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Abstract. Data on irrigation patterns and trends at field-level detail across broad extents are vital for assessing
and managing limited water resources. Until recently, there has been a scarcity of comprehensive, consistent, and
frequent irrigation maps for the US. Here we present the new Landsat-based Irrigation Dataset (LANID), which
is comprised of 30 m resolution annual irrigation maps covering the conterminous US (CONUS) for the period
of 1997–2017. The main dataset identifies the annual extent of irrigated croplands, pastureland, and hay for
each year in the study period. Derivative maps include layers on maximum irrigated extent, irrigation frequency
and trends, and identification of formerly irrigated areas and intermittently irrigated lands. Temporal analysis
reveals that 38.5× 106 ha of croplands and pasture–hay has been irrigated, among which the yearly active area
ranged from ∼ 22.6 to 24.7× 106 ha. The LANID products provide several improvements over other irrigation
data including field-level details on irrigation change and frequency, an annual time step, and a collection of
∼ 10000 visually interpreted ground reference locations for the eastern US where such data have been lacking.
Our maps demonstrated overall accuracy above 90 % across all years and regions, including in the more humid
and challenging-to-map eastern US, marking a significant advancement over other products, whose accuracies
ranged from 50 % to 80 %. In terms of change detection, our maps yield per-pixel transition accuracy of 81 %
and show good agreement with US Department of Agriculture reports at both county and state levels. The
described annual maps, derivative layers, and ground reference data provide users with unique opportunities
to study local to nationwide trends, driving forces, and consequences of irrigation and encourage the further
development and assessment of new approaches for improved mapping of irrigation, especially in challenging
areas like the eastern US. The annual LANID maps, derivative products, and ground reference data are available
through https://doi.org/10.5281/zenodo.5548555 (Xie and Lark, 2021a).

1 Introduction

Irrigated agriculture is vital to global food security. Irrigation
helps stabilize farm production by enhancing land productiv-
ity that would otherwise be lower due to water limitations
to plant growth. In the US, approximately 14.6 % of the to-
tal cropland is irrigated (USDA-NASS, 2019). Despite this
relatively small proportion, irrigated agriculture plays a sig-

nificantly disproportionate role in agriculture, accounting for
major proportions of the economic value and environmental
impacts; irrigated farms account for 54 % of the total value
of crop sales (USDA-NASS, 2021). However, agricultural ir-
rigation uses over 40 % of total freshwater withdrawals and
80 % to 90 % of consumptive water use in the US (Dieter
et al., 2018; USDA, 2021). As a result, improved manage-
ment and understanding of irrigation use and trends offer a
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key leverage point to improve the sustainability of US agri-
culture.

Knowledge of the spatial and temporal patterns of irri-
gation is a crucial first step to improve this understanding
and management and to help policymakers make decisions to
support sustainable water use for crop production. However,
the spatiotemporal patterns of irrigation and their impacts are
not well understood, even for data-rich countries like the US.
This insufficient knowledge about irrigation hampers a much
larger body of research and applications, such as the model-
ing of land surface characteristics, climate and weather, and
the growth of crops and other vegetation. For those applica-
tions that do incorporate irrigation modules, they are typi-
cally based on infrequently updated coarse-resolution global
maps that cannot represent the precise locations of irrigated
fields (Zaussinger et al., 2019; Ozdogan et al., 2010). As
such, there is significant need for field-relevant resolution
maps of irrigated agricultural land and its temporal changes.
The value of such detailed irrigation information is further
magnified as society formulates strategies towards sustain-
able use of limited water resources from local to global scales
under the context of increasing food and fuel demands, cli-
mate change and extremes, and population growth (Lark et
al., 2015; Rosegrant et al., 2009; Seto et al., 2012; Seager et
al., 2012; Mcdonald et al., 2011).

Despite the growing importance of field-level irrigation in-
formation to a wide array of research questions and applica-
tions, currently available irrigation maps that cover the entire
or part of the conterminous US (CONUS) suffer from lim-
itations related to spatial resolution, update frequency, ge-
ographical coverage, and mapping accuracy (Table 1). For
example, the spatial resolution of all nationwide maps (ex-
cept for LANID-US 2012) ranges from 250 m to kilome-
ters, which is problematic for many local applications that
require accurate field characterization (Wardlow and Calla-
han, 2014; Deines et al., 2017; Ozdogan and Gutman, 2008;
Xie et al., 2019b; Brown and Pervez, 2014). Just as impor-
tantly, all these nationwide irrigation maps are infrequently
updated and mapped at either a single date or at intervals of
5 years to decades (e.g., Shrestha et al., 2021; Brown and
Pervez, 2014; Ozdogan and Gutman, 2008). Due to annual
crop rotations, fallow practices, and climate variation, how-
ever, irrigation use and decision making are extremely dy-
namic. Accordingly, more timely information is needed to
understand changes in irrigation and the associated impacts
including water use and availability.

Recent years have witnessed unprecedented development
of land use/cover mapping owing to the increasing avail-
ability of high- to moderate-resolution remote sensing data
and improvement of computing capacity (e.g., emergence
of cloud computing platforms). While annual continental to
global products of some land use/cover types have been cre-
ated in a near-operational manner (e.g., forest, water, and ur-
ban) (Hansen et al., 2013; Pekel et al., 2016; Gong et al.,
2020), frequent fine-scale irrigation mapping remains chal-

lenging due to the cryptic nature of the irrigation signal and
the lack of ground reference data needed to train and val-
idate machine learning and other classifiers. The data gaps
are particularly problematic in the Midwestern and eastern
US, where more abundant water resources have led to less
concern and monitoring of irrigated land use.

This paper presents the newly created annual 30 m reso-
lution irrigation maps and their comparisons with existing
products. The maps (named LANID – Landsat-based Irriga-
tion Dataset) cover the CONUS for the period of 1997–2017
and build upon a past effort of mapping for the year 2012
(Xie et al., 2019b), with key improvements in training sample
generation, classification design, and accuracy assessment
(Xie and Lark, 2021b). The maps presented here also include
a newly mapped component – irrigated pasture and hay – that
was not explicitly included in the preliminary version pre-
sented in Xie and Lark (2021b). In addition to the LANID
maps, we present the collected ground truth data, which are
particularly important for irrigation mapping efforts that re-
quire such a dataset to train or validate machine learning al-
gorithms, especially where it has not been available in the
humid eastern US. Additional products include maps of irri-
gation frequency, maximum extent, irrigation trends, and for-
merly and intermittently irrigated areas. In the following sec-
tions, we briefly review the methods used to generate these
data and then present our maps and their comparisons with
existing products that cover the entire US.

2 Methods

Our new LANID product contains 21 annual maps that char-
acterize irrigation status of croplands, pasture, and hay across
the CONUS for the years from 1997 to 2017. We first created
annual maps of irrigated croplands (i.e., LANID_V1) using a
supervised decision tree classification based on a novel train-
ing sample generation method and satellite-derived and envi-
ronmental variables (see details in Xie and Lark, 2021b). Be-
cause LANID_V1 does not explicitly include irrigated pas-
ture and hay, which is an important component of total irriga-
tion, particularly in the western US, we addressed this lim-
itation by applying the same machine learning method but
using different mask layers and areal reference for training
sample generation and classification (Fig. 1). The maximum
extent of pasture and hay for the west was derived from the
USGS National Land Cover Database (NLCD) and USDA
Cropland Data Layer (CDL), identifying pixels that had been
classified as pasture–hay in NLCD or non-alfalfa hay in CDL
within any year between 1992 and 2017. To reduce compe-
tition between this pasture and hay mask and the one used
for irrigated cropland mapping, we removed those pixels that
had been classified as irrigated cropland in LANID_V1. The
county-level areal reference of irrigated pasture and hay was
calculated as the deficit of LANID_V1-based irrigated crop-
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Table 1. Currently available irrigation maps covering part to the entire CONUS. The boldfaced maps are compared with LANID in the
Results section (RF: random forest; RS: remote sensing).

