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Abstract. High-quality stratospheric ozone profile data sets are a key requirement for accurate quantification
and attribution of long-term ozone changes. Satellite instruments provide stratospheric ozone profile measure-
ments over typical mission durations of 5–15 years. Various methodologies have then been applied to merge and
homogenise the different satellite data in order to create long-term observation-based ozone profile data sets with
minimal data gaps. However, individual satellite instruments use different measurement methods, sampling pat-
terns and retrieval algorithms which complicate the merging of these different data sets. In contrast, atmospheric
chemical models can produce chemically consistent long-term ozone simulations based on specified changes in
external forcings, but they are subject to the deficiencies associated with incomplete understanding of complex
atmospheric processes and uncertain photochemical parameters.

Here, we use chemically self-consistent output from the TOMCAT 3-D chemical transport model (CTM)
and a random-forest (RF) ensemble learning method to create a merged 42-year (1979–2020) stratospheric
ozone profile data set (ML-TOMCAT V1.0). The underlying CTM simulation was forced by meteorological
reanalyses, specified trends in long-lived source gases, solar flux and aerosol variations. The RF is trained us-
ing the Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set over the time periods of
the Microwave Limb Sounder (MLS) from the Upper Atmosphere Research Satellite (UARS) (1991–1998)
and Aura (2005–2016) missions. We find that ML-TOMCAT shows excellent agreement with available inde-
pendent satellite-based data sets which use pressure as a vertical coordinate (e.g. GOZCARDS, SWOOSH for
non-MLS periods) but weaker agreement with the data sets which are altitude-based (e.g. SAGE-CCI-OMPS,
SCIAMACHY-OMPS). We find that at almost all stratospheric levels ML-TOMCAT ozone concentrations are
well within uncertainties of the observational data sets. The ML-TOMCAT (V1.0) data set is ideally suited
for the evaluation of chemical model ozone profiles from the tropopause to 0.1 hPa and is freely available via
https://doi.org/10.5281/zenodo.5651194 (Dhomse et al., 2021).
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1 Introduction

With the successful implementation of the Montreal Proto-
col, various observations confirm reductions in the concen-
trations of halogenated ozone-depleting substances (ODSs)
in the atmosphere (WMO, 2014, 2018). Satellite data records
also confirm a peak in upper-stratospheric HCl (the main
chlorine reservoir) around 1997, followed by a steady decline
(Anderson et al., 2000; Froidevaux et al., 2006a; Hossaini
et al., 2019). Hence, attention has turned towards the detec-
tion and attribution of ozone recovery (e.g. Dhomse et al.,
2006; Solomon et al., 2016; Chipperfield et al., 2017; Stein-
brecht et al., 2017; Dhomse et al., 2018; Szeląg et al., 2020).
However, the accurate quantification of ozone changes is
challenging because of the quality of long-term ozone pro-
file data sets, where measurement errors are of similar or
larger magnitude than the long-term ozone trends. In addi-
tion, complex coupling between various physical and chem-
ical processes controlling stratospheric ozone concentrations
cause large short-term ozone changes. Complications also
arise because there are some non-linear changes in strato-
spheric dynamics as well as chemical constituents. For exam-
ple, between 2018 and 2021, some of the largest and smallest
ozone losses of the recent decades were recorded in both the
Arctic and Antarctic polar stratospheres (e.g. Wargan et al.,
2020; Wohltmann et al., 2020; Bognar et al., 2021; Weber
et al., 2021). Some observational data suggest that there has
been a continuous decline in lower-stratospheric ozone (Ball
et al., 2018, 2020), which could be attributed to changes in
stratospheric dynamics (e.g. Chipperfield et al., 2018; War-
gan et al., 2018; Orbe et al., 2020; Abalos and de la Cámara,
2020). Atmospheric concentrations of ODSs such as CFC-11
are decreasing at uneven rates (Montzka et al., 2018, 2021),
which could induce variability in ozone trends. Additionally,
significant positive trends have been detected in very short-
lived substances (VSLSs) containing chlorine and bromine
that are not controlled by the Montreal Protocol (e.g. Hos-
saini et al., 2015, 2019).

As there are no long-term ozone profile data from a sin-
gle satellite instrument, various attempts have been made
to merge such data from different instruments. However,
individual satellite instruments have different temporal and
spatial resolution depending on the measurement techniques
and retrieval algorithms (e.g. Sofieva et al., 2014; Damadeo
et al., 2018). For example, solar occultation instruments
(e.g. Stratospheric Aerosol and Gas Experiment (SAGE,
McCormick et al., 1989), Halogen Occultation Experiment
(HALOE, Russell et al., 1993)) provide high-quality mea-
surements but are constrained by limited spatial coverage.
Limb-scanning instruments such as the Microwave Limb
Sounder (MLS, Froidevaux et al., 2006b), Scanning Imag-
ing Absorption Spectrometer for Atmospheric Cartography
(SCIAMACHY, Bovensmann et al., 1999), and Optical Spec-
trograph and InfraRed Imager System (OSIRIS, Murtagh
et al., 2002) provide better spatial coverage but have coarser

vertical resolution. A key constraining factor is that only few
satellite data sets cover enough overlapping years to remove
inter-instrument biases with minimal uncertainty.

Hence, Randel and Wu (2007) adopted a novel approach
to create a gap-free stratospheric ozone profile data for the
1979–2005 time period. They used SAGE (I and II) satellite
profile measurements and polar ozonesondes, together with a
seasonally varying ozone climatology from Paul et al. (1998)
to fill the gaps, to generate multi-variate regression-based
gap-free ozone anomalies. Later, Cionni et al. (2011) used
a similar methodology along with climate model simulations
to extend the time series backwards to 1850. The Cionni et al.
(2011) data were recommended for the historical CMIP5
simulations for the climate models that did not include strato-
spheric chemistry, in order to enforce time-dependent ozone
variations. Hassler et al. (2008) used a different methodology
to create a satellite-based long-term ozone profile data set.
Along with SAGE I and II measurements, they used HALOE
and POAM (Polar Ozone and Aerosol Measurement) II and
III satellite measurements, as well as ozonesonde data from
130 stations, to create a collection of binary data files – also
known as the Binary DataBase of Profiles (BDBP) version
1.0. Bodeker et al. (2013) updated the BDBP data set to
construct “Bodeker Scientific” or “BS” data. They updated
BDBP data by including measurements from the Limb In-
frared Monitor of the Stratosphere (LIMS), the Improved
Limb Atmospheric Spectrometer (ILAS) and ILAS II. They
used a multivariate regression model to create different ver-
sions of the ozone profile data set ranging from the surface to
70 km for the 1979–2008 time period. Hassler et al. (2018a)
revised and extended (1979–2016) the BS data set by using
the TOMCAT chemical transport model (CTM) ozone pro-
files as a transfer function to capture ozone variability for the
period without satellite observations.

