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Abstract. An accurate paddy rice map is crucial for ensuring food security, particularly for Southeast and
Northeast Asia. MODIS satellite data are useful for mapping paddy rice at continental scales but have a mixed-
pixel problem caused by the coarse spatial resolution. To reduce the mixed pixels, we designed a rule-based
method for mapping paddy rice by integrating time series Sentinel-1 and MODIS data. We demonstrated the
method by generating annual paddy rice maps for Southeast and Northeast Asia in 2017–2019 (NESEA-Rice10).
We compared the resultant paddy rice maps with available agricultural statistics at subnational levels and existing
rice maps for some countries. The results demonstrated that the linear coefficient of determination (R2) between
our paddy rice maps and agricultural statistics ranged from 0.80 to 0.97. The paddy rice planting areas in 2017
were spatially consistent with the existing maps in Vietnam (R2

= 0.93) and Northeast China (R2
= 0.99). The

spatial distribution of the 2017–2019 composite paddy rice map was consistent with that of the rice map from the
International Rice Research Institute. The paddy rice planting area may have been underestimated in the region
in which the flooding signal was not strong. The dataset is useful for water resource management, rice growth,
and yield monitoring. The full product is publicly available at https://doi.org/10.5281/zenodo.5645344 (Han et
al., 2021a). Small examples can be found from the following DOI: https://doi.org/10.17632/cnc3tkbwcm.1 (Han
et al., 2021b).

1 Introduction

Rice is one of the world’s main food sources, accounting
for approximately 12 % of the global cropland area (Zhang
et al., 2018; Singha et al., 2019). Approximately 90 % of
the world’s rice is produced in Asian countries (Chen et
al., 2012; Yeom et al., 2021). Rice provides food for over
50 % of the world’s population (Minasny et al., 2019). The
consumption of rice increases as the world’s population in-
creases. Additionally, approximately 1/10 of CH4 emissions
in the atmosphere come from methane emissions from rice
paddies (Ehhalt et al., 2001; Xin et al., 2017; Zhang et

al., 2020). Rice agriculture is significant in food security, wa-
ter resource security, disease transmission, and environmen-
tal sustainability (Clauss et al., 2018b; Li et al., 2020; Park et
al., 2018). An accurate planting area and spatial distribution
information are the basis for monitoring paddy rice growth
and predicting yield. However, few spatial maps of paddy
fields at continental scales exist (Li et al., 2020; Singha et
al., 2019). Therefore, it is necessary to produce a paddy rice
map dataset with high spatial resolution.

Many methods for mapping rice have been developed
based on different remote sensing data, including (1) ma-
chine learning classifiers (e.g., random forest and support
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vector machines), (2) phenology-based classifiers, (3) rule-
based algorithms, and (4) the time series algorithm approach
(Dong et al., 2016a, b; Bazzi et al., 2019; Dong and Xiao,
2016; Luo et al., 2020b, a; Nelson et al., 2014; Phung et
al., 2020; Minasny et al., 2019; Shew and Ghosh, 2019; Xiao
et al., 2006; Zhan et al., 2021). Satellite image sources in-
clude MODIS, Landsat, Sentinel, RADARSAT, and PAL-
SAR (Dong and Xiao, 2016; Shao et al., 2001; Singha et
al., 2019; Zhou et al., 2016). Many studies have demon-
strated that phenology-based classifiers using MODIS data
are useful for mapping paddy rice at continental scales (Dong
et al., 2016b; Xiao et al., 2006; Zhang et al., 2020). The
transplanting period of rice is a distinct characteristic used
for distinguishing rice from other crops or land use types.
For example, Xiao et al. (2006) mapped paddy rice at conti-
nental scales (South Asia and Southeast Asia, SE Asia) us-
ing the phenological characteristics in the period of flood-
ing and transplanting. Additionally, this method was success-
fully applied in other large regions (Xin et al., 2020; Zhang
et al., 2017, 2020). The International Rice Research Institute
(IRRI) extracted the distribution of paddy rice for Asia (Nel-
son and Gumma, 2015). However, the paddy rice maps gen-
erated using MODIS data contain a large number of mixed
pixels caused by the coarse spatial resolution (500 m) (Dong
et al., 2015, 2016b; Shew and Ghosh, 2019), particularly in
hilly areas (Z. Liu et al., 2019). The mixed land cover types
within MODIS pixels can affect the accuracy of the rice map
(Sun et al., 2009). Fine spatial resolution images, including
Landsat TM/ETM+/OLI, Huan Jing (HJ), and Sentinel-2 im-
ages, are also used for mapping paddy rice. Some previous
studies have shown that rice maps generated from Landsat
images have relatively high accuracy (Dong et al., 2016a;
Torbick et al., 2017). However, they are only suitable for
relatively small study areas in which cloud cover is mini-
mal and not for continental scales (Ramadhani et al., 2020;
Torbick et al., 2017). In contrast to optical satellite images,
synthetic aperture radar (SAR) data are unaffected by clouds
(Park et al., 2018). Moreover, SAR data have the special
characteristics of backscatter changes during the growth of
paddy rice (Bazzi et al., 2019; Clauss et al., 2018b; Nguyen et
al., 2016; Phung et al., 2020; Planque et al., 2021). For exam-
ple, Singha et al. (2019) mapped the rice map for Bangladesh
based on Sentinel-1 data and random forest classifiers with
good accuracy. Although paddy rice has been mapped in sev-
eral studies using SAR data, they are still difficult to use
widely over large areas because of the lack of a large num-
ber of ground truth samples (Clauss et al., 2018b; Minh et
al., 2019; Nguyen et al., 2016; Phung et al., 2020; Minasny
et al., 2019; Zhan et al., 2021; Zhang et al., 2018). Because
the average area of crop fields in many regions in Asia is
less than half a hectare (Maclean et al., 2013), it is critical
to generate paddy rice maps with higher spatial resolution at
continental scales than past efforts with MODIS.

