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Abstract. The absence of a compiled large-scale catchment characteristics dataset is a key obstacle limit-
ing the development of large-sample hydrology research in China. We introduce the first large-scale catch-
ment attribute dataset in China. We compiled diverse data sources, including soil, land cover, climate, to-
pography, and geology, to develop the dataset. The dataset also includes catchment-scale 31-year meteoro-
logical time series from 1990 to 2020 for each basin. Potential evapotranspiration time series based on Pen-
man’s equation are derived for each basin. The 4911 catchments included in the dataset cover all of China.
We introduced several new indicators that describe the catchment geography and the underlying surface dif-
ferently from previously proposed datasets. The resulting dataset has a total of 125 catchment attributes and
includes a separate HydroMLYR (hydrology dataset for machine learning in the Yellow River Basin) dataset
containing standardized weekly averaged streamflow for 102 basins in the Yellow River Basin. The stan-
dardized streamflow data should be able to support machine learning hydrology research in the Yellow River
Basin. The dataset is freely available at https://doi.org/10.5281/zenodo.5729444 (Zhen et al., 2021). In addi-
tion, the accompanying code used to generate the dataset is freely available at https://github.com/haozhen315/
CCAM-China-Catchment-Attributes-and-Meteorology-dataset (last access: 26 November 2021) and supports
the generation of catchment characteristics for any custom basin boundaries. Compiled data for the 4911 basins
covering all of China and the open-source code should be able to support the study of any selected basins rather
than being limited to only a few basins.

1 Introduction

Rainfall, interception, evaporation and evapotranspiration,
groundwater flow, subsurface flow, and surface runoff are
the main components of the terrestrial hydrological cycle.
These processes are affected by the nature of the catchment,
such as the ability of the soil to hold water. Catchment at-
tributes influence water movement and the storage of the
catchment such that hydrologic behaviors can vary across
catchments (Van Werkhoven et al., 2008). Studying a large
set of terrestrial catchments often provides insights that can-
not be obtained when looking at individual cases or small

sets (Coron et al., 2012; Kollat et al., 2012; Newman et al.,
2015; Lane et al., 2019). For example, a calibrated model
may not be applicable in a watershed with vastly different
properties. However, by examining a large sample of catch-
ments, it is possible for a data-driven model to learn the simi-
larities and differences among hydrological behaviors across
catchments (Kratzert et al., 2019). Prediction in ungauged
basins presents a challenging problem in hydrology. The cen-
tral challenge is how to extrapolate hydrologic information
from gauged to ungauged basins, and solving this problem is
contingent on understanding the similarities and differences
between different catchments. Regionally and temporally im-
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balanced observations increase the difficulty of the problem.
For a model to successfully simulate the ungauged areas, it
must adapt itself to the varying hydrologic behaviors present
in different catchments. Kratzert et al. (2019) show that en-
coding catchment characteristics (e.g., soil characteristics,
land cover, topography) into a data-driven model can guide
the model to behave differently in response to the meteoro-
logical time series input based on different sets of catchment
attributes.

Large-sample hydrological datasets are the foundation of
many hydrological studies (Silberstein, 2006; Shen et al.,
2018; Nevo et al., 2019). The term “big hydrologic data”
refers to all data influencing the water cycle, such as the me-
teorological variables, infiltration characteristics of the study
area, land use or land cover types, physical and geological
features of the study catchment, etc. Many studies are based
on large-scale hydrologic data (Coron et al., 2012; Singh et
al., 2014b; Berghuijs et al., 2017; Gudmundsson et al., 2019;
Tyralis et al., 2019). Basin-oriented datasets are of great sig-
nificance in hydrological research. For example, comparative
hydrology (de Araújo and González Piedra, 2009; Singh et
al., 2014a) focuses on understanding how hydrological pro-
cesses interact with the ecosystem – in particular, how hy-
drologic behaviors change in response to changes in the sur-
face and subsurface of the earth to determine to what ex-
tent hydrological predictions can be transferred from one
area to another. Large-sample catchment attribute datasets
provide opportunities to research interrelationships among
catchment attributes. Seybold et al. (2017) study the corre-
lations between river junction angles and geometric factors,
downstream concavity, and aridity. Oudin et al. (2008) inves-
tigate the link between land cover and mean annual stream-
flow based on 1508 basins representing a large hydroclimatic
variety. Voepel et al. (2011) examine how the interaction of
climate and topography influences vegetation response.

Worldwide data sharing has become a trend (Lehner et
al., 2008; Ceola et al., 2015; Blume et al., 2018; Wang
et al., 2020), and the amounts of hydrologic data avail-
able are ever increasing. However, these data typically come
from different providers and are compiled in various for-
mats. ASTGTM (Abrams et al., 2020) provides a global dig-
ital elevation model; GLiM (Global Lithological Map; Hart-
mann and Moosdorf, 2012) includes rock type data globally;
MODIS (Moderate Resolution Imaging Spectroradiometer)
provides data products (Didan, 2015; Knyazikhin, 1999; My-
neni et al., 2015; Running and Mu, 2017; Sulla-Menashe
and Friedl, 2018) that describe features of the land and the
atmosphere derived from remote sensing observations; Ya-
mazaki et al. (2019) provide a global flow direction map at
3 arcsec resolution; HydroBASINS (Lehner, 2014) provides
basin boundaries at different scales globally; GDBD (Global
Drainage Basin Dataset; Masutomi et al., 2009) provides
basin boundaries with geographic attributes; GLHYMPS
(GLobal HYdrogeology MaPS; Gleeson et al., 2014) pro-
vides a global map of subsurface permeability and porosity;

and the SoilGrids (Hengl et al., 2017) dataset provides global
numeric soil properties. Local government agencies often
hold meteorological data such as precipitation and evapora-
tion, and the amount of these data is also growing.

However, the data mentioned above are rarely spatially ag-
gregated to the catchment scale, making it difficult for re-
searchers to use them. Properly preprocessed and format-
ted datasets are of great importance in hydrology research.
Searching for appropriate data sources, preprocessing, and
formatting often consume considerable time. In some cases,
individual research groups either do not know where to ob-
tain the appropriate data or cannot properly process the data
into the desired format. In summary, although data sharing is
being advocated in the community, it is usually difficult for
the public to obtain the required data, either because there are
insufficient observations or because of the difficulties associ-
ated with data processing.

Recently, there have been efforts (Addor et al., 2017;
Alvarez-Garreton et al., 2018; Chagas et al., 2020; Coxon
et al., 2020) to compile different types of data sources to
form large-scale hydrological datasets. These four collected
datasets cover the continental United States, Chile, Brazil,
and Great Britain. Addor et al. (2020) review these datasets
and discuss the guidelines for producing large-sample hy-
drological datasets and the limitations of the currently pro-
posed datasets. The static properties of 671 river basins in
the United States are calculated by CAMELS (Addor et al.,
2017), which is an extension of a previously proposed hy-
drometeorological dataset (Newman et al., 2015). Unfortu-
nately, it is impossible to publish streamflow data in China
at present. The CAMELS dataset has been used to support
much research. For example, Knoben et al. (2019) compare
metrics used in hydrology based on simulations in many
basins. Tyralis et al. (2019) study the relationship between
shape parameters and basin attributes based on a sizeable
basin-oriented dataset.

There is currently no compilation of China-specific catch-
ment attribute datasets. An alternative – the HydroATLAS
(Linke et al., 2019) dataset, which is on a global scale –
basically performs zonal statistics on the source data. Hy-
droATLAS lacks many indicators that make derivations from
source data, such as rainfall seasonality, the proportion of
precipitation falling as snow, basin shape factors, and root
depth distributions. Moreover, the meteorological data are
only up to the year 2000, which is outdated.

