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Abstract. Accurate and timely maps of urban underlying land properties at the national scale are of significance
in improving habitat environment and achieving sustainable development goals. Urban impervious surface (UIS)
and urban green space (UGS) are two core components for characterizing urban underlying environments. How-
ever, the UIS and UGS are often mosaicked in the urban landscape with complex structures and composites. The
“hard classification” or binary single type cannot be used effectively to delineate spatially explicit urban land
surface property. Although six mainstream datasets on global or national urban land use and land cover products
with a 30 m spatial resolution have been developed, they only provide the binary pattern or dynamic of a single
urban land type, which cannot effectively delineate the quantitative components or structure of intra-urban land
cover. Here we propose a new mapping strategy to acquire the multitemporal and fractional information of the
essential urban land cover types at a national scale through synergizing the advantage of both big data process-
ing and human interpretation with the aid of geoknowledge. Firstly, the vector polygons of urban boundaries in
2000, 2005, 2010, 2015 and 2018 were extracted from China’s Land Use/cover Dataset (CLUD) derived from
Landsat images. Secondly, the national settlement and vegetation percentages were retrieved using a sub-pixel
decomposition method through a random forest algorithm using the Google Earth Engine (GEE) platform. Fi-
nally, the products of China’s UIS and UGS fractions (CLUD-Urban) at a 30 m resolution were developed in
2000, 2005, 2010, 2015 and 2018. We also compared our products with six existing mainstream datasets in
terms of quality and accuracy. The assessment results showed that the CLUD-Urban product has higher accu-
racies in urban-boundary and urban-expansion detection than other products and in addition that the accurate
UIS and UGS fractions were developed in each period. The overall accuracy of urban boundaries in 2000–2018
are over 92.65 %; and the correlation coefficient (R) and root mean square errors (RMSEs) of UIS and UGS
fractions are 0.91 and 0.10 (UIS) and 0.89 and 0.11 (UGS), respectively. Our result indicates that 71 % of pix-
els of urban land were mosaicked by the UIS and UGS within cities in 2018; a single UIS classification may
highly increase the mapping uncertainty. The high spatial heterogeneity of urban underlying covers was exhib-
ited with average fractions of 68.21 % for UIS and 22.30 % for UGS in 2018 at a national scale. The UIS and
UGS increased unprecedentedly with annual rates of 1605.56 and 627.78 km2 yr−1 in 2000–2018, driven by fast
urbanization. The CLUD-Urban mapping can fill the knowledge gap in understanding impacts of the UIS and
UGS patterns on ecosystem services and habitat environments and is valuable for detecting the hotspots of water-
logging and improving urban greening for planning and management practices. The datasets can be downloaded
from https://doi.org/10.5281/zenodo.4034161 (Kuang et al., 2020a).
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1 Introduction

The effects of rapid urbanization on environments have been
witnessed around the world (Seto et al., 2012; Bai et al.,
2018; Kuang et al., 2020b, Zhang et al., 2021) and pro-
foundly contribute to changes in biosphere, hydrosphere and
atmosphere (Wu et al., 2014; Kuang et al., 2018). In China,
a rapid urbanization process emerged in the 21st century (Xu
and Min, 2013; Ma et al., 2014; Bai et al., 2014; Kuang,
2012; Kuang et al., 2016), resulting in a rapid increase in
urban impervious surface area (UIS) (Kuang et al., 2013;
Kuang and Dou, 2020; Lu et al., 2008, Kuang and Yan,
2018). This process further triggered various urban envi-
ronmental problems such as urban heat islands and urban
flooding (Haase et al., 2014; Hamdi and Schayes; 2007;
Kuang, 2011; Kuang et al., 2015, 2017; Xu, 2006; Zhang
et al., 2017). Although many green areas have been con-
structed in Chinese cities recently, China has a relatively
lower percentage of urban green space (UGS) than devel-
oped countries such as the United States (Nowak and Green-
field, 2012; Kuang et al., 2014). These urban environmental
problems triggered the urgency of developing accurate ur-
ban land cover datasets with high spatial resolutions for de-
lineating the underlying urban environments. Along with the
development of Earth observation technologies, remote sens-
ing has become the mainstream method for mapping UIS and
UGS and monitoring their changes (Weng, 2012; Wang et al.,
2013; Lu et al., 2014, 2018; Zhang et al., 2009).