Products Spatial
coverage

Resolution Update frequency Methods/datasets Citations

Global Irrigated Area
Map (GIAM)

Global 10 km
rescaled
to 1 km

Single map, 2000 Spectral matching/RS data Thenkabail et al. (2009)

Global Map of Irrigation
Areas (GMIA)

Global 10 km 5-year interval,
1995, 2000,
and 2005

Spatial allocation/sub-
nation statistics and maps

Siebert et al. (2005, 2013)

Synthesized map of
global irrigated area

Global 1 km Single map,
covering 1999–2012

Decision tree/RS, GMIA,
and land cover maps

Meier et al. (2018)

Global Food-Support
Analysis Data (GFSAD)

Global 1 km Single map, 2010 Spectral matching/RS time
series

Teluguntla et al. (2015)

Global Land Cover Map
(GlobCover)

Global 300 m Single map, 2009 Automatic classification/
RS time series

ESA (2015)

Global Land Cover
Characteristics (GLCC)

Global 1 km Single map, 1992 Hybrid compositing
techniques/RS data

Loveland et al. (2000)

Global Rainfed, Irrigated
and Paddy Croplands
(GRIPC)

Global 500 m Single map, 2005 Decision tree/RS, climate,
and ag. inventory data

Salmon et al. (2015)

MODIS-based Irrigated
Agriculture Dataset
(MIrAD)

CONUS 250 m 5-year interval,
2002–2017

Thresholding/agricultural
census
and RS data

Pervez and Brown (2010)

MODIS-based Irrigation
Fraction (MIF)

CONUS 500 m Single map, 2001 Decision tree/RS time
series

Ozdogan and Gutman
(2008)

USDA-NASS irrigation
statistics

US County-
level

5-year interval,
1997–2017

Surveys https://www.nass.usda.
gov/AgCensus/index.php
(last access: 15 April
2021)

USGS-verified irrigated
lands

Western
US

Field Vary across states,
2002–2017

Visual interpretation/
RS and cropland inventory
data

Brandt et al. (2021)

Landsat-based Irrigation
Dataset 2012 (LANID
2012)

CONUS 30 m Single map, circa
2012

RF/RS, climate, and
environmental data

Xie et al. (2019b)

Annual Irrigation Maps
– High Plains aquifer
(AIM-HPA)

High
Plains
aquifer

30 m Annual, 1984–2017 RF/RS, climate, and
environmental data

Deines et al. (2019)

IrrMapper Western
CONUS

30 m Annual, 1986–2018 RF/RS, climate, and
environmental data

Ketchum et al. (2020)

land area compared to USDA-NASS-reported area, which in-
cludes all types of irrigated agriculture.

A key element of the LANID methodology is a novel way
to generate training samples covering the entire country. To
account for climate difference and mapping complexity, the
CONUS was divided into western and eastern states based
on a climatic transition near the 100th meridian, and training

data were created corresponding to each region (Fig. 2). We
used an automated method to generate training samples for
the western states. For the years when USDA-NASS county-
level irrigation statistics are available (i.e., 1997, 2002, 2007,
2012, and 2017), we adopted the thresholding method pro-
posed by Xie et al. (2019b) to automate training sample gen-
eration, which assumed that irrigated lands appear greener
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Figure 1. Flowchart of mapping irrigated pasture and hay in western US (a) generating the maximum extent of pasture–hay, (b) creating
training samples, and (c) classification. Cropland mask refers to the maximum extent of non-pasture–hay cultivated land created in Xie and
Lark (2021b).

than those that are rainfed. For non-census years, optimal
thresholds were estimated based on relationships of crop
greenness between non-census and census years. The cali-
brated and estimated thresholds were used to segment yearly
maximum Landsat-based greenness index (GI) and enhanced
vegetation index (EVI) to derive two intermediate irrigation
maps per year, which were overlaid to identify consistent
classification as potential training samples. As a result, the
generated potential training samples were evenly distributed
across the western CONUS on a yearly basis.

For the relatively humid eastern states, we visually col-
lected samples through interpretation of multi-temporal very
high-resolution images, street views, and time-series Land-
sat data on Google Earth and Google Earth Engine, based
on the appearance of irrigation infrastructure such as wells,
pipes, center pivot towers, and circular field patterns. De-
tailed methods of sample generation are described in Xie and
Lark (2021b).

The predictors generally consist of two categories – satel-
lite data and environmental variables (Xie and Lark, 2021b).
The primary satellite-derived variables were calculated from
all available Landsat images within each year, including
yearly maximum, median, and range composites of GI, EVI,
and normalized difference water index (NDWI). Annual and
late-season (1 May to 15 October) sum of MODIS-derived
indices (i.e., EVI and land surface temperature) were also
used as additional variables. Environmental variables in-
cluded annual and late-season sum of irrigation-relevant cli-
mate variables (i.e., precipitation, temperature, partial pres-
sure of water vapor), elevation and slope, soil water content,
and distance to major rivers (Deines et al., 2017, 2019; Xu et
al., 2019; Xie et al., 2019b). Altogether, there were 32 input

features (25 for the years 1997–2000 when MODIS products
were not available).

Classification was implemented on Google Earth Engine,
a cloud-computing platform that enables rapid accessing and
processing of vast numbers of satellite images, climate data,
and geophysical products (Gorelick et al., 2017). The classi-
fication was conducted annually per county using the widely
used random forest classifier (Breiman, 2001). The county-
level classifications were mosaicked to create an initial na-
tionwide time-series irrigation map, followed by logic and
spatial filtering to remove possible false classification (see
details in Xie and Lark, 2021b).

3 Map evaluation and comparison design

Comprehensive assessment of nationwide irrigation maps is
not possible without adequate ground truth data, especially
for the eastern US. Therefore, accuracy of many published
irrigation maps covering CONUS have been poorly evalu-
ated. We compared our LANID maps to existing nationwide
irrigation-specific maps, including two binary maps (i.e., MI-
rAD and GIAM) and two maps of irrigation fraction (i.e.,
MIF and GMIA areal percentage equipped for irrigation)
(Table 1). Other global maps that include irrigation-related
classes, such as Global Land Cover Map and GFSAD, are not
shown because they are not irrigation-specific and substan-
tially under-represent irrigation extent across the CONUS.
In addition to coarser-resolution nationwide maps, we also
compared our maps with recently available 30 m resolution
maps for the High Plains aquifers and the 11 western states,
i.e., AIM-HPA and IrrMapper, respectively.
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Figure 2. Map evaluation and comparison design and the distribution of test sample locations across the eastern CONUS. The NKOT region
refers to Nebraska, Kansas, Oklahoma, and Texas, which covers the majority of the High Plains aquifer. The red solid line represents the
west–east division for classification only.

