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Abstract. Tibetan Plateau (TP) is well known as Asia’s water tower from where many large rivers originate.
However, due to complex spatial variability in climate and topography, there is still a lack of a high-quality
rainfall dataset for hydrological modeling and flood prediction. This study therefore aims to establish a high-
accuracy daily rainfall product through merging rainfall estimates from three satellites, i.e., GPM-IMERG,
GSMaP and CMORPH, based on a high-density rainfall gauge network. The new merged daily rainfall dataset
with a spatial resolution of 0.1◦ focuses on warm seasons (10 June–31 October) from 2014 to 2019. Statis-
tical evaluation indicated that the new dataset outperforms the raw satellite estimates, especially in terms of
rainfall accumulation and the detection of ground-based rainfall events. Hydrological evaluation in the Yarlung
Zangbo River basin demonstrated high performance of the merged rainfall dataset in providing accurate and
robust forcings for streamflow simulations. The new rainfall dataset additionally shows superiority to several
other products of similar types, including MSWEP and CHIRPS. This new rainfall dataset is publicly accessible
at https://doi.org/10.11888/Hydro.tpdc.271303 (Li and Tian, 2021).

1 Introduction

Precipitation, linking atmospheric and hydrological pro-
cesses, serves as a crucial component of the water cy-
cle (Eltahir and Bras, 1996; Trenberth et al., 2003). Grid-
ded precipitation datasets become more and more popular
with the advent of satellite precipitation measurement. The
most famous satellite gridded precipitation datasets include
the Tropical Rainfall Measuring Mission (TRMM) (Huff-
man et al., 2007) and its successor the Integrated Multi-

satellite Retrievals for Global Precipitation Measurement
mission (GPM-IMERG) (Hou et al., 2014), the Global Satel-
lite Mapping of Precipitation (GSMaP) (Ushio et al., 2009),
the Climate Prediction Center (CPC) MORPHing technique
(CMORPH) (Joyce et al., 2004), etc. These products have
been successfully applied in various hydrometeorological
studies and water resources management practices (Kidd and
Levizzani, 2011; Jiang et al., 2012; Tong et al., 2014; Yang
et al., 2015; Sun et al., 2016; Wang et al., 2017).
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However, all existing precipitation datasets show insuffi-
cient accuracy in high mountainous regions (Derin et al.,
2016, 2018, 2019; Zhang and Anagnostou, 2019), which
hinders our understanding of climate and hydrological pro-
cesses over these areas. This can be attributed to the com-
plex physical nature of electromagnetic transmission and
precipitation-forming processes (Hong et al., 2007; Bitew
and Gebremichael, 2010; Dinku et al., 2010) and harsh
environments in high mountains that lead to very limited
deployment of in situ rain gauges with insufficient repre-
sentation of ground observations for training satellite-based
precipitation retrieval algorithms. For instance, the Tibetan
Plateau (TP) as the roof of the world is surrounded by im-
posing mountain ranges with an average elevation exceed-
ing 4000 m. It generates several large rivers in Asia and
provides invaluable freshwater resources for more than 1.4
billion people living downstream (Immerzeel et al., 2010).
However, this vast plateau has a very limited number of pre-
cipitation gauges across its 2.5× 106 km2 area. The precip-
itation gauge network operated by the China Meteorolog-
ical Agency (CMA) contains only 86 gauges over the en-
tire TP (Fig. 1). These gauges are essential to correct satel-
lite precipitation datasets. For example, the GPM-IMERG
“Final” Run dataset uses the Global Precipitation Climatol-
ogy Centre (GPCC) database, and GSMaP_Gauge and the
CMORPH use the NOAA Climate Prediction Center (CPC)
database. Although both GPCC and CPC databases received
data through the Global Telecommunication System (GTS),
only part of the abovementioned gauges in the TP were uti-
lized (Xie et al., 2007; Becker, 2013). Previous evaluations
over the TP indicated that most products present dependence
on topography to varying degrees, and products adjusted by
gauge observations show better performance than satellite-
only products (Gao et al., 2013; Lu and Yong, 2018). There-
fore, a better spatial coverage of rain gauges is critical to cor-
rect satellite products in high mountains.