Various land use products such as the Global Land Cover
product (GlobaLand30) (Chen et al., 2015), the University
of Maryland (UMD) Land Cover Classification (Hansen et
al., 2000), Moderate Resolution Imaging Spectroradiometer
(MODIS)-based land use and land cover products (Friedl et
al., 2010), GlobCover (Bontemps et al., 2011), and Finer
Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) (Gong et al., 2013) are freely available
worldwide (Grekousis et al., 2015; Dong et al., 2017). These
products have different definitions of urban areas or settle-
ments due to their different classification systems, such as
the International Geosphere-Biosphere Programme (IGBP)
(Belward, 1996). Some urban land datasets, such as the
Normalized Urban Areas Composite Index (NUACI), which
were constructed by supervised learning approaches, have
been released at a national or global scale with spatial res-
olutions from 30 m to 1 km (Liu et al., 2018; He et al., 2019;
Gong et al., 2019). Others such as the built-up grid of the
Global Human Settlement Layer (GHSL Built) (Pesaresi et
al., 2013) and Global Urban Footprint (GUF) (Esch et al.,
2017, 2018) have been published too. Most urban land prod-
ucts have focused on built-up land or urban area classifi-
cation but cannot delineate urban land as a heterogeneous
unit consisting of UIS, UGS and other fractions (Chen et

al., 2015). Therefore, few urban land products have provided
intra-urban UIS and UGS fractions at the sub-pixel level.

A detailed UIS dataset inside a city is required as a pri-
mary urban environmental index. Numerous studies on im-
pervious surface mapping at the national scale mainly rely on
medium–low-spatial-resolution remotely sensed data such as
MODIS and the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP OLS) (Gong et al.,
2013; Zhou et al., 2014; Grekousis et al., 2015; Zhou et
al., 2015; Kuang et al., 2016; Zhou et al., 2018). Recently,
more research has shifted to employ medium–high-spatial-
resolution data (e.g., Landsat) to improve data products (Li
et al., 2018; Liu et al., 2018; Gong et al., 2019, 2020a; Li et
al., 2020; Lin et al., 2020). The US Geological Survey have
developed the National Land Cover Database (NLCD) and
provided impervious surface fraction, percent tree canopy,
land cover classes and their changes with a spatial resolu-
tion of 30 m (Falcone and Homer, 2012; Yang et al., 2018).
However, a detailed intra-urban UIS and UGS dataset with a
30 m spatial resolution for China at the national scale is not
available yet, making it difficult to conduct detailed analysis
of aspects such as urban living environments.

A systematic assessment on urban land mapping algo-
rithms indicates that previous research mainly classified ur-
ban land into a single type with “urban area” or impervious
surface area (ISA), which limits recognition of the urban en-
vironment (Reba and Seto, 2020). There are two critical chal-
lenges in mapping urban land cover composites. Firstly, the
conceptual definition of urban land or ISA in previous re-
search is unclear; thus, the spatial extent is inconsistent, re-
sulting in a large divergence in the statistical area of urban
land. Meanwhile, the segmentation on urban–rural bound-
aries has not been accurate from moderate-resolution satellite
images using computer-based automatic classification ow-
ing to differences in geographic conditions, social economic
conditions and land policies. Therefore, accurate mapping
of urban–rural boundaries is pivotal in detecting urban land
cover change. Secondly, the spatial heterogeneity of urban
surface properties has resulted in difficulty in decomposing
urban land cover types with complex surface materials at the
pixel scale, which has been limited by the huge amounts of
data processing and storage capacities required for a 30 m
resolution.

In reality, the urban land cover is composed of UIS, UGS
and other fractions. UIS refers to the urban impervious sur-
face features caused by artificial land use activities, like
building roofs, asphalt or cement roads, and parking lots.
UGS is an important component of the green infrastructure
of cities and provides a range of ecosystem services, includ-
ing parks, trees and grass. Previous studies have proven that
spectral mixture analysis (SMA) provides an effective tool
to retrieve the UIS and UGS fractions from Landsat mul-
tispectral imagery (Lu and Weng, 2004, 2006; Peng et al.,
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2016; Kuang et al., 2018). However, this method needs local
knowledge for problem-specific analysis such as intra-urban
land cover analysis of a single city or a single urban agglom-
eration (Zhang and Weng, 2016; Xu et al., 2018). Although
the globally standardized SMA can effectively extract sub-
strate, dark areas and vegetation (Small and Milesi, 2013),
the UIS cannot be accurately and directly extracted from
multispectral images without post-processing considering its
widely spectral variation and different meanings of UIS and
substrate (Lu et al., 2014). Because of the high correlation
between UIS and vegetation indices in the urban landscape
(Weng et al., 2004), a fractional UIS dataset can be estimated
from vegetation indices using a regression-based approach
(Sexton et al., 2013; Wang et al., 2017).