In summary, a lack of a compiled catchment attribute
dataset is a key obstacle limiting the development of large-
sample hydrology research in China. Inspired by Addor et
al. (2017), we compiled multiple data sources, including
basin topography, climate indices, land cover characteristics,
soil characteristics, and geological characteristics. Unlike
Addor et al. (2017), the catchments included in the dataset
cover the entire study area instead of being limited to a few
data sources.
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The proposed dataset is the first dataset that provides
catchment meteorological time series and catchment at-
tributes of China. We compiled and named the dataset
following most standards set by the previously proposed
datasets. The dataset consists of all derived basin boundaries
from the digital elevation model (DEM), which is a subset of
the Global Drainage Basin Dataset (GDBD; Masutomi et al.,
2009). The GDBD is derived at high resolution (100 m–1 km)
and has good geographic agreement with existing global
drainage basin data in China. In addition, previously pro-
posed datasets (Addor et al., 2017; Alvarez-Garreton et al.,
2018; Chagas et al., 2020; Coxon et al., 2020) report only
the most frequent catchment land cover and lithology types.
By contrast, CCAM (China Catchment Attributes and Me-
teorology) calculates the proportions of all land cover and
lithology types.

In addition to the basinwise attributes provided in CCAM,
we propose HydroMLYR (hydrology dataset for machine
learning in the Yellow River Basin), a hydrology dataset for
machine learning research in the Yellow River Basin (YRB)
providing weekly averaged standardized streamflow data for
102 basins in the YRB. HydroMLYR is proposed to sup-
port machine learning hydrology research in the YRB. Tra-
ditional hydrological models face long-standing challenges,
such as their inability to capture hydrological process mech-
anism complexity (Kollat et al., 2012), which is due to the
structural limitations of the conceptual models. Data-driven
strategies represented by machine learning are proposed to
overcome some existing obstacles, and these strategies of-
fer a new way for researchers to acquire knowledge capable
of transforming the research pattern from hypothesis-driven
to data-driven. Feng et al. (2020) propose a flexible data
integration fusing various types of observations to improve
rainfall-runoff modeling. Their research shows that combin-
ing different data resources improves predictions in regions
with high autocorrelation in streamflow. Wongso et al. (2020)
develop a model predicting the state-level per capita wa-
ter use in the United States, taking various geographic, cli-
matic, and socioeconomic variables as input. Their research
also identifies key factors associated with high water usage.
Mei et al. (2020) propose a statistical framework for spa-
tial downscaling to obtain hyperresolution precipitation data.
Their results show improvements compared with the original
product. Brodeur et al. (2020) apply machine learning tech-
niques – namely, bootstrap aggregation and cross-validation
– to reduce overfitting in reservoir control policy search. Ni
and Benson (2020) propose an unsupervised machine learn-
ing method to differentiate flow regimes and identify cap-
illary heterogeneity trapping and show the promise of ma-
chine learning methods for analyzing large datasets from
core flooding experiments. Legasa and Gutiérrez (2020) pro-
pose applying a Bayesian network for multi-site precipitation
occurrence generation, and the proposed methodology shows
improvements over existing methods. The proposed dataset

can be used to develop or verify machine learning models in
the YRB.

This paper is organized as follows. Section 2 describes the
study area. Sections 3–7 describe the five classes of com-
puted catchment attributes. Section 8 describes the proposed
catchment-scale meteorological time series. Section 9 in-
troduces the HydroMLYR dataset. Section 10 describes the
code and data availability. Section 11 is our concluding re-
marks.

2 Study area

The study area corresponds to the whole of China (Fig. 1),
which is characterized by diverse climate and terrain charac-
teristics and spans from 18.2 to 52.3◦ N and 76.0 to 134.3◦ E.
Mountains, plateaus, and hills account for approximately
two-thirds of the area of China, and the remaining areas are
basins and plains. China’s topography is similar to a three-
level ladder in that it is high in the west and low in the
east. The Qinghai–Tibet Plateau, which is located in west-
ern China and is the highest plateau globally with a mean
elevation of over 4000 m, is the first step of China’s topog-
raphy. The Xinjiang region, the Loess Plateau, the Sichuan
Basin, and the Yunnan–Guizhou Plateau to the north and east
are the second steps of China’s topography. The mean sea
level here is between 1000 and 2000 m. Plains and hills dom-
inate the third step. Gorge Mountains, Dahingganling, Tai-
hang Mountains, and Xuefengshan compose the boundary
between the second and third step. The elevation of this step
descends to 500–1000 m. To better characterize the studied
catchments, we derived various attributes. Table 1 compares
the number of derived attributes between several proposed
datasets.

In China, precipitation and temperature vary significantly
throughout the country, which forms a diverse climatic en-
vironment. According to the Köppen climate classification
system, moving from northwest to southeast, China’s climate
gradually evolves from a cold desert (BWk) climate, a tun-
dra (ET) climate, and a warm and temperate continental (Dfa
and Dwb) climate to a humid subtropical (Cwa) climate and
warm oceanic (Cfa) climate. There are humid, semi-humid,
semiarid, and arid regions from the perspective of wet vs.
dry zones. Moreover, the same temperature zone can contain
multiple dry and wet zones. Therefore, there may be differ-
ences in heat and wetness in the same climate type. The com-
plexity of the terrain makes the climate even more complex
and diverse. In addition, China has a wide range of regions
which are affected by alternating winter and summer mon-
soons. Compared with other parts of the world at the same
latitude, these areas have lower winter temperatures, higher
summer temperatures, significant annual temperature differ-
ences, and concentrated precipitation in summer. The cold
and dry winter monsoon occurs in Asia’s interior, far from
the ocean. Winter rainfall in most parts of China is low and
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Figure 1. (a) Study area of CCAM and the distribution of land cover types. The studied basins cover the whole of China. (b) Study area of
HydroMLYR and the distribution of aridity (PET/P) index. YRB is a generally arid area. The dataset provided can be used as a good sample
for studying hydrology in arid regions.

Table 1. Number of computed attributes in CAMELS, CAMELS-BR, and CCAM.

Attribute class CAMELS-US CAMELS-BR CCAM

Location and topography 9 11 12
Geology 7 7 18
Soil 11 6 54
Land cover 8 11 22
Climatic indices 11 13 17
Human intervention indices – 4 2

Total 46 52 125

Table 2. Summary of forcing variables provided in CAMELS,
CAMELS-BR, and CCAM.

Forcing data class CAMELS CAMELS-BR CCAM

Temperature Yes Yes Yes
Precipitation Yes Yes Yes
Solar radiation Yes No Yes
Day length Yes No No
Sunshine hours No No Yes
Humidity Yes No Yes
Snow water equivalent Yes No No
Wind velocity No No Yes
Ground surface pressure Yes No Yes
Observed evaporation No Yes Yes
Potential evapotranspiration No Yes Yes

accompanied by low temperatures. The summer monsoon
is warm and humid and comes from the Pacific and Indian
oceans. Precipitation generally increases during this time.
Table 2 compares the provided forcing variables in CAMELS
(US), CAMELS-BR (Brazil), and CCAM.