Optical remote sensing images and SAR data have com-
plementary information (Park et al., 2018; Wang et al., 2015).

The combination of optical and SAR images can provide op-
portunities for mapping paddy rice with a few mixed pixels
and a high spatial resolution at continental scales. MODIS
data have the advantage of high temporal resolution, which
reduces cloud problems and provides valuable spectral in-
formation for identifying paddy rice. Sentinel-1 SAR data
with a high spatial resolution (10 m) provide backscatter in-
formation for different land types. Therefore, the integration
of MODIS and SAR images may solve the mixed-pixel issue
to a great degree and enable the production of more reliable
paddy rice maps than those based only on MODIS images
(Dong and Xiao, 2016; Park et al., 2018; Torbick et al., 2010;
Wang et al., 2015). We take advantage of both MODIS and
SAR strengths to map paddy rice fields at a large scale.

Thus, we aim to improve the MODIS-based method for
mapping paddy rice fields by integrating Sentinel-1 SAR data
to reduce mixed-pixel effects. Then we use the method to
generate paddy rice maps in 2017–2019 for SE Asia and
Northeast Asia (NE Asia). The map products will be useful
for scientific communities and stakeholders for many pur-
poses.

2 Materials

2.1 Study area

The study areas were NE and SE Asia. NE Asia is com-
posed of Northeast China (Liaoning, Jilin, and Heilongjiang
province), the Democratic People’s Republic of Korea, the
Republic of Korea, and Japan (Dong et al., 2016b; Yeom
et al., 2021). The main paddy-rice-producing regions in NE
Asia are concentrated in the plain in Northeast China, the
western plain of the Korean Peninsula, and the alluvial plains
around the Japanese islands. In SE Asia, the countries where
rice is planted intensively include Indonesia, Thailand, Viet-
nam, Myanmar, the Philippines, Malaysia, and Myanmar.
SE Asia cultivates approximately 30 % of the world’s rice
(Bridhikitti and Overcamp, 2012; Huke and Huke, 1997).
The dense planting areas of rice in SE Asia are located in
valleys and deltas, such as the Red River delta in northern
Vietnam and the Mekong River delta in southern Vietnam
(Clauss et al., 2018a; Phung et al., 2020). The Mekong delta
produces more than half the rice in Vietnam (Bouvet and Le
Toan, 2011). The main rice cropping system in NE Asia is
single rice (Dong et al., 2016b). By contrast, three rice crop-
ping systems are dominant in SE Asia: single rice, double
rice, and triple rice (Laborte et al., 2017). Because climate
and crop calendars vary across SE and NE Asia, the study
area was classified into eight refined agroecological zones
based on temperature, seasonal precipitation, and farming
practices from previous studies (Oliphant et al., 2019; Suepa
et al., 2016). The zones were further subdivided into 41 re-
gions for classification (Fig. 1).
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Figure 1. Agroecological zones and 100 m radius sample blocks in SE and NE Asia.

2.2 Data source

2.2.1 Satellite imagery

We acquired the time series MOD09A1 images from
the Google Earth Engine (GEE) data catalog (https://
developers.google.com/earth-engine/datasets/, last access:
18 June 2021). The 8 d composite MOD09A1 provides seven
surface reflectance bands (red, blue, green, near-infrared,
and shortwave infrared 1–2 bands) at 500 m spatial resolu-
tion. We used the blue band (≥ 0.2) to remove cloudy pixels
(Chen et al., 2012; Xiao et al., 2006). We projected MODIS
data using the WGS1984 coordinate system. Additionally,
we collected SAR data with 10 m resolution in interferomet-
ric wide-swath mode from the Sentinel-1 satellite (Torres et
al., 2012). To maximize the frequency of observations, we
used the Level-1 ground range detected (GRD) product in
ascending and descending orbits. We pre-processed the GRD
data with VH (Vertical transmit Horizontal receive) and VV
(Vertical transmit Vertical receive) polarization that we ac-
quired (e.g., calibration and geocoding) using the Sentinel-
1 Toolbox on the GEE (https://developers.google.com/
earth-engine/datasets/catalog/COPERNICUS_S1_GRD, last
access: 18 June 2021) (Singha et al., 2019; C. Liu et
al., 2020). Following this, we applied a filter with a box-