Another widely used merged data set is the Global OZone
Chemistry And Related trace gas Data records for the Strato-
sphere (GOZCARDS, Froidevaux et al., 2015). These are
monthly mean zonally averaged time series constructed us-
ing ozone profile measurements from several NASA satel-
lite instruments and the Atmospheric Chemistry Experiment
Fourier Transform Spectrometer (ACE-FTS, Bernath et al.,
2005). Merging is done primarily by removing average bi-
ases between SAGE II and individual data records for over-
lap periods (Froidevaux et al., 2015). The GOZCARDS data
files contain mixing ratios on a pressure–latitude grid (316
to 0.1 hPa), updated later to GOZCARDS v2.2 (Froidevaux
et al., 2019).

Davis et al. (2016) adopted a slightly different approach
to construct the Stratospheric Water and OzOne Satellite Ho-
mogenized (SWOOSH) data set. SWOOSH merges strato-
spheric ozone profile data from solar occultation instruments
(SAGE-II/III, HALOE, ACE-FTS) as well as limb-scanning
instruments (UARS-MLS and Aura-MLS). The measure-
ments are homogenised by applying corrections that are cal-
culated from data taken during time periods of instrument
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overlap. The primary SWOOSH data product consists of
monthly mean zonal-mean values on a pressure grid at 2.5,
5 and 10◦ resolution. One of the major characteristics of
SWOOSH data is that when merging greater weight is given
to the instruments that sample more frequently (e.g. Aura-
MLS). Filled and unfilled versions of the data set exist on
both geographical and equivalent latitude coordinates.

Several additional attempts have been made to merge
satellite time series from limb and occultation instruments.
For example, the SAGE-CCI-OMPS data set, described in
Sofieva et al. (2017), includes SAGE II time series and sev-
eral limb data sets. The OMPS-LP data set used is produced
at the University of Saskatchewan, Saskatoon (Zawada et al.,
2018). First, they screened and homogenised CCI data sets in
the HARMOZ format before merging them in terms of ozone
anomalies. Recently, Arosio et al. (2019) created a merged
SCIAMACHY-OMPS limb data set (SCIA-OMPS), which
combines these two time series produced at the University
of Bremen. They used MLS data series as a transfer func-
tion to merge SCIAMACHY with OMPS-LP as these instru-
ments share only 2 months of overlap, but MLS was not in-
cluded in the merged data set. This time series is monthly av-
eraged, covers the period 2002–present and is longitudinally
resolved, with a 5◦ latitude× 20◦ longitude grid. Due to the
similarities in the measurement geometries and techniques,
as well as in the retrieval approaches, they implemented a
plain de-biasing approach for the merging, directly obtaining
a long-term ozone time series in appropriate units.

Another widely accepted approach is using data assimila-
tion techniques to create observation-based data (e.g. Feng
et al., 2008; Skachko et al., 2014; Errera et al., 2019; War-
gan et al., 2020). However, only a few instruments such as
MLS provide relatively long-term ozone profile measure-
ments. For the pre-MLS time period, very few observations
are available that can provide good constraint on the assim-
ilation system. Also, the forward model is generally forced
with available (re)analysis dynamical fields so reanalysis
data sets are also prone to the inhomogeneities in the forc-
ing fields along with any discrepancies in chemical scheme.

In this paper we present a new data–model method for
producing a long-term data set of stratospheric ozone. We
use ozone profile output from a CTM to create a machine-
learning-based satellite-corrected long-term chemically (and
dynamically) consistent ozone profile data set (hereafter,
ML-TOMCAT) for the 1979–2020 time period. The CTM
setup is described in Sect. 2, followed by our methodology
in Sect. 3. Comparisons of ML-TOMCAT with some of the
other available merged ozone profile data sets are presented
in Sect. 4, with a summary of our key results in Sect. 5.

2 Model setup

We use chemically consistent monthly mean zonal mean
ozone profiles from the TOMCAT CTM as the basis data

set. TOMCAT is an offline three-dimensional (3D) CTM that
includes a comprehensive stratospheric chemistry scheme
(Chipperfield, 2006). For the present study, the CTM setup is
similar to the control simulations used in our recent studies
such as Feng et al. (2021), Bognar et al. (2021) and Weber
et al. (2021). Briefly, TOMCAT is forced with meteorolog-
ical fields from ERA-5 reanalyses (Hersbach et al., 2020),
starting from 1979. Simulations are performed at a 2.8× 2.8◦

horizontal resolution with 32 hybrid sigma-pressure lev-
els extending from the surface to about 60 km. For major
ODSs and greenhouse gases (GHGs) the model uses time-
dependent observed global mean surface mixing ratios (Car-
penter et al., 2018) that are treated as well mixed throughout
the troposphere. The model also includes the effects of solar
flux variability and heterogeneous chemistry on volcanically
enhanced stratospheric aerosol as described in Dhomse et al.
(2015, 2016). Solar irradiance data are from the NRL2 (Cod-
dington et al., 2016) empirical model and the sulfate aerosol
surface area density (SAD) from Luo (2016). TOMCAT also
includes chlorine and bromine contributions from VSLSs as
described in Hossaini et al. (2019). A passive ozone tracer
(no chemical ozone loss), generally used to diagnose chemi-
cal ozone loss, is initialised every 6 months from the chem-
ical ozone tracer (1 June and 1 December). TOMCAT has
been regularly used to study long-term changes in strato-
spheric trace gases, showing good agreement with various
ground-based and satellite data sets (e.g. Mahieu et al., 2014;
Chipperfield et al., 2015; Wales et al., 2018; Harrison et al.,
2021; Prignon et al., 2021).