3 Climatic indices

Raw meteorological data are provided by the China
Meteorological Data Network and released as the
SURF_CLI_CHN_MUL_DAY (V3.0) dataset, which
provides the longest period (1951–2020) of meteorological
time series in China. The SURF_CLI_CHN_MUL_DAY
product includes site observations of pressure, temperature,
relative humidity, precipitation, evaporation, wind speed,
sunshine duration, and ground surface temperature (Table 3).
The inverse distance weighting method is used to interpolate
the site observations. To ensure data quality, we use the latter
31-year record (from 1990 to 2020) to construct the dataset
since the site distribution was sparse in the early observations
(Fig. 2). We computed more climatic characteristics than
most other datasets (Table 2). These variables are useful
in hydrological modeling; for example, wind speed can
affect actual evapotranspiration. To remain consistent with
CAMELS (Addor et al., 2017), we determined all climatic
attributes (Woods, 2009) provided in the CAMELS dataset.
As a result, the proposed dataset provides more meteoro-
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Figure 2. Changes in the number of meteorological stations in
China. There were only 119 stations in 1951. This number increased
rapidly from 1951 to the early 1960s, and the number of stations re-
mained stable after 2000. To ensure data quality, we used the latter
31 years (from 1990 to 2020) to construct the dataset.

logical variables and a longer time series (1990–2020) than
CAMELS and CAMELS-CL. A summary of the derived
climate indices is presented in Table A1. Figure 3 illustrates
the national distributions of the climate indicators.

The instruments used to measure potential evaporation
were updated from 2000 to 2005. Early observations can be
multiplied by a correction coefficient to approximate the new
tools. However, the coefficient varies across stations, making
the approach infeasible. To complement this, we calculated
potential evapotranspiration (PET) based on a modified Pen-
man’s equation (Appendix B) and other observed meteoro-
logical variables, which provides a series of consistent po-
tential evaporation estimations for reference.

The average daily precipitation in China is highest in the
southeast and lowest in the northwest. It is also higher in
coastal areas than in the interior. Ground surface pressure
is positively correlated with elevation and is highest on the
Qinghai–Tibet Plateau and the lowest in the southeast plain.
The average relative humidity is generally positively corre-
lated with precipitation; it is also higher in some forested ar-
eas, such as the Tai-hang mountains and the Dahingganling.
The Qinghai–Tibet Plateau has the lowest average tempera-
ture, and the southern coastal area has the highest. A distinc-
tive feature of the distribution of wind speed is the high wind
speed in mountainous areas. The highest wind speed occurs
in the southeast coastal area (> 6 m s−1).

4 Geology

To describe the lithological characteristics of each catch-
ment, we used the same two global datasets as CAMELS:
Global Lithological Map (GLiM) (Hartmann and Moos-
dorf, 2012) and GLobal HYdrogeology MaPS (GLHYMPS)
(Gleeson et al., 2014). Figure 4 illustrates the distributions of
the geological types.

GLiM provides a high-resolution global lithological map
assembled from existing regional geological maps; it has
been widely used to construct datasets (e.g., SoilGrids; Hengl
et al., 2017). However, the data quality of GLiM can vary
among spatial locations depending on the quality of the
original regional geological maps. GLiM consists of three
levels: the first level contains 16 lithological classes, and
the additional two levels describe more specific lithologi-
cal characteristics. The GLiM is represented by 1 235 400
polygons which are converted to raster format for the basin-
scale lithological type statistics. For China, the compiled re-
gional data sources (MGC, 1991; BGX, 1992; CGS, 2001)
have slightly lower resolutions than the GLiM target resolu-
tion (1 : 1 000 000). However, for a basin-scale study with a
mean basin area of over 2000 km2, the classification accuracy
should satisfy most applications. In contrast to CAMELS and
CAMELS-CL, we determined each lithological class’s con-
tribution to the catchment instead of recoding the first and
second most frequent classes only.

GLHYMPS provides a global estimation of subsurface
permeability and porosity, two critical characteristics for soil
hydrological classification. Porosity and permeability influ-
ence an area’s infiltration capacity. Soil with high porosity is
likely to contain more water, and highly permeable soil trans-
mits water relatively quickly. Based on the high-resolution
map of GLiM, which can differentiate fine- and coarse-
grained sediments and sedimentary rocks, GLHYMPS de-
termines subsurface permeability depending on the different
permeabilities of rock types. For the proposed dataset, we
calculated the catchment arithmetic mean for porosity. Fol-
lowing Gleeson et al. (2011), the logarithmic scale geomet-
ric mean is used to represent the subsurface permeability. A
summary of the geological characteristics is presented in Ta-
ble A1.

Porosity and permeability have distributions similar to
those of the geological classes. These two characteristics are
highly dependent on rock properties; unconsolidated sed-
iments, mixed sedimentary rocks, siliciclastic sedimentary
rocks, carbonate sedimentary rocks, and acid plutonic rocks
are the five most common geological classes in China. Un-
consolidated sediment is the most common rock type in
China as it is dominant in 31.9 % of catchments and ex-
tends from Xinjiang inland to the northeast and the coastal
area surrounding the Bohai Sea. Due to the high proportion
of unconsolidated sediments present in the rock, these ar-
eas typically have high permeability and medium porosity.
Mixed sedimentary rocks are the second most common rock
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Figure 3. Distributions of climatic indices throughout China. All basins are plotted in the same size. When extreme values of a variable
affect visualization (causing most areas to have the same color), the log values are used for visualization.
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Figure 4. Distributions of geological characteristics throughout China. For lithologies, the plot size is scaled by the lithology proportion.
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type in China, accounting for 20.3 % of catchments, and they
are predominantly on the southern Qinghai–Tibet Plateau,
on the western Yunnan–Guizhou Plateau, and in northern In-
ner Mongolia. These areas typically have high porosity and
low permeability. Siliciclastic sedimentary rocks are found
in 17.7 % of basins and are mainly distributed in the north-
ern part of the Qinghai–Tibet Plateau and the junction of
the Qinghai–Tibet and the Yunnan–Guizhou plateaus; there
are also observations in the eastern inland region. These ar-
eas have low subsurface permeability and high subsurface
porosity. Among all catchments, 9.8 % are dominated by
carbonate sedimentary rocks, which are mainly located in
eastern Yunnan and on the northern Qinghai–Tibet Plateau.
Acid plutonic rocks are typically distributed in the moun-
tains surrounding the inland northeast – namely, the Dahing-
ganling and the hills in southern Guangdong and southwest-
ern Guangxi. They are also distributed along the Brahmapu-
tra River in the southern part of the Qinghai–Tibet Plateau.
The distribution of acid plutonic rocks is relatively scat-
tered; there are many isolated acid plutonic rock distributions
throughout China which are characterized by medium per-
meability and high porosity.

The types of rocks in China are dominated by unconsol-
idated sediments and mixed sedimentary rocks. In 33.86 %
of the catchments, the dominant rock types occupy less than
50 % of the catchment areas, and only 16.8 % of basins have
a dominant rock type with an area proportion greater than
90 %. Among 4911 basins, 9.4 % have prevalent rock types
that occupy the area.

5 Land cover

We selected two indicators to characterize surface vegeta-
tion density and growth: the normalized difference vegeta-
tion index (NDVI) and the leaf area index (LAI). NDVI is
an indicator with a valid range of −0.2 to 1 that assesses
whether the area being observed contains live green vegeta-
tion and the plants’ overall health. However, NDVI is only
a qualitative measurement of vegetation density and cannot
provide a quantitative estimate of the vegetation density in
the area. Moreover, NDVI often provides inaccurate vege-
tation density measurements, and only long-term measure-
ments and comparisons can ensure its accuracy. NDVI alone
is not enough to estimate the state of the vegetation in an area.
Therefore, we selected another indicator, LAI, to supplement
the deficiencies of NDVI.