car kernel (30× 30) moving to reduce speckle noise (Mi-
nasny et al., 2019). However, the rugged terrain and side-
looking SAR imaging geometry caused radiometric distor-
tion (Mullissa et al., 2021; Vollrath et al., 2020). To in-
crease the quality of observations, we used the physical ref-
erence model (volume) proposed by Vollrath et al. (2020) to
make a radiometric slope correction for Sentinel-1 on the
GEE. Figure S1 in the Supplement shows an example of
the effect of slope correction in SE Asia using the model.
The code can be found at https://github.com/ESA-PhiLab/
radiometric-slope-correction (last access: 18 June 2021).

2.2.2 Terrain data

We generated digital elevation model (DEM) data from
the Shuttle Radar Topography Mission (SRTM) Version 4
(Reuter et al., 2007). The spatial resolution of the DEM was
90 m× 90 m. We acquired the DEM data and calculated the
slope map from the DEM on the GEE platform (Table 1).

2.2.3 Forest land

We extracted the forest land mask from the Global PAL-
SAR Forest Map in 2017 (Table 1). The Global PALSAR
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Forest Map (25 m spatial resolution) was generated by the
Japan Aerospace Exploration Agency (JAXA) (Shimada et
al., 2014). Pixels with a forest area larger than 0.5 ha and
forests covering over 10 % of the pixel area were defined as
forest pixels (Shimada et al., 2014).

2.2.4 Wetland

We extracted the distribution of wetland from the Glo-
beLand30 dataset in 2020. GlobeLand30 is available from
the National Geomatics Center of China (Table 1). This prod-
uct at 30 m spatial resolution with high accuracy was gener-
ated using Landsat, Chinese HJ-1, and GF-1 satellite images
(http://www.globallandcover.com, last access: 18 June 2021)
(Chen et al., 2015).

Finally, we resampled all the raster data to 10 m to match
the spatial resolution of Sentinel-1.

2.2.5 Agricultural statistics

We collected annual rice planting area census data at the
subnational level (state, province, city, prefecture, or county)
from the available statistical yearbooks of various countries.
The agricultural statistics were provided by agricultural sta-
tistical offices. The areas in the statistics data were converted
into hectares (ha). Detailed information about the collected
agricultural statistics in this study is presented in Table 1.

2.2.6 Existing rice maps

We collected the existing publicly available rice maps from
three sources: (1) the 500 m spatial resolution paddy rice
map with high accuracy in Southern China in 2017 that was
generated using the phenology- and pixel-based algorithm
from MODIS data (Xin et al., 2020), (2) the High-Resolution
Land Use and Land Cover (HRLULC) map for Vietnam in
2017 (Hashimoto et al., 2014) with 10 m spatial resolution
generated using multiple remote sensing data sources, and
(3) the 500 m resolution rice maps of Asia obtained from the
IRRI (Nelson and Gumma, 2015), which were mainly de-
rived from MODIS data. We compared these existing prod-
ucts with our paddy rice maps.

2.3 Methodology

2.3.1 Analyzing the characteristics of spectral indices
from paddy rice

There are three growing stages for paddy rice: trans-
planting, growing, and post-harvest periods (Singha et
al., 2019). Flooding signals in the transplanting period
are unique characteristics that distinguish paddy rice from
other crops (Clauss et al., 2016; Dong et al., 2016b; Sun
et al., 2009). The color combination of MODIS images
(R/G/B= band7/band2/band1) in the transplanting stage of

the paddy rice field has a prominent tone (Fig. S5). We cal-
culated the land surface water index (LSWI) and enhanced
vegetation index (EVI) for each image:

LSWI=
ρNIR− ρSWIR

ρNIR+ ρSWIR
, (1)

EVI= 2.5×
ρNIR− ρRED

ρNIR+ 6× ρRED− 7.5× ρBLUE+ 1
, (2)

where ρSWIR, ρNIR, ρRED, and ρBLUE are values of band 6,
band 2, band 1, and band 3, respectively. Note that we chose
EVI instead of the normalized difference vegetation index
(NDVI) for paddy rice identification because NDVI is more
sensitive to atmospheric contamination and has a saturation
issue (Zhang et al., 2015). Figure 2 shows the standard tem-
poral profile of the EVI and LSWI of different paddy rice
planting systems (single, double, and triple) at three typi-
cal sites. When LSWI plus 0.05 is larger than EVI, it indi-
cates that the paddy rice is in the transplanting period. Both
the EVI and LSWI values increase after paddy rice is trans-
planted. EVI values are higher than LSWI values because the
fields are fully covered by the rice canopy. The EVI decreases
during the post-harvest period. Both double paddy rice and
triple paddy rice have flooding signals. The above phenom-
ena are consistent with previous studies (Dong et al., 2016b;
Minh et al., 2019; Shew and Ghosh, 2019; Xiao et al., 2006).
The profiles of the LSWI and EVI of some land cover types
(e.g., water, urban, and forest) are different from paddy rice
(Fig. S3). Therefore, color gradations and the relationship be-
tween EVI and LSWI are useful for extracting phenological
information of paddy rice. In this study, we did not smooth
the EVI and LSWI time series. LSWI changes under differ-
ent dry and wet conditions and smoothing the EVI and LSWI
time series may eliminate the true paddy rice flood signal
(L. Liu et al., 2020). Therefore, we did not reconstruct the
EVI and LSWI datasets.