3 Methodology

We use the random-forest (RF) regression analysis to gen-
erate a long-term chemically consistent data set. The RF is a
supervised machine-learning (ML) algorithm that uses an en-
semble of decision trees (e.g. Breiman, 2001; Svetnik et al.,
2003). A decision tree can be considered a flow chart used
in computer programming (a tree-shaped schematic) that is
generally used to show a statistical probability or path of
action. A single decision tree in a RF can be considered a
random tree in a forest of decision trees. Each decision tree
consists of three components: decision nodes, leaf nodes and
a root node. The root node and decision nodes of the deci-
sion tree represent the explanatory variables. The leaf nodes
represent the final output. The explanatory variables used in
our analysis are explained at end of this section.

A decision tree algorithm divides the data set into branches
(using true and false criteria), which further segregate into
other branches until a leaf node (or result node) is reached.
Multiple trees are constructed by randomly sampling data
points multiple times (e.g. bootstrap method). Hence, an in-
dividual tree can be considered a unique tree (hence unique
output). RF uses a bagging technique, which means the RF
model consists of many individual decision trees and aggre-
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gated predictions are used for the final prognosis. A distinct
advantage of RF regression is that it is relatively accurate
and very easy to set up. RF can also behave like a non-linear
regression method. As RF adds randomness to the decision
procedure, instead of relying on the most important explana-
tory variables, it searches for the best variable among random
subsets. This ensures that the final output does not rely heav-
ily on a single explanatory variable, thereby avoiding over-
fitting (e.g. Kotsiantis, 2013). We use RF regression from the
Python package scikit-learn (Pedregosa et al., 2011) with two
options: random_state=0 and bootstrap=True.

Initially, TOMCAT zonal mean ozone profiles are linearly
interpolated in log-pressure space on to 43 equidistant (12
per decade) pressure levels (1000–0.1 hPa, MLS pressure
levels), followed by spatial interpolation onto 72 SWOOSH
latitude bins at 2.5◦ resolution. SWOOSH data are obtained
via https://csl.noaa.gov/groups/csl8/swoosh/ (last access: 15
March 2021) Then, we calculate the ozone difference (dO3)
between SWOOSH and model ozone profiles for the 1991–
1998 and 2005–2016 time periods (total 20 years). For the
calculation of dO3 values, we use the gap-filled SWOOSH
data product. SWOOSH data ranges from 316 to 1 hPa (31
pressure levels); hence, for pressure levels below 316 hPa
the ML-TOMCAT values are set to latitudinally and monthly
varying climatological values from Logan (1999), which are
also used in stratospheric TOMCAT simulations.

For the regression analysis, a 20-year (largely MLS
covering) time period is selected in order to avoid het-
eroscedasticity (i.e. effect of different sampling frequen-
cies/methodologies (e.g. Sofieva et al., 2014; Millán et al.,
2016) between different types of satellite data sets) as
SWOOSH relies heavily on MLS (UARS and Aura) data
records. Additionally, it also covers a period when the strato-
spheric chlorine loading was increasing (1991–1998) and
decreasing (2005–2016) and RF has enough sample to in-
clude different characteristics of ozone variability. The re-
gression model has five terms: passive ozone (PO3), HCl
mixing ratio (HCl), and methane mixing ratio (CH4), as
well as observation–model total column difference (dTCO)
and Mg II solar flux term (MgII). The PO3, HCl and CH4
terms account for possible biases in CTM profiles due
to transport in different stratospheric regions (e.g. Strahan
et al., 2011; Feng et al., 2021). dTCO is an ideal learner
for the lower-stratospheric ozone transport as total column
ozone measurements have much smaller retrieval errors (e.g.
Petropavlovskikh et al., 2019); hence, they provide a good
constraint for the possible biases in ERA-5 stratospheric
transport (e.g. Ploeger et al., 2021). TOMCAT has 203 spec-
tral bins in the photolysis scheme (e.g. Dhomse et al., 2016).
Therefore, the MgII solar flux term is included to account for
possible biases in the representation of the 11-year solar flux
variability (e.g. Haigh et al., 2010; Dhomse et al., 2013) or
the use of coarse spectral bins (e.g. Sukhodolov et al., 2016).

Overall, there are five explanatory variables in the regres-
sion model for individual grid points, and these are taken

from TOMCAT output fields. The regression model can be
represented as

dO3 =β1PO3+β2HCl+β3CH4+β4dTCO

+β5MgII+ residuals, (1)

where β1, β2, β3, β4 and β5 can be considered to be the
contribution coefficient for a given explanatory variable, and
PO3, HCl and CH4 are TOMCAT monthly mean zonal mean
tracers. For the calculation of dTCO we use Copernicus Cli-
mate Change Service (C3S) total ozone data (1979–2018).
The C3S total column product is a combination of total
column data from 15 sensors using gap-filling assimilation
methods and is obtained via https://cds.climate.copernicus.
eu/cdsapp#!/dataset/satellite-ozone?tab=overview (last ac-
cess: 1 May 2021). For the years 2019 and 2020, we
use level 3 total column data from the Ozone Monitor-
ing Instrument (OMI) V3 that is obtained via https://search.
earthdata.nasa.gov (last access: 1 May 2021). The Mg II in-
dex is obtained from http://www.iup.uni-bremen.de/UVSAT/
Datasets/mgii (last access: 1 December 2021). We assume
long-term chemical ozone changes are realistically repre-
sented by TOMCAT chemistry (e.g. Feng et al., 2007; Chip-
perfield et al., 2017; Dhomse et al., 2019); hence, all the pre-
dictor time series are detrended and normalised between 0
and 1.