To address the above issues, we propose a synthetical strat-
egy to utilize the advantage of both accurate urban boundary
information from China’s Land Use/cover Dataset (CLUD)
extracted by human–computer digitalization and the retrieval
of UIS and UGS fractions through big-data processing from
the GEE platform. Based on this strategy, we developed the
product of a national UIS and UGS fraction dataset at a 30 m
spatial resolution in 2000, 2005, 2010, 2015 and 2018 across
China. This dataset provides a foundation for understanding
urban dwellers’ environments and enhances our understand-
ing of the impacts of urbanization on ecological services and
functions, and it will also be helpful in future research and
practices in urban planning and urban environmental sustain-
ability.

2 The strategy of developing the CLUD-Urban
product

To acquire the accurate CLUD-Urban product, three steps
were generally implemented according to our mapping strat-
egy. Firstly, national urban boundaries in 2000–2018 were
extracted from CLUD which was generated using a uniform
technological flow and classification system in a human–
computer digitalization environment. Time series of urban
boundaries and their expansions have good performance in
accuracy and data quality. The national urban vector bound-
aries in 2000, 2005, 2010, 2015 and 2018 were converted
to raster data with a 30 m resolution for further processing
(Fig. 1). Secondly, the settlement and vegetation fractions
with a 30 m resolution were retrieved using a random forest
algorithm in the GEE platform. Thirdly, the UIS and UGS
fractions with a 30 m resolution were mapped through over-
laying the urban boundaries of CLUD with settlement and
vegetation fractions, respectively (Fig. 1). Accuracy assess-
ment both of urban boundaries and of UIS and UGS frac-
tions was implemented using samples from Google Earth
images. Quality control was conducted throughout the data
processing in mapping the CLUD-Urban product. A detailed
description is given in the following sections.

3 Data sources and pre-processing

Landsat is the longest-running satellite series for Earth obser-
vation. Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+) and Operational Land Imager (OLI)
data with path ranges of 118–149 and row ranges of 23–43
in China were selected (Table 1). In mapping CLUD, Land-
sat TM, ETM+ and OLI in each period, China–Brazil Earth
Resources Satellite program (CBERS) and Huan Jing (HJ-
1A and HJ-1B) satellite images in 2010 were used to gen-
erate false-color composite images with near-infrared, red
and green spectral bands as red, green and blue. Image en-
hancement was performed to improve the visual interpreta-
tion quality. Image-to-image registration was conducted to
control the image rectification errors of less than 2 pixels
(60 m). CBERS-1 and Huan Jing (HJ-1A and HJ-1B) satel-
lite images were only used in extracting the vector polygons
of CLUD in 2010, which was conducted using uniform data
processing with Landsat images.

In the retrieval of settlement and vegetation fractions,
Landsat TM, ETM+, and OLI data in each period from Jan-
uary to December were collected using the GEE platform.
Shuttle Radar Topography Mission (SRTM) digital elevation
model data and the normalized difference vegetation index
(NDVI) with a 30 m resolution were acquired as input param-
eters to retrieve settlement and vegetation fractions. Google
Earth images in selected cities with a 0.6 m resolution were
used to assess the accuracy of the CLUD-Urban product.

4 Extraction of urban boundaries from CLUD

4.1 The classification system and interpretation symbols

CLUD with 30 m resolution was developed by the Chinese
Academy of Sciences and has been updated from 2000 to
2018 every 5 or 3 years. This dataset can delineate land
use or land cover change associated with human activities,
including urbanization at a scale of 1 : 100000 (Liu et al.,
2005a, b, 2010). This product adopted a hierarchical clas-
sification system covering the 6 first-level classes and the
25 second-level classes. Here the 6 first-level classes com-
prise cropland, woodland, grassland, water body, construc-
tion land and unused land. A detailed description of each
class can be found in previous publications (Liu et al., 2005b;
Zhang et al., 2014). The construction land was divided into
three second-level classes, including urban land, rural set-
tlements, and industrial and mining lands beyond cities. Ur-
ban land was defined as a built-up area of the concentrated
construction, i.e., buildings, roads, squares, green infrastruc-
ture and other lands for providing a living, industrial pro-
duction, and ecosystem services for the dwellers of cities or
towns. According to this definition, urban land can be megac-
ities (more than 10 million population), megalopolises (5–
10 million population), large cities (1–5 million population),
medium cities (0.5–1 million population), small cities (0.2–
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Figure 1. The technological flowchart of generating the CLUD-Urban product.

Table 1. The multitemporal data series used in this research.

Year Path Row Sensor Spatial resolution (m)

2000

118–149 23–43

Landsat TM 30
2005 Landsat TM 30
2010 Landsat TM and ETM+, HJ-1, CBERS-1 30
2015 Landsat 8 OLI 30
2018 Landsat 8 OLI 30

Data sources Resolution

SRTM digital elevation model data 30 m
NDVI 30 m
Google Earth images 0.6 m

0.5 million population) and towns (less than 0.2 million pop-
ulation) (Kuang, 2020a). The industrial and traffic lands out-
side cities are excluded in the urban land. Based on the de-
signed classification system, the interpretation symbols from
the second-level classes were built for the false-color com-
posite images as a reference to aid the human–computer in-
terpretation (Fig. 2) (Zhang et al., 2014).