2.3.2 Analyzing the characteristics of backscatter
coefficients from paddy rice

The backscatter coefficients change as paddy rice grows and
develops. Paddy rice fields appear as a black area in the
VH image on the transplanting date (Fig. S2) because the
water (flood) in the transplanting period decreases the VH
backscatter coefficient values (Dineshkumar et al., 2019; Tor-
bick et al., 2017). The VH and VV backscatter coefficients
have a local minimum value during the transplanting period
in all reference paddy rice fields (Fig. 2). After transplant-
ing, the VH backscatter coefficients increase as the paddy
rice grows and reaches a peak at the heading stage (Zhan
et al., 2021; Zhang et al., 2018). The VH backscatter co-
efficients decrease after the rice harvest stage (Phung et
al., 2020; Singha et al., 2019; Torbick et al., 2017). Addi-
tionally, paddy rice has consistent temporal behavior in the
VH/VV ratio and VH. The profiles of the dynamic backscat-
ter coefficients of some land cover types (e.g., water, urban,
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Figure 2. Temporal profile analysis of EVI, LSWI, VV, VH, and VH/VV ratio from three typical paddy rice sites with different lati-
tudes during 2017–2020: (a) single paddy rice in Northeast China (46.804562◦ N, 131.896961◦ E), (b) double paddy rice in the Philippines
(15.630637◦ N, 120.864242◦ E), and (c) triple paddy rice in Indonesia (8.6211997◦ S, 116.141157◦ E). The shaded areas indicate the stan-
dard deviation.

and forest) are different from those of paddy rice (Fig. S4).
Therefore, color gradations and the time series of backscatter
coefficients are useful for identifying paddy rice phenology
information (Yulianto et al., 2019; Phung et al., 2020; Zhan
et al., 2021).

2.3.3 Sample blocks collected for extracting
phenological parameters

Paddy rice in SE and NE Asia is cultivated using diverse
cropping systems because of the climate and other natural
conditions (Dong et al., 2016a; Laborte et al., 2017; Nelson
et al., 2014; Shew and Ghosh, 2019). With reference to previ-
ous studies (Clauss et al., 2016; Gumma et al., 2014; C. Liu et
al., 2020; Phan et al., 2019; Phung et al., 2020), we acquired
information about the flooding signal period and length of
the growing season for each subzone using sampling-based
information. We selected sample blocks that were distributed
over the different rice-growing zones across SE and NE Asia.

Each block was a polygon with a radius of 100 m. We col-
lected the sample blocks according to multiple rules (Clauss
et al., 2016; Dong et al., 2016a; Fikriyah et al., 2019; Singha
et al., 2019). First, the time series of the backscatter coeffi-
cients and vegetation index of the mean values from all pixels
in each sample block were consistent with the phenological
characteristics of paddy rice (Sect. 2.3.1 and 2.3.2). Second,
the sample blocks were also digitized using Google Earth
or Sentinel-1/2 images using visual interpretation referring
to previous studies (Dong et al., 2016a; Zhang et al., 2015).
Third, we also used existing rice maps and calendar infor-
mation as complementary information (Laborte et al., 2017;
Maclean et al., 2013). Note that not all Google Earth or
Sentinel-2 images were available throughout SE and NE
Asia. We collected a total of 438 sample blocks and 504 sam-
ple blocks using the above rules for SE and NE Asia, respec-
tively (Fig. 1). These blocks covered most paddy rice fields in
the study areas. We generated mean backscatter coefficients
and vegetation index time series profiles for each block. Fol-
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lowing this, we manually extracted the paddy rice growth and
phenological parameters based on the backscatter time series
characteristics. Finally, we obtained the phenological infor-
mation for each subzone from the sample blocks (Gumma et
al., 2014; C. Liu et al., 2020). Although there may be some
limitations in extracting phenological parameters for zones
using random samples, it may be one of the most effective ap-
proaches currently available (Clauss et al., 2016; Gumma et
al., 2014; Han et al., 2021c; Li et al., 2020; Phan et al., 2019;
Phung et al., 2020).

2.3.4 Algorithm for identifying paddy rice fields

We used a rule-based method to map paddy rice and produce
annual paddy rice maps for SE and NE Asia in 2017–2019
at 10 m resolution (NESEA-Rice10) using the phenological
features of paddy rice (Fig. 3). The steps for generating the
paddy rice maps are as follows.