Map evaluation and comparison were conducted by using
test samples from two sources that cover the majority area of
the CONUS – a published reference dataset from Ketchum et
al. (2020) and an additional independent dataset that we col-
lected for this study. The test samples from Ketchum et al.
(2020) were collected through visual interpretation of field
parcels based on irrigation clues from very high resolution
images and crop greenness. The dataset has approximately
100 000 sample points, covering 11 western states (Fig. 2)
for the whole study period of 1997–2017. Our indepen-
dently collected validation samples (approximately 10 000
locations) covered the remaining areas except for Arkansas,
Louisiana, and Mississippi. Lastly, we evaluated LANID’s
capability to detect irrigation change from pixel to state
scales.

4 Results

4.1 Irrigation samples across the eastern US

To validate our maps, we collected approximately 10 000 irri-
gation and rainfed samples for the east (∼ 5000 for each cat-
egory) (Fig. 2). Each irrigation sample records a center pivot
location and the presence of irrigation infrastructure during
1997–2017 (Fig. 3). In addition, we measured the radius of

each center pivot irrigation system, i.e., the distance from
its center to its field boundary. Note that the length of cor-
ner arms (designed for corner irrigation) was not measured
(e.g., Field 1 in Fig. 3). Stable non-irrigation samples record
the locations with clear evidence of no irrigation infrastruc-
ture during the entire mapping period. The average pivot ra-
dius for all samples collected in the eastern CONUS was
330 m, but distributed bimodally around approximately 200
and 400 m, which correspond respectively to broader rectan-
gular circumscribed crop fields of 40 and 160 acres (16.19
and 64.75 ha), respectively.

4.2 Irrigation trends and changes

Our LANID reveals a steady increase in irrigated area
throughout the CONUS, although there are some years with
exceptional lower values – for example, 2012 and 2002, years
in which there was significant drought (Fig. 4) (Otkin et
al., 2018). Overall, irrigation area has increased by around
1.5×106 ha (Mha) during the period, from ∼ 23 Mha before
2000 to ∼ 24.5 Mha in 2016 with an average annual increase
of ∼ 80000 ha. Consistent with earlier findings, the Cen-
tral Valley of California, the High Plains portion of Texas,
south-central Florida, and select western states (e.g., Utah,
Colorado, Idaho, and Wyoming) experienced substantial irri-
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Figure 3. Demonstration of center-pivot irrigation field collection using very high-resolution time series (© Google Earth Pro 2021) and
Landsat images. GI: greenness index.

gation loss during the period (per-state plots in Fig. 4). In
contrast, irrigation increased in states across the Midwest
(including Nebraska, North Dakota, and South Dakota), the
Mississippi Alluvial Plain, and the East Coast. The largest
gains occurred in Nebraska, Missouri, Michigan, Illinois,
Arkansas, Mississippi, and Indiana, where irrigated area
grew by over 100 000 ha per state.

Our LANID-derived irrigation changes agree well with
USDA-NASS census-reported values (with R2 from 0.81
to 0.96), indicating that LANID and the USDA-NASS data
are consistent in their detection of irrigation change at both
county and state scales. Relative to the NASS data, however,
our LANID maps predict slightly greater irrigated extent at
the national level and slightly fewer net changes at both state
and county levels, especially for the eastern CONUS (Fig. 5).

Aggregating the annual LANID maps to a finer but still in-
termediate 6 km resolution can reveal more localized trends
than state- or county-level data allow, while also accommo-
dating for the field-level stochasticity and variations that of-
ten occur within a single farm or shared water source (Fig. 6).
Such a resolution is particularly helpful for identifying small
pockets of change with countervailing trends that would oth-
erwise be masked or undetected. For example, we found out-
lier locations of irrigation loss in the Mississippi Alluvial
Plain and of irrigation gain in the central and southern High
Plains aquifer.

Ultimately, when applied at the highest resolution, our
LANID maps can be used to reliably characterize irrigation
dynamics at the sub-field- to field-level with overall accuracy

Table 2. Accuracy of change detection using LANID maps. Change
is defined as frequency difference between the two sub-periods (i.e.,
1998–2007 and 2008–2017) greater than 3, and the stable class
refers to the value smaller than or equal to 3. Note non-agriculture
is excluded from the stable class.

Reference

Stable Change User’s accuracy

Classified Stable 187 63 75 %
change 13 137 91 %

Producer’s
accuracy

94 % 69 %

Overall accuracy: 81 %; kappa: 0.62

and kappa index of 81 % and 0.62, respectively (Table 2).
For instance, sub-field to field level expansions, losses, and
interannual variations in irrigation that are detectable from
LANID can be clearly observed in north Texas (Fig. 7a). Al-
though such a level of change detection in more humid areas
is not as effective as more arid states due to a weaker contrast
between irrigated and rainfed fields, LANID still provides a
reasonable and accurate characterization of irrigation change
through time there as well, as shown in the example in Michi-
gan (Fig. 7b).
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Figure 4. LANID-derived annual irrigation area by state, 1997–2017. The red line shows the east–west division in this study based on a
climatic transition near the 100th meridian. Annual irrigation area per state is provided in Table A1.

Figure 5. LANID-derived irrigation changes vs. USDA-NASS-reported area at the state (a) and county (b) scales. Irrigation change was
calculated as the difference between mean area of the years 2012 and 2017 and that of 1997 and 2002 (i.e., mean(irArea2012+ irArea2017)
− mean(irArea1997+ irArea2002), where irAreayr refers to irrigation area of year). The USDA-NASS-reported values of 1997 are shown to
represent irrigation area at the starting point of the study period.

4.3 Irrigated pasture and hay

This study provides the first complete mapping and de-
lineation of irrigated pasture and hay for the western US
(Fig. 8). In this region, forage and fodder crops provide valu-
able feed for livestock, and irrigation is often necessary to
cultivate certain species or attain viable yields. This contrasts

with pasture and hay in the eastern states, where annual pre-
cipitation and soil moisture are typically sufficient for robust
production of grass-based forage and fodder. Areas of irri-
gated pasture and hay have a pattern of land use distinct from
that of irrigated croplands, as well as unique implications for
water use and the environment.
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Figure 6. LANID-derived irrigation gain from 1998–2007 to 2008–2017 at the 6km×6 km scale. Per-grid value is calculated as the difference
between mean irrigation area of 1998–2007 and that of 2008–2017 (i.e., meanIrArea2008−2017 − meanIrArea1998−2007, where irArea is
LANID-aggregated irrigation area within a 6km× 6 km grid). Grids with absolute change < 2.5 % are shown as background.

Compared to the first version of LANID, which did not
explicitly include irrigated pasture–hay, we found an average
of 0.34 Mha more irrigated land (i.e., more irrigated pasture
and hay included in LANID_V2 compared to LANID_V1)
for the years 2013 to 2017 and a similarly larger amount
(0.36 Mha) since the start of the study period. This increase
in irrigated extent is lower than that of the USDA census
of Agriculture’s estimate of 1 Mha of irrigated pasture – the
only other spatial (but coarse) estimate of such irrigated land
use (Sanderson et al., 2012). The difference between our an-
nual estimates and that of the census data likely reflects the
fact that a large portion of irrigated pasture and hay (espe-
cially alfalfa) had already been mapped in the first version of
LANID. To confirm this, we further calculated a direct esti-
mate of only irrigated pasture–hay as all irrigated pixels clas-
sified as pasture or hay in the NLCD or CDL and estimated
an average area of 1.39 Mha across the years 2008, 2011,
2013, and 2016. This estimate is 0.39 Mha higher than the
1 Mha reported by the Census of Agricultural but includes
both pasture and hay, whereas the census estimate is for pas-
ture only.