LAI is defined as the total needle surface area per unit of
ground area and half of the entire needle surface area per unit
of ground surface area. It is a quantifiable value that is func-
tionally related to many hydrological processes, such as wa-
ter interception (Van Wijk and Williams, 2005). Buermann
et al. (2001) verify the validity of the LAI for characteriz-
ing vegetation growth. The data sources used are the Terra
Moderate Resolution Imaging Spectroradiometer Vegetation

Indices (Didan, 2015) for NDVI and the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Myneni et al.,
2015) for LAI. Following Addor et al. (2017), we determined
the maximum monthly LAI as an indicator that characterizes
the vegetation interception capacity, the maximum evapora-
tive capacity, and the difference between the maximum and
minimum monthly LAI, which represents the LAI’s temporal
variations.

Land cover classification refers to segmenting the ground
into different categories based on remote sensing images.
The Terra and Aqua combined MODIS land cover type pro-
vides different results depending on the classification system
used. The Annual International Geosphere–Biosphere Pro-
gramme (IGBP) classification is used to build the dataset,
which is derived by the c4.5 decision tree algorithm. The
IGBP classification system was formulated by the IGBP
Land Cover Working Group in 1995, resulting in 17 cat-
egories of land cover types (Belward et al., 1999). Friedl
et al. (2010) compare the IGBP data of MODIS with other
reference datasets and conclude that the MODIS classifica-
tion of IGBP has an accuracy of 75 %. We determined the
fraction of each land cover class for each basin based on
the Terra and Aqua combined Moderate Resolution Imag-
ing Spectroradiometer (MODIS) land cover type (Sulla-
Menashe and Friedl, 2018), which differentiates our dataset
from CAMELS and CAMELS-CL (which only calculate the
proportion of the dominant types).

Following Addor et al. (2017), we computed the average
rooting depth (50 % and 90 %) for each catchment based on
the IGBP classification using a two-parameter method (Zeng,
2001). The root depth distribution of vegetation affects the
ground water holding capacity and the topsoil layer’s an-
nual evapotranspiration (Desborough, 1997). Many models
use root depth as an essential parameter to characterize soil
moisture absorption capacity. Zeng (2001) developed a two-
parameter asymptotic equation to estimate root depth distri-
bution, which is global and derived from the IGBP classifica-
tion to avoid the problem of significantly different root dis-
tributions in various research efforts. Figure 5g shows root
depth distributions of different vegetation types based on
Zeng (2001). The 90 % root depth is usually considered to
be “rooting depth”; among the 17 categories of IGBP, crop-
land has the smallest rooting depth, and open shrubland has
the largest. The 90 % root depth of all vegetation is less than
2 m. The national distribution of catchment soil characteris-
tics is shown in Fig. 5.

6 Location and topography

The catchment boundary files are obtained from the global
drainage basin dataset (Masutomi et al., 2009). The GDBD
dataset was derived from digital elevation models (DEMs)
with a high resolution (100 m–1 km), and the errors were cor-
rected by either automatic methods or manually. Addition-
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Figure 5. Distributions of land cover characteristics throughout China. For land cover types, the plot size is scaled by the size of the land
cover proportion.
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ally, GDBD also provides population and population den-
sity estimates for catchments, and these two indicators are
also included in our dataset as a measure of human inter-
vention. Global Runoff Data Centre (GRDC; https://www.
bafg.de/GRDC/EN/01_GRDC/grdc_node.html, last access:
26 November 2021) discharge gauging stations were used
to reference the derived basins. GDBD has a high average
match area rate (AMAR) and good geographic agreement
with existing global drainage basin data in China. Precise
geographic and topographic information can be derived from
the high-quality dataset.

The topography attributes of each catchment are deter-
mined by the ASTGTM product retrieved from https://
lpdaac.usgs.gov (last access: 26 November 2021) and main-
tained by the NASA EOSDIS Land Processes Distributed
Active Archive Center (LP DAAC) at the USGS Earth Re-
sources Observation and Science (EROS) Center.

The CAMELS dataset provides two parameters (i.e., two
area estimates) to describe the catchment shape. The physi-
cal characteristics of a catchment can affect the streamflow
volume and the streamflow hydrograph of the catchment in
a storm. To provide a complete description of the catchment
shape, we computed several geometrical parameters of the
catchment related to the runoff (Fig. 6), including the catch-
ment form factor, shape factor, compactness coefficient, cir-
culatory ratio, and elongation ratio (Subramanya, 2013). A
summary can be found in Table A1.

7 Soil

The proposed dataset has a total of 54 soil attributes (Ta-
ble A1) derived from Hengl et al. (2017), Dai et al. (2019),
and Shangguan et al. (2013). Five categories of soil char-
acteristics (pH in H2O, organic carbon content, depth to
bedrock, cation exchange capacity (CEC), and bulk density)
are determined from SoilGrids. SoilGrids (Hengl et al., 2017)
provides global predictions for soil properties, including or-
ganic carbon, bulk density, CEC, pH, soil texture fractions,
and coarse fragments, by fusing multiple data sources, in-
cluding MODIS land products, Shuttle Radar Topography
Mission (SRTM) DEM, climatic images, and global land-
form and lithology maps, at 250 m resolution (Fig. 7). Soil-
Grids makes predictions using machine learning algorithms
and many covariate layers primarily derived from remote
sensing data and has soil characteristics at several soil depths.

Unlike CAMELS, whose reported results are obtained by a
linear weighted combination of the different soil layers, and
CAMELS-BR, whose products are soil characteristics at a
depth of 30 cm, we computed soil characteristics at all soil
layers provided by SoilGrids.

We determined the saturated water content and saturated
hydraulic conductivity (Dai et al., 2019). Based on the same
dataset, we also introduced the thermal conductivity of un-
frozen saturated soils. Dai et al. (2019) provide a global

estimation of soil hydraulic and thermal parameters using
multiple pedotransfer functions (PTFs) based on the Soil-
Grids dataset. Based on the SoilGrids and GSDE (Global
Soil Dataset for Earth System Models; Shangguan et al.,
2014) datasets, Dai et al. (2019) produce six soil layers with
a spatial resolution of 30× 30 arcsec. Their vertical resolu-
tion is the same as that of SoilGrids, with six intervals of 0–
0.05, 0.05–0.15, 0.15–0.30, 0.30–0.60, 0.60–1.00, and 1.00–
2.00 m. We determined and recorded catchment soil char-
acteristics for all these layers. In addition, we determined
seven more soil characteristics (Shangguan et al., 2013), in-
cluding soil profile depth, porosity, clay/silt/sand content,
rock fragment, and soil organic carbon content. Shangguan
et al. (2013) provide the physical and chemical attributes of
soils derived from 8979 soil profiles at a 30×30 arcsec reso-
lution using the polygon linkage method to derive the spatial
distribution of soil properties. The profile attribute database
and soil map are linked under a framework to avoid uncer-
tainty in taxon referencing.