1. Detect the flooding area of paddy rice. The key fea-
tures used to identify paddy rice are the flooding signals
in the transplanting phase (Dong and Xiao, 2016). We used
LSWI+0.05>EVI and LSWI< 0.45 to extract the flooding
signals. This rule has been used to successfully map poten-
tial paddy rice fields over large areas (Sakamoto et al., 2009;
Xiao et al., 2006; Zhou et al., 2016). Because paddy rice
flooding signals occur over a short period, non-permanent
flooding (e.g., persistent water bodies and fishponds) should
be removed (Nelson et al., 2014; Zhang et al., 2015). We re-
moved pixels that had more than 20 composite periods iden-
tified as flooding signals during a year.

In addition to the optical MODIS-based LSWI–EVI rela-
tionship approach, we also applied the minimum value of VH
data in the transplanting stage to identify flooding signals,
as suggested in previous studies (Clauss et al., 2018b). VH
has a higher sensitivity in paddy rice growth stages than VV
polarization (Inoue et al., 2020; Nguyen et al., 2016; Wak-
abayashi et al., 2019). However, the minimum value of VH
in different regions is different because Sentinel-1 data are
affected by the incidence angle (ranging from approximately
30 to 45◦) (Fig. S6) (Phung et al., 2020; Singha et al., 2019;
Zhang et al., 2018). Currently, it is still challenging to nor-
malize the incidence angle over a large area on the GEE.
The VH value of the water surface changes continuously
from −21 to −34 dB as the incidence angle changes (Phung
et al., 2020). To reduce the incidence angle effect on the
Sentinel-1 images, we considered −20 dB as the conserva-
tive baseline threshold to achieve the minimum VH value. In
previous studies, researchers also proved the effectiveness of
this threshold for identifying flooding signals in paddy fields
(Clauss et al., 2018b; Nguyen et al., 2015, 2016; Nguyen and
Wagner, 2017; Zhang et al., 2018). To further improve the ac-
curacy of flooding signal extraction, we fine-tuned the base-
line threshold of VH for each subzone based on the histogram
of sample blocks collected in Sect. 2.3.3. We considered the
pixels that met all the above conditions as flooding signals.

2. The EVI of paddy rice increased rapidly after the trans-
planting period because of the increasing numbers of leaves
and biomass (Chen et al., 2012). Therefore, we removed pix-
els with a maximum EVI value of less than 0.4, as sug-
gested in previous studies (Kontgis et al., 2015; Sakamoto
et al., 2009).

3. Moreover, the coefficient of variation (CV) has been
proven to be an effective indicator for distinguishing crop
types and non-cropland (Huang et al., 2021; C. Liu et
al., 2020; Rose et al., 2021; Whelen and Siqueira, 2018).
The VH backscatter coefficient of crops, particularly of
paddy rice, has a larger time series variation range than non-
agricultural land (e.g., urban and water) (Fig. S4). Based on
this time series characteristic, paddy rice may be identified
from different land surfaces. Therefore, we removed pixels
with CV values greater than −0.4 and less than −0.1 cal-
culated using VH during the growth of paddy rice (Rose et
al., 2021; Whelen and Siqueira, 2018). The threshold was de-
termined from the histogram of the paddy rice sample blocks
in the study area. The histograms can be found in Fig. S7.
We measured the CVVH using the temporal mean (mean) and
standard deviation (SD) of the time series of VH during the
paddy rice growth period:

CVVH =
SD

mean
. (3)

4. We used the mask with slopes larger than 5◦ to remove
steep terrain; it is unsuitable to plant paddy rice on sloping
land (Sun et al., 2009).

5. We used the PALSAR-based forest map in 2017 as a
mask (Wang et al., 2015; Zhang et al., 2017).

6. We used the water mask from GlobalLand30 in 2020
referring to the study of Zhang et al. (2015) to reduce the
misclassification of paddy rice as it is challenging to extract
paddy rice from wetlands because paddy rice and wetland
have similar characteristics to flooding signals (Zhang et
al., 2015; Zhou et al., 2016). 7. We classified pixels that
met all of the above rules as paddy rice. Following this, we
deleted small isolated pixels (connected components less
than 12 pixels) to remove the “salt and pepper” effect in the
classification (https://catalog.data.gov/dataset/global-food-
security-support-analysis-data-gfsad-cropland-extent-2015-
southeast-and-northe, last access: 18 June 2021).

The single cropping system for paddy rice identification is
not ideal because of the difference in paddy rice cultivation
time in some regions of SE Asia (Fikriyah et al., 2019; Shew
and Ghosh, 2019). Therefore, we combined all paddy rice
fields identified at different times into the annual map. We
applied the improved method to generate the annual paddy
rice maps for SE and NE Asia in 2017–2019. Please note
that the method we improved may not extract rice fields (e.g.,
rain-fed paddy rice and upland rice) if flooding signals are
not available (Xiao et al., 2006; Zhang et al., 2017).
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Figure 3. Flowchart for mapping paddy rice in SE and NE Asia using multiple data.