4 Results

Atmospheric chemical models are ideal tools for understand-
ing/simulating past (and future) ozone changes, as they com-
bine up-to-date knowledge about various physical and chem-
ical processes using a mathematically consistent framework.
Different models use different combinations of chemical and
dynamical schemes to represent important processes in the
atmosphere. However, some of these processes are compu-
tationally expensive; hence, they are represented by some-
what simplified parameterisations. For example, many chem-
ical models prescribe observation-based sulfate surface area
density (SAD) to represent the effects of volcanically en-
hanced stratospheric aerosol for simulating heterogeneous
chemistry which leads to ozone loss (Dhomse et al., 2015).
Many models also prescribe surface concentrations of GHGs
and ODSs rather than emission fluxes. CTMs such as TOM-
CAT use dynamical forcing fields from (re)analyses data sets
such as ERA-Interim or ERA-5. Hence, CTMs are subject
to possible inhomogeneities due to changes in the number of
assimilated observations, as well as other deficiencies (e.g.
missing processes) in the forward model used in the assim-
ilation system. On the other hand, observational data sets
are also subject to errors associated with the measurement
techniques, instrument degradation and retrieval algorithms.
Hence, almost all chemical models may be expected to show
a bias against observational data records, either because of
model deficiencies or errors in the observations. However,
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chemical models do use a consistent chemical scheme, so
we can assume that chemical model–observation ozone dif-
ferences are largely due to uncertainties in the forcing fields
such as meteorology (e.g. winds, temperature) and chemical
parameterisations (e.g. reaction rates, solar fluxes, photoly-
sis schemes). CTMs have the distinct advantage in terms of
dynamics as they are forced with up-to-date reanalysis data,
although with the above-noted caveat of possible inhomo-
geneities in observations used in the assimilation systems.
Hence, the recently initiated SPARC Reanalysis Intercom-
parison Project (S-RIP) is aimed at providing guidance on fu-
ture reanalysis activity. S-RIP also plans to perform compre-
hensive evaluation and intercomparison of different reanaly-
sis data products; for details see https://www.sparc-climate.
org/sparc-report-no-10 (last access: 1 June 2021). Here, we
train the ML algorithm on the model–observation differences
for the period that has relatively good temporal sampling. Es-
timated parameters are then used to simulate differences for
the entire (1979–2020) time period. In this section, we anal-
yse model–observation biases associated with individual pre-
dictors and compare the ML-corrected data against a variety
of observation-based data sets.

4.1 Model biases

Figure 1 shows climatological (2006–2020) monthly zonal
mean differences between TOMCAT and SWOOSH ozone
profiles (TOMCAT minus SWOOSH). TOMCAT profiles
show an almost symmetrically structured negative biases in
the upper stratosphere and positive biases in the lower strato-
sphere. The largest negative biases (up to 0.8 ppm) occur in
the tropical upper stratosphere (around 3 hPa), and they re-
main negative throughout the year. The ozone lifetime at
these altitudes is less than a day; hence, the observed bi-
ases might be associated with deficiencies in the photochem-
ical reactions in the model. At this altitude, ozone produc-
tion is largely controlled by solar fluxes below 240 nm, while
longer wavelengths control ozone destruction (e.g. Haigh
et al., 2010). Therefore, negative ozone biases in the upper
stratosphere are most probably due to uncertainties in the so-
lar irradiances and/or photolysis cross sections that control
ozone production (e.g. Brasseur and Solomon, 2006). Fur-
thermore, in this region of the atmosphere, ozone chemistry
is mostly temperature dependent (e.g. Stolarski et al., 2010;
Dhomse et al., 2013, 2016); hence, the model ozone biases
could be due to uncertainties in temperature-dependent reac-
tion rates (e.g. Ghosh et al., 1997).

In the lower stratosphere the ozone lifetime ranges from
months to years; so, positive biases in the TOMCAT ozone
could be due to a combination of both dynamics and chem-
istry. First, reduced overhead ozone could increase lower-
stratospheric ozone via the self-healing effect; i.e. increased
ultraviolet radiation increases ozone production at lower al-
titudes (e.g. Haigh, 1994). Second, ozone is primarily pro-
duced in the tropical stratosphere, and its downward transport

is controlled by the quasi-biennial oscillation (QBO) (e.g.
Tian et al., 2006), whereas transport towards middle and high
latitudes is determined by the strength of the Brewer–Dobson
(BD) circulation (e.g. Holton et al., 1995; Weber et al., 2003;
Dhomse et al., 2006; Weber et al., 2011), which increases
its lifetime considerably. Hence, ozone biases in the lower
stratosphere are likely due to the incomplete representation
of various circulation pathways in TOMCAT either due to
model resolution or missing representation of key physical
process in the ERA-5 reanalysis scheme (e.g. Mitchell et al.,
2020), which impacts the meteorology used in the CTM.

4.2 Contribution from explanatory variables

As the exact causes of TOMCAT ozone biases are still not
well understood, we use the RF model to remove them. The
RF regression model coefficients are derived using 20 years
(1991–1998, 2006–2018) for which SWOOSH data include a
large number of observational profiles, especially from MLS
on the UARS and Aura satellite platforms. The RF regres-
sion model uses 20 years of monthly data, with 80 % and
20 % of data points being used for training and testing, re-
spectively. The estimated RF regression coefficients are then
used to calculate model biases for the entire 42-year time pe-
riod (1979–2020). RF-calculated ozone biases are then added
to the TOMCAT time series to create the long-term gap-free
data set, hereafter labelled ML-TOMCAT.

Figure 2 shows how much variance (or R2) of the data the
RF regression model is able to explain, along with regression
coefficients for individual explanatory variables. For exam-
ple, anR2 value of 0.8 indicates that the RF regression model
is able to explain 80 % of the biases in TOMCAT ozone rel-
ative to SWOOSH data for the 20 years of the training pe-
riod.R2 also represents the sum of the regression coefficients
from individual explanatory variables. Overall, the RF re-
gression model performance is consistently high (R2 > 0.8)
throughout the stratosphere, except for the mid-stratosphere,
which is a transition region where the TOMCAT ozone biases
change from positive to negative. At high northern latitudes,
mid-stratospheric R2 values decrease to 0.6. However, since
TOMCAT–SWOOSH differences are much smaller here, a
RF-based correction has a minimal impact on the quality of
ML-TOMCAT ozone profiles.