In 2014, the Ministry of Water Resources of China (MWR)
launched the flash flood monitoring and alarming campaign.
A large number of rain gauges are now accessible over the
TP, especially in the southern TP. There are 440 new rain
gauges totally involved in 6 years and have been available
since 2014, independent of the existing CMA precipitation
gauge network (Fig. 1). These gauges provide measurements
of precipitation in the liquid phase (i.e., rainfall) at the event
timescale. A couple of recent studies have demonstrated the
utility of this rain gauge network (Xu et al., 2017; He et al.,
2017; Tian et al., 2018; Wang et al., 2020). For instance,
Xu et al. (2017) evaluated the performance of TRMM and
GPM and the dependence on topography and rainfall inten-
sity based on the network. Their results demonstrated that the
data quality of this dense gauge network is strictly controlled,
serving as the currently highest gauge density for satellite
product evaluation on the TP. Wang et al. (2020) used the
gauge data to validate their reproduced precipitation dataset.
However, there is not a merging product that assimilates the

observations from this dense rain gauge network. This is ap-
parently a unique opportunity to improve the performance of
existing satellite-based precipitation datasets for its highest
density and quality.

This study aims to provide a high-accuracy rainfall dataset
by merging all available ground gauges and three good-
quality satellite precipitation datasets over the southern TP
for the warm seasons (10 June–31 October) from 2014 to
2019. The remainder of this paper is organized as follows:
Sect. 2 describes the study area and the source data. Sec-
tion 3 provides details of the data merging method and the
methods adopted to evaluate the quality of dataset. Results
are presented in Sect. 4. The data availability and summary
are provided in Sects. 5 and 6, respectively.

2 Study area and source data

2.1 Southern Tibetan Plateau

The Tibetan Plateau, known as the Asian water tower, mainly
covers parts of China, India, Myanmar, Bhutan, Nepal and
Pakistan. Various climate systems affect the plateau, includ-
ing westerly winds in winter and the Indian monsoon in
summer (Yao et al., 2012). Many large Asian rivers origi-
nate from this vast area, including the Yellow River, Yangtze
River, Yarlung Zangbo River (YZR), Jinsha River (JR), Lan-
cang River (LR), Salween River (SR), Irrawaddy River (IR),
Ganges River (GR) and Indus River (IDR). This study is fo-
cused on the southern part of the TP (Fig. 1), including the
upper YZR basin (YZRB) as a major basin.

2.2 Ground gauged rainfall

We combined two rain gauge networks managed by MWR
and CMA to obtain a high-quality ground reference dataset
up to date. The number of rain gauges is presented in Fig. 1b
and varies across different years. The spatial distribution of
all gauges is presented in Fig. 1c. The gauges are mainly
located in the middle reaches of the YZRB and the east-
ern part of the study area. Despite the high density, we can
see these rain gauges are not evenly distributed across the
space. This makes satellite rainfall products over varying alti-
tudes and aspects important. Daily rainfall observations dur-
ing the warm seasons of 2014–2019 were accumulated from
the original event-scale measurements. The total number of
the CMA and MWR gauges ranges from 53 in 2015 to 377
in 2018, forming the densest rain gauge network up till now.

The CMA gauge data have been widely demonstrated as
reliable and accurate in previous studies (Zhai et al., 2005;
Su et al., 2020; He et al., 2020). Gauge data used in this
study have been manufactured under strict quality control
procedures, including an (1) internal consistency check, (2)
extreme values check (0–85 mmh−1) and (3) spatial consis-
tency check (Ren et al., 2010). Rain gauges with erroneous
values (e.g., enormously large values) were discarded from
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Figure 1. (a) The location and topography of the TP and the spatial distributions of CMA gauges. (b) Numbers of ground gauges installed
by CMA and MWR in the southern TP during 2014–2019, (c) locations of CMA and MWR rain gauges and main hydrological stations in the
southern TP. The names of hydrological stations are labeled as follows: H1 – Yangcun, H2 – Lhasa, H3 – Nugesha, H4 – Gongbujiangda, H5
– Nuxia. The names of tributary rivers are labeled as follows: R1 – Duoxiong Zangbo, R2 – Nianchu River, R3 – Lhasa River, R4 – Niyang
River, R5 – Yigong Zangbo, R6 – Parlung Zangbo.

the entire records. In cold seasons there are many missing
values, and only few gauges meet the requirements of the
strict quality control method. So the warm seasons from 10
June to 31 October were selected as the study period to main-
tain the high quality of the outcome rainfall dataset, while
gauged rainfall data are continuously collected to update our
merged rainfall data.