Depth to bedrock controls many physical and chemical
processes in soil. The distribution of depth to bedrock in
China is characterized by (i) low values in mountainous ar-
eas, such as Yunnan Province and the city of Chongqing, and
(ii) high values in barren areas, such as north and northwest
China. The introduced soil pH value is crucial since it in-
fluences many other physical and chemical soil characteris-
tics. The spatial variability in soil pH in China is character-
ized by (i) soils in southern China being acidic to strongly
acidic, (ii) soils in northern China being natural or alkaline,
and (iii) soils in northeastern forested areas also being acidic
(pH< 7.2). Cation exchange capacity can be seen as a mea-
sure of soil fertility since it measures how much nutrient
content the soil can store such that it influences the growth
of vegetation. Cation exchange capacity is positively corre-
lated with soil organic matter (SOM) and clay content and is
generally low in sandy and silty soils. The spatial variabil-
ity in cation exchange capacity in China is characterized by
(i) high values in peat and forested areas on the Qinghai–
Tibet Plateau and in central and northeast China and (ii) ex-
tremely low cation exchange capacity in desert areas such
as the northwest. Soil hydraulic and thermal properties are
greatly affected by SOM. Soil organic matter has a similar
distribution to cation exchange capacity in that it is high in
the peat and forested areas in northeast China and low in the
north and northwest.

8 Meteorological time series

There have been many studies based on
SURF_CLI_CHN_MUL_DAY in China (Xu et al., 2009;
Liu et al., 2004; Huang et al., 2016; Liu et al., 2017), such as
a trend analysis of pan evaporation (Liu et al., 2010). Never-
theless, there has not yet been a large-scale basin-oriented
meteorological time series dataset in China. Researchers
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Figure 6. Distributions of topographic characteristics throughout China.

Table 3. Summary table of catchment meteorological time series available in the proposed dataset.

Variable Description Unit

prs Catchment daily averaged ground pressure hPa
tem Catchment daily averaged temperature at 2 m above ground ◦C
rhu Catchment daily averaged relative humidity –
pre Catchment daily averaged precipitation mm d−1

evp Catchment daily averaged evaporation measured by ground instruments mm d−1

win Catchment daily averaged wind speed at 2 m above ground m s−1

ssd Catchment daily averaged sunshine duration h d−1

gst Catchment daily averaged ground surface temperature ◦C
pet Catchment daily averaged potential evapotranspiration determined by a modified Penman’s equation (Appendix B) mm d−1

need to complete multiple iterations to extract historical
meteorological data from the SURF_CLI_CHN_MUL_DAY
dataset for this type of research. For the first time, we release
a catchment-scale meteorological time series dataset. The
open-source code can generate any catchment’s meteoro-
logical time series within China. The basin-oriented dataset
provides meteorological time series for 4911 basins from
1990 to 2020 based on the China Meteorological Data Net-
work source. Meteorological time series include pressure,
temperature, relative humidity, precipitation, evaporation,
wind speed, sunshine duration, ground surface temperature,
and potential evapotranspiration (Table 3).

The meteorological time series data from 1951 to 2010
are derived based on the “1951–2010 China National Ground
Station Data Corrected Monthly Data File Basic Data Collec-

tion” data construction project. Other data include monthly
reported data to the National Meteorological Information
Centre by province and hourly and daily data uploaded by
automatic ground stations in real time. During the construc-
tion of the dataset, missing data were filled by interpolating
to the nearest stations.

Figure 2 illustrates the variation in the number of sites.
The earliest recording was in 1951, but because the early site
distribution was sparse, we only used records from 1990 to
2020 to ensure data quality. Inverse distance weighting shows
better performance than other interpolation methods. In ad-
dition, potential evapotranspiration (PET) is estimated based
on a modified Penman’s equation (Appendix B) and other
meteorological variables.
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Figure 7. Distributions of soil characteristics throughout China.

9 HydroMLYR: hydrology dataset for machine
learning in YRB

In addition to the basinwise static attributes provided in
CCAM, we propose HydroMLYR, a hydrology dataset for

machine learning research in the YRB (Fig. 1). HydroM-
LYR includes standardized streamflow measurements for
102 basins. The streamflow data are 7 d averaged and stan-
dardized basinwise to have zero mean and a standard de-
viation of 1 (Fig. 8). The HydroMLYR dataset is proposed
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Table 4. Meteorological variables provided in HydroMLYR.

Attribute name Description Unit

evp Catchment daily averaged evaporation (observations) mm d−1

gst_mean Catchment daily averaged ground surface temperature ◦C
gst_min Catchment daily minimum ground surface temperature ◦C
gst_max Catchment daily maximum ground surface temperature ◦C
pre Catchment daily averaged precipitation mm d−1

prs_mean Catchment daily averaged ground surface pressure hPa
prs_max Catchment daily maximum ground surface pressure hPa
prs_min Catchment daily minimum ground surface pressure hPa
rhu Catchment daily averaged relative humidity –
ssd Catchment daily averaged sunshine duration h
tem_mean Catchment daily averaged temperature ◦C
tem_min Catchment daily minimum temperature ◦C
tem_max Catchment daily maximum temperature ◦C
win_max Catchment daily maximum wind speed m s−1

win_mean Catchment daily averaged wind speed m s−1

Figure 8. Example of standardized runoff.

to support machine learning or deep learning hydrology
research (e.g., neural-network-based and tree-based algo-
rithms) and can be used in two cases: (i) to develop machine
learning models for the YRB or (ii) when it is desirable to
verify the generalization ability of a machine learning model
for the YRB.

The dataset provides 40 natural basins that are not af-
fected by reservoirs and dams. The selection is based
on a newer version (http://globaldamwatch.org/data/#core_
global, last access: 26 November 2021) of the Global Reser-
voirs and Dams database (Lehner et al., 2011), which pro-
vides the locations of reservoirs and dams globally. HydroM-
LYR covers 102 basins in the YRB, including basin bound-
ary shapefiles, static attributes, and standardized streamflow
measurements for each basin. The covered basins have ar-
eas ranging from 134 to 804 421 km2. Therefore, modeling
the YRB on a large scale is also possible. Meteorological
records in HydroMLYR introduced daily maxima and min-
ima for some forcing variables (Table 4).

The original streamflow observations are not continuous.
The average record length is 11.3 years. Although the de-
velopment of machine learning models does not necessar-
ily require the data to be continuous, we separately provide

continuous streamflow observations with an average record
length of 8.3 years.

10 Code and data availability

The proposed dataset is freely available at
https://doi.org/10.5281/zenodo.5729444 (Zhen et al.,
2021). The files provided are (i) several separate files
containing 120+ catchment attributes, (ii) the daily
meteorological time series in a zip file, (iii) the catch-
ment boundaries used to compute the attributes and
extract the time series, (iv) the HydroMLYR dataset,
(v) an attribute description file, and (vi) a readme
file. The open-source code (Zhen, 2021) is available at
https://github.com/haozhen315/CCAM-China-Catchment-
Attributes-and-Meteorology-dataset (last access: 2 Decem-
ber 2021; DOI: https://doi.org/10.5281/zenodo.5749718). It
supports generating catchment attributes and meteorological
time series for custom catchment boundaries.

11 Conclusions

The CCAM dataset proposed in this paper provides a novel
dataset for hydrological research in China. All basins de-
laminated from the DEM are studied, covering the whole
of China. The dataset includes daily meteorological forc-
ing time series data, including precipitation, temperature, po-
tential evapotranspiration, wind speed, ground surface tem-
perature, pressure, humidity, sunshine duration, and the de-
rived potential evapotranspiration of 4911 catchments. The
proposed time series dataset is derived from the quality-
controlled SURF_CLI_CHN_MUL_DAY dataset. CCAM
includes 120+ catchment attributes, including soil, land
cover, geology, climate indices, and topography for each
catchment. We produced a series of maps depicting the catch-
ment attribute distributions in China. These maps present re-
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gional changes in various features; we also estimated the re-
lationships between them based on Kendall’s correlation. In-
tegrating multiple data sources into one dataset at a catch-
ment scale simplifies the data compilation process in re-
search. CCAM can help test hypotheses and formulate valid
conclusions under various conditions (i.e., not limited to a
few specific locations only) and help explore how differ-
ent basin characteristics influence hydrological behaviors,
learn the migration of hydrological behaviors between dif-
ferent basins, and develop general frameworks for large-
scale model evaluation and benchmarking in China. A lim-
itation of this study is its failure to estimate the uncer-
tainty of the meteorological time series. An alternative is
to evaluate the uncertainty of the basinwise meteorological
data based on multiple independent data sources, but there
are few data sources that provide as many data types as
SURF_CLI_CHN_MUL_DAY. Hence, evaluating the uncer-
tainty of these eight meteorological variables poses a chal-
lenge that is left for future studies.