Additionally, as expected, the RF regression coefficients
are significant in different regions of the stratosphere for var-
ious explanatory variables. The passive ozone tracer seems to
show the largest coefficients in the tropical mid-stratosphere,
as well as varying contributions in different regions of the
stratosphere. The passive ozone contribution in the tropi-
cal mid-stratospheric could be linked to the incomplete rep-
resentation of NOx-related chemical changes in TOMCAT
and/or seasonal changes in the stratospheric transport in the
reanalysis (e.g. Galytska et al., 2019). The HCl tracer shows
significant coefficients in the upper stratosphere, where the
ClO ozone loss cycle is important. It also shows signifi-
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Figure 1. Latitude–pressure cross sections of the climatological (2006–2020) monthly mean difference (ppm) between TOMCAT and
SWOOSH (Davis et al., 2016) ozone profiles.

cant contribution at the low- and mid-latitude lower strato-
sphere. HCl can be considered both a dynamical and chemi-
cal proxy, as in the upper-stratospheric HCl is primarily pro-
duced via degradation of ozone-depleting substances and is
transported downwards at high latitudes via the BD circula-
tion (e.g. Mahieu et al., 2014). Therefore, HCl variations in
this region can be considered a proxy for the changes in the
strength of the BD circulation as well as horizontal isentropic
transport, especially between tropics and mid-latitudes. The
CH4 tracer term seems to show significant coefficients in
the lowermost stratosphere (just above the tropopause) as
well as a significant contribution around the mid-latitude
sub-tropics. The CH4 tracer contribution resembles a QBO-
induced secondary circulation pattern. Interestingly, the so-
lar term shows the largest coefficients in the mid-latitude

upper stratosphere rather than in the tropical upper strato-
sphere, suggesting solar flux variability has only a minor con-
tribution to the TOMCAT–observation biases. As expected
the dTCO term shows the largest contribution in the low-
ermost stratosphere, especially in the tropical and polar re-
gions. Interestingly, ozone anomalies in these regions show
good agreement with various satellite-based data sets (e.g.
Chipperfield et al., 2017, 2018; Li et al., 2020; Feng et al.,
2021), and TOMCAT biases are much smaller. This means
that although dTCO coefficients are largest in the lowermost
stratosphere, the overall bias correction contribution remains
relatively small.
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Figure 2. Latitude–pressure cross sections of the variance (R2) and regression coefficients from passive ozone, HCl, CH4, solar and total
column ozone anomaly (see main text Eq. 1).

4.3 Comparison against merged data sets

After analysing the regression coefficients, we now present
a comparison between ML-TOMCAT and available satellite-
based long-term data sets. Due to key differences between
satellite measurement techniques, ozone profiles are re-
trieved either at altitude or pressure levels and either in units
of mixing ratio or number density. For example, MLS re-
trieves profiles of ozone mixing ratio on pressure levels,
whereas SAGE retrieves profiles of number density on al-
titude levels. Hence, merging these different data sets needs
pressure, temperature or altitude information at a given co-
location from an external source such as reanalysis data. The
GOZCARDS and SWOOSH data sets use MERRA2 reanal-
ysis data to convert SAGE II ozone number density pro-
files on fixed pressure levels (Damadeo et al., 2013). ML-
TOMCAT is based on modelled ozone profiles as a func-
tion of pressure, although conversion to altitude (geopoten-
tial height) coordinates is straightforward. In particular, ML-
TOMCAT data were processed on corresponding grids/units
using ERA-5 geopotential height, temperature and pressure
fields that are used to drive TOMCAT.

This subsection consists of two parts. First we compare
ML-TOMCAT profiles with data sets using pressure co-
ordinate systems (e.g. SWOOSH, GOZCARDS), followed
by comparisons with altitude-based data sets (SAGE-CCI-
OMPS, SCIA-OMPS, BSVert).

4.3.1 Comparison with pressure level data

As noted earlier, we used only 20 years of SWOOSH data to
train the RF model. Hence, the next obvious step is to com-
pare ML-TOMCAT ozone with SWOOSH over the full time
period. Figure 3 compares relative differences (in percent)
of ML-TOMCAT with GOZCARDS and SWOOSH, respec-
tively, as a function of latitude and pressure. ML-TOMCAT
shows slightly positive biases in the middle stratosphere and
somewhat negative biases in the upper and lower strato-
sphere with respect to both SWOOSH and GOZCARDS
data. The largest biases (up to 10 %) are observed in the
tropical lowermost stratosphere as well as polar latitudes.
However, these largest differences in the tropical lowermost
stratosphere (and upper troposphere) cannot be correctly val-
idated as most satellite retrievals show largest uncertainties
in this region (Rahpoe et al., 2015; Steinbrecht et al., 2017;
Sofieva et al., 2021). Similarly, for the non-MLS period, the
biases in the polar stratosphere could be due to the lack of
observational ozone profiles during polar night.

Figure 4 shows TOMCAT, ML-TOMCAT, SWOOSH and
GOZCARDS ozone time series over the Equator (0◦ lati-
tude) at three pressure levels (1, 10 and 50 hPa). Supplement
Figs. S1 to S10 show similar comparisons at 15◦ N, 15◦ S,
30◦ N, 30◦ S, 45◦ N, 45◦ S, 60◦ N, 60◦ S, 75◦ N and 75◦ S lat-
itude bins. The grey shaded area indicates the standard devia-
tion of the ozone values within each bin for the GOZCARDS
time series. The green shaded areas indicates the root mean
square uncertainty of the combined data sets for each bin in
SWOOSH data (σrmss in Davis et al., 2016). Overall, there is
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Figure 3. Relative differences (in percent) as a function of pressure and latitude between ML-TOMCAT and (a) GOZCARDS V2 (Froidevaux
et al., 2019) and (b) SWOOSH (Davis et al., 2016). Stippling indicates regions where differences are smaller than 1 standard deviation.

a good agreement between the ML-TOMCAT, GOZCARDS
and SWOOSH time series. As seen in Fig. 1, ML-TOMCAT
shows significant improvements in the tropical stratosphere
compared to TOMCAT.