2.3 Satellite precipitation datasets

Three satellite precipitation products were chosen for the
data merging procedure (Lu and Yong, 2018; Derin et
al., 2019; Tang et al., 2020), including GPM-IMERG
“Final” Run (hereafter referred to as IMERG) from the

National Aeronautics and Space Administration (NASA)
(https://disc.gsfc.nasa.gov/, last access: 20 May 2021), the
GSMaP_Gauge (hereafter referred to as GSMaP) from
the Japan Aerospace Exploration Agency (JAXA) (http://
sharaku.eorc.jaxa.jp, last access: 20 May 2021), and the
CMORPH v1.0 from NOAA CPC (ftp://ftp.cpc.ncep.noaa.
gov/precip/CMORPH_V1.0/, last access: 20 May 2021).
Spatial resolutions and temporal frequency of the satellite
datasets are listed in Table 1. To be consistent, IMERG
and GSMaP data were accumulated to daily scale (08:00–
08:00 LT, i.e., UTC+8), and CMORPH was bilinearly inter-
polated to a grid resolution of 0.1◦.

The merged dataset was further compared with two pop-
ular merged rainfall datasets of Climate Hazards Group
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Table 1. Multiple-satellite precipitation datasets used in this study.

Datasets Resolution Frequency Source Reference

GPM IMERG 0.1◦× 0.1◦ 0.5-hourly NASA Hou et al. (2014)
GSMaP_Gauge 0.1◦× 0.1◦ 1-hourly JAXA Ushio et al. (2009)
CMORPH v1.0 0.25◦× 0.25◦ daily CPC Joyce et al. (2004)
CHIRPS v2.0 0.25◦× 0.25◦ daily USGS and CHC Funk et al. (2015)
MSWEP v2 0.1◦× 0.1◦ 3-hourly – Beck et al. (2019)

InfraRed Precipitation with Stations (CHIRPS) (Funk et
al., 2015) and Multi-Source Weighted-Ensemble Precipi-
tation (MSWEP) (Beck et al., 2019). CHIRPS, from the
US Geological Survey (USGS) and Climate Hazards Cen-
ter (CHC), was originated by merging CHPClim, thermal in-
frared, TRMM3B42, NOAA CFSv2 precipitation data and
ground observation precipitation data. MSWEP was merged
from multiple datasets, including CPC, GPCC, CMORPH,
GSMaP-MVK, GPM-IMERG, ERA5 and JRA-55. CHIRPS
and MSWEP showed great potential in rainfall estimates in
previous studies (Liu et al., 2019).

3 Methodology

We used the dynamic Bayesian model averaging (DBMA)
method (Ma et al., 2018a) to merge the satellite datasets with
in situ rain gauges. To evaluate the quality of the new dataset,
we carried out statistical and hydrological evaluations and
comparisons with CHIRPS and MSWEP in the southern TP.

3.1 Dynamic Bayesian model averaging method

The DBMA method developed by Ma et al. (2018a) was
utilized in this work. A flow chart of the merging method
is shown in Fig. 2. In the first step, a training dataset was
formed by selecting samples from the ground gauged data
and three original satellite datasets. The training period was
set as 40 d. Increasing the length of the training period did not
lead to obvious improvement of the merging method (Ma et
al., 2018a). In the second step, the training dataset was trans-
formed by the Box–Cox Gaussian distribution, and the op-
timal weights for each of the original satellite datasets on a
specific grid where a ground gauge is located on each training
day were estimated by a logarithmic likelihood equation and
the optimal expectation algorithm. In the third step, an or-
dinary kriging interpolation method was applied to spatially
interpolate the daily weights onto grids with no gauges. Fi-
nally, posterior spatiotemporal weights were used to obtain
the final merged rainfall dataset. The DBMA-merged data
have been proven in Ma et al. (2018b) to outperform original
satellite data during 2007–2012 over the TP.

For statistical evaluation of the merged data against ground
gauges, around 85 % of the gauges were randomly selected
to form a training gauge set for the merging approach in each

Table 2. Number of rain gauges for training and testing in 2014–
2019.

Year Total number of Number of Number of
rain gauges training gauges test gauges

2014 195 166 29
2015 54 46 8
2016 373 317 56
2017 321 273 48
2018 377 320 57
2019 106 90 16

year during 2014–2019, and the remaining 15 % were used
for testing. The training method DBMA of 40 d was only
conducted in the training dataset. Table 2 lists the numbers
of training and test gauges in each of the warm seasons. The
spatial distributions of gauges in each year are presented in
Fig. S1 in the Supplement. Data from all gauges were in-
volved in the training procedure of the final version of the
merged data.