4.2 Land use and dynamic polygon interpretation

According to the CLUD classification system, the vector
polygons of land use classes in 2000 were digitalized through
overlying the false-color composite images with the aid of
interpretation symbols and geoknowledge from each zone
(Fig. 3). The polygons of urban lands were identified through
using detailed image interpretation symbols for each second-
level land use class based on Landsat or similar-resolution
images. Usually, the polygons of urban lands exhibit larger
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Figure 2. The interpretation symbols and extracted urban boundaries from Landsat images in Beijing city. The images were provided by
the Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn, last access:
27 September 2017).

sizes than rural settlements and others (e.g., industrial and
traffic lands) in a cinerous color ornamented with white. Dig-
italization personnel differentiated the urban land from rural
settlements and others based on interpretation symbols and
geoknowledge from field investigation (Fig. 2). In the digi-
talization environment, each vector polygon was assigned a
code of the second-level classes. The vector polygons of land
use classes in 2000 were double-checked to ensure the cor-
rect type in interpretation. The dynamic polygons were ex-
tracted through comparing the difference in two differently
dated images and assigned the codes including the types be-
fore and after changes (Fig. 3). The land use changes within
5 or 3 years were detected using the uniform method. Fi-
nally, the land use maps in 2000, 2005, 2010, 2015 and 2018
and their changes at 5- or 3-year intervals were generated for

CLUD. The detailed technological flow can be found in pre-
vious publications (Liu et al., 2005b; Zhang et al., 2014). An
example of a land use map in 2010 in the Conghua district of
Guangzhou and dynamic land use changes in 2010–2015 is
illustrated in Fig. 3.

4.3 Retrieval of multitemporal urban boundaries

The vector boundaries of urban extents were extracted from
the CLUD land use maps in each period (Kuang et al., 2016).
We also examined 10 732 urban vector polygons in 2000.
The number of polygons increase to 50 061 in 2018. The ur-
ban vector boundaries were acquired from Landsat images
or similar-resolution images. The vector polygons of urban
boundaries were converted to raster data with a 30m× 30m
cell size. The datasets on urban land across China in 2000,
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Figure 3. Land use classification and extracted vector polygons as an example with the Conghua district of Guangzhou.
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2005, 2010, 2015 and 2018 were generated with 30 m reso-
lution. Here we showed urban boundaries and the expansion
process with a 30 m resolution in the cities of Xi’an, Wuhan,
Guangzhou and Ürümqi (Fig. 4).

5 Mapping UIS and UGS fractions using GEE
platform

5.1 Collection of training samples

The training samples of UIS and UGS fractions are a piv-
otal input parameter in the random forest model for mapping
national settlement and vegetation fractions. In light of large
discrepancies among UIS and UGS composites in different
climate zones with various geographical and social economic
conditions, we collected a total of 2570 samples from ran-
domly selected cities in different climate zones (Schneider et
al., 2010) (Fig. 5). Here we also refer to the existing UIS
dataset to acquire samples with 10 % intervals of the ISA
fraction, and those samples are primarily distributed in the
homogeneous UIS or UGS areas, which might provide more
effective samples and decrease the impact of imagery mis-
match. The samples of UIS and UGS covered with diversi-
fied types, including buildings, roads and squares and grass
and trees from parks, roads and residential green spaces. The
UIS and UGS percentages were interpreted within each sam-
ple using Google Earth images (Fig. 5b1–b4). Finally, the
training samples in 2000, 2005, 2010, 2015 and 2018 were
used for training the random forest model.

5.2 Retrieval of settlement and vegetation fractions
using random forest model

Many previous studies have indicated that random forest is
more effective and accurate in classifying urban land types
than other machine learning approaches such as support vec-
tor machines (SVMs) and artificial neural networks (ANNs)
(Zhang et al., 2020). Random forest exhibits a strong capac-
ity in processing high-dimensional datasets and has been suc-
cessfully applied to mapping global ISA at a 30 m resolution
(Zhang et al., 2020). In this research, we proposed a strat-
egy to acquire the settlement and vegetation percentage at
the pixel scale using the advantage of random forest and big-
data processing based on the GEE platform.

