.

slopes to the ones of OSTIA SST, showing consis-
tent slopes up to the 50 km wavelength (25 km spa-
tial resolution). At smaller scales, BEC L4 presents
evidence of lack of structure and oversmoothing,
so it probably does not resolve scales at its nomi-
nal resolution of 0.05◦. In the case of BEC HR, it
presents the flattest PDS slopes but with SPS slope
values between −2 and −2.5, which indicate that
even if the presence of noise is larger, BEC HR
is able to represent the geophysical signal consis-
tently.

– We have also computed an estimation of salinity errors
by using triple collocation. Among the BEC products,
BEC L4 provides the SSS field with the lowest error,
but in regions strongly affected by rainfall and conti-

nental freshwater discharge, the L3 products (BEC HR
and BEC LR) are better in terms of salinity error. When
we compare all satellite products, BEC L4 remains as
the product with the overall minimum salinity error.
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Figure 19. Spatial distribution of the products with the minimum SSS estimated error. (a) The product with the lowest error among the
BEC products (1-BEC HR, 2-BEC LR, and 3-BEC L4). (b) The product with the lowest error among the L3 satellite products (1-BEC HR,
2-BEC LR, 3-CATDS, 4-JPL, and 5-REMSS). (c) The product with the lowest error among the satellite products (1-BEC HR, 2-BEC LR,
3-BEC L4, 4-CATDS, 5-JPL, and 6-REMSS). (d) The product with the lowest error among all the products analyzed in the study (including
reanalysis) (1-BEC HR, 2-BEC LR, 3-BEC L4, 4-CATDS, 5-JPL, and 6-REMSS; 7-CMEMS).
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