4.4 Maximum extent, frequency, and formerly and
intermittently irrigated land

Across all types of irrigation – including cultivated cropland
and pasture and hay – a total of 38.5 Mha of land was irri-

gated at least one time between 1997 and 2017, represent-
ing the maximum irrigated extent in the US for our study
period (Fig. 9a and Table 3). Of these areas, just 24.2 Mha
(62.8 %) was irrigated in 2017, and this annual utilization
percentage ranged from 58.8 % to 64.0 % over the full study
period. Across all pixels within the maximum irrigated ex-
tent, the mean annual irrigated frequency was 12.9 out of
21 years (Fig. 9b). The distribution of irrigated frequency
suggests many areas consist of stable, persistent irrigation
but that there also exists a substantial amount of land with
intermittent irrigation use. Those pixels with the very lowest
irrigation frequency likely reflect locations where irrigation
ceased very early in the study period or was first initiated
very late in the study period, and/or areas of potential mis-
classification.

Looking at the subset of lands that are no longer irrigated,
we found 4 Mha of formerly irrigated land (i.e., not irrigated
anytime in the most recent 3 years, 2015–2017, but that was
irrigated at least three times prior) (Table 3). This formerly ir-
rigated land is primarily distributed across the western states
(as shown in Fig. 6) and may reflect areas where insufficient
water availability has limited the ongoing use, or where sali-
nation of soils, socioeconomic drivers, or other superseding
factors have resulted in a cessation of irrigated agriculture.
Of these formerly irrigated areas, 71.6 % remains in crop
production under rainfed conditions, primarily planted for
corn (13.2 %), soybeans (12.3 %), and spring–winter wheat
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Figure 7. Demonstration of LANID-derived field-level irrigation frequency change for the northern Texas (a) and southwestern Michigan
(b) (highlighted in Fig. 6). Frequency change refers to the difference of number of years irrigated between 1998–2007 and that between
2008–2017 (i.e., irFreq2008−2017 − irFreq1998−2007, where irFreq is the number of years irrigated).

Table 3. Statistics of irrigation area (in 106 ha) across the CONUS for the period 1997–2017.

Area Definition

Average annual area 23.7 Mean annual irrigation area

Maximum area 38.5 Irrigated at least once

Formerly irrigated 4.0 Not irrigated anytime in 2015–2017, but irrigated at least three times
prior

Long-term irrigation Intermittently
irrigated

13.5 Irrigated at least once for both 1997–1999 and 2015–2017, and irrigation
frequency ≤ 18

Continuously
irrigated

12.0 Irrigated at least once for both 1997–1999 and 2015–2017, and irrigation
frequency > 18

(12.2 %) as of 2017. The remaining locations have either
been abandoned from cultivated crop production altogether
(26.3 %) or converted to urban use (2.1 %). Those areas for
which an irrigated crop is no longer viable may represent an
opportunity for farmers to transition to grassland-based agri-
culture (Deines et al., 2020), for example via the introduction
of pasture for livestock grazing or the harvesting of biomass
for use as forage or cellulosic bioenergy feedstock (Robert-

son et al., 2017). As climate change and decreasing fresh-
water availability continue to strain water resources, the total
area of formerly irrigated lands is likely to increase, thereby
creating even further opportunity and greater need for al-
ternative drought-resistant agricultural opportunities, such as
those afforded by perennial feedstock production.

In addition to those locations where irrigation has ceased
completely, we observed a substantial amount of land where
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Figure 8. Distribution of irrigated pasture and hay derived from LANID_V2 (presented in this study) in the western CONUS. The overview
shows irrigation frequency (i.e., the number of years a pixel is irrigated during 1997–2017). The highlighted areas in the red rectangles
represent areas of intensively irrigated pasture and hay that were not completely mapped in LANID_V1. Panels (a) and (b) are examples of
local views for western Wyoming and northeastern Nevada, respectively.

Figure 9. The maximum irrigation extent (lands that have been irrigated at least once) and irrigation frequency (the number of irrigated
years) across the CONUS for the period 1997–2017. The inset in (b) shows the area of each frequency value.

irrigation remained active in the most recent years but where
its use across time was discontinuous. For example, we found
25.5 Mha of land across the CONUS that had been irrigated
spanning the whole study period (i.e., irrigated at least once
for both 1997–1999 and 2015–2017), where over half of
that subset (i.e., 13.5 Mha) could be best described as inter-

mittently irrigated (frequency ≤ 18) (Table 3). As opposed
to those locations with continuous annual irrigation use or
where irrigation has ceased altogether, these intermittently
irrigated lands appear to remain in irrigated agriculture to-
day yet rely on such irrigation use just 67 % (median value)
of the time across the 21-year study period. While further in-
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Figure 10. Nationwide views of different irrigation mapping products. LANID 2005 is aggregated to 1 (a) and 10 km (d) resolution for
comparison purposes. The LANID-derived irrigation frequency refers to the number of years a pixel is classified as “irrigated”.

vestigation is needed to better characterize these areas of par-
tial irrigation use over time, it may be possible that they rep-
resent locations where irrigation is only supplemental (e.g.,
used only in dry years or when needed), shared among a sin-
gle water source but rotated among multiple nearby fields, or
used only in years with sufficient water availability or water
application rights and allocations. Similar to formerly irri-
gated lands, these locations of intermittent irrigation appli-
cation may present areas of opportunity or economic need
for alternative rainfed agriculture in non-irrigated years. In
such cases, drought-tolerant annual crops like forage or en-
ergy sorghum could potentially provide economic opportuni-
ties for producers and limited further strain on local hydrol-
ogy (Enciso et al., 2015; Mullet et al., 2014; Cui et al., 2018).

4.5 Comparisons with existing products

Figure 10 presents the nationwide view of a single year
LANID as well as other irrigation-specific products. The
30 m LANID 2005 map was aggregated to 10 km resolu-
tion (Fig. 10b) for comparing with other coarser-resolution
maps. Across broad scales, all maps show similar irriga-
tion hotspots of the High Plains aquifer, the Central Val-

ley aquifer, the Mississippi Alluvial Plain, the Snake River
aquifer, and the East Coast. While it might be reasonable to
conclude that all these coarse-resolution maps can capture
similar irrigation patterns at the national scale, regional views
emphasize the details that are uniquely captured by LANID.
For instance, LANID identifies fewer irrigated pixels at the
eastern Columbia Plateau aquifer than other maps, especially
compared to MIF and GIAM (Fig. 11). In another example of
the High Plains aquifer, GIAM and MIF substantially over-
estimate irrigation extent in western and central Kansas com-
pared to both LANID and MIrAD (Fig. 12). Among all com-
parison products, MIrAD provides the most similarity of ir-
rigation patterns as LANID in the arid to semi-arid west and
Midwest.

In more humid areas like the upper Midwest, our LANID
map captures patterns that are considerably misclassified by
other maps (Fig. 13). For example, GIAM and MIF omit the
majority of irrigated fields in the region; MIrAD shows a
clear administrative boundary effect and near-random distri-
bution of irrigation within each county. At 10 km resolution,
GMIA provides similar patterns as LANID but exaggerates
the overall irrigation extent.
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Figure 11. Product comparison at the Columbia Plateau Aquifer in northern Oregon and southern Washington. In addition to the original
30 m LANID (a), the map is aggregated to 1 and 10 km resolution for panels (d) and (g). Panels (h–i) show the location highlighted in (a)
(red rectangle).