According to 16 global urban ecoregions based on temper-
ature, precipitation, topographic conditions and social eco-
nomic factors (Schneider et al., 2010), China has three urban
ecoregions. In each urban ecoregion, the annual maximum
NDVI; spectral bands in Landsat TM, ETM+ and OLI; and
the slope index derived from the SRTM DEM with a 30 m
resolution were selected as the input parameters to run the
random forest model. The Landsat images were from 1 Jan-
uary to 31 December of each baseline year. The annual max-
imum NDVI (NDVImax) was retrieved using Eq. (1):

NDVImax =max(NDVI1,NDVI2, · · ·,NDVIi), (1)

where NDVIi is the NDVI value of the ith image. The in-
dividual NDVI was calculated from Landsat images in the
period between 1 January to 31 December, and all images
were collected using GEE (Gorelick et al., 2017).

In the GEE platform, the settlement and vegetation frac-
tions were calculated for each urban ecoregion through us-
ing the training parametrizations. The lawn, forest or their
mosaicked areas were selected as input samples in mapping
UGS. Post-processing was implemented to remove the pix-
els with NDVI values greater than 0.5 or DEM slope values
greater than 15◦. In arid and semi-arid areas, the enhanced
bare-soil index (EBSI) was utilized to separate UIS from bare
soils (As-syakur et al., 2012; Li et al., 2019). As a result, the
settlement and vegetation fractions with 30m×30m in 2000,
2005, 2010, 2015 and 2018 were generated for developing
the CLUD-Urban product (Fig. 6).

5.3 Mapping of UIS and UGS fractions

The settlement and vegetation fractions with a 1◦× 1◦ grid
of each period were downloaded from GEE platform. In
ArcGIS 10.0 software, the settlement and vegetation layers
were merged at a provincial scale with a 30m× 30m. The
national UIS and UGS fractions with 30m× 30m resolution
in 2000, 2005, 2010, 2015 and 2018 were produced through
overlaying the urban boundaries of CLUD with settlement
and vegetation fractions, respectively (Figs. 7, 8 and 9).

6 Accuracy assessment of the CLUD-Urban product

The national urban boundaries and UIS and UGS fractions
were assessed through qualitative and quantitative indices,
respectively. Firstly, on the accuracy of CLUD in 2000, 2005
and 2010 we referred to our previous publications (Liu et
al., 2010, 2014; Zhang et al., 2014). The accuracy of the six
first-level classes – cropland, forest, grassland, built-up area,
water body and unused – and of the second-level land use
and land cover types, including urban land, rural settlements,
industrial and traffic lands, was assessed using the field inves-
tigation data and the Google Earth images (Liu et al., 2010,
2014; Zhang et al., 2014). We also implemented accuracy as-
sessment on urban boundaries of CLUD from 2000 to 2018
using overall accuracy, producer’s accuracy and user’s accu-
racy (Fig. 10) (Kuang et al., 2016; Kuang, 2020a).

The validation samples for assessing the accuracy of UIS
and UGS fractions were collected within urban boundaries
using a stratified random sampling method with the ISA frac-
tion at 10 % intervals. Those samples with a window size of
3 pixels× 3 pixels (90m× 90m) were used to digitalize the
UIS and UGS polygons through the human–computer inter-
action based on Google Earth images (Kuang et al., 2014;
Kuang, 2020b). A total of 1869 validation samples were ran-
domly acquired in different regions in China in 2000–2018,
including 1070 samples located in the changed UIS and UGS
areas (Fig. 10). Mean UIS and UGS fractions in each grid
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Figure 4. The urban boundaries extracted from CLUD with a 30 m resolution in selected cities. The administrative boundaries were provided
by the National Geomatics Center of China (http://www.webmap.cn, last access: 15 September 2020); DEM dataset was downloaded from
SRTM 90 m digital elevation data (http://srtm.csi.cgiar.org/, last access: 15 September 2020).

were calculated. The comparison between estimated values
and validation values was conducted using the correlation co-
efficient (R) and root mean square error (RMSE) (Kuang et
al., 2014; Kuang, 2020b). We also evaluated the changed UIS
and UGS areas using R and RMSE based on 1070 validation
samples.

7 Results

7.1 The accuracy of CLUD-Urban

A quality check and data integration were performed for the
years 2000, 2005, 2010, 2015 and 2018 to ensure the qual-
ity and consistency of the interpretation results. Our assess-
ment results indicated the overall accuracy of the first-level

land use and land cover types is 98.04 % in 2000, 94.3 %
in 2010, 91.64 % in 2015 and 91.12 % in 2018 (Liu et al.,
2014; Zhang et al., 2014; Kuang et al., 2016; Ning et al.,
2018). The built-up area has the highest accuracy among the
six land use types owing to its clear urban boundaries, and
the accuracy reached 98.92 % in 2000 and 97.01 % in 2005
according to previous assessment (Zhang et al., 2014). The
user’s accuracy of urban land type is relatively high with
93.67 % in 2010, 92.65 % in 2015 and 91.32 % in 2018 (Ta-
ble 2). Overall, the urban land accuracy shows a decreas-
ing trend, which resulted from the fuzzy and unidentifiable
urban–rural boundaries owing to the continuous pattern of
urban–rural land driven by China’s fast urban development
since the 21st century. In CLUD, the change polygons were
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Figure 5. Distribution of sampling cities in China and training samples in selected cities. The images were provided by the Geospatial Data
Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn, last access: 13 August 2015 for
Shijiazhuang, 1 July 2015 for Xi’an, 2 April 2015 for Chengdu, and 20 November 2015 for Kunming). The administrative boundaries were
provided by the National Geomatics Center of China (http://www.webmap.cn, last access: 15 September 2020).