Appendix A: Attributes summary

Table A1. Summary table of catchment attributes available in the proposed dataset.

Attribute class Attribute name Description Unit Data source

Climate indices (com-
puted for 1 Oct 1990
to 30 Sep 2018)

pet_mean Mean daily PET (Penman–Monteith
equation)

mm d−1 Subramanya (2013)

evp_mean Mean daily evaporation (observations) mm d−1 SURF_CLI_CHN_MUL_DAY

gst_mean Mean daily ground surface temperature ◦C

pre_mean Mean daily precipitation mm d−1

prs_mean Mean daily ground surface pressure hPa

rhu_mean Mean daily relative humidity –

ssd_mean Mean daily sunshine duration h

tem_mean Mean daily temperature ◦C

win_mean Mean daily wind speed m s−1

p_seasonality Seasonality and timing of precipitation
(estimated using sine curves to repre-
sent the annual temperature and precip-
itation cycles, positive (negative) val-
ues indicating that precipitation peaks
in summer (winter) and values close
to 0 indicating uniform precipitation
throughout the year)

–

high_prec_freq Frequency of high-precipitation days
(≥ 5 times mean daily precipitation)

d yr−1

high_prec_dur Average duration of high-precipitation
events (number of consecutive days ≥ 5
times mean daily precipitation)

d

high_prec_timing Season during which most high-
precipitation days (≥ 5 times mean
daily precipitation) occur

season
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Table A1. Continued.

Attribute class Attribute name Description Unit Data source

Climate indices (com-
puted for 1 Oct 1990
to 30 Sep 2018)

low_prec_freq Frequency of dry days (< 1 mm d−1) d yr−1

low_prec_dur Average duration of dry periods (number of
consecutive days< 1 mm d−1)

d

low_prec_timing Season during which most dry days
(< 1 mm d−1) occur

season

frac_snow_daily Fraction of precipitation falling as snow (for
days colder than 0 ◦C)

–

p_seasonality Seasonality and timing of precipitation,
positive (negative) values indicating that
precipitation peaks in summer (winter) and
values close to 0 indicating uniform precip-
itation throughout the year

–

Geological character-
istics

geol_porosity Subsurface porosity – Gleeson et al. (2014)

geol_permeability Subsurface permeability (log-10) m2

ig Fraction of the catchment area associated
with ice and glaciers

– Hartmann and Moosdorf (2012)

pa Fraction of the catchment area associated
with acid plutonic rocks

–

sc Fraction of the catchment area associated
with carbonate sedimentary rocks

–

su Fraction of the catchment area associated
with unconsolidated sediments

–

sm Fraction of the catchment area associated
with mixed sedimentary rocks

–

vi Fraction of the catchment area associated
with intermediate volcanic rocks

–

mt fraction of the catchment area associated
with metamorphic

–

ss Fraction of the catchment area associated
with siliciclastic sedimentary rocks

–

pi Fraction of the catchment area associated
with intermediate plutonic rocks

–

va Fraction of the catchment area associated
with acid volcanic rocks

–

wb Fraction of the catchment area associated
with water bodies

–

pb Fraction of the catchment area associated
with basic plutonic rocks

–

vb Fraction of the catchment area associated
with basic volcanic rocks

–

nd Fraction of the catchment area associated
with no data

–

py Fraction of the catchment area associated
with pyroclastic

–

ev Fraction of the catchment area associated
with evaporites

–
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Table A1. Continued.

Attribute class Attribute name Description Unit Data source

Land cover character-
istics

lai_max Maximum monthly mean of the leaf area in-
dex (based on 12 monthly means)

– Myneni et al. (2015)

lai_diff Difference between the maximum and min-
imum monthly mean of the leaf area index
(based on 12 monthly means)

–

ndvi_mean Mean normalized difference vegetation index
(NDVI)

– Didan (2015)

root_depth_50 Root depth (percentiles= 50 % extracted from
a root depth distribution based on IGBP land
cover)

m Eq. (2) and Table 2
in Zeng (2001)

root_depth_99 Root depth (percentiles= 99 % extracted from
a root depth distribution based on IGBP land
cover)

m

evergreen
needleleaf
tree

Catchment area fraction covered by evergreen
needleleaf tree

– Sulla-Menashe and
Friedl (2018)

evergreen
broadleaf tree

Catchment area fraction covered by evergreen
broadleaf tree

–

deciduous
needleleaf tree

Catchment area fraction covered by deciduous
needleleaf forests

–

deciduous
broadleaf tree

Catchment area fraction covered by deciduous
broadleaf tree

–

mixed forest Catchment area fraction covered by mixed
forest

–

closed shrubland Catchment area fraction covered by closed
shrubland

–

open shrubland Catchment area fraction covered by open
shrubland

–

woody savanna Catchment area fraction covered by woody sa-
vanna

–

savanna Catchment area fraction covered by savanna –

grassland Catchment area fraction covered by grassland –

permanent
wetland

Catchment area fraction covered by perma-
nent wetland

–

cropland Catchment area fraction covered by cropland –

urban and built-
up land

Catchment area fraction covered by urban and
built-up land

–

cropland/natural
vegetation

Catchment area fraction covered by crop-
land/natural vegetation

–

snow and ice Catchment area fraction covered by snow and
ice

–

barren Catchment area fraction covered by barren –

water bodies Catchment area fraction covered by water
bodies

–
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Table A1. Continued.

Attribute class Attribute name Description Unit Data source

Topography, location,
and human interven-
tion

basin_id Drainage basin identifiers – Masutomi et al. (2009)

pop Population people

pop_dnsty Population density people km−2

lat Mean latitude ◦ N

lon Mean longitude ◦ E

elev Mean elevation m

area Catchment area km2

slope Mean slope m km−1 Horn (1981)

length The length of the main stream measured
from the basin outlet to the remotest
point on the basin boundary. The main
stream is identified by starting from the
basin outlet and moving up the catch-
ment.

km Subramanya (2013)

form factor Catchment area / (catchment length)2 –

shape factor (Catchment length)2 / catchment area –

compactness
coefficient

Perimeter of the catchment / perimeter
of the circle whose area is that of the
basin

–

circulatory ra-
tio

Catchment area / area of circle of catch-
ment perimeter

–

elongation ratio Diameter of circle whose area is basin
area / catchment length

–

Soil pdep Soil profile depth cm Shangguan et al. (2013)

clay Percentage of clay content of the soil
material

%

sand Percentage of sand content of the soil
material

%

por Porosity cm3 cm−3

silt Percentage of silt content of the soil ma-
terial

%

grav Rock fragment content %

som Soil organic carbon content %

log_k_s Log-10 transformation of saturated hy-
draulic conductivity

cm d−1 Dai et al. (2019)

theta_s Saturated water content cm3 cm−3

tksatu Thermal conductivity of unfrozen satu-
rated soils

W m−1 K−1

bldfie Bulk density kg m−3 Hengl et al. (2017)

cecsol Cation exchange capacity cmol+ kg−1

orcdrc Organic carbon content g kg−1

phihox pH in H2O 10−1

bdticm Depth to bedrock cm
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Appendix B: Modified Penman’s equation

Penman’s equation (Subramanya, 2013), incorporating some
modifications to the original formula, is

PET=
AHn+Eaγ

A+ γ
, (B1)

where PET is the daily potential evapotranspiration in mil-
limeters per day; A is the slope of the saturation vapor pres-
sure (ew) vs. temperature (t) curve at the mean air tempera-
ture in millimeters of mercury per degree Celsius; Hn is the
net radiation in millimeters of evaporable water per day; Ea
is a parameter including wind speed and saturation deficit;
and γ is the psychrometric constant equal to 0.49 mm of mer-
cury per degree Celsius.