Locally, LANID shows a substantial improvement of spa-
tial detail compared to other maps. For example, boundaries
of center pivot and rectangular fields are clearly recogniz-
able in LANID, while they are obscured even on the 250 m
resolution MIrAD (insets (h) and (j) of Figs. 11 and 12). It
is also evident that LANID shows comparable spatial details
as other regional maps IrrMapper and AIM-HPA (inset (i) of
Figs. 11 and 12) while still offering consistent and compre-
hensive coverage across the CONUS.

At the state level, our LANID estimates are consistent with
USDA-NASS-reported data (Fig. 14b), although the agree-
ment is weaker than that of products like MIrAD and GMIA,
which both rely directly and exclusively on census data as
areal reference (not shown in the figure). In contrast, MIF
underestimates irrigated area at the state level (Fig. 14c),
whereas GIAM substantially overestimates irrigation extent,
especially for the states with reported area greater than 106 ha
(Fig. 14d).

The results of pixel-based assessment further reveal the ad-
vantages of LANID over other nationwide maps (Table 4).
We find that the overall accuracy is generally high for the

NKOT region (i.e., Nebraska, Kansas, Oklahoma, and Texas)
across all nationwide maps except for GIAM, with mean ac-
curacy ranging from 78.9 % (MIF) to over 95 % (the LANID
maps). Similarly, all maps show relatively high overall ac-
curacy for the 11 western states, with values ranging from
82.6 % of MIF to 94.2 % of MIrAD. Despite these maps’
reasonable accuracy in the west and even Midwest, they in-
correctly assign a considerable number of rainfed fields as
irrigated possibly due to coarse resolution and their diffi-
culty separating them in some areas such as the Columbia
Plateau aquifer (Fig. 11). For example, GIAM captures many
low-density pixels in the west (Fig. 15c); MIF overestimates
the locations with irrigation fraction between 0 % and 60 %
(Fig. 15b); MIrAD maps irrigated pixels with a median frac-
tion around 80 % (Fig. 15a).

In the eastern US, our LANID maps stand out with over-
all accuracy of 94.4 % – on par with their performance in
the western US – whereas other maps show accuracy be-
low 60 %. The extremely low accuracy of MIrAD, MIF, and
GIAM in the east is attributable to their missing of most
irrigated cropland as well as frequent false identification
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Figure 12. Product comparison at the High Plains aquifer. In addition to the original 30 m LANID (a), the map is aggregated to 1 and 10 km
resolution for panels (d) and (g). Panels (h–i) show the location highlighted in (a) (red rectangle).

of rainfed cropland as irrigated (see Fig. 13 as an exam-
ple), as characterized by omission error rates of over 80 %
and commission error rates of over 45 % for the “irrigated”
and “non-irrigated” classes, respectively. As a result, MI-
rAD maps irrigated pixels in the east that have a median irri-
gated fraction of about 50 % according to LANID (Fig. 15a);
GIAM misclassifies a substantial number of low-density pix-
els (Fig. 15c); MIF substantially overestimates the locations
with an irrigation fraction beyond 30 % (Fig. 15b).

We also compared our maps to AIM-HPA (i.e., Annual Ir-
rigation Maps – High Plains aquifer) (Deines et al., 2019),
a dataset with the same spatial and temporal resolution as
LANID but covering only the High Plains aquifer. In this
region, LANID performs comparably to the HPA-specific
dataset, with overall accuracy of 95.9 % vs. 93.2 %, respec-
tively, and kappa values of 0.89 vs. 0.82.

For a broader region with the 11 western states, our
LANID maps show 92.8 % congruence (kappa of 0.84) with
the reference data from IrrMapper (Ketchum et al., 2020)
compared to a 99.1 % (kappa of 0.98) congruence of the Ir-
rMapper product with its reference data. Such results follow
in part from the methods of reference data utilization, as Ir-

rMapper used 60 % of the validation data used in our com-
parison for its classifier training. Further differences between
LANID and IrrMapper may stem from differences in sam-
pled data and irrigated class definition. For example, the Ir-
rMapper point-based irrigation samples were stratified from
verified fields that were digitized in years different from the
time of irrigation verification, such that they likely capture
permanently irrigated croplands well but may potentially in-
clude fields that are partially irrigated or fallowed in any
given year. In addition, IrrMapper’s reference irrigation sam-
ples appear to include both irrigated croplands and other
grass-like lands, such as irrigated turfgrass and groundwater-
or fluvially subsidized grasslands and wetlands. This broader
and more variable pool of reference data may thus help
explain additional observed differences, such as occasion-
ally less distinct field boundaries in IrrMapper compared
with LANID and GI (e.g., left-hand portions of Fig. 11h–
k) as well as the slightly higher apparent accuracy of MI-
rAD (which relies only on vegetation greenness) compared
to LANID in the west when assessed against the IrrMapper
reference data (Table 4). Thus, while overall performances
of LANID and other datasets are similar in overlapping re-
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Figure 13. Product comparison in central Minnesota. In addition to the original 30 m LANID (a), the map is aggregated to 1 and 10 km
resolution for panels (d) and (g). Panels (h–i) show the location highlighted in (a) (red rectangle).

gions like the HPA and the western states, differences in each
product’s intent and class specificity will likely dictate pref-
erences for specific user applications.

5 Discussion

5.1 Uncertainty, limitations, and future improvements

Both qualitative and quantitative assessments show extensive
improvements of LANID compared to other currently avail-
able nationwide maps in terms of spatial detail and tempo-
ral frequency. Despite the advances, caution is still needed,
especially when applying the dataset at the scale of individ-
ual fields in the eastern US. For example, mapping accuracy
in the Mississippi Alluvial Plain region is uncertain due to
the absence of reference data and the difficulty of collecting
aerial ground truth in the area. In addition, map accuracy in
the humid east is slightly lower than in the arid and semi-arid
west. The quality of maps might also vary over time due to
availability of clear Landsat observations. For instance, fewer
Landsat images in 2012 constrained map quality, and scan-
off effects of the ETM+ sensor might remain in some areas.

We took several post-classification steps to improve map-
ping accuracy, which also introduces limitations to LANID.
First, our minimum mapping unit of 5 acres (2.02 ha) (i.e.,
23 Landsat pixels) improved mapping confidence but also
excluded smaller irrigated fields, such as fragmented irri-
gated vegetable fields often found in suburban and peri-
urban areas. Second, the assumption that fields equipped
with irrigation systems tend to be cropped and irrigated fre-
quently could have incorrectly masked out some irrigated
fields historically under long-term and frequent fallow con-
ditions (e.g., irrigated – long-term fallow conditions – irri-
gated). Lastly, our current version of LANID covers only the
period of 1997 to 2017, which might be problematic for users
who want maps outside the study period. However, we hope
to regularly update the existing dataset in the future to in-
clude the most recent years of available imagery, and, if able,
extend the time series back in time through the duration of
the Landsat record.

Given these uncertainties and limitations, future genera-
tions of LANID could benefit from the following improve-
ments. First, we anticipate using our temporally extendable
methodology to routinely update LANID, such that cover-
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Figure 14. Comparisons of irrigated area between products at the nation (a) and state (b–d) levels. (a) LANID-derived nationwide irrigation
trend (dashed pink line) and irrigated area of other products. (b) USDA-NASS-reported vs. LANID-estimated irrigation area for 5 census
years. (c) USDA-NASS-reported (2002) vs. MODIS-estimated (2001) irrigated area (adapted from Ozdogan and Gutman, 2008). (d) USDA-
NASS reported (2002) vs. GIAM-estimated (2000) irrigated area. Note the GIAM-estimated nationwide irrigated area (39× 106 ha) is
not shown in (a) due to its exceptionally high value. State-level comparisons between USDA-NASS and MIrAD-US and GMIA are not
demonstrated because both products used census data as reference.

age could extend prior to 1997 and up to the most recent
year. Efforts could also be made to enhance spatial detail
(e.g., 10 m resolution) and mapping accuracy, particularly
in the humid eastern US where contrasts between irrigated
and rainfed crops are obscure. This is practical for recent
years when both the revisit frequency and spatial resolution
of satellite observations are greatly improved. Lastly, im-
plementation of an irrigation-specific change detection algo-
rithm could help improve the identification and consistency
of monitoring variations in irrigation over time.