identified based on human interpretation. The validation of
UIS and UGS fractions in each period showed that the RM-
SEs were 0.11–0.12 and 0.11–0.12 respectively, and the R

values were 0.89–0.91 and 0.87–0.90, respectively (Table 3).
The R and RMSE values for the changed UIS areas in 2000–
2018 are 0.88 and 0.12, and those for the changed UGS areas
in the same period are 0.85 and 0.12, respectively.

7.2 Patterns and dynamics of UIS and UGS since the
beginning of the 21st century

Our result indicated that China’s UIS increased from 2.46×
104 km2 in 2000 to 5.35× 104 km2 in 2018 (Fig. 7). From
the perspective of the quality of dwellers’ habitat environ-
ments, the percentage of UIS in China’s urban areas in 2018
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Figure 6. Distribution of sampling cities in China and training samples in selected cities. The administrative boundaries and residential point
information were provided by the National Geomatics Center of China (http://www.webmap.cn, last access: 15 September 2020).

is 74.42 %, showing a higher UIS density than developed
countries like the USA (Kuang et al., 2014). However, the
UIS percentage in urban areas decreased from 74.42 % in
2000 to 68.21 % in 2018 owing to the improvement of ur-
ban greening conditions. As shown in Fig. 7, the UIS across
China is mainly distributed in the coastal and central re-
gions and is relatively discrete in the western regions. The
pattern of “high in east and low in west” national UIS re-
mained unchanged between 2000 and 2018 (Fig. 7). China’s
UGS shows an increasing trend. The total UGS area in-
creased from 1.00× 104 km2 in 2000 to 1.83× 104 km2 in
2018 (Fig. 8). Looking at both UIS and UGS in urban areas,
our results indicate a slight increase in UGS density and de-
crease in UIS density, which has resulted from strengthening
urban greening since the start of the 21st century. The UGS
percentage rose from 18.91 % in 2000 to 22.30 % in 2018.

As shown in Fig. 9, UIS and UGS of cities from coastal,
northeastern and southwestern China have high spatial het-
erogeneity and showed the different urban expansion rate in
the past 28 years.

The large discrepancies of the UIS and UGS percentage
in urban areas were exhibited among eastern, central, west-
ern and coastal zones. The coastal zone showed a remarkable
increasing trend from 16.50 % in 2000 to 21.66 % in 2018
(Figs. 9 and 11). We also found that urban greening condi-
tions were positively improved in Beijing in the same period,
which resulted in the increase in UGS percentage and de-
crease in UIS percentage in urban areas (Fig. 9). This means
that urban habitat environment in coastal zones has become
more liveable and comfortable, which is associated with the
greening of parks and forests. We also found that the western
cities have a relatively low UGS percentage in urban areas,
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Figure 7. Spatial distribution of urban impervious surface (UIS) in 2000–2018 across China. The administrative boundaries were provided
by the National Geomatics Center of China (http://www.webmap.cn, last access: 15 September 2020).

which is 0.86 % lower than the average of China owing to the
low-greening conditions (Figs. 9 and 11).

7.3 Comparisons of the CLUD-Urban product with other
datasets

We compared the vector boundaries of urban areas with
the existing land use products and found obvious discrep-
ancies because of the differences in data production, data

https://doi.org/10.5194/essd-13-63-2021 Earth Syst. Sci. Data, 13, 63–82, 2021

http://www.webmap.cn


74 W. Kuang et al.: Dataset of China’s UIS and UGS

Figure 8. Spatial distribution of urban green space (UGS) in 2000–2018 across China. The administrative boundaries were provided by the
National Geomatics Center of China (http://www.webmap.cn, last access: 15 September 2020).

source, resolution and definition of urban land use types.
The spatial resolutions of land cover products range from 30
to 1000 m. Figure 12 provides a comparison of urban land
datasets (see Table 4 for these datasets), showing that our
product has better performance in delineating the detailed
spatial patterns of intra-urban land cover, i.e. the compos-

ite of UIS and UGS (note both the GHSL Built and Globa-
Land30 products cover only 2 years). The accuracy of urban
boundaries from CLUD-Urban is over 92 % and is basically
inconsistent with that of the impervious surface map (Zhang
et al., 2020). Our dataset has a higher classification accu-
racy in urban boundaries than that of GHSL with 90.3 %,
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Figure 9. The spatial distribution of urban impervious surface (UIS) in selected cities from 2000 to 2018. DEM dataset was downloaded
from SRTM 90 m digital elevation data (http://srtm.csi.cgiar.org/, last access: 15 September 2020).