3.2 Statistical evaluation

Performance of the multiple datasets was statistically eval-
uated by comparing with ground observations on the corre-
sponding satellite grids. Relative bias (RB) and normalized
root mean square error (RMSE) were adopted to measure
the amount difference between the gridded rainfall and the
gauged rainfall. The correlation coefficient (CC) was used
to evaluate the consistency between satellite estimates and
gauge observations. The skill of rainfall data on detecting
rainfall occurrence (rainfall events higher than zero) was
evaluated through a set of metrics (similarly to Wilks, 2011),
i.e., the probability of detection (POD), assessing how good
the multiple rainfall datasets are at detecting the occurrence
of rainfall; false alarm ratio (FAR), measuring how often the
gridded rainfall datasets detect rainfall when there actually
is not rainfall; and critical success index (CSI), measuring
the ratio of rainfall events that are correctly detected by the
gridded datasets to the total number of observed or detected
events. Equations for the above metrics are shown in Table 3.

For the equations listed in Table 3, n is the total num-
ber of gridded product data and gauge observation data, i is
the ith satellite product datum and gauge observation datum,
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Figure 2. Flowchart of the DBMA merging method (adapted from Ma et al., 2018a).

Table 3. Statistical indices that were used to assess the performance of the gridded rainfall datasets.

Statistical indicators Equation Optimal value Equation number

Relative bias (RB) Bias=
∑n

i=1(Si−Gi )∑n
i=1Gi

0 (1)

Correlation coefficient (CC) CC=
[∑n

i=1(Si−S)·(Gi−G)
]2∑n

i=1(Si−S)2·
∑n

i=1(Gi−G)2 1 (2)

Root mean square error (RMSE) RMSE=
√

1
n

∑n
i=1(Si −Gi )2 0 (3)

Probability of detection (POD) POD= a
a+c 1 (4)

False alarm ratio (FAR) FAR= b
a+b

0 (5)

Critical success index (CSI) CSI= a
a+b+c

1 (6)

Gi means gauge observation, and G is the average of gauge
observation. Si and S are gridded estimates and their aver-
age, respectively; a represents hit (i.e., event was detected to
occur and observed to occur), b represents false alarm (i.e.,
event was detected to occur but not observed to occur), and
c represents miss (i.e., event was not detected to occur but
observed to occur).

The triple collocation (TC) technique provides a platform
for quantifying the root mean square errors of three prod-
ucts that estimate the same geophysical variable (Stoffelen,
1998). Roebeling et al. (2012) successfully applied the TC
technique to estimate errors in three rainfall products across
Europe. An extended triple collocation (ETC) introduced in
McColl et al. (2014), which is able to estimate errors and cor-
relation coefficients with respect to an unknown target, was
used in this study to compare the performance of the DBMA-
merged data and two previous merged datasets of CHIRPS
and MSWEP.

3.3 Hydrological evaluation

In addition to the statistical assessments against rain gauges,
hydrological assessment was used as a tool to test the per-

formance of merged rainfall datasets on forcing hydrolog-
ical modeling in the study area (similarly see Yong et al.,
2012, 2014; Xue et al., 2013; Li et al., 2015). In this sec-
tion, a semi-distributed hydrological model developed by
Tian (2006), namely the Tsinghua Hydrological Model based
on Representative Elementary Watershed (THREW), was
adopted for the hydrological assessment of rainfall datasets
in the YZRB. The YZRB has a drainage area of approxi-
mately 240 480 km2 within China’s boarder. The basin ele-
vation ranges from 143 to 7261 m, with an average of around
4600 m. YZR is one of the most important transboundary
rivers in South Asia and the highest river in the world, which
is characterized by a dynamic fluvial regime with an excep-
tional physiographic setting spreading along the eastern Hi-
malayan region (Goswami, 1985). Due to complex terrain
and strongly varying elevation, the YZRB is under control of
a variety of climate systems, such as the semi-arid plateau
climate prevailing in the upper and middle reaches and the
mountainous subtropical and tropical climates prevailing in
the lower reaches. In the cold upper reaches, the mean annual
rainfall is less than 300 mm. In the warm middle reaches, the
mean annual rainfall falls between 300 and 600 mm.
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Table 4. Calibrated parameters of the THREW model.