5.2 Potential applications

Our annual 30 m resolution nationwide LANID maps may be
valuable to local, state, and regional water governance bod-
ies, agribusinesses, and the research community for a variety
of applications including water use estimation, risk assess-
ment, use as model input, and more.

Our LANID maps could benefit water and agricultural
managers by providing insights into irrigation changes (e.g.,
expansion and abandonment) at geographic and temporal
scales relevant to decision-making. Our field-scale, wall-to-
wall data will enable local and regional water management
organizations, which may not otherwise have sufficient data
or resources, to make better decisions that influence regional
water availability. For example, state-level water managers
and engineers who need to plan how much water to allo-
cate for agriculture could utilize our irrigation distribution
and change information to estimate demand. Policy makers
may also use LANID to navigate future decision making and
to evaluate federal agricultural, bioenergy, and conservation
policies (Mccarthy et al., 2020; Lark, 2020).

Our dataset may also be useful for agribusinesses and enti-
ties across agricultural supply chains. For example, our maps
could be used by companies that seek to reduce risk from wa-
ter scarcity within their supply chains or lower the water foot-
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Table 4. Confusion table of pixel-wise accuracy assessment. The overall accuracy, omission error (1 – producer’s accuracy), and commission
error (1 – user’s accuracy) are in percent. Accuracy values are averaged if multiple-year assessment was conducted. Parenthetical numbers
represent the standard deviation.

Maps Region Year Kappa Overall Omission error Commission error Sample Irrigation
accuracy size sample

Irrigated Non-irr. Irrigated Non-irr.

LANID Westa 1997–2017 0.84 (0.07) 92.8 (3.5) 11.4 (6.9) 3.6 (1.0) 6.1 (4.9) 10.7 (8.9) 4433 2284
NKOT 1997–2017 0.93 (0.02) 96.6 (0.8) 5.9 (1.4) 1.0 (0.2) 1.0 (0.2) 5.6 (1.3) 9994 5002
East 1997–2017 0.89 (0.01) 94.4 (0.6) 10.7 (1.2) 0.5 (0.1) 0.6 (0.1) 9.7 (1.0) 10 000 5000
HPAb 1997–2017 0.89 (0.03) 95.9 (1.1) 4.7 (1.4) 2.3 (0.6) 0.7 (0.2) 13.0 (3.3) 5890 4479

MIrAD Westa 2002, 2007 0.84 (0.02) 94.2 (0.8) 10.3 (2.4) 4.3 (0.9) 11.2 (5.4) 4.3 (2.1) 3102 987
NKOT 2002, 2007,

2012, 2017
0.76 (0.05) 87.8 (2.5) 18.0 (4.4) 6.3 (0.7) 7.1 (1.0) 16.2 (3.4) 9967 5014

East 2002, 2007,
2012, 2017

0.16 (0.01) 58.0 (0.7) 82.3 (1.1) 1.7 (0.6) 8.7 (2.9) 45.6 (0.4) 10 000 5000

MIFc Westa 2001 0.49 82.6 47.8 7.4 29.9 14.6 3002 747
NKOT 2001 0.58 78.9 27.2 14.9 17.0 24.3 9985 5001
East 2001 0.12 55.9 83.6 4.6 21.9 46.7 10 000 5000

GIAM Westa 2000 0.72 87.6 23.5 6.2 12.6 12.3 3436 1234
NKOT 2000 0.25 62.6 57.2 17.5 29.0 41.0 10 040 5023
Easta 2000 0.04 52.2 93.5 2.0 23.6 48.8 10 000 5000

AIM-HPA HPAb 1997–2017 0.82 (0.04) 93.2 (1.8) 6.9 (2.4) 6.4 (3.4) 2.1 (1.1) 18.6 (4.8) 5890 4479
HPAd 1997–2017 – 92.7 (1.5) 14.0 (4.5) 3.1 (1.7) 8.5 (2.1) 8.5 (2.1) 1316 519

IrrMapper Westa 1997–2017 0.98 (0.01) 99.1 (0.3) 0.3 (0.2) 1.4 (0.3) 2.4 (1.9) 0.3 (0.2) 4433 2284

LANID2012 NKOT 2012 0.84 92.0 10.1 5.8 6.0 9.8 9938 5002
East 2012 0.49 74.4 49.4 1.9 3.7 33.5 10 000 5000

a Validation samples from Ketchum et al. (2020). Test samples for the years 1999, 2004, 2005, 2012, 2015, and 2017 were not used because of limited irrigated samples. b Validation
samples from this study. c Irrigated pixels were set as a fraction greater than 20 %. d Accuracy assessment reported by Deines et al. (2019). NKOT: Nebraska, Kansas, Oklahoma, and
Texas.

print of their sourced products (Brauman et al., 2020). Ad-
ditional applications may include business decision-making
and financial investment (Turral et al., 2010), precise field-
level water use estimation and solutions (Sadler et al., 2005),
and crop yield prediction and its water resilience (Troy et al.,
2015).

A key informant and collaborator in the development of
our LANID maps has been the USGS, and the produced out-
puts may help support several ongoing USGS efforts, such as
the National Water Census’s efforts to provide water budgets
at the watershed level (USGS, 2020a), the National Water-
Use Information Program (NWUIP) dissemination of water
use data (USGS, 2020b), and the Water Availability and Use
Science Program (WAUSP) assessments of regional ground-
water availability (USGS, 2020c). The research community
within USGS also has high-priority goals to improve quan-
tification of crop consumptive water use and project future
water use. Our improved estimates of irrigation location, ex-
tent, and dynamics could help refine evapotranspiration esti-
mates of irrigated croplands, thereby improving estimates of
agricultural water use from field to aquifer scales and further

supporting the ongoing expansion of detailed water use esti-
mates across the continental US (Senay et al., 2016, 2017).

We also hope that our dataset will serve several needs in
the broader research community, especially for those who
study hydrology, agriculture, and the environment from local
to nationwide scales. For example, our 30 m resolution irri-
gation data could be used to potentially improve the classifi-
cation accuracy of or add irrigation status to existing USGS
and USDA land cover maps (Brown et al., 2020; Lark et al.,
2021; Wickham et al., 2021), investigate the relationships
among irrigation changes and cropland expansion and aban-
donment (Lark et al., 2020; Yin et al., 2020), or explore the
competition and biophysical interactions between irrigated
agriculture and urban expansion (Xie et al., 2019a; Van Vliet,
2019; Bren D’amour et al., 2017). Users of previous coarser-
resolution irrigation datasets will also benefit from the im-
provements in spatial detail, product frequency, and map ac-
curacy. Existing nationwide irrigation datasets like MIrAD
have been accessed by hundreds of users in academia and
government via the USGS EROS website (Brown and Per-
vez, 2014). These data have been incorporated into stud-
ies to evaluate trends in ground and surface water quality,
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Figure 15. Box plots showing irrigation fraction mapped in each product using LANID as reference. The western and eastern CONUS
(separated by red line in Fig. 2) are shown as brown and green, respectively. The 30 m LANID maps were aggregated as an irrigation fraction
to match the spatial resolution of each product (e.g., 250 m for MIrAD). For binary maps MIrAD and GIAM, 5000 irrigated samples were
stratified for both west and east; 50 samples were selected for each irrigation fraction from 1 % to 100 % (with increments of 1 %) in MIF
and GMIA. The numbers on the horizontal axes of (b) and (d) refer to the maximum value of each bin.

model evapotranspiration, and energy–water exchange at the
surface boundary layer, and they reveal locations at risk of
unsustainable irrigation (Brown and Pervez, 2014; Pryor et
al., 2016; Seyoum and Milewski, 2016; Jin et al., 2011;
Zaussinger et al., 2019). Our 30 m data products will enhance
similar types of applications and enable many others through
the improved spatial and temporal resolution. To this extent,
several organizations have begun using our previously pub-
lished LANID 2012 for further research and development ac-
tivities, despite there being only 1 of the presently described
21 annual years of data available; such applications should
be further enabled by the current full suite of products and
time periods.