FROM-GLC with 89.6 %, Human Built-up and Settlement
Extent (HBASE) with 88.0 %, GlobaLand30 with 88.4 % and
NUACI with 85.6 %. Furthermore, our CLUD-Urban prod-
uct can accurately delineate the spatial heterogeneity of UIS
and UGS composites, which showed the R with 0.90 and
0.89 and RMSE with 0.11 and 0.11, respectively. In those
existing datasets, the UIS and UGS composites can’t be ef-
fectively decomposed at the pixel scale (Fig. 12).

8 Discussions

8.1 The mapping advantages integrated with
human–computer interpretation and GEE platform

In mapping urban land use and land cover change at national
scale, two pivotal steps were required to segment the urban

land, rural settlements, and industrial and traffic lands in pe-
riphery of cities for accurately acquiring the urban bound-
aries and to retrieve the UIS and UGS fractions at pixel
scale. The urban boundaries are generally mapped using clas-
sification methods such as unsupervised classifiers, super-
vised classifiers, human–computer interpretation and other
advanced algorithms (i.e., ANN, SVM and random forest)
(Wu and Murray, 2003; Zhang et al., 2020). Among these
methods, human–computer interpretation is widely regarded
as a most accurate method in classifying urban land use and
land cover changes, especially in both detecting changing in-
formation and extracting vector polygons as whole geofea-
tures. However, this method takes more time and manual la-
bor to digitalize a large number of polygons. CLUD has an
advantage for providing the accurate urban boundaries and
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Figure 10. Validation samples on the CLUD-Urban product. The administrative boundaries were provided by the National Geomatics Center
of China (http://www.webmap.cn, last access: 15 September 2020).

Table 2. Confusion matrix of China’s Land Use/cover Dataset.

Year Land type
Accuracy for specific land type Source

Samples Producer’s accuracy User’s accuracy Overall
size (%) (%) accuracy

2000 Built-up area 8055 98.92 % Zhang et al. (2014)

2005 Built-up area 7382 97.01 % Zhang et al. (2014)

2010

Built-up area

7875

– –

Kuang et al. (2016)
Urban land 94.30 93.67
Rural settlement 91.76 91.76
Industrial and traffic lands 91.67 90.26

2015

Built-up area

7235

– –

This study

Urban land 91.30 92.65
Rural settlement 89.29 93.28
Industrial and traffic lands 95.45 91.30

2018

Built-up area 7235 – –
Urban land 90.40 91.32
Rural settlement 88.19 92.18
Industrial and traffic lands 94.43 92.13
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Figure 11. The fractions of urban impervious surface (UIS) and urban green space (UGS) at national and regional scales (coastal, central,
western and northeastern zones) in 2000 and 2018.

Figure 12. A comparison of urban land cover between this product and other datasets in Beijing. The Landsat images were provided by the
Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn, last access: 20
August 2000 for 2000, 8 September 2005 for 2005, 8 June 2010 for 2010, 23 September 2015 for 2015, and 8 April 2018 for 2018).
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Table 3. Accuracy assessments for the UIS and UGS fractions.

Year
UIS UGS

R RMSE R RMSE

2000 0.91 0.11 0.90 0.11
2005 0.90 0.11 0.90 0.11
2010 0.90 0.11 0.88 0.11
2015 0.91 0.11 0.88 0.11
2018 0.89 0.12 0.87 0.12

is updated at an interval of every 5 or 3 years from 2000 to
2018.

Cities or towns were classified as a homogeneous unit in
CLUD. We developed the UIS and UGS fractions to fill the
data gap for the requirement of urban environmental manage-
ment. Here we adopted the advantage of high accuracy and
long-time series in mapping urban land from CLUD. Mean-
while we also utilized the highly efficient computation and
large storage capacities on the GEE platform. In mapping the
CLUD-Urban product, we proposed quantitatively retrieving
the UIS and UGS fractions using random forest. Because
we used advantages of manual interpretation and intelligent
computation, CLUD-Urban exhibits high accuracy and reli-
ability in delineating urban land surface properties.