2.4 Accuracy assessment

It is challenging to evaluate the accuracy of the classification
at continental scales (Xiao et al., 2006; Zhang et al., 2020).
We used two strategies to evaluate the paddy rice maps as
accurately as possible. First, we compared the available agri-
cultural statistics on a subnational level in some countries
(Table 1). Referring to the study of Xiao et al. (2006), we
calculated the annual area of paddy rice based on paddy in-
tensity. The paddy intensities of countries in NE Asia, Myan-
mar, Vietnam, and the Philippines were 1, 1.4, 2.2, and 2, re-
spectively. Second, we compared the spatial consistency be-
tween our classification results and existing rice maps (Ta-
ble 1). We used the coefficient of determination (R2) to mea-
sure the consistency between our paddy rice maps, agricul-
tural statistics, and existing products.

R2
=

(∑n
i=1 (xi − xi)×

(
ki − ki

))2∑n
i=1(xi − xi)2

×
∑n
i=1
(
ki − ki

)2 , (4)

where n is the total number of administrative units, xi rep-
resents the mapped paddy rice areas, xi is the corresponding
mean value, ki represents the agricultural statistics or areas
from existing rice maps, and ki is the corresponding mean
value.

3 Results

3.1 Comparison of the classification with agricultural
statistics

The paddy rice maps in SE and NE Asia in 2017–2019 are
presented in Figs. S8 and S9, respectively. We calculated the
annual paddy rice area using the pixel number approach for
each administrative unit. The estimated annual rice paddy ar-
eas were significantly correlated with the agricultural statis-
tics at subnational levels. The resultant paddy rice maps and
the agricultural statistics had relatively high correlations in
Northeast China (R2 ranged from 0.82 to 0.89, p < 0.01)
(Fig. 4a). The paddy areas in Changchun, Jilin, and Tonghua
were underestimated. This is mainly because of the lack of
available satellite data. When we excluded the three cities,
R2 ranged from 0.85 to 0.97, with significant correlations.
Additionally, there were significant correlations between the
paddy rice maps and agricultural statistics in the Republic
of Korea (Fig. 4b), but the results underestimated the paddy
rice area (R2 ranged from 0.80 to 0.82, p < 0.01). The main
reason may be that many small rice fields were situated in
narrow valleys in the mountains (Dong et al., 2016b; Peng
et al., 2011). The correlations were high in most counties in
Japan (R2 ranged from 0.89 to 0.93, p < 0.01). In Hokkaido,
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Figure 4. Comparison of the resultant annual paddy rice areas and the agricultural statistics at the subnational level in different countries
from 2017 to 2019. The marginal kernel density plot above or to the right of each scatterplot shows the distribution of the data in one
dimension.

the paddy rice areas were overestimated (Fig. 4c), as they
were by Zhang et al. (2018). The resultant paddy rice areas
were consistent with the agricultural statistics in Myanmar,
with R2 ranging from 0.91 to 0.94 (Fig. 4d), and in Vietnam,
with R2 equal to 0.97 in the 3 years (Fig. 4e). R2 between the
paddy rice maps and the statistical data ranged from 0.81 to
0.87 in the Philippines, but rice areas in some provinces were
underestimated (Fig. 4f). Cloud contamination may be a ma-
jor reason for the underestimation (Peng et al., 2011; Xiao et
al., 2006). The spatial distribution of paddy rice was visually
consistent with that of the higher spatial resolution images in
some typical testing regions (Fig. S10).

3.2 Comparison of the classification with other annually
available rice maps

We further compared the resultant rice maps with existing
rice maps at the subnational level. The annually available
datasets included the MODIS-based rice paddy map with
500 m resolution for Northeast China in 2017 and the JAXA-
derived rice map with a 10 m resolution for Vietnam in 2017
(Sect. 2.2.6). The paddy rice area statistics from our maps
and existing products significantly correlated withR2

= 0.99
(p < 0.01) for Northeast China and R2

= 0.93 (p < 0.01)
for Vietnam (Fig. 5). We note that the paddy rice area in our
maps was smaller than that in the MODIS-based product for
Northeast China. The main reason may be that the 500 m res-
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Figure 5. Comparison of the annual paddy rice area between our classification and existing datasets at the subnational level in Northeast
China (a) and Vietnam (b). The marginal kernel density plot above or to the right of each scatterplot shows the distribution of the data in one
dimension.

olution MODIS-based paddy rice map had a large number of
mixed pixels. Although the spatial patterns of our maps were
consistent with the MODIS-based products (Figs. S11 and
S12), our maps contained more details with fewer mixed pix-
els (Fig. 9a–f). Additionally, the detailed information at the
field scale was consistent for both our maps and the JAXA-
derived paddy rice map (Fig. 9g–r). Overall, the comparison
of the classification with existing products confirmed the re-
liability of the paddy rice maps that we generated.