Lastly, our collected samples could help generate new
threads of irrigation maps for the eastern US. Because in-
sufficient ground reference data have long been a bottleneck
to producing accurate classifiers for irrigation mapping, our
verified locations could facilitate the development and evalu-
ation of new models for irrigation detection, especially when
other constraints are becoming relieved due to increasingly
available high- to moderate-resolution remote sensing im-
ages, development of machine learning algorithms, and open
access of cloud computing platforms.

6 Data availability

Our annual LANID maps, their byproducts (i.e., max-
imum irrigation extent, irrigation frequency, and per-
pixel irrigation trends), ∼ 10000 manually collected
ground reference data, and metadata can be accessed
via https://doi.org/10.5281/zenodo.5548555 (Xie and Lark,
2021a). All maps use the Albers equal-area conical projec-
tion at 30 m resolution except for the map of irrigation trends
of 6 km.

7 Conclusions

This paper presents the only annual, nationwide fine-
resolution maps of irrigation extent for the US, which are
available for each year from 1997–2017, and offer several
improvements over other products. The increased resolution
of the described LANID dataset sets a new standard in spatial
detail at the CONUS extent, while the increased mapping fre-
quency and multidecadal coverage enable characterization of
irrigation dynamics. Our accuracy assessment shows that the
LANID maps provide the most realistic depiction of irriga-
tion extent across the country, with performance that matches
or exceeds existing regional datasets.

Moving forward, the LANID maps provide a foundation
for refined representations of irrigation distribution and dy-
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namics across the US. It is clear from recent research efforts
that high-quality, frequently updated data on fine-scale irriga-
tion extent are immensely valuable for both the research and
application user communities. With these needs in mind, our
future intents and interests surrounding LANID may focus
on (1) routinely updating annual maps after 2017, (2) pro-
viding finer-resolution maps of irrigation extent (e.g., 10 m)
by fusing multi-source imagery, and (3) improving mapping
accuracy in the eastern CONUS.

Appendix A

Table A1. The LANID-derived state-level irrigated area (in hectares) of each year between 1997 and 2017.

1997–2008

States 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Alabama 34 535 39 125 44 618 37 601 45 173 42 095 43 512 48 210 49 533 56 837 55 946
Arizona 379 287 355 684 352 011 354 327 353 060 337 113 351 052 348 990 349 530 342 038 326 403
Arkansas 1 687 799 1 839 858 1 886 084 1 855 790 1 920 171 1 859 224 1 903 682 1 902 655 1 886 089 1 866 404 1 919 269
California 3 380 488 3 151 686 3 149 145 3 156 261 3 184 521 3 314 552 3 187 264 3 172 349 3 206 905 3 197 729 3 094 285
Colorado 1 210 321 1 121 823 1 127 185 1 114 290 1 108 564 1 000 578 1 102 934 1 105 161 1 100 720 1 070 917 1 121 951
Connecticut 302 807 807 829 910 970 851 801 1251 1108 1013
Delaware 47 054 49 638 49 591 53 128 52 042 49 221 53 965 54 924 57 305 56 429 48 586
Florida 615 570 547 328 569 116 568 295 574 083 640 918 578 654 578 092 578 447 574 716 561 719
Georgia 366 690 384 742 434 499 404 428 428 114 403 744 416 991 442 892 448 528 418 726 457 852
Idaho 1 385 130 1 352 224 1 339 614 1 336 683 1 311 422 1 319 562 1 323 663 1 340 630 1 340 766 1 339 902 1 319 951
Illinois 306 516 295 264 308 291 318 324 309 793 302 484 312 484 322 255 343 074 372 371 374 335
Indiana 168 572 170 884 170 226 180 406 169 450 173 272 212 469 211 910 211 605 224 793 221 168
Iowa 141 592 146 916 142 392 129 494 131 310 134 782 136 684 158 873 146 813 140 562 153 320
Kansas 1 243 244 1 321 112 1 329 850 1 282 021 1 283 028 1 135 702 1 353 488 1 288 916 1 350 727 1 227 553 1 318 920
Kentucky 13 104 13 479 12 991 12 209 13 955 13 346 17 538 19 164 21 688 25 816 23 551
Louisiana 415 211 451 161 458 231 442 128 488 285 428 395 453 754 432 163 445 974 438 908 421 933
Maine 3644 4142 4983 4910 5629 4403 5167 5738 5731 7701 9487
Maryland 46 450 47 965 44 192 48 584 53 744 47 490 50 384 56 148 56 940 56 354 50 152
Massachusetts 4756 4250 5274 5216 5069 5258 5044 5629 5670 5920 4709
Michigan 179 126 174 745 186 417 202 131 189 431 189 615 204 443 210 328 233 991 256 992 229 009
Minnesota 219 513 223 631 236 929 233 381 219 645 236 085 230 768 240 468 232 043 225 834 227 401
Mississippi 526 481 529 629 641 770 570 773 627 065 567 028 599 802 568 687 603 644 517 243 604 432
Missouri 480 854 523 644 559 171 558 573 600 994 571 590 605 685 600 251 610 383 646 444 632 748
Montana 754 784 716 614 730 501 728 447 753 781 750 609 734 975 756 981 743 386 747 750 764 726
Nebraska 3 388 881 3 607 761 3 737 425 3 602 001 3 655 262 3 303 885 3 577 851 3 763 770 3 713 858 3 628 089 3 902 377
Nevada 255 173 248 903 249 718 252 576 252 090 243 633 255 082 257 084 255 298 253 798 243 299
New Hampshire 625 661 934 930 918 891 991 1065 1123 976 782
New Jersey 25 712 27 451 28 717 32 253 30 855 33 095 31 175 34 197 33 369 35 184 30 257
New Mexico 323 098 296 609 314 995 297 562 310 916 312 938 304 907 317 588 313 720 305 273 324 526
New York 12 503 14 324 15 970 18 173 16 761 18 620 19 341 20 163 20 029 21 209 21 336
North Carolina 22 569 22 641 25 847 26 482 26 672 30 930 29 181 27 337 30 732 35 506 31 644
North Dakota 164 616 179 741 190 039 192 953 174 264 185 754 180 438 201 479 203 502 186 949 199 093
Ohio 6345 6091 6492 10 584 9362 6949 7985 12 980 13 365 10 487 11 161
Oklahoma 221 859 230 949 237 608 240 967 236 309 218 499 263 921 260 352 263 092 236 626 257 870
Oregon 693 065 657 674 674 871 675 721 678 911 705 284 681 086 691 636 672 903 683 382 686 578
Pennsylvania 2877 2648 2918 4303 4295 4006 4970 5664 5006 6213 5665
Rhode Island 721 755 790 921 903 791 965 944 965 958 1039
South Carolina 39 571 38 942 44 011 45 249 46 390 45 040 50 078 53 012 57 992 61 285 58 224
South Dakota 245 846 251 604 260 802 241 994 256 887 227 293 242 316 257 936 269 721 250 017 279 162
Tennessee 12 096 18 410 20 843 21 540 24 923 25 049 30 954 26 660 34 988 37 998 42 068
Texas 2 037 060 1 832 083 1 970 036 1 886 396 1 902 613 1 935 970 1 894 429 2 020 246 2 042 627 1 883 622 2 061 213
Utah 447 520 418 494 414 730 415 852 412 975 404 106 408 105 409 668 411 897 412 424 420 019
Vermont 459 675 827 905 1143 918 1219 1048 1090 1508 1047
Virginia 15 675 17 807 18 575 23 268 20 898 22 374 23 122 25 289 28 893 28 187 28 249
Washington 665 353 650 243 674 586 666 842 654 969 695 216 665 695 687 093 662 436 672 477 672 925
West Virginia 115 224 165 328 378 373 300 531 312 455 373
Wisconsin 168 788 169 200 177 363 175 174 177 969 176 654 174 700 179 013 181 334 183 905 181 335
Wyoming 591 280 549 623 552 916 552 251 550 526 520 762 552 083 546 981 553 945 546 109 545 747