A peculiar detail of Fig. 4 is that the standard deviation
in the SWOOSH time series is largest during the 1991–1999
time period, which could be due to a combination of vari-
ous factors. First, UARS MLS ozone profiles are retrieved
at only six levels per pressure decade (Livesey et al., 2003)
instead of 12 levels per decade for Aura MLS (see https://
mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf, last
access: 1 June 2021). Second, significant enhancement in
the stratospheric aerosol loading following the Mt. Pinatubo
eruption in June 1991 led to larger retrieval errors. Even with
those uncertainties in SWOOSH (and GOZCARDS), ML-
TOMCAT is generally close to the satellite-based data sets
for the entire time period, and the agreement with satellite
data is greatly improved in comparison to the original TOM-
CAT profile data. Supplement Figs. S1 to S10 also show an
excellent agreement between ML-TOMCAT and the GOZ-
CARDS/SWOOSH data sets for other latitude bands.

Next we scrutinise percentage differences between GOZ-
CARDS and ML-TOMCAT on the same pressure levels. Fig-
ure 5 shows relative differences between TOMCAT, ML-
TOMCAT and SWOOSH ozone time series with respect to
GOZCARDS. As seen earlier, TOMCAT ozone shows up to
40 % positive biases in the lower stratosphere and 10 % neg-
ative biases in the upper stratosphere (also seen in Fig. 1). In
contrast, ML-TOMCAT biases are well below 5 % at all lev-
els. At 50 hPa, TOMCAT biases seems to follow QBO-type
oscillations that are correctly removed in ML-TOMCAT.
Similarly, at 1 hPa TOMCAT differences show some uneven
variations that could be linked to the inhomogeneities in the
ERA-5 dynamical fields that are used to force TOMCAT.
Furthermore, ML-TOMCAT differences show much smaller

and almost linear biases at 1 hPa and lie well within the
spread of GOZCARDS data.

Interestingly, although both GOZCARDS and SWOOSH
are created by merging nearly identical data sets, there are
differences between them which are largest for the 1984–
2004 time period. This indicates that even slight differences
in merging methodology lead to large differences in the
merged data set. Although we use completely independent
output from a CTM as a basis data set, GOZCARDS–ML-
TOMCAT differences are within the expected discrepancy
between GOZCARDS and SWOOSH data sets, especially at
10 and 50 hPa.

Another notable feature in Fig. 5 is that at 50 hPa ML-
TOMCAT shows the largest differences during 2020, which
could be associated with the biases in ERA-5 dynamics dur-
ing that period. A TOMCAT sensitivity simulation forced
with ECMWF operational analysis data shows better agree-
ment with MLS ozone variation during this period (e.g.
Chrysanthou et al., 2021). In addition, larger differences seen
during 1984 (50 hPa), 1988 (10 hPa) and 1996–1999 (1 hPa)
are most probably associated with SAGE II sampling issues
and/or inhomogeneities in ERA-5 dynamical fields. How-
ever, a detailed analysis of these biases is out of scope of
this study and it needs further investigation.

4.3.2 Comparison with altitude level data

We now compare ML-TOMCAT ozone profiles against
altitude-based merged satellite data sets. Figure 6 shows the
relative differences between TOMCAT/ML-TOMCAT vs.
SAGE-CCI-OMPS (Sofieva et al., 2017), BSVert (Hassler
et al., 2018a) and SCIA-OMPS (Arosio et al., 2019) data sets
as a function of altitude and latitude. The top panels (a and
b) compare the mean relative differences between the SAGE-
CCI-OMPS data set, TOMCAT and ML-TOMCAT, respec-
tively. Here TOMCAT shows large positive biases (up to
20 %) in the lowermost stratosphere and negative biases (up
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Figure 4. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the Equator (0◦) at (a, top)
1 hPa, (b, middle) 10 hPa and (c, bottom) 50 hPa. Satellite-based ozone mixing ratios from GOZCARDS (Froidevaux et al., 2019) and
SWOOSH (Davis et al., 2016) data sets along with their uncertainty estimates (shaded) are shown with black- and green-coloured lines,
respectively.

to 15 %) in the upper stratosphere. On the other hand, ML-
TOMCAT shows only ±10 % biases throughout the strato-
sphere. Larger biases are seen in the Antarctic stratosphere
that could be attributed to the limited observational ozone
profiles used to construct the altitude-based merged satellite
data products. Interestingly, ML-TOMCAT shows largest bi-
ases (up to 30 %) with respect to the BSVert data set, though
TOMCAT profiles (forced with ERA-Interim) are used as
transfer function while constructing BSVert (Hassler et al.,
2018a). In addition, in the lowermost stratosphere, biases
are negative in the tropics and SH mid-latitudes and positive
in the NH middle and high latitudes. Hence, a contributing
factor for these hemispherically asymmetric biases with re-
spect to BSVert ozone profiles might be differences between
ERA-Interim and ERA-5 reanalysis data (e.g. Ploeger et al.,
2021) that are used to force these two data sets. The nega-
tive values in relative differences in the lower tropical strato-
sphere shown with respect to the SCIA-OMPS data set in the
fourth panel are systematic throughout the time series and are
thought to be related to two factors. The first one is the rather
coarse vertical grid (corresponding to SCIAMACHY vertical
resolution of 3.3 km), which makes it sensitive to the interpo-
lation onto the TOMCAT grid. The second is the difference in
use of the merging procedure implemented for SCIA-OMPS
and SWOOSH, so that ML-TOMCAT, trained over the MLS

period using SWOOSH, shows a negative bias with respect to
SCIA-OMPS, which does not show such a bias with respect
to MLS (Arosio et al., 2019).