The relationship between ew and t is defined as follows:

ew = 4.584exp
(

17.27t
237.3+ t

)
,

The following equation estimates the net radiation:

Hn =Ha (1− r)
(
a+ b

n

N

)
− σT 4

a
(
0.56− 0.092

√
ea

)
(

0.10+ 0.90
n

N

)
,

where Ha is the incident solar radiation outside the atmo-
sphere on a horizontal surface, expressed in millimeters of
evaporable water per day (a function of the latitude and pe-
riod of the year as indicated in Table B1); a is a constant de-
pending upon the latitude φ and is given by a = 0.29 cos φ;
b is a constant equal to 0.52; n is the sunshine duration
in hours; N is the maximum possible hours of bright sun-
shine (a function of latitude, see Table B2); r is the reflec-
tion coefficient; σ is the Stefan–Boltzman constant equal to
2.01× 10−9 mm d−1; Ta is the mean air temperature in de-
grees kelvin; and ea is the actual mean vapor pressure in the
air in millimeters of mercury.

The parameter Ea is estimated as follows:

Ea = 0.35
(

1+
u2

160

)
(ew − ea) ,

where u2 is the wind speed at 2 m above ground in kilome-
ters per day; ew is the saturation vapor pressure at mean air
temperature in millimeters of mercury; and ea is the actual
vapor pressure.

Appendix C: Correlation analysis of catchment
attributes

To explore the potential connections between various types
of watershed attributes, we performed correlation analy-
sis using the Kendall rank correlation coefficient (Kendall,
1938). The Kendall rank correlation coefficient is a measure
of rank correlation: the similarity of the sort order of the two
sets of data. Kendall correlation will be high if the orderings
of the observations of two variables are similar. Kendall cor-
relation avoids the assumption of a linear relationship and
that the distribution should be normal and continuous (e.g.,
Pearson correlation). When the relationship is not exactly
linear, using Pearson correlation will miss out on informa-
tion that Kendall could capture. Table C1 shows the top five
most relevant attributes for each attribute. The analysis re-
sult shows that the correlations between variables are in line
with general understanding, justifying the rationality of the
dataset, and the following names a few:

1. Subsurface permeability and porosity are most corre-
lated with geological attributes.

2. LAI and NDVI are most positively correlated with each
other but most negatively correlated with the fraction of
barren land cover.

3. Urban and built-up areas are most positively correlated
with population density.

4. In China, the savanna is mainly distributed in the south-
ern coastal areas, resulting in it being most positively
correlated with mean precipitation.

5. Sand is most positively correlated with saturated hy-
draulic conductivity, while clay is strongly negatively
correlated with saturated hydraulic conductivity.
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Table B1. Mean monthly solar radiation, Ha (in mm), of evaporable water per day.

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0◦ 14.5 15.0 15.2 14.7 13.9 13.4 13.5 14.2 14.9 15.0 14.6 14.3
10◦ 12.8 13.9 14.8 15.2 15.0 14.8 14.8 15.0 14.9 14.1 13.1 12.4
20◦ 10.8 12.3 13.9 15.2 15.7 15.8 15.7 15.3 14.4 12.9 11.2 10.3
30◦ 8.5 10.5 12.7 14.8 16.0 16.5 16.2 15.3 13.5 11.3 9.1 7.9
40◦ 6.0 8.3 11.0 13.9 15.9 16.7 16.3 14.8 12.2 9.3 6.7 5.4
50◦ 3.6 5.9 9.1 12.7 15.4 16.7 16.1 13.9 10.5 7.1 4.3 3.0

Table B2. Mean monthly values of possible sunshine hours, N .

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0◦ 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
10◦ 11.6 11.8 12.1 12.4 12.6 12.7 12.6 12.4 12.9 11.9 11.7 11.5
20◦ 11.1 11.5 12.0 12.6 13.1 13.3 13.2 12.8 12.3 11.7 11.2 10.9
30◦ 10.4 11.1 12.0 12.9 13.7 14.1 13.9 13.2 12.4 11.5 10.6 10.2
40◦ 9.6 10.7 11.9 13.2 14.4 15.0 14.7 13.8 12.5 11.2 10.0 9.4
50◦ 8.6 10.1 11.8 13.8 15.4 16.4 16.0 14.5 12.7 10.8 9.1 8.1

Appendix D: Data sources and processing

The program to generate the dataset is mainly written in
Python. The rasterio (https://rasterio.readthedocs.io/en/
latest/, last access: 26 November 2021) library is used
to extract from the raster for the given basin bound-
ary, reproject, and merge rasters. The shapely (https:
//shapely.readthedocs.io/en/stable/manual.html, last access:
26 November 2021) library is used to calculate the geome-
try. The pyproj (https://pyproj4.github.io/pyproj/stable/,
last access: 26 November 2021) library is used
for coordinate system conversions. The richdem
(https://richdem.readthedocs.io/en/latest/, last access:
26 November 2021) library is used to calculate slope.
The netCDF4 (https://unidata.github.io/netcdf4-python/,
last access: 26 November 2021) and xarray (http:
//xarray.pydata.org/en/stable/, last access: 26 Novem-
ber 2021, Hoyer et al., 2021) libraries are used to read the
netCDF files. The pyshp (https://pypi.org/project/pyshp/,
last access: 26 November 2021) library is used to
handle shapefiles. The gdal (https://gdal.org, last
access: 2 December 2021, GDAL/OGR contribu-
tors, 2020) command-line programs are used for
data format conversions. The Python multiprocessing
(https://docs.python.org/3/library/multiprocessing.html, last
access: 26 November 2021) library is used for multithreaded
data processing such as the calculation of meteorological
time series. The interpolation program is written based
on SciPy and NumPy. In addition, the calculation of the
catchment boundary uses ArcPy (https://pro.arcgis.com/
zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm,
last access: 26 November 2021). However, ArcPy is not
open-source. Upon submission, due to policy adjust-

ments, the SURF_CLI_CHN_MUL_DAY dataset has just
been closed for sharing (it may reopen), and we provide
two options: (1) calculate time series using the archived
SURF_CLI_CHN_MUL_DAY data if there is a backup; and
(2) calculate time series using the released CCAM dataset;
the principle is to calculate the overlapping areas of the
given watershed and the watersheds we have calculated
and then to calculate the meteorological time series of the
given watersheds by weighting; codes can be found in the
GitHub repository. The GDBD dataset can be downloaded
at https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html
(last access: 26 November 2021). ASTER GDEM dataset
can be downloaded at https://asterweb.jpl.nasa.gov/gdem.asp
(last access: 26 November 2021). The GLHYMPS
dataset can be downloaded at https://dataverse.
scholarsportal.info/dataset.xhtml?persistentId=doi:
10.5683/SP2/DLGXYO (last access: 26 Novem-
ber 2021). MODIS MCD12Q1 can be obtained from
https://lpdaac.usgs.gov/products/mcd12q1v006/ (last access:
26 November 2021). MODIS MCD15A3 can be obtained
from https://lpdaac.usgs.gov/products/mcd15a3hv006/
(last access: 26 November 2021). Soil hydraulic and
thermal properties can be downloaded after registra-
tion: http://globalchange.bnu.edu.cn/research/soil5.jsp
(last access: 26 November 2021). Soil prop-
erty data can be downloaded after registration:
http://globalchange.bnu.edu.cn/research/soil2 (last ac-
cess: 26 November 2021). SoilGrids data download link is
https://files.isric.org/soilgrids/former/2017-03-10/data/ (last
access: 26 November 2021) with a list of descriptions at
https://github.com/ISRICWorldSoil/SoilGrids250m/blob/
master/grids/models/META_GEOTIFF_1B.csv (last access:
26 November 2021).
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Table
C

1.C
ontinued.