CONUS 22 952 830 22 709 864 23 405 066 22 983 454 23 276 428 22 647 066 23 286 147 23 673 951 23 802 940 23 301 684 23 948 855
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Table A1. Continued.

2009–2017

States 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Alabama 60 139 63 088 60 198 68 873 70 572 74 533 76 987 81 990 78 022 80 805
Arizona 347 354 345 935 348 800 347 701 332 402 345 229 342 976 347 084 342 758 374 399
Arkansas 1 884 322 1 869 713 1 862 017 1 856 051 1 962 000 1 895 565 1 884 232 1 904 854 1 915 934 2 005 406
California 3 188 969 3 183 257 3 210 136 3 193 344 3 034 074 3 150 194 3 098 087 3 165 015 3 171 492 2 993 121
Colorado 1 097 294 1 111 432 1 099 495 1 090 921 982 058 1 069 911 1 090 256 1 085 316 1 079 062 1 058 369
Connecticut 1240 1146 946 1011 1167 766 1000 964 930 704
Delaware 53 855 58 197 58 583 57 379 58 263 63 623 65 377 66 345 62 686 59 182
Florida 571 469 575 663 574 039 577 377 533 861 581 562 577 921 578 069 575 584 524 110
Georgia 454 795 449 800 443 450 423 956 456 294 436 233 440 079 447 356 427 585 482 965
Idaho 1 332 914 1 350 822 1 331 055 1 342 894 1 343 860 1 330 616 1 328 663 1 340 649 1 321 842 1 328 081
Illinois 373 296 405 632 391 193 401 018 388 723 400 631 422 017 435 894 425 569 429 765
Indiana 232 998 224 904 251 318 239 992 219 071 271 049 269 836 277 084 274 989 274 193
Iowa 165 879 172 773 171 304 176 592 152 614 162 926 171 756 168 785 181 923 158 593
Kansas 1 298 163 1 293 371 1 254 278 1 219 387 1 255 779 1 269 960 1 271 563 1 298 644 1 348 197 1 213 904
Kentucky 24 637 24 648 27 565 26 845 23 918 34 820 35 942 40 236 37 892 37 695
Louisiana 457 305 464 418 461 525 454 552 474 357 466 391 480 660 453 071 456 294 520 158
Maine 10 911 9281 11 768 13 246 12 731 13 232 14 101 12 322 12 993 12 004
Maryland 53 551 64 218 57 960 57 262 56 885 65 756 63 208 64 878 63 111 62 859
Massachusetts 5127 5277 5190 5125 4462 4867 4829 4676 4710 4883
Michigan 255 967 249 827 271 441 280 475 270 287 298 783 312 146 319 282 304 834 307 379
Minnesota 246 865 248 258 259 921 265 191 265 084 261 758 276 892 284 753 289 736 268 822
Mississippi 581 096 592 122 586 089 574 756 661 108 607 189 623 127 586 732 607 843 727 048
Missouri 632 621 677 098 639 719 630 628 594 163 663 467 689 456 714 821 700 031 757 763
Montana 755 680 751 866 765 259 749 722 709 597 767 409 752 198 749 607 734 882 717 839
Nebraska 3 809 427 3 795 113 3 812 085 3 906 419 3 599 322 3 788 075 3 890 195 3 938 095 3 916 648 3 932 941
Nevada 254 701 253 634 257 118 254 508 242 259 255 488 260 470 263 629 258 504 261 773
New Hampshire 1136 979 998 1051 1052 1033 1086 989 824 841
New Jersey 31 874 32 858 29 627 32 556 29 711 29 231 31 729 30 367 30 056 27 307
New Mexico 302 674 309 613 322 031 287 084 267 775 303 436 309 672 315 822 314 231 278 521
New York 22 813 22 985 21 997 21 375 19 613 22 087 21 278 23 348 21 348 18 062
North Carolina 39 903 44 633 40 770 48 174 49 348 54 476 60 055 61 742 62 867 60 946
North Dakota 192 548 216 921 222 074 219 590 208 126 200 636 237 311 227 049 208 587 194 485
Ohio 12 389 16 820 15 163 17 568 16 019 20 830 19 226 21 596 20 769 21 797
Oklahoma 241 465 237 963 255 306 207 626 222 411 254 679 253 346 267 197 280 375 262 775
Oregon 679 313 689 700 683 527 672 638 601 796 681 881 686 693 687 199 693 521 630 691
Pennsylvania 7463 5875 5829 5862 5100 5071 4593 4810 4193 3633
Rhode Island 1055 899 873 996 903 931 947 973 907 825
South Carolina 62 819 60 304 60 997 70 816 75 314 78 853 79 582 78 073 83 985 83 152
South Dakota 282 989 300 158 316 604 305 400 247 765 310 061 311 233 310 428 306 264 273 417
Tennessee 47 716 50 000 62 366 72 275 82 320 95 120 99 624 105 668 98 550 95 929
Texas 1 947 439 1 958 584 2 042 729 1 806 539 1 734 962 1 950 095 1 931 265 1 990 790 1 960 109 1 797 103
Utah 410 925 413 886 410 487 415 526 408 438 409 979 411 089 407 372 409 971 404 194
Vermont 1343 1497 1467 1250 1429 1135 1024 1176 953 988
Virginia 29 632 30 258 26 965 30 214 28 495 31 826 31 587 32 060 31 459 30 626
Washington 684 029 689 341 683 064 675 888 643 850 688 835 693 133 687 186 681 781 649 433
West Virginia 532 521 413 562 291 511 614 462 381 515
Wisconsin 197 534 200 655 213 834 214 935 208 410 206 657 216 340 220 279 222 335 220 264
Wyoming 554 241 556 873 553 396 552 743 506 874 553 539 554 765 555 745 552 047 535 443

CONUS 23 902 407 24 082 816 24 182 969 23 875 893 23 064 913 24 180 935 24 400 166 24 660 482 24 579 564 24 185 708
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