Figure 7 compares TOMCAT and ML-TOMCAT profiles
with the three altitude-based ozone data sets with a focus on
the Equator (0◦ latitude). Supplement Figs. S11 to S20 show
similar comparisons for 15◦ N, 15◦ S, 30◦ N, 30◦ S, 45◦ N,
45◦ S, 60◦ N, 60◦ S, 75◦ N, and 75◦ S latitude bins. Figure 8
displays the respective relative differences with respect to the
SAGE-CCI-OMPS data set, which in this case is taken as a
reference. In this way it is possible to evaluate the improve-
ment introduced by applying the ML algorithm but also have
an estimation of the discrepancies between different merged
data sets, which is expected to be on the order of 5 %–10 %.
With respect to the comparison with the data sets on the pres-
sure vertical coordinate, the scatter between the time series
is larger here, due to the larger variety of different satellites
available to produce the merged products and the fact that
they have not been used in the ML training.

At about 45 km in the tropics the ML algorithm seems to
overcorrect the negative bias shown by TOMCAT, leading to
generally higher ozone values with respect to the other data
sets, especially in the first half of the time series. In the mid-
dle stratosphere we find the best agreement between SAGE-
CCI-OMPS and ML-TOMCAT; here the expected discrep-
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Figure 5. As Fig. 4 but for the residuals, i.e. relative differences between SWOOSH (green), TOMCAT (blue) and ML-TOMCAT (red)
ozone with respect to GOZCARDS ozone.

Figure 6. Relative difference (%) as a function of latitude and altitude between (a) TOMCAT versus SAGE-CCI-OMPS (1985–2019) and
ML-TOMCAT versus (b) SAGE-CCI-OMPS (1985–2019), (c) BSVert (1985–2017) and (d) SCIA-OMPS (2002–2019), averaged over the
respective time series. Stippling indicates regions where differences are smaller than 1 standard deviation.
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Figure 7. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the Equator (0◦) at (a, top)
45 km, (b, middle) 35 km and (c, bottom) 25 km. Satellite-based ozone mixing ratios from SAGE-CCI-OMPS, BSVert (Hassler et al., 2018a)
and SCIA-OMPS (Arosio et al., 2019) data sets are shown with black-, green- and cyan-coloured lines, respectively.

ancies among the merged data sets are comparable to the dif-
ferences observed between ML-TOMCAT and SAGE-CCI-
OMPS. At the peak of the ozone number profile around
25 km, we notice generally lower values for ML-TOMCAT,
on average by 5 %. Similar biases are observed at middle and
high latitudes as well as seen in Supplement Figs. S11 to
S20. The strong seasonal cycle seen in the TOMCAT differ-
ence with respect to the merged data sets is largely reduced
by ML-TOMCAT at this altitude.

4.3.3 Polar regions

The use of ML-TOMCAT helps to fill the observational gaps
especially in atmospheric regions with a lack of observations
and before the beginning of the 21st century, when satel-
lite measurements were sparser. For example, polar regions
during local winter cannot be observed by limb observations
based on scattered sunlight. Instruments such as Aura MLS
and the Sounding of the Atmosphere using Broadband Emis-
sion Radiometry (SABER, Rong et al., 2008) have generally
been used to fill this gap over the last two decades. For chem-
ical models, complexities are also associated with the denitri-
fication and dehydration (or chlorine activation) schemes that
determine heterogeneous ozone losses (Grooß et al., 2018).
Though most of our earlier studies showed that TOMCAT
is able simulate to polar ozone losses quite realistically (e.g.

Feng et al., 2007; Chipperfield et al., 2015, 2017; Dhomse
et al., 2019), some systematic biases in polar stratosphere
were noted in Feng et al. (2021) and Weber et al. (2021). Fig-
ure 9 compares ozone at 18 km over the Arctic, demonstrat-
ing the good agreement between ML-TOMCAT and MLS in
this region for both local summer and winter seasons. The
bottom panel shows the ozone sub-column over the Antarc-
tic (poleward of 70◦ S latitude) integrated between 12 and
20 km for TOMCAT, ML-TOMCAT and MLS averaged over
September–October months. The good agreement between
MLS and ML-TOMCAT during the ozone hole period is ob-
served for most of the years. ML-TOMCAT enables the re-
construction of the large ozone losses which occurred in the
1980s during a phase when ozone-depleting substances were
on a rapid rise before the implementation of the Montreal
Protocol and their phaseout.

4.3.4 Total column comparison

As noted above, total column measurements have rel-
atively small retrieval errors and high temporal resolu-
tion and thus provide an important data set for assess-
ing model performance. Hence, we compare total column
ozone from ML-TOMCAT and TOMCAT with the SBUV
merged ozone (MOD) data set (https://acd-ext.gsfc.nasa.gov/
Data_services/merged/index.html (last access: 1 June 2021).
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Figure 8. Same as Fig. 7 but for the residuals, i.e. relative differences between TOMCAT (blue), ML-TOMCAT (red), BSVert (green) and
SCIA-OMPS (cyan) ozone with respect to SAGE-CCI-OMPS.

Figure 9. (a) Ozone concentration time series (molecules cm−3) at 18 km over the Arctic region (latitudes poleward of 70◦ N). Aura-MLS
and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, Rong et al., 2008) data are superimposed on TOMCAT
and ML-TOMCAT time series. (b) Mean ozone sub-column (DU) between 12–20 km for September and October each year over the Antarctic
region (latitudes poleward of 70◦ S).
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Figure 10. ML-TOMCAT (red line) and TOMCAT (blue line) total column ozone comparison with SBUV merged ozone data (MOD, black
line) obtained from https://acd-ext.gsfc.nasa.gov/Data_services/merged/index.html (last access: 1 June 2021). Monthly mean total column
time series are shown for six latitude bins: Arctic (60–90◦ N), Antarctic (60–90◦ S), NH mid-latitudes (35–60◦ N), SH mid-latitudes (35–
60◦ S), tropics (20◦ S–20◦ N) and near global (60◦ S–60◦ N).