8.2 The potential implications of promoting habitat
environment and urban sustainability

The CLUD-Urban product may effectively delineate the
“built-up environment” of Chinese cities, especially maps
on surface imperviousness and greening conditions (Kuang,
2020b). CLUD-Urban can be applied to such fields as en-
hancing the quality of the urban habitat environment, reduc-
ing urban heat islands, and improving prevention of rain-
storm and flood disasters (Huang et al., 2018). Our previous
study indicated that the thermal dissipation strength of forest
canopy or lawns in cities may be assessed at the pixel scale
and that the greening projects are more effective in allevi-
ating urban-heat-island intensity (Kuang et al., 2015). The
CLUD-Urban product also helps identify urban flood regu-
lation priority areas based on ecosystem service approaches
(Li et al., 2020).

The analysis of CLUD-Urban indicates an unprecedented
rate and magnitude of urban expansion since the start of the
21st century. The low UGS of cities in western zones indi-
cates the need to promote their greening level (Kuang and
Dou, 2020). The CLUD-Urban product can also be used to
assess sustainable-development-goal (SDG) targets such as
the ratio of land consumption to population growth or aver-
age share of the built-up area that is open space for public
use. Therefore, CLUD-Urban can have many potential ap-
plications in the development of sustainable, liveable and re-
silient cities.

8.3 Limitations of the method and dataset

Although state-of-the-art technologies and methodologies
were applied to the development of CLUD-Urban (Dong et
al., 2017; Kuang et al., 2020b), improvement to the map-
ping CLUD-Urban quality can still be made. For example,
the retrieval of UIS and UGS was conducted as a prereq-
uisite of CLUD, which focused on the pixel decomposition
of UIS and UGS in urban areas. If the UIS and UGS frac-
tions are parameterized to be input into a hydrological pro-
cess model or urban climate, the settlements or impervious
surfaces located on the outskirts of a city or in rural areas are
removed from CLUD. To address this issue, the first-level
classification or second-level classification of CLUD should
be utilized to merge with UIS and UGS using the method
in our previous publication (Kuang et al., 2020b). Mapping
CLUD requires a large amount of labor and time as many
interpreters are involved in this work. The extraction of ur-
ban boundaries might be subjective, and there is a time lag
in mapping UIS and UGS. It is needed to develop some ad-
vanced tools to extract urban boundaries using automatic al-
gorithms.

Fine urban land use and land cover change mapping at a
national scale with high-resolution multi-source data may be
developed with the aid of big data and cloud platforms (Gong
et al., 2020a). The development of a series of new algo-
rithms and models are pivotal for improving the accuracy of
datasets in retrieving urban boundaries and land cover com-
posites. However, geoknowledge is still essential for retriev-
ing a high-quality dataset (Kuang et al., 2018). CLUD-Urban
can contribute to the development of sustainable cities, such
as with Global Ecosystems and Environment Observation
(GEO) and UN-Habitat, in future.

9 Data availability

All data presented in this paper are available at
https://doi.org/10.5281/zenodo.4034161 (Kuang et al.,
2020a). These new-version datasets include the UIS and
UGS fractions with a 30 m spatial resolution in 2000, 2005,
2010 2015 and 2018. A detailed metadata description is
provided, including contact information.

10 Conclusion

CLUD-Urban – China’s UIS and UGS fraction datasets with
30 m spatial resolution – was generated using multiple data
sources. CLUD-Urban provides detailed delineation of UIS
and UGS components in China for the years of 2000, 2005,
2010, 2015 and 2018. Comparing to other products, the nov-
elty of this dataset is to take cities as heterogeneous units
at the pixel level, which consist of UIS, UGS and others.
The accuracy of the CLUD-Urban dataset is over 92.65 % us-
ing the integrated approach of visual interpretation and prior
knowledge. The RMSEs of UIS and UGS fractions are 0.10
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Table 4. A summary of existing urban land products.

Name Spatial Abbreviation Method Reference
resolution

Land cover from Moderate
Resolution Imaging Spectrora-
diometer

500 m MODIS LC Decision tree classification Friedl et al. (2010)

European Space Agency global
land cover data

300 m ESA LC Unsupervised classification and
change detection

Bontemps et al. (2011)

Built-up grid of the Global Hu-
man Settlement Layer

30 m GHSL Built Symbolic machine learning Pesaresi et al. (2013)

Global Land Cover at 30 m res-
olution

30 m GlobaLand30 Pixel–object–knowledge-based
(POK-based) classification

Chen et al. (2015)

Multi-temporal Global imper-
vious surface

30 m MGIS Normalized urban areas com-
posite index

Liu et al. (2018)

Annual maps of global artificial
impervious area

30 m GAIA “Exclusion–inclusion” ap-
proach

Gong et al. (2020b)

and 0.14, respectively. Results from the analysis of urban ar-
eas, including UIS and UGS, show large regional differences
in China. CLUD-Urban provides fundamental data sources
for examining urban environment issues and for delineating
intra-urban structure or urban landscape at the national scale.
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