Symbol Description Unit Value range

kv Fraction of potential transpiration rate over potential evaporation – 0.001–0.8
nt Manning roughness coefficient for hillslope – 0.0001–0.2
GaIFL Spatial heterogeneous coefficient for infiltration capacity – 0.0001–0.7
GaEFL Spatial heterogeneous coefficient for exfiltration capacity – 0.0001–0.7
GaETL Spatial heterogeneous coefficient for evapotranspiration capacity – 0.0001–0.7
WM Tensor water storage capacity cm 0.1–10
B Shape coefficient to calculate the saturation excess runoff area – 0.01–1
Gaus Coefficient representing spatial heterogeneity of exchange term between t zone and r zone – 0.001–10
KKA Exponential coefficient to calculate subsurface flow – 0.01–6
KKD Linear coefficient to calculate subsurface flow – 0.001–0.5
MM Snow melting degree-day factor mmd−1 0.001–10
MMG Ice melting degree-day factor mmd−1 0.001–10
C1+C2 Muskingum parameter – 0.0001–1
C1/(C1+C2) Muskingum parameter – 0.0001–1

The whole basin area above the Nuxia hydrological sta-
tion was divided into 63 representative elementary water-
sheds (REWs). Model parameters were calibrated by daily
discharges measured at the Nuxia station. The calibration pe-
riod is scheduled to run in the warm seasons from 10 June to
31 October in 2014–2017, encompassing a period length of
576 d. The validation period includes two warm seasons in
2018 and 2019 with a total duration of 288 d. Descriptions
of the calibrated model parameters can be found in Table 4.
An automatic algorithm pySOT developed by Eriksson et al.
(2019) was used to optimize the parameter values based on
an objective function of Nash–Sutcliffe efficiency coefficient
(NSE) (Nash and Sutcliffe, 1970) in Eq. (7). To conduct a
continuous hydrological simulation in the study period, the
datasets of daily grid-based precipitation over China (Zhao
et al., 2014) were used as model inputs in the non-warm sea-
sons when merged rainfall is not available.

NSE= 1−

∑N
n=1

(
Qn

obs−Qn
sim
)2∑N

n=1
(
Qn

obs−Qobs
)2 , (7)

where N is the total number of days in the evaluation pe-
riod, and Qn

obs and Qn
sim represent the observed and simu-

lated runoff on the nth day, respectively. Qobs represents the
average of observed runoff in the evaluation period.

4 Results and discussions

4.1 Spatiotemporal patterns

Based on the merging method, a new daily rainfall dataset
with a spatial resolution of 0.1◦× 0.1◦ in the warm seasons
from 10 June to 31 October (144 d in each year) in 2014–
2019 (864 d in 6 years) was generated. Figure 3 presents the
spatial pattern of the mean rainfall over the six warm sea-
sons of the merged data in the southern TP. It is shown that
extremely high summer rainfall centers concentrate in the

southeast and southwest of the study area, which is known
as a world-famous heavy rainfall center (see Biskop et al.,
2016; Bookhagen and Burbank, 2006; Kumar et al., 2010).

In addition, Fig. 4 compares the time series of average
daily weight and rainfall over the YZRB basin derived from
the DBMA-merged data and the original satellite datasets.
As expected, the DBMA-merged daily rainfall in general fall
in the envelope ranges of the three satellite datasets. Merged
data are closer to CMORPH in June, September and Octo-
ber while showing equal closeness to all three source satel-
lite data in July and August. It indicates that CMORPH is
closer to the in situ gauges than IMERG at basin scale when
the rainfall value is small, especially for light-rainfall events
with less than 2 mm of rainfall, but this difference tends to be
small for heavy-rainfall events.

4.2 Statistical evaluation

Figure 5 shows the statistical evaluation of the merged and
original datasets in the warm seasons. The statistical indices
were calculated for three gauge groups including the training
gauges, the test gauges and all gauges at different elevation
bands. The datasets in general presented comparable perfor-
mance for the training and test gauge groups, indicating that
the sampling procedure of ground gauges is adequately ran-
dom. The comparable performance of merged data in the
training and test gauge groups demonstrated robustness of
the merging method for varying gauges. In terms of RSME,
CC and POD, the DBMA-merged data show much better
performance in all gauge groups and elevation bands than
the original satellite datasets. The smallest RSME of merged
data indicates that the total rainfall amount of the merged
data during the evaluation period showed the lowest differ-
ence from the total amount of gauged rainfall. The highest
CC and POD highlight the best consistency between merged
data and ground gauge data on days when most regions in
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Figure 3. Spatial pattern of mean rainfall over six warm seasons in 2014–2019 of the DBMA-merged data in the southern TP.