Monthly mean total ozone columns, which are calculated by
integrating number density profiles, are shown in Fig. 10
for six latitude bands. Supplement Fig. S22 compares tro-
pospheric columns obtained by integrating profiles for ozone
volume mixing ratios below 150 parts per billion (ppb). As
expected, TOMCAT tropospheric columns show a constant,
repeating seasonal cycle with smallest mean value (and am-
plitude) in the tropics (up to 13 DU) and largest mean val-
ues in the NH mid-latitudes (up to 23 DU). In contrast, ML-
TOMCAT tropospheric columns show much larger mean and
amplitude for all the latitude bins (mean column of about
35 DU in the NH mid-latitudes). ML-TOMCAT tropospheric
columns also show large short-term variations (e.g. year 1991
following the Pinatubo eruption), suggesting that the ML-
TOMCAT pressure range (316–1 hPa) does affect calcula-
tion of the tropospheric column through inclusion of levels
that extend above 316 hPa. Note that below the 316 hPa level,
both TOMCAT and ML-TOMCAT profiles include monthly
climatological values from Logan (1999). Hence, it is impor-
tant to note that ML-TOMCAT lower-mid tropospheric val-
ues are not recommended for scientific studies. Supplement
Fig. S23 shows latitude–altitude cross section of climatolog-
ical (1979–2020) ozone differences between ML-TOMCAT
and TOMCAT in Dobson units. Figure S23 clearly shows

that the largest differences are in the upper troposphere/lower
stratosphere.

As noted earlier, TOMCAT total column differences are
relatively small for both Arctic (60–90◦ N) and Antarc-
tic (60–90◦ S) regions, and Fig. 10 clearly shows that the
same is true for ML-TOMCAT total columns as well. For
mid-latitudes (35–60◦), TOMCAT shows biases of up to
+20 DU biases (especially in the NH mid-latitude) compared
to observations, whereas ML-TOMCAT shows differences of
less than 10 DU. Interestingly, for the tropics (20◦ S–20◦ N),
TOMCAT shows negative biases until 2000 and slightly pos-
itive biases afterwards that are almost negligible in ML-
TOMCAT time series. On the other hand, for the near-global
average (60◦ S–60◦ N), ML-TOMCAT biases remain posi-
tive until 1990 and are close to TOMCAT biases. After 2000
TOMCAT seems to show slightly increasing positive biases
with respect to SBUV MOD data, but ML-TOMCAT seems
to show almost negligible biases without any apparent trend.

Overall ML-TOMCAT ozone profiles outside the 316–
1 hPa range should be considered (slightly modified) TOM-
CAT model profiles. However, total column (and tropo-
spheric column shown in Supplement Fig. S22) compar-
isons suggest that vertically integrated (1000–0.1 hPa) ML-
TOMCAT profiles can provide a useful estimate which is
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better than TOMCAT and also better than combining ML-
TOMCAT stratospheric column with tropospheric column
from other sources (noting that levels above 1 hPa have a
negligible contribution to the column). Hence, for conve-
nience we include both tropospheric and lower-mesospheric
ozone values in ML-TOMCAT data files (1000–0.1 hPa)
even though they are only based on values from the TOM-
CAT model outside of the pressure range 316–1 hPa. For fu-
ture versions of ML-TOMCAT we aim to also correct tro-
pospheric ozone profile biases using merged tropospheric
ozone profile data sets described, for example, in the Tro-
pospheric Ozone Assessment Report (TOAR).

5 Data availability

We thank Sean Davies for SWOOSH data, which are pub-
licly available via https://csl.noaa.gov/groups/csl8/swoosh/
(last access : 1 June 2021; Davis et al., 2016) . We also
thank Lucien Froidevaux (lucien.froidevaux@jpl.nasa.gov)
for GOZCARDS v2 data. SAGE-CCI-OMPS was obtained
via http://www.esa-ozone-cci.org (last access: 1 June 2021;
Solomon et al., 2016). SCIA-OMPS data are available upon
email request to Alexei Rozanov or Mark Weber. BSVert data
were obtained from https://doi.org/10.5281/zenodo.1217184
(Hassler et al., 2018b). ML-TOMCAT v1.0 data are pub-
licly available via https://doi.org/10.5281/zenodo.5651194
(Dhomse et al., 2021).

6 Summary and conclusions

Stratospheric ozone concentrations are affected by many
short- and long-term processes; hence, high-quality ozone
profile data sets are needed for accurate attribution stud-
ies. Though satellite instruments provide global measure-
ments, due to their short mission durations various merg-
ing methodologies have been adopted to create homogeneous
and gap-free long-term ozone profile data sets. Individual
merging methodologies have distinct advantages and disad-
vantages. Atmospheric chemical models are also able to sim-
ulate chemically consistent long-term data sets, but they are
prone to the deficiencies associated with the simplified pa-
rameterisations and uncertain parameters.

Here we have used TOMCAT CTM ozone profiles and
a random-forest (RF) regression model to create gap-free
ozone profile data set (ML-TOMCAT) for 1979–2020. The
RF is applied to the ozone difference between the SWOOSH
and TOMCAT ozone profiles by selecting 20 years of MLS
measurements (UARS-MLS and AURA-MLS) as a train-
ing period. RF show consistent performance throughout the
stratosphere, except at high latitudes and the mid-latitude
mid-stratosphere. Overall, ML-TOMCAT shows excellent
agreement with SWOOSH for the entire time period (1984–
2020), though somewhat larger differences are apparent for
the period where limited ozone measurements are available

for SWOOSH construction. We also find that ML-TOMCAT
shows better agreement with satellite-based merged data sets
which use pressure as the vertical coordinate (e.g. SWOOSH,
GOZCARDS) but weaker agreement with the data sets which
use altitude (e.g. SAGE-CCI-OMPS, SCIA-OMPS). We find
that at almost all stratospheric levels ML-TOMCAT ozone
concentrations are well within uncertainties of the observa-
tional data sets. Presently, the ML-TOMCAT V1.0 data set
is ideally suited for the evaluation of chemical model ozone
profiles from the tropopause to 0.1 hPa. ML-TOMCAT V1.0
ozone profile data on pressure and altitude levels in mix-
ing ratios and number density units are publicly available
via https://doi.org/10.5281/zenodo.5651194 (Dhomse et al.,
2021).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-5711-2021-supplement.
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