A
ttribute

1st
2nd

3rd
4th

5th

bldfie_sl4
orcdrc_sl3(−

0.691)
orcdrc_sl2(−

0.68)
orcdrc_sl4(−

0.676)
orcdrc_sl5(−

0.641)
orcdrc_sl6(−

0.584)
bldfie_sl1

orcdrc_sl2(−
0.769)

orcdrc_sl3(5
−

0.701)
cecsol_sl1(−

0.686)
orcdrc_sl4(−

0.657)
som

(−
0.606)

bldfie_sl3
orcdrc_sl2(−

0.749)
orcdrc_sl3(−

0.738)
orcdrc_sl4(−

0.702)
orcdrc_sl5(−

0.636)
som

(−
0.633)

bldfie_sl2
orcdrc_sl2(−

0.787)
orcdrc_sl3(−

0.728)
orcdrc_sl4(−

0.682)
cecsol_sl1(−

0.671)
som

(−
0.651)

cecsol_sl1
bldfie_sl1(−

0.686)
bldfie_sl2(−

0.671)
orcdrc_sl2(0.629)

bldfie_sl3(−
0.598)

orcdrc_sl3(0.579)
cecsol_sl2

bldfie_sl1(−
0.579)

bldfie_sl2(−
0.566)

orcdrc_sl2(0.553)
orcdrc_sl3(0.523)

bldfie_sl3(−
0.515)

cecsol_sl5
bldfie_sl1(−

0.445)
bldfie_sl2(−

0.429)
orcdrc_sl2(0.412)

orcdrc_sl3(0.393)
pet_m

ean(−
0.392)

cecsol_sl4
bldfie_sl1(−

0.472)
bldfie_sl2(−

0.459)
orcdrc_sl2(0.447)

orcdrc_sl3(0.43)
orcdrc_sl5(0.424)

cecsol_sl3
bldfie_sl1(−

0.532)
bldfie_sl2(−

0.52)
orcdrc_sl2(0.508)

orcdrc_sl3(0.49)
orcdrc_sl4(0.478)

cecsol_sl7
bldfie_sl1(−

0.413)
bldfie_sl2(−

0.396)
orcdrc_sl2(0.38)

pet_m
ean(−

0.374)
orcdrc_sl3(0.362)

cecsol_sl6
bldfie_sl1(−

0.409)
bldfie_sl2(−

0.393)
orcdrc_sl2(0.378)

pet_m
ean(−

0.373)
orcdrc_sl3(0.36)

bdticm
su(0.52)

w
oody_savanna(−

0.412)
low

_prec_freq(0.382)
phihox_sl7(0.378)

m
ixed_forest(−

0.374)
pdep

theta_s_l4(0.463)
elev(−

0.436)
grav(−

0.424)
theta_s_l3(0.42)

lon(0.4)
por

som
(0.363)

bldfie_sl1(−
0.335)

phihox_sl1(−
0.329)

phihox_sl3(−
0.328)

phihox_sl2(−
0.328)

clay
sand(−

0.67)
log_k_s_l4(−

0.603)
log_k_s_l3(−

0.592)
log_k_s_l1(−

0.59)
log_k_s_l2(−

0.578)
sand

log_k_s_l1(0.71)
log_k_s_l2(0.709)

log_k_s_l3(0.682)
clay(−

0.67)
log_k_s_l4(0.612)

silt
sand(−

0.573)
log_k_s_l1(−

0.436)
log_k_s_l2(−

0.433)
log_k_s_l3(−

0.4)
log_k_s_l4(−

0.316)
grav

theta_s_l2(−
0.585)

theta_s_l1(−
0.582)

theta_s_l3(−
0.522)

theta_s_l4(−
0.515)

theta_s_l5(−
0.433)

som
bldfie_sl2(−

0.651)
bldfie_sl3(−

0.633)
bldfie_sl1(−

0.606)
orcdrc_sl2(0.599)

orcdrc_sl3(0.576)
high_prec_freq

root_depth_50(−
0.196)

grassland(0.175)
root_depth_99(−

0.171)
som

(0.136)
tksatu_l1(−

0.133)
high_prec_dur

theta_s_l6(−
0.277)

theta_s_l5(−
0.234)

p_seasonality(0.233)
elev(0.211)

theta_s_l4(−
0.201)

low
_prec_freq

pre_m
ean(−

0.766)
aridity(0.745)

ssd_m
ean(0.652)

rhu_m
ean(−

0.627)
phihox_sl7(0.588)

Appendix E: Basin boundaries

This section briefly introduces how the basin boundaries are
derived. The basin boundary data used in this research are
obtained from the GBDB (Global Drainage Basin Database;
Masutomi et al., 2009) dataset. The GDBD dataset first dis-
tinguishes sinks caused by DEM errors; then, stream burn-
ing (Maidment, 1996) and ridge fencing methods are used
to modify the seeded DEM, and basin boundaries are pro-
duced with standardized procedures (Jenson and Domingue,
1988; Maidment and Morehouse, 2002). Then, the gauging
station data from the GRDC dataset are used to calibrate the
derived basin boundaries. The derived basin areas were com-
pared with the observed basin areas, and they showed a high
degree of consistency with the observed basin data.

Appendix F: Guidelines for calculating attributes for
custom catchments

The published code (https://github.com/haozhen315/CCAM-
China-Catchment-Attributes-and-Meteorology-dataset, last
access: 26 November 2021) supports the automation of the
calculation of the attributes for any given river basin and the
generation of statistics files. In general, the user only needs
to prepare the source data and ensure that the code environ-
ment is installed correctly, and then the user can run the code
to calculate all attributes for the given river basin. The fol-
lowing describes the steps to generate data for any given wa-
tershed.

F1 Prepare source data

In this step, the user needs to download the source data and
place it in the corresponding location (Table F1). The code
supports the calculation of meteorological time series based
on the SURF_CLI_CHN_MUL_DAY dataset or the CCAM
dataset that we have released. If the basin the user needs to
calculate is not in China, then the user needs to format the
collected meteorological time series into the same format as
the time series generated by the code. Details and sample
files are available in the GitHub library.

F2 Run the code

When all the source data are prepared, the user can run
the code calculate_all_attributes.py to calculate all attributes
or run separate scripts (e.g., soil.py) to calculate indicators
for specific categories. The result will appear in the output
folder.

Earth Syst. Sci. Data, 13, 5591–5616, 2021 https://doi.org/10.5194/essd-13-5591-2021
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