Figure 4. Seasonal variations in basin-averaged (a) weights and (b)
rainfall estimates of the multiyear daily values of IMERG, GSMaP,
CMORPH and DBMA.

the basin were rainy. The RB of DBMA-merged data is at
an intermediate level among the satellite datasets as it is the
weighted average of those three datasets. The higher FAR
and lower CSI of DBMA-merged data could be attributed
to the fact that the merging method detected rainfall events
when the rainfall estimate is higher than zero in any one of
the three satellite datasets and thus resulted in overestimated
rainfall occurrence. The overestimated rainfall occurrence
might have small effects on the estimation of rainfall amount
as most of the false alarm events were tiny. It is noteworthy
that the performance of the merged data shows smaller vari-
ance across elevation bands than that of the original satellite
datasets. This is most likely benefiting from the spatially dy-
namic optimal weights for the original satellite data. How-
ever, the merged data presented the largest difference from
gauged data at the altitudes of 3000–3500 m because there
are far fewer gauges in this elevation zone.

Figure 6 shows the CC of different datasets for specific
gauges. The merged data present higher CC values in re-
gions that are densely gauged, i.e., the middle reaches of the
YZRB and the eastern part of the study region, which can be

Table 5. Evaluation metrics of hydrological simulations forced by
IMERG, GSMaP, CMORPH and DBMA.

Parameters IMERG GSMaP CMORPH DBMA

NSEcal 0.91 0.90 0.90 0.93
NSEval 0.75 0.57 0.81 0.86
RB −0.07 −0.10 0.02 −0.05

expected as the dense ground gauges provided strongly infor-
mative benchmark likelihoods for the estimation of satellite
data weights. For most of the gauges (Fig. 6a), the merged
data presented higher CC values than the IMERG data,
which is consistent with Fig. 5c. In contrast, the merged data
showed a reduced CC compared to GSMaP and CMORPH
for more gauges (Fig. 6b and c), indicating that involving
IMERG data in the merging procedure for these gauges leads
to deteriorated consistence performance.

4.3 Hydrological evaluation

4.3.1 Hydrological simulation

Performance of the THREW model forced by different rain-
fall datasets is compared in Table 5, including NSE in the
calibration period (NSEcal), NSE in the validation period
(NSEval) and RB. The DBMA-merged dataset achieved the
best runoff simulation among all rainfall inputs, with NSE
reaching 0.93 and 0.86 in the calibration and validation
period, respectively, indicating an excellent agreement be-
tween simulated and observed hydrographs. Both IMERG
and GSMaP underestimated the measured daily discharge,
but the DBMA-merged dataset improved such underestima-
tions (see RB values in Table 4).

4.3.2 Uncertainty analysis

The automatic algorithm pySOT was run 200 times to in-
vestigate the modeling uncertainty caused by parameter cal-
ibration. Figure 7 presents the distributions of NSE values
estimated by the ensemble parameter sets of the merged and
original rainfall forces. It is shown that streamflow simulated
by the DBMA data at the Nuxia station presented higher
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Figure 5. Comparisons of the statistical indices of (a) RB, (b) RMSE, (c) CC, (d) POD, (e) FAR and (f) CSI for training gauges, test gauges
and all gauges at five elevation bands.

NSEs and smaller uncertainty ranges than that simulated by
the original satellite datasets, indicating that streamflow sim-
ulations driven by the merged dataset showed stronger ro-
bustness and were less affected by uncertainty in parameter
calibration.