3.3 Comparison of the composite paddy rice map and
IRRI dataset

The composite paddy rice map is a mosaic of rice planting ar-
eas in 3 years (2017–2019) where rice has been detected in 1
or more years. We compared the composite paddy rice areas
with IRRI products at the national and subnational levels in
SE and NE Asia. The results demonstrated that the correla-
tions between them were significant at both levels (R2 ranged
from 0.73 to 0.80) (Fig. 6). The paddy rice area based on
the IRRI product was higher than our results. The main rea-
son may be that our method reduced the mixed pixels in the
paddy rice map and that the IRRI product from MODIS over-
estimated the area, as in previous studies (Fig. S13) (Chen
et al., 2012; Li et al., 2020; Nelson and Gumma, 2015).
The difference between the two datasets may also be partly
caused by the inconsistent epoch composite years in the two
datasets. Moreover, although the distribution of paddy rice
was consistent between our results and the IRRI product,
there were regional differences. Our paddy rice map under-
estimated the rice area in Thailand (Fig. 6a), which may be
because the rice planted in eastern Thailand has no obvious
strong flooding signals (Zhang et al., 2020). Despite the var-
ious spatial resolutions and different years in the rice paddy
data, the intercomparison verified the accuracy of our dataset.

3.4 Spatial patterns of paddy rice areas

In NE Asia, paddy rice fields are primarily cultivated in
the longitude range from 123 to 134◦ E and latitude range
from 45 to 48◦ N (Fig. 7). In Northeast China, paddy rice
is mainly cultivated in Heilongjiang (Sanjiang Plain) and
Liaoning provinces. Paddy rice in the Democratic People’s
Republic of Korea and the Republic of Korea is distributed
in the western coastal plains. Some paddy rice fields are lo-
cated in narrow valleys. Rice fields in Japan are mainly on
the coastal alluvial plains.

Paddy rice is generally planted in the plains and deltas of
rivers in SE Asia in the latitude range from 10 to 21◦ N and
the longitude range from 94 to 106◦ E (Fig. 8). For exam-
ple, the Mekong Basin and Hong River delta are typical main
rice-growing areas in Vietnam. Paddy rice in the Philippines
is mostly grown in the northern plains and scattered in the
southern Philippines. Most of the rice cultivation in Malaysia
is in the northwest corner of the peninsular region.

4 Discussion

MODIS data were useful for mapping paddy rice at conti-
nental scales using combined EVI and LSWI analysis. Most
paddy rice fields were fragmented in Asia (Li et al., 2020;
Lowder et al., 2016). Therefore, it is difficult to solve the
intra-class temporal variability of paddy rice pixels caused
by the coarse resolution of 500 m (Dong et al., 2016b; Xiao
et al., 2006). Mixed pixels may cause an overestimation
of the rice cultivation areas (Nelson and Gumma, 2015).
We improved the MODIS-based approach by incorporat-
ing Sentinel-1 data and used the approach to identify paddy
rice fields in SE and NE Asia for 2017–2019. Reducing the
mixed-pixel problem is the key point of the improved paddy
rice mapping method. Compared with the paddy rice maps
acquired from existing MODIS-based products, our classifi-
cation provides more information about field details with a

Earth Syst. Sci. Data, 13, 5969–5986, 2021 https://doi.org/10.5194/essd-13-5969-2021



J. Han et al.: The NESEA-Rice10 database 5979

Figure 6. Comparisons between the paddy rice area in our study and IRRI dataset in SE Asia at the (a) national and (b) county levels. The
marginal kernel density plot above or to the right of each scatterplot shows the distribution of the data in one dimension.

Figure 7. Spatial distribution of classified composite paddy rice with a 10 m spatial resolution in NE Asia during 2017–2019. The curves
represent the relative change rate in the distribution of the number of paddy rice pixels along the longitude and latitude gradients.

higher spatial resolution (10 m) (Fig. 9). Therefore, the inte-
gration of MODIS and Sentinel-1 data makes it possible to
improve the accuracy of mapping paddy rice at continental
scales.

Although our paddy rice maps are consistent with exist-
ing products, some uncertainty sources still affect the map-
ping results. First, identifying small paddy rice fields in hilly

regions is challenging for MODIS data, which will lead to
an underestimation of the area of paddy rice fields (Dong
and Xiao, 2016; Zhang et al., 2015). For example, the rice
planting area is smaller than the agricultural statistics in the
mountainous provinces of the Republic of Korea (Fig. 10).
The classification method relies on rice paddies containing
irrigation water during transplanting stages. Therefore, rain-
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Figure 8. Spatial distribution of classified composite paddy rice with 10 m spatial resolution in SE Asia during 2017–2019. The curves
represent the relative change rate in the distribution of the number of paddy rice pixels along the longitude and latitude gradients.

fed paddy rice and upland rice may not be detected because
of the unavailability of flooding signals (Zhang et al., 2017).
The main reason for the underestimation of the rice area
in eastern Thailand may be that the flooding signal of rice
was not detected, which has also been mentioned in previous
studies (Bridhikitti and Overcamp, 2012; Guo et al., 2019;
Zhang et al., 2020). Although MODIS data with a high tem-
poral resolution was used in our method, the accuracy of rice
maps is still affected by cloud contamination (Fig. 11a–b)
(Dong and Xiao, 2016). Missing observations in Sentinel-1
data would lead to noteworthy omission errors (Fig. 11c–d).
In addition, both the thresholds of different indicators and
phenological information extracted by sample blocks may af-
fect the accuracy of the classification (Dirgahayu and Parsa,
2019; Jeong et al., 2012; Li et al., 2020; Yeom et al., 2021).
Finally, uncertainties in other land cover products used in this
study may also affect the accuracy of the classification.