In addition to the Nuxia hydrological station, model per-
formance when simulating streamflow at the interior hy-
drological stations of Yangcun, Nugesha, Gongbujiangda
and Lhasa (Fig. 1) was evaluated in Fig. 7. It shows that
the IMERG-forced simulations presented poor NSE outliers
lower than zero at the Lhasa station in spite of their good per-
formance at the Yangcun and Nugesha stations; the GSMaP-
forced simulations presented large uncertainty ranges in the
calibration period at Nugesha and Lhasa and in the vali-
dation period at Nuxia and Gongbujiangda; the CMORPH-
forced simulations showed the worst performance in the val-
idation period at the interior hydrological stations, despite

their sound performance in the calibration period at Yang-
cun and Nugesha. In comparison to the satellite datasets, the
DBMA-forced simulations tend to perform consistently bet-
ter, with smaller uncertainties at all the hydrological stations,
which can be attributed to the fact that the merged data in-
corporated the advantages of different datasets in different
regions and temporal periods and thus better captured the
spatial variability in rainfall inputs in sub-basins.

4.4 Comparisons with other datasets

To avoid interference of ground gauge data merged in the
DBMA dataset, the ETC method introduced in Sect. 3.2 was
applied to compare the three merged datasets in Table 6. The
RMSE and CC of DBMA calculated by ETC were 1.11 and
0.80, respectively, both of which are obviously superior com-
pared to the corresponding values estimated by CHIRPS and
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Figure 6. Spatial distributions of CC difference between (a) DBMA and IMERG, (b) DBMA and GSMaP, and (c) DBMA and CMORPH.

Table 6. Statistical RMSE and CC of merged datasets calculated by
the ETC method.

Datasets DBMA CHIRPS MSWEP

RMSE-ETC 1.11 7.15 2.82
CC-ETC 0.80 0.28 0.62

MSWEP, indicating that DBMA data are closer to the true
value of rainfall in the study region.

Runoff simulations forced by the three merged datasets
during 10 June 2014 to 31 October 2019 estimated by the
corresponding optimal parameter sets are presented in Fig. 8.
Note that the daily runoff is normalized as Eq. (8) for data se-

curity reasons. Simulation by the CHIRPS data presented the
lowest performance, with NSE values of 0.75 and 0.78 in the
calibration and validation periods, respectively. The DBMA-
forced simulation showed the highest performance with NSE
values of 0.93 and 0.86 in the calibration and validation peri-
ods, followed by the MSWEP-forced simulation, which esti-
mated NSE values of 0.9 in the calibration period and 0.76 in
the validation period. The performance of streamflow forced
by the merged datasets are consistent with the agreements be-
tween the merged rainfall estimates and ground truth shown
in Table 6.

Qn
Normalized =

Qn
sim−min(Qobs)

max(Qobs)−min(Qobs)
(8)
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Figure 7. Runoff simulations at Nuxia, Yangcun, Nugesha, Gong-
bujiangda and Lhasa stations forced by multiple rainfall inputs.

5 Data availability

The high-accuracy rain dataset by merging multiple satel-
lites and dense ground gauges over the southern Tibetan
Plateau for the warm seasons in 2014–2019 is freely
accessible at the National Tibetan Plateau Data Center
(https://doi.org/10.11888/Hydro.tpdc.271303; Li and Tian,
2021).

6 Summary

We collated ground-based rainfall observations from a dense
gauge network over the southern TP. The gauged data pro-

Figure 8. Simulated daily runoff at Nuxia station forced by DBMA,
CHIRPS and MSWEP.

vide crucial ground references of measured rainfall. Based on
this rain gauge network and three satellite rainfall datasets of
IMERG, GSMaP and CMORPH, a merged rainfall dataset in
six warm seasons from 10 June to 31 October during 2014–
2019 over the southern TP was established. The DBMA
method was used to estimate weights varying in space and
time of the three satellite datasets for the merged data.
The merged rainfall dataset presented improved performance
when representing the total amount of rainfall and detect-
ing the occurrence of gauged rainfall events and provides
a more reliable forcing for hydrological simulations in the
YZRB compared to the original satellite datasets. Compar-
isons with previous merged rainfall datasets of CHIRPS v2.0
and MSWEP v2 that used relatively sparse rain gauges in the
study area demonstrated high values of the newly installed
rain gauges for providing a robust ground reference for the
merging of current satellite datasets. Our results indicated
that the merged datasets can meet the critical needs of accu-
rate forcing inputs for the simulations of warm-season floods
and the robustness calibration of hydrological models. Based
on these high-accuracy rainfall data and reliable hydrologi-
cal modeling, much further research in this region then could
be conducted, for example, fluvial sediment transport model-
ing through coupling sediment and hydrology, validation and
correction of precipitation from a global climate model, and
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future runoff projections based on reliable modeling calibra-
tion in history.
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