Under the combined effects of climate change and hu-
man activities, such as frequent extreme disasters, popula-
tion growth, and urban expansion, knowing the spatial dis-
tribution of paddy rice is important for food security. The
potential applications of the dataset include (1) improving
paddy rice yield prediction accuracy, as crop masks are the

basis for paddy rice yield prediction, and previous studies
have demonstrated that the accuracy of crop masks affects
the accuracy of yield prediction (J. Liu et al., 2019; Zhang
et al., 2019); (2) assessing damage to agriculture from ex-
treme hazards as floods are one of the major natural disas-
ters in Southeast Asia, and high-resolution paddy rice maps
will improve the accuracy of the area and yield loss esti-
mates for flooded farmland (Phan et al., 2019); and (3) es-
timating greenhouse-relevant methane emissions. Paddy rice
is an important source of methane in the atmosphere (Re-
deker et al., 2000). Accurate paddy rice maps and crop in-
tensity maps facilitate the estimation of methane emissions
(Zhang et al., 2020). In addition, paddy maps are helpful in
making land-use decisions for the government.

Recently, as more Sentinel-2 images with higher resolu-
tions have become available, combining Sentinel-2 and other
satellite images have improved the temporal resolution of the
data. For example, the Harmonized Landsat and Sentinel-2
(HLS) project provide images with 2–3 d at 30 m spatial res-
olution by combining Landsat 8 satellite and Sentinel-2 satel-
lite data (https://hls.gsfc.nasa.gov/, last access: 5 November
2021). Zhang et al. (2021) mapped the global cropping inten-
sity with a high spatial resolution by integrating the Sentinel-
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Figure 9. Visual comparison of our paddy rice maps and existing products in typical regions in 2017: (a–c, g–i, m–o) classification using
our method. The example data for (a, g, m) can be found at the following link: https://doi.org/10.17632/cnc3tkbwcm.1 (Han et al., 2021b);
see example 01–03. (d–f) MODIS-based paddy rice fields and (j–l, p–r) JAXA-derived rice fields are also shown.

2, Landsat 8, and MODIS satellites. Therefore, combining
multi-source remote sensing data provides opportunities for
global rice mapping in the future. In addition, the increas-
ing number of Planet satellite images at higher resolutions
(3–5 m) could further improve the accuracy of the paddy
rice map in the future (https://www.planet.com/, last access:

5 November 2021). To further improve the accuracy of paddy
rice map products, more accurate information on cropland
and forest masks and crop calendars will need to be devel-
oped in the future.
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Figure 10. Estimated distribution of paddy rice in 2017 in mountainous regions in South Korea: (a) flooding signal based on MODIS indices,
a (b) paddy rice map generated by our method, and (c) mountainous landscapes acquired from © Google Earth.. The example data for b can
be found at the following link: https://doi.org/10.17632/cnc3tkbwcm.1 (Han et al., 2021b; see example 04).

Figure 11. Spatial distribution map of good-quality observation numbers during 2017 to 2019 for (a1–a3) MODIS images in Northeast Asia,
(b1–b3) MODIS images in Southeast Asia, (c1–c3) Sentinel-1 images in Northeast Asia, and (d1–d3) Sentinel-1 images in Southeast Asia.
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5 Data availability

The datasets of the paddy rice maps for SE and NE
Asia from 2017 to 2019 are available on a public repos-
itory. A small example of the data can be found at
the following DOI: https://doi.org/10.17632/cnc3tkbwcm.1
(Han et al., 2021b). The full product with 5◦ per
grid cell can be downloaded from the following DOI:
https://doi.org/10.5281/zenodo.5645344 (Han et al., 2021a).
The spatial reference system of the datasets is EPSG:4326.
We encourage users to validate this dataset independently.
Please note that some small islands are not classified, and
thus data for these areas are not available.

6 Conclusions

We constructed a paddy rice map database for SE and NE
Asia for 3 years (2017–2019) at a 10 m spatial resolu-
tion (NESEA-Rice10) by integrating MODIS and Sentinel-
1 data. The paddy rice planting areas in our database were
significantly correlated with those from the official statis-
tics. The distribution of paddy rice in the maps was consis-
tent with existing data products. Additionally, our method re-
duced the effects of mixed pixels and provided more detailed
spatial information than MODIS-based paddy rice maps. We
demonstrated that multi-sensor data integration has the ad-
vantages of improving the spatial resolution of rice maps and
reducing mixed pixels. To summarize, we provided more ac-
curate paddy rice maps at continental scales using the im-
proved method for paddy rice